
        
            
                
            
        

    
  
Praise for the previous edition


  Leads you on a journey of F# that's both pragmatic and relevant.


  —From the Foreword by Dustin Campbell, Microsoft


  Does a great job of explaining F# clearly and effectively.


  —From the Foreword by Tomas Petricek, fsharpWorks


  A wonderful introduction to the subtleties of the F# language. You'll be productive within minutes!


  —Jason Hales, Digital Tier


  Combines excellent explanations, real-world use cases, and a steady supply of questions and exercises to make sure you really understand what is being taught. Highly recommended!


  —Joel Clermont, GrowthPoint


  Puts the FUN into functional programming with F#.


  —Stephen Byrne, Action Point


  This is an excellent book, and I'd strongly recommend it to any C# developer interested in learning a functional language.


  —Anne Epstein, Headspring


  This is a great resource to learn F#.


  —Bruno Sonnino, Revolution Software


  The power of F# unlocked in one book!


  —Dane Balia, Hetzner


    


  [image: ]


   


   


  F# in Action


  A Revised Edition of Get Programming with F#


   


  Isaac Abraham


   


  Forewords by Phillip Carter and Tomas Petricek


   


  To comment go to liveBook


   


   


  [image: ]


  Manning


  Shelter Island


   


  For more information on this and other Manning titles go to


  www.manning.com


   


  Copyright


  For online information and ordering of these  and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.


  For more information, please contact


    


  Special Sales Department


  Manning Publications Co.


  20 Baldwin Road


  PO Box 761


  Shelter Island, NY 11964


  Email: orders@manning.com


    


  ©2024 by Manning Publications Co. All rights reserved.


    


  No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.


  Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.


  ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.


   


  
    
      
      
    

    
      
        	
          [image: ]    

        

        	
          Manning Publications Co.


          20 Baldwin Road


          PO Box 761


          Shelter Island, NY 11964

        
      

    
  


    


  
    
      
      
    

    
      
        	
          Development editor:  

        

        	
          Dustin Archibald

        
      


      
        	
          Technical editor:  

        

        	
          Michael Ciccotti

        
      


      
        	
          Review editors:  

        

        	
          Adriana Sabo and Dunja Nikitović

        
      


      
        	
          Production editor:  

        

        	
          Kathy Rossland

        
      


      
        	
          Copy editor:  

        

        	
          Alisa Larson

        
      


      
        	
          Proofreader:  

        

        	
          Jason Everett

        
      


      
        	
          Technical proofreader:  

        

        	
          Sudipta Mukherjee

        
      


      
        	
          Typesetter:  

        

        	
          Dennis Dalinnik

        
      


      
        	
          Cover designer:  

        

        	
          Marija Tudor

        
      

    
  


    


    


  ISBN: 9781633439535


  
contents


    


  Front matter


  foreword


  preface


  acknowledgments


  about this book


  about the author


  about the cover illustration


    


    1   Introducing F#


    1.1   What is F#?


    1.2   Why F#?


    1.3   When F#?


    1.4   How will this book teach me F#?


    1.5   How does F# work?


  Collaborative exploration


  Type-driven development


  Trusting the compiler


  An opinionated language


  Data and functions


  Separation of business logic and external systems


  Varied targets


    2   Hands on with F#


    2.1   Writing code the F# way


  What, not how


  Composability


  Data and behavior


  Working with a smarter compiler


    2.2   F# and .NET


    2.3   Creating your first F# program


  Installing F#


  The .NET CLI


  Hello World in F#


    2.4   Getting Started with Visual Studio Code


  The Ionide extension


  Exploring F# with VS Code


  Writing your first F#


    2.5   REPL and scripts


  The F# REPL


  Trying out FSI


  Moving to interactive scripts


  State in the REPL


  Creating your first function


    2.6   Development flows


    2.7   Where scripts and the REPL fit in


    3   F# Syntax Basics


    3.1   F# syntax basics


  Characteristics of F# syntax


  The let keyword


  Scoping


    3.2   Type inference


  Benefits of type inference


  Type inference basics


  Inferring generics


  Diagnosing unexpected type inference behavior


  Limitations of type inference


  Criticisms of type inference


    3.3   Exercise answers


    4   F# Fundamentals


    4.1   Expressions


  Purity and side effects


  Difficulties with statements


  Expressions to the rescue


  Expressions in F#


  Composability


  Unit


  Ignore


    4.2   Immutable data


  The problem with mutability


  Modeling with mutable and immutable data


  Optimizing and opinionated languages


  Other benefits of immutable data


    4.3   Exercise Answers


    5   Shaping data


    5.1   Composing types in F#


  Data and functions in F#


    5.2   Tuples


  Tuple basics


  More on tuples


  Costs and benefits of tuples


    5.3   Records


  Defining, creating, and consuming records


  More on records


  Records and .NET


    5.4   Anonymous records


  Anonymous record tricks


    5.5   Tuples or records


    5.6   Exercise answers


    6   Functions and modules


    6.1   Functions


  The truth behind F# functions


  Partially applying functions


  Pipelines


  Using records and tuples with functions


  Tupled functions


  Comparing functions and methods


    6.2   Organizing code


  Namespaces


  Modules


  Moving from script to application: A step-by-step exercise


  Referencing programs from scripts


  Best practices for modules and namespaces


  Tips and tricks


    6.3   Answers to exercises


    7   Working with collections


    7.1   Higher-order functions


    7.2   Functional collection pipelines


  Imperative and declarative pipelines


  Debugging pipelines


  Understanding the List module


  Common List functions


  Ranges, slices, and indexing


    7.3   Other collection types


  Arrays


  Sequences


  ResizeArray


  Dictionary


  Map


  Set


  More on Sequences


  Comprehensions


  Comparing the different collection types


    7.4   Aggregations


  Imperative loops


  Functional folds


  Simulating Sequences


    7.5   Answers to exercises


    8   Patterns and unions


    8.1   Introducing pattern matching


  Exhaustive matching


  Tuple matching


  Simplifying pattern matches: A worked example


  Record matching


  Type inference


  When guards


    8.2   More advanced pattern matching


  Recursive matching


  Nested or conditions


  Binding symbols


  Collection matching


  Match vs. if/then


    8.3   Discriminated unions


  Basics of discriminated unions


  Pattern matching


  Exhaustive matching with discriminated unions


  Nested types with discriminated unions


  Single-case discriminated unions


    8.4   The F# type system


  ANDing types


  ORing types


  ANDing values


    9   Building rich domains


    9.1   Working with missing values


  The billion-dollar mistake: Working with nulls


  Options are the answer


  Option.map


  Option.bind


  Interop with .NET


  Options and collections


    9.2   Handling errors


  Results


  Handling multiple errors


  Strongly typed errors


  Exceptions


  When to safely leave options and results


  When to use options, results, and exceptions


    9.3   Computation expressions


    9.4   Domain modeling: A worked example


  10   Working effectively with data


  10.1   Best practices


  Data is data


  Separation of data and functionality


  Don’t treat scripts as programs


  Working with lists of results


  10.2   Serialization of data


  Deserializing JSON to F#


  Acceptable alternatives to DTOs


  Serializing F# into JSON


  10.3   Type providers


  Working with the JSON type provider


  Working with external data sources


  More data types from FSharp.Data


  Best practices for type providers


  10.4   Data visualization


  10.5   Working with other data sources


  The CLIMutable attribute


  Working with SQL


  10.6   Tooling options


  11   F# Interop


  11.1   Working with other .NET code


  Consuming C# classes


  Interfaces


  Fluent APIs


  Tuples


  Out parameters


  Object-based programming


  F# wrappers


  11.2   Exposing F# to C#


  Core F# concepts


  Tips and tricks


  Introducing F# into existing codebases


  11.3   Consuming NuGet packages


  Working with NuGet package dependencies


  Working with NuGet tools


  11.4   The Fable project: F# and JavaScript


  JavaScript to F#: A brief history


  Introducing Fable


  12   Asynchronous programming


  12.1   What is asynchronous programming?


  Async and sync programming


  A brief history of async on .NET


  12.2   Asynchronous support in F#


  Tasks in .NET


  Consuming Tasks


  The task { } block: F#’s async/await


  Executing multiple Tasks in parallel


  Benefits of Tasks’ computation expressions


  The async block


  12.3   Final thoughts on asynchronous workloads


  The importance of immutable data


  The viral nature of asynchronous workloads


  13   Web programming


  13.1   The web and functional programming


  Web programming on .NET and F#


  The HTTP Context


  13.2   Server-side web development in F#


  Creating our first ASP.NET application


  The HTTP Handler


  Composing HTTP Handlers together


  Composing multiple routes


  Writing our own HTTP Handlers


  Reading inputs


  Validation


  13.3   Functional patterns in a web application


  13.4   Creating HTML views


  Creating views through code


  The ViewEngine DSL


  Benefits of an F# DSL for HTML


  13.5   Full-stack F# apps with SAFE Stack


  Overview of SAFE Stack


  Installing the SAFE Stack template


  The MVU pattern


  Removing all ToDo items: A worked exercise


  14   Testing F# code


  14.1   Automated tests: The value proposition


  F#: Types over tests


  14.2   Basic unit testing in F#


  Tests as functions


  Expecto


  Plugging Expecto into our code


  Advantages of Expecto


  14.3   Making testable code


  Preferring pure functions where possible


  Preferring smaller functions


  Unit testing small function hierarchies


  Integration testing higher-level composed functions


  Pushing side effects to the boundaries of your code


  Using higher-order functions to replace side effects


  Don’t worry about encapsulation


  14.4   Working with NUnit-style test frameworks


  14.5   Other forms of testing


  Performance testing


  Property-based testing


  15   Pure functional programming


  15.1   A functional architecture pattern


  External and internal boundaries


  Structuring larger functional codebases


  15.2   Composing functions


  The object-oriented approach to composition


  Higher-order functions


  Dependency rejection


  Procedural composition


  What should you use and when?


  15.3   Working with low-level dependencies


  A worked example: Working with a logging function


  Flipping dependencies with a bootstrapper


  Pros and cons of the wireup pattern


  Applying the dependency rejection pattern


  15.4   Working with effects


  What are effects in F# and .NET?


  Common effects in F#


  Map and Bind


  Using Computation Expressions to hide bind pipelines


  16   Where next?


  16.1   How do I start using F# in practice?


  Data analysis


  Hobby projects


  Coding challenges


  Before-and-after proof of concept


  Operational scripts


  16.2   How do I introduce F# to my team?


  16.3   The F# community


  Social media


  Conferences and user groups


  Open source


  16.4   Advanced F# language features


  Units of Measure


  Active Patterns


  Type Extensions


  Implicit Conversions


  Statically Resolved Type Parameters


  Metaprogramming


    


  index


  front matter


  
foreword


  F# is what I call a “Yes, and . . .” language. In improvisational comedy, an improviser accepts what has been said (“yes”) and expands on the line of thinking (“and . . .”). The F# language design and its ecosystem, toolset, and community adopt a similar philosophy to building software. F# is comfortable for developers from almost any programming background (“yes”), and it adds functional programming idioms that open up an entirely different programming ecosystem (“and . . .”).


  F# in Action exemplifies the “Yes, and . . ” concept thoroughly. From the very beginning, the tone is clear: F# is a good fit for many different kinds of applications. You’ll find no ivory towers here, demanding that you rethink everything you know about software, rewrite all your code, and permanently try to jam the purest of functional programming into every bit of your software development life. Instead, the idea that F# is a functional programming language that can bring with it a different way of writing software is rightfully presented as secondary to the productivity gained from writing succinct code in conjunction with a rich ecosystem of libraries and tools.


  In this book, you’ll find one, if not the most practical, approach to learning the F# language. You’ll be rooted in what the F# language community often refers to as “the F# way,” a set of principles and language idioms that produce succinct, robust performance, and uniform code. This last point is worth emphasizing: in modern software development, uniformity matters. When developers search for ways to solve a problem in F#, they are often greeted by similar-looking code (that uses similar features) for similar problems. This principle is foundational to F# in Action throughout all of its examples, whether it’s the simple data transformations you learn at first or full-stack web application development toward the end.


  Personally, I am delighted at how often real-world tools and libraries are featured throughout F# in Action. For example, plotting data using Plotly.NET not only teaches you how to use F# for data analysis work but also how to use a powerful scientific plotting framework through the lens of the language. You’ll get exposed to interoperability between languages, how package management with F# and .NET works, how to use tools like F# Interactive and the multitude of IDEs for F#, testing frameworks, and more. This is the exemplification of what makes F# unique: it’s not just a language to learn for the sake of learning a language; it’s an enjoyable tool to be used together with a multitude of other tools.


  When I first met F# in Action author Isaac Abraham years ago, he was concerned about practical and sometimes even boring uses of F#. This remains true today, and that mentality comes out in this book. With F# in Action, you’ll find a ruthlessly practical approach to learning not only F# but also how to write software for all kinds of different domains effectively. So, what are you waiting for? It’s time to get programming with F#!


  —Phillip Carter


  Phillip Carter was formerly the product manager for F# Language and

  Tools at Microsoft and currently explores how to improve software systems

  using modern AI tools.


  When people talk about the evolution of programming languages, they will typically talk about what language feature was added to which language version. Yet, what enables a language and its community to evolve in a new way and become successful is often not a language feature. Do not get me wrong. I appreciate all the recent language improvements that make F# more pleasant to use, like string interpolation. But what makes it worth writing a brand-new book about F# is something else.


  First, there is the move from the .NET Framework to the new cross-platform and open source .NET (formerly .NET Core). F# was always ahead of the curve. It ran on the cross-platform Mono platform in the era of proprietary .NET Framework, it was open-sourced as early as 2010, and it supported third-party code editors ranging from Emacs to Atom since its early days. Getting all the F# libraries and tooling to work on the new .NET was a painful task, but we are there now. Not only did this get F# first-class cross-platform support, but the entire .NET ecosystem has also adopted ways of working that we in the F# world always, perhaps secretly, knew were the right ones.


  Second, the F# community has become a fully recognized player in the F# ecosystem. Many core libraries and tools for F# have been developed and used by its enthusiastic open source community since its early days. It took a surprisingly long time for everyone to accept that this is the right way of working. Perhaps we needed the almost 10-year history of projects like FAKE, Ionide, F# Data, and Fable to show that the F# community as a whole can take responsibility for core F# components, even if individual maintainers sometimes move on. Today, community-developed libraries and tools are the basis of much of F# development. Their longevity is ensured by the community, the nonprofit F# Software Foundation, and commercial F# companies investing time into the development of those core F# components.


  Third, the way of talking and thinking about F# has also changed in the last couple of years. The cross-platform nature of .NET made F# attractive to a broader audience, and functional programming is no longer an obscure academic idea but something that most programming languages support in one way or another. Sure, it is still worth talking about how to interoperate with .NET, how to best leverage functional ideas in F#, and how the language supports techniques like functional domain modeling using types. However, we can now focus on how to get things done rather than on academic or ideological debates. F# is no longer something strange but rather a broadly accepted language that anyone can become curious about, learn, and use in practice.


  It is remarkable that the move to cross-platform open source .NET, acceptance of the community as a key ecosystem player, and the new thinking about F# and functional programming all culminated at the same time. But I would even dare say that F# has reached a new harmonious, stable point where it can thrive and develop. And this new stable point in the history of F# also needs a new F# book.


  The book you are looking at is a perfect fit for the new harmonious era of F#. The book is pragmatic and does not try to optimize for a reader with a special kind of background. If you are a programmer interested in F#, it gives you an excellent hands-on guide for learning the language and how to best use it to solve a wide range of problems. The book embraces the new .NET ecosystem, including the command line–oriented approach to many tasks. It also embraces a wide variety of community-led tools and libraries that make F# so powerful, ranging from the Ionide plugin for Visual Studio Code and the Fantomas code formatter to the Fable F# to JavaScript compiler and the SAFE Stack for full stack F# web programming.


  Writing a book for the new era of F# requires an author with an impossible combination of traits. They need to be someone who has been using F# for a long enough time to have the right expertise and ability to explain the concepts in a clear, practical way. But they also need to see F# from a new, fresh perspective that is quite different from what many of us old-timers are used to! How can we get a book that is not biased by the particular interests of its author? Isaac clearly has the necessary expertise. Saying that he has been using F# for over a decade is not a marketing slogan. I know because he came to my F# course in London in 2012! But more importantly, he has also been helping F# to enter the new era by supporting the community, both as an individual contributor through his successful consulting company and as someone who has helped us find a new way of talking about the language and its ecosystem. In other words, Isaac and this book are the perfect guides to take you to the new harmonious era of F#!


  —Tomas Petricek


  Assistant Professor at Charles University in Prague


  
preface


  When I wrote Get Programming With F# (GPWF) in the late 2010s, I wanted to create a practical, pragmatic, and easy-to-understand guide to using F# for real-world applications. While the book achieved those goals and has received positive feedback, some parts of it quickly aged due to circumstances outside of my control—in particular, due to one factor: the release of .NET Core. When I started the book, .NET Core wasn’t even a real thing. It was called DNX at the time and didn’t have a clearly publicized vision of where it was going or even that it would in time replace the .NET Framework. But today, .NET Core (or nowadays just called “.NET”) is both the present and future of all .NET development; this presented certain challenges for GPWF:


  
    	
      The book focused on the .NET Framework.

    


    	
      The book focused on Windows development and tooling. F# is now a first-class cross-platform language with associated tooling.

    


    	
      The book focused on C# developers since, at the time, this was where most F# developers originated from. Nowadays, I see developers coming from backgrounds such as JavaScript, Python, Scala, R, and PHP as well as those coming to programming for the first time.

    

  


  Even worse, many of the libraries and frameworks that almost half of the book focused on were either rendered outdated or completely obsolete by the advent of .NET Core.


  F# in Action is my answer to these challenges: a reimagined look at F# today, based not only on a more modern, cross-platform approach to F# but also updated with my recommendations on how best to learn and use F# based on working day in and day out with a team of F# developers and engagements in the community for several years now.


  Writing F# in Action was a different kind of challenge to GPWF. I originally imagined it would be a relatively short effort to upgrade the content of GPWF to make it .NET Core ready. But as I dug into it, I realized that it would be basically a complete rewrite as it targeted a new audience with new exercises and aimed to avoid some of the pitfalls of GPWF, especially the use of specific libraries and technologies.


  
acknowledgments


  I am grateful to all who have helped during the writing of this book. Moving to a new country and home twice in the space of a year aren’t circumstances conducive to focusing on writing a book, but the support received and patience shown by the team at Manning helped me immensely.


  In particular, I’d like to thank my development editor Dustin Archibald, technical proofreader Sudipta Mukherjee, and all members of the production team for their support with F# in Action. Many thanks also to Phillip Carter and Tomas Petricek, who authored the forewords to this book.


  Special thanks go to technical editor, Michael Ciccotti, who is a senior software engineer at Divisions Maintenance Group. He has 15 years of experience building software, with experience in a wide variety of programming languages, and enjoys the clarity and simplicity of expression that F# enables.


  Thank you to all the reviewers—Abraham Hosch, Andrew MacDonald, Andy Kirsch, Artur Tadrała, Bjorn Nordblom, Christian Leverenz, Dale S. Francis, Dan Sheikh, Dmitry Dorogoy, Florian Verdonck, James Liu, Jason Down, Jean-Paul Malherbe, Joel Kotarski, John Henry Galino, Jort Rodenburg, Karl van Heijster, Kent Spillner, Kevin Orr, Kristinn Stefánsson, Markus Wolff, Milan Mulji, Pasquale Zirpoli, Rani Sharim, Ryan Gregory, Satej Kumar Sahu, Stefan Turalski, Thomas Peklak, Tiklu Ganguly, and Vincent Delcoigne. Your suggestions helped make this a better book.


  
about this book


  The overall aims of this book are very similar to Get Programming with F#: to provide you with the knowledge to understand the fundamentals of F#, to gain the confidence to use it in practical settings, and, lastly, to gain a smattering of knowledge of the core principles of functional programming.


  
Who should read this book


  This book is applicable to software developers who already have some experience in software application development. It is particularly applicable to software developers with an interest in learning more about functional programming within the context of a large, mature platform and ecosystem, as well as those who simply want to level up their game when it comes to writing higher-quality applications that are succinct, robust, and performant. Although the book focuses on .NET, readers do not need to have experience using the .NET platform.


  
How this book is organized: A road map


  This book has 16 chapters, roughly divided into two sections. The first half details F# the language itself, looking at different language features and seeing how to solve different programming and modeling challenges using them:


  
    	
      Chapter 1 is an overview of the what and why behind F#.

    


    	
      Chapter 2 looks at the .NET toolchain as well as working with scripts.

    


    	
      Chapter 3 examines the basic principles of core F# language syntax and type inference.

    


    	
      Chapter 4 shows how F# makes it easy to write applications that take advantage of essential functional programming techniques such as expressions and immutability.

    


    	
      Chapter 5 illustrates how to make use of two core types in F#: tuples and records.

    


    	
      Chapter 6 goes deep into looking at functions in F# and how to organize applications using modules and namespaces.

    


    	
      Chapter 7 describes the different collection types commonly used in F#.

    


    	
      Chapter 8 rounds off this section by covering the use of both pattern matching and discriminated unions.

    

  


  The second half of the book focuses on practical applications of F# within a variety of different use cases:


  
    	
      Chapter 9 shows how to build practical domain models that utilize all the different types covered in the first section of the book.

    


    	
      Chapter 10 looks at techniques around working with data, such as sourcing, wrangling, validating, and visualizing.

    


    	
      Chapter 11 covers interoperability scenarios for F#, both on the .NET platform (typically with C#) and on the JavaScript ecosystem.

    


    	
      Chapter 12 focuses on asynchronous programming and how to handle different use cases around concurrency and parallelism within F#.

    


    	
      Chapter 13 looks at web programming in F#, both server side on .NET and using transpilers that compile F# into JavaScript, and how we can write full-stack applications entirely in F#.

    


    	
      Chapter 14 discusses different techniques for automated testing on F#.

    


    	
      Chapter 15 is a slightly deeper dive into functional programming techniques and covers examples of how to write applications that emphasize the use of pure functions wherever possible.

    


    	
      Chapter 16 is the final chapter of the book and looks at where your F# journey might go next, with ideas on applications that you can write to further your F# knowledge.

    

  


  This book is intended to be read alongside a computer. I’m a firm believer in learning by doing. In the same way that you almost certainly can’t simply read a book cover to cover on how to, for example, drive a car and then pass your driving test the next day, you won’t learn F# just by reading this book alone. So, although the first half is designed to be read in a linear fashion, with the second half being slightly more pick and mix, I would strongly suggest that you manually type in all the examples as you go through them to maximize the chance that you will fully understand the concepts and techniques that are shown.


  
About the code


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/f-sharp-in-action. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/f-sharp-in-action and from GitHub at https://github.com/isaacabraham/fsharp-in-action.


  
liveBook discussion forum


  Purchase of F# in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/f-sharp-in-action/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
about the author


  
    [image: ]

  


  Isaac Abraham is a .NET developer since .NET 1.0 and has an interest in cloud computing and distributed data problems. He is the founder of Compositional IT and is a Microsoft MVP. Isaac specializes in consultancy, training, and development, helping customers adopt high-quality, functional-first solutions on the .NET platform.


  
about the cover illustration


  The figure on the cover of F# in Action is “Insulaire de Wateeoo,” or “Wateeoo Islander,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. The illustration is finely drawn and colored by hand.


  In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.


  
1 Introducing F#


  This chapter covers


  
    	
Learning what F# is and isn’t


    	
Why you should be interested in using F#


    	
When is a good time to use F#


    	
Understanding what this book will and won’t teach you


    	
Understanding the mental model behind F#

  


  In this chapter, I’ll be taking you through the basics of F#, how it may differ from other languages you’re familiar with, and why you should learn it. We’ll explore some of its great features as well as its potential as a primary programming language in your toolbox. Let’s get started!


  
1.1 What is F#?


  F# is a general-purpose programming language that’s designed to build systems that are robust, succinct, and performant across Windows, Mac, and Linux. It has a lightweight syntax, yet a powerful type system and compiler. This makes it a compelling choice for writing applications, as it enables developers to rapidly model real-world systems in a way that does what they intend.


  F# is an opinionated language with a set of characteristics that it is optimized toward. What do I mean by this? F# encourages us to write applications using a consistent set of simple constructs such as functions, data, and types in a very low-ceremony fashion compared to many other languages that come from a more classical object-oriented background. Although some of those languages have added in some capabilities to hide some of that complexity, in F#, this has been a core part of its design from day one. As an example, here’s some basic F# code that defines a function:

  let addTenThenDouble theNumber =                          ❶
    let answer = (theNumber + 10) * 2                     ❷
    { Answer = answer; Date = System.DateTime.UtcNow }    ❸


  ❶ Defines a function with a single input argument


  ❷ Performs a calculation and assigns the result to a symbol


  ❸ Creates a record result and returns it to the caller


  F# is fully type-safe but does away with a lot of ceremony that other languages often put in place, such as type annotations and full-blown classes, leading to a way of writing code that allows you to quickly focus on directly solving the problem at hand.


  Because F# runs on the modern, lightweight, cross-platform .NET runtime, it has a large, mature ecosystem of free and commercial tools and libraries, ranging from web servers to database access, cloud, data and analytical libraries, actor frameworks, and more. This means that you won’t have to create entire platforms but can reuse existing battle-tested components already out there, leaving you to focus on delivering business value. You can seamlessly interoperate with C# code, creating hybrid F#/C# solutions if required, so if you’re already using .NET, much of what you already know about the platform will continue to apply.


  
1.2 Why F#?


  There are many reasons why F# might be a great fit for you. Here are a few to whet your appetite!


  F# is rewarding and fun. People who use F# find it a rewarding and enjoyable language to quickly write applications in that simply lets you get stuff done, freeing you to focus on the business of writing your application while the language does its best to help you along the way and guide you to success. I’ve spoken with many people who said they were in a programming rut but gained a newfound enthusiasm for software development when they switched to F# because it freed them to focus on delivering business value to their customers. This also works for the hiring manager—happier developers generally lead to less turnover, lower costs, and better results.


  F# is highly productive. At its core, F# is a relatively simple language with a concise and easy-to-read syntax and a relatively consistent way of problem-solving. Yet, at the same time, it’s a safe language to use, with a powerful compiler and type system (more so than many popular programming languages) that can trap many classes of potential bugs as you type. It also runs on a performant, mature, popular platform (.NET) with a wide variety of time-saving packages. In my experience, people writing applications in F# do so more quickly than in other languages because it hits a sweet spot between simplicity, safety, and power.


  F# is also very flexible. You can use it in numerous scenarios, from simple scripts for data exploration and experimentation to full-blown cloud-enabled end-to-end microservices and web applications. There’s a very good chance that whatever you’re doing today, you can also do in F#. There’s also the possibility that F# will open the door to areas that you may not have considered before. For example, if you’re coming from a C# background, F# will show you how you can use .NET for more data-oriented and analytical tasks that perhaps previously you might have thought could only be done in SQL. For those of you coming from a Python background, you’ll see a language whose syntax is not a million miles away from what you already know yet is statically typed and highly performant. And for those coming from a JavaScript background, you’ll appreciate how some of the functional patterns that are becoming popular in that language are first-class citizens here and that F# has a static type system and syntax that gets out of your way.


  Additionally, if you’re interested in learning some of the fundamentals of functional programming (FP), F# is a great way to do that; it has its roots in languages such as ML and OCaml. However, it’s what I would call a “light-touch” FP language: you’ll appreciate how it guides you toward writing simple, error-free code without needing to know any of the math and theory people often associate with FP. Importantly, it also provides you with enough escape hatches such that if you need to break out into procedural or object-oriented programming, you can do it without much effort.


  
1.3 When F#?


  Since F# is a general-purpose programming language, the simplest answer to when you should use F# might be “Whatever you’re doing today in whatever programming language you’re working in, you can probably do it in F#.” Nonetheless, let’s look at a few different use cases of F# to give you an idea of what’s possible:


  
    	
      Console applications—You can write basic console applications such as command-line tools in F#. It’ll happily read and write from the terminal and has libraries to make animated, colorful console applications with widgets such as tables, charts, and progress bars.

    


    	
      Background workers—F# allows you to write background services or daemons, which don’t necessarily have any console inputs. Perhaps you need a process that runs on a virtual machine that reads data from a database and creates a report once a day or an application that sits in the background and monitors a folder for new files as they’re created to parse and process them. No problem!

    


    	
      Desktop applications—F# has support for desktop applications with a number of technologies, whether they’re simpler database-driven applications or richer applications with sophisticated user interfaces using either Windows-specific or cross-platform libraries and frameworks.

    


    	
      Cloud services—You can write and deploy applications designed for just about any cloud provider; whether it’s a more infrastructure-focused service or one of the platform services that the bigger players such as Azure, Amazon, or Google offer, there’s support for F#.

    


    	
      Mobile applications—Through the Xamarin and upcoming MAUI projects, Microsoft offers a full suite of frameworks and tools for developing mobile applications for both Android and iOS without knowing Java, Objective-C, or Swift. Instead, applications can be written once in F# and simultaneously target both platforms.

    


    	
      Web services—F# can write web services that are secure, reliable, highly scalable, and extremely performant through the ASP.NET Core framework. Not only are web applications a natural fit for F#’s stateless programming model, but F# also has several libraries that give a truly first-class F# experience on top of ASP.NET Core.

    


    	
      Web applications—Want to write applications in the browser? F# has you covered here, too! Through the Fable framework, you can compile your F# directly into JavaScript and run applications in the browser directly. This is a real boon if your team is not filled with JavaScript experts and prefers the benefits that static typing brings, where you can get the best of both worlds: use popular JavaScript libraries and frameworks such as React while writing code safely in F#.

    


    	
      Data exploration and analysis—F# has a solid data-analysis-and-scripts story, from consuming data from multiple sources to visualizing data through charts and tables.

    


    	
      Data modeling—One of F#’s often overlooked features is its effectiveness in modeling domains. Not only does it have a type system that allows you to easily model the real world in a minimum amount of code, but it’s also readable code—the sort that you can legitimately sit down with a nontechnical user and explore a domain, evolving a model of the real world step by step, side by side.

    

  


  


  


  


1.4 How will this book teach me F#?


  This book is designed to teach software developers who already understand the fundamentals of software development how to develop F# applications on the .NET platform. It won’t teach you everything about the F# language—it’s not a reference guide—but it will teach you the core of the language in a way that will give you the confidence to start creating applications and learning how to find out more about the language and ecosystem on your own.


  As part of the journey of describing F#, this book will also teach you the basics of FP. You won’t need to know anything about FP before buying this book, and you won’t leave it as an expert in F#. However, you will understand the core concepts and be able to apply them in the real world to build applications from simple console applications to fully featured web applications.


  
1.5 How does F# work?


  This section tries to give you a feel for how development in F# looks and feels. It’s based not only on my own experiences of the language but also on those of many others who have used it extensively. Figure 1.1 shows you how I see some of the common features of what your development experience will look like.


  
    [image: ]


    Figure 1.1 The mental model of the development process in F#

  


  
1.5.1 Collaborative exploration


  One of the features of the F# development experience that might not be so familiar to you is that it contains a highly interactive “scripting” mode, where you can experiment with different ways of modeling code, try different ways of implementing solutions, and see how they work. Once you’re happy with the result, you can quickly migrate it into a full-blown application—whether a console application or a data-driven web API running on ASP.NET Core (the standard .NET web server).


  Another aspect is the collaborative element that F# brings. F#’s syntax is highly readable for nontechnical people, and combined with its type system, it is especially effective for domain modeling. This means that you can (and I have done, many times) sit alongside a customer and, starting from ground zero, try to build up a model of a real-world system and test it out with some arbitrary code. There’s no need for a console test runner or full-blown database— just some code and in-memory data. It’s a much more iterative process, where ideas can be tested and thrown away at low cost, and both you and the domain experts can start to build a common understanding of the system you’re trying to model.


  
1.5.2 Type-driven development


  F# is a type-safe statically typed programming language, which means that you formally declare the types of your system, and the compiler will enforce rules that you define about those types. F# makes it very, very easy—and therefore cheap—to create and use types, meaning that you generally can afford to be a little more specific in how you model your systems. Doing this means that your code can be used to encode more business rules and is clearer and easier to read than it might otherwise be. Doing this not only means that we can more easily support business rules about our types but also protects against accidentally mixing and matching incorrect types of data. Finally, it also helps from a readability point of view: for example, while both City and Country in an Address type might be strings, in F#, it wouldn’t be unusual to have “wrapper” types for both, each with their own invariant rules and constraints.


  So, although F# is totally happy with you not doing any of this stronger domain modeling, it also doesn’t impose much of a cost on doing so and thus encourages us to “do the right thing” up front.


  
1.5.3 Trusting the compiler


  Following from this, one of the things that F# encourages us to do is to trust the compiler. In many statically typed programming languages, software developers see the compiler as their enemy—something that must be somehow overcome to run your program so that you can test whether it works. In F#, this relationship changes to one where the compiler becomes your partner, giving you guidance and help to write code that does the correct thing.


  Eventually, the developer trusts the compiler to prove business rules without feeling the need to run the application at all. While F#’s type system isn’t all-powerful, it has enough smart features so that you can often code for several hours at a time, modeling your systems, writing functions, mapping types from one shape to another, and following the trail of breadcrumbs that the compiler gives you to follow to get your code working correctly without ever once running your application. Generally, once your code compiles, the first time you run it after the coding session, you’ll find it works. So, you and your team will typically spend, as a proportion of your entire development flow, more time actually coding and less time “trying things out” in the app end to end.


  I know that this sounds unlikely, unbelievable even, but it’s true. This is based not only on my own experiences but also on working with and speaking to lots of different F# teams and solo developers. They all say the same thing: F# makes them more confident developers because it helps them do the right thing.


  
1.5.4 An opinionated language


  F# is an opinionated language, and it optimizes for a specific way of writing applications safely that leads to fewer bugs and quicker time to market. The language makes it easy to do the right thing the first time and, conversely, makes you pay a cost for doing the wrong thing.


  For example, imagine you’re writing a system that needs to export a report in either Excel, PDF, or web formats. In F#, the compiler will give you a warning or error if you forget to handle any of those cases; if you add a fourth report module in the future, the compiler will again instantly show you every place you’ll need to change your code to handle the new report.


  This kind of approach is shown throughout the language, meaning that you’ll have much more confidence when your code compiles that it actually works as you expect it to.


  
1.5.5 Data and functions


  Although F# is different from the majority of popular mainstream languages out there, it’s not hard to learn. It eliminates many concepts that you would need to know in the object-oriented world, such as inheritance and polymorphism. It replaces those with a simple idea: you have data that represents the state of your application and functions that act on that data. Each function knows how to transform some data of one type into another type, and you compose those transformations into pipelines. You repeat this pattern throughout your application until the very end of the request, at which point you’ll, for example, write out a file or return some JSON data to the caller of your web service.


  For example, you might have a validation function that can handle a customer purchase request, another function that can convert that request into an invoice, and another one that can email the invoice to the customer. In fact, this simplicity makes it a great choice for non-software developers, including (but not only) data analysts.


  
1.5.6 Separation of business logic and external systems


  Another thing you’ll notice with F# is that because of the features of the language, it encourages (but doesn’t force you) to maintain a separation between your domain logic and external dependencies such as databases or web services.


  Doing this has many benefits. To start, your code will generally be more easily testable. If you want to create some unit tests for a specific portion of code, you’ll find that it’s more likely to already support testing or, if not, be easier to refactor out to do so. This also feeds into the exploratory scripting phase that I mentioned at the start of this section: using scripts is something that you might well carry on into the main development cycle of your application as a way to quickly call parts of the codebase in an ad hoc fashion. This is especially useful for parts of the system that are more difficult to reach within your main application. People commonly use console test rigs or even unit testing libraries for this, but an interactive script is normally a much more effective and efficient tool.


  
1.5.7 Varied targets


  F# has a flexible and varied set of target devices and platforms that it can compile into. .NET itself supports Mac, Linux, and Windows platforms, as well as all the major cloud vendors, and can develop desktop app software or backend services. Alternatively, you can write web applications with F# that either focus on backend data-oriented web services using ASP.NET Core, or you can target the browser using the Fable project, which compiles F# directly into JavaScript, or Xamarin/MAUI, which compiles into iOS or Android.


  Regarding data access, a plethora of libraries are available to you, including those built into .NET, C# packages that you can seamlessly use in F#, or bespoke F# wrappers, designed to give the highest fidelity F# experience. So you’ll have ready-made access to SQL and JSON libraries, cloud platforms such as Microsoft Azure or Amazon Web Services (AWS), and much more.


  In some ways, F# gets the best of both worlds: you have a feature set that many other languages (including C#) have been playing catch-up to for a few years now, but at the same time, you’ll have access to a popular, mature, high-performance, and reliable platform and ecosystem in .NET.


  
Summary


  
    	
      F# is a robust, succinct, and performant general-purpose programming language.

    


    	
      F# runs on top of .NET, a runtime that can target multiple operating systems and devices.

    


    	
      F# can be used for a variety of application types, from console to web to cloud applications.

    


    	
      F# has a lightweight and interactive scripting mode that is ideal for exploration.

    


    	
      F#’s syntax is simple enough that nontechnical people can read it, making it a useful tool for collaboration.

    


    	
      F# is highly productive, rewarding, and fun to use.

    


    	
      F# makes it easy for you to do the right thing and, conversely, gives you guardrails to stop writing code that is likely to fail.

    


    	
      F# has a basic model of data and functions, which is simple to learn yet made powerful through composition.

    

  


  
2 Hands on with F#


  This chapter covers


  
    	
Writing code the F# way


    	
F# and .NET


    	
Creating your first F# program


    	
Getting started with Visual Studio (VS) Code


    	
Configuring VS Code


    	
Working with the REPL and scripts

  


  F# may be different than other languages you’ve used, but it’s powerful and useful. In this chapter, we’ll get started coding and dive into what makes F# great.


  
2.1 Writing code the F# way


  Let’s start by considering some of the principles behind F# with a quick compare-and-contrast with typical so-called curly-brace languages such as Java and C#. It’s worth doing before we start diving into the code so that you’re mentally prepared for some of the differences you might observe when doing F#. In some ways, much of what you read in this section is similar to what I said in chapter 1, except this is a more code-focused examination.


  
    How much of a functional programming language is F#?


    We’ll cover this in more detail later, but in a nutshell, F# encourages what I consider the two most important parts of functional programming (FP): expressions and immutability. It also has many other features that support flexible functions (such as composition and currying), and numerous recently added features have made their way into many other languages, such as lambdas and pattern matching. However, it doesn’t support or enforce more hardcore FP features such as pure functions, type classes, or higher kinded types.

  


  
2.1.1 What, not how


  Imperative code can be thought of as the low-level “how”—how you want to implement something—typically a set of lower-level instructions. Conversely, declarative code concentrates more on expressing the “what”—what you want to achieve and leaving the low-level details to another party—in this case, a compiler. Here’s an example of an imperative way of filtering out odd numbers from a list using both imperative code (I’m using C# syntax here) and the equivalent declarative variant (written in F#):

  IEnumerable<int> GetEvenNumbers(IEnumerable<int> numbers)  ❶
{                                                          ❶
    var output = new List<int>();                          ❶
    foreach (var number in numbers) {                      ❶
        if (number % 2 == 0)                               ❶
            output.Add(number);                            ❶
    }                                                      ❶
    return output;                                         ❶
}                                                          ❶
 
let getEvenNumbers =                                       ❷
    Seq.filter (fun number -> number % 2 = 0)              ❷


  ❶ Imperative code


  ❷ Declarative code


  Both samples do the same thing. However, while the declarative version is focused on stating what we want and leaving the compiler to work out the nitty gritty, the imperative version takes ownership of how we want to filter the numbers—by creating an intermediary list, iterating through each item one by one, etc.


  Of course, most languages have libraries to support a declarative model, such as LINQ in C#, Streams in Java, and so on. In F#, this is the de facto way of working and is much more pervasive than you might be used to. If you’re used to the imperative model of developing, this can feel a little like giving up control. However, once you’re used to it, it’s very difficult to go back!


  
2.1.2 Composability


  F# also emphasizes composition rather than inheritance to achieve reuse, with support for this baked into the language. Functions are the main component of reuse rather than classes, so expect to write small functions that plug together to create powerful abstractions. Individual functions are nearly always easier to understand and reason about than entire sets of methods coupled together through state in a class. As such, making changes to existing code is much easier to do with a greater degree of confidence. 


  Here’s a simple example of how we might build behaviors into more powerful ones in C# and F#, trying to get all even numbers from a list and then square each. Again, in C#, I’ve deliberately kept things at the method level, but you should also consider the effort required when trying to compose more complex sorts of behaviors across classes and objects:

  IEnumerable<int> SquareNumbers(IEnumerable<int> numbers) {
    // implementation of square elided...
}
 
IEnumerable<int> GetEvenNumbersThenSquare(IEnumerable<int> numbers) {
    return SquareNumbers(GetEvenNumbers(numbers))                     ❶
}
 
let squareNumbers = Seq.map (fun x -> x * x)
let getEvenNumbersThenSquare = getEvenNumbers >> squareNumbers        ❷


  ❶ Composes two methods together


  ❷ Composes two functions together in F#


  
    Where are the types?


    F# is a statically typed language, just like languages such as Java and C#. But it has an extremely powerful type inference engine, which means it has the succinctness close to dynamic languages such as Python, yet with the backing of a strong type system and compiler, so you get the best of both worlds. More on this later.

  


  I’m not going to explain what the >> symbol does yet. But if you look at the F# version of code, you can visually observe that we’re somehow plugging the getEvenNumbers and squareNumbers functions together. This mode of design is, again, very common—building small functions and bits of code that do a single thing well and then composing them together into larger, more complex parts later.


  
2.1.3 Data and behavior


  Another key pattern you’ll commonly see in F# is a clear separation of data and behavior. If you’re coming from a language that uses object orientation (OO) as the key mechanism for organizing code, you’ll find this a little different. Instead of having classes that have both state and behaviors fused together, F# encourages you to design code with simple data types with modules of functions that act on those types.


  For example, in the OO world, in a retail web application, you might have a Basket class with methods such as AddItem, Clear, and Checkout on them plus the internal encapsulated state (what the items in the basket are, etc.). When you call methods on them, they would perform some action and modify that internal private state. In the FP world, you’d have an immutable record that stores the current state of the basket (e.g., what the items in it are) and a module with stateless functions such as AddItem, Clear, and Checkout. Each function would do some action and then return an updated version of the basket. This generally leads to much simpler code that’s easier to write, understand, and test and is more flexible and simpler to maintain. Of course, you’ll learn exactly why that is in this book.


  
2.1.4 Working with a smarter compiler


  F# as a language inevitably changes how you write code. I think of myself as a lazy developer: I like having things done for me. F# helps a great deal in this regard, especially for boilerplate activities that in other languages need more care to ensure you’ve done the right thing.


  Let’s take a simple example in which you’re a developer working on a small change to an existing application. Imagine you decide to add a new field to an existing class; you find the class and add the new field to it. Your code compiles, and you carry on with your day. Unfortunately, while you can reference this new field elsewhere, you forgot to account for all the code paths that create objects of this type and, unfortunately, left a code path where this field is not initialized.


  Later, you run the application and receive a null reference exception somewhere further down the call stack. Or, perhaps you’re unlucky and don’t notice the bug because it’s in a particularly obscure branch of code. Instead, a few months later, your users hit that code path, crashing the application and forcing a costly new release.


  You could, of course, write unit tests to force this issue to the surface sooner. Unfortunately, developers often don’t write unit tests, particularly for seemingly innocuous changes such as this. After all, who has time to write unit tests like this when there’s real work to be done for our customers and deadlines to hit!


  Wouldn’t it be nice if the language itself could support us here to prevent this kind of situation from occurring? In the F# world, adding a new field will instantly stop your code compiling until you explicitly set the value of the new field at initialization time, everywhere. You can only deal with how that new field is being used after you’ve fixed all the assignments and usages. Nulls aren’t allowed for F# types either, so you can’t set it as such. Instead, F# has the notion of optional values, which force you to account for the possibility of missing values.


  The net result? You’ll spend slightly more time fixing compiler issues and evaluating possible branches of code but a whole lot less time testing and fixing runtime issues. In this example, you don’t need to write any unit tests to guarantee consistency of the type, nor is there a risk of getting a null reference exception at run time—and you won’t need to debug it to prove that you won’t get one.


  You may feel an instinctive negative reaction to what I’ve just told you. After all, why would you want a compiler to get in the way of writing code and slow you down from running your application? Don’t worry; this is a normal reaction and part of the learning curve in trusting the compiler to help us write correct code in a much richer way than we’re used to, which saves us a lot more time further down the road.


  As an example, imagine you’re a developer meeting a customer for a first discovery workshop. They’re looking for you to build an IT system that can manage their train stock and inventory, and the first question you want answered is “What is a train?” What information needs to be captured? What kind of carriages does a train have? After talking for a while with your customer, you end up with the following model. It captures things like the carriages that a train is made up of, including what class they are, what features each carriage has, and the stops that the train will make.


  Listing 2.1 A domain model of a train system

  open System
 
type Feature = Quiet | Wifi | Toilet           ❶
type CarriageClass = First | Second            ❷
 
Type CarriageKind =                            ❸
    | Passenger of CarriageClass
    | Buffet of {| ColdFood : bool; HotFood : bool |}
 
type CarriageNumber = CarriageNumber of int    ❹
 
type Carriage =                                ❺
    {
        Number : CarriageNumber
        Kind : CarriageKind
        Features : Feature Set
        NumberOfSeats : int
    }
 
type TrainId = TrainId of string
type Station = Station of string
type Stop = Station * TimeOnly                 ❻
 
type Train =                                   ❼
    {
        Id : TrainId
        Carriages : Carriage list
        Origin : Stop
        Stops : Stop list
        Destination : Stop
        DriverChange : Station option
    }


  ❶ A train carriage can have a number of different features.


  ❷ A carriage can be either first or second class.


  ❸ Carriages can be either for passengers or buffet carts.


  ❹ A carriage has a unique number on the train.


  ❺ A carriage is composed of all of these things.


  ❻ Each stop is a station and a time of arrival.


  ❼ A train has a unique ID, and a list of carriages. It always has an origin and destination and a list of stops in between. It might also have a station where the driver changes.


  Obviously, as this may be your first exposure to F#, some of the symbols, keywords, and concepts here may be unfamiliar to you. Nonetheless, hopefully, you can see how F#’s syntax is lightweight and easy on the eye compared to some other programming languages and how something like this could be read and understood by a domain expert.


  
2.2 F# and .NET


  .NET is the runtime, or platform, that F# code primarily executes on (although that’s not the only platform that F# can target). .NET is free to use, open source, cross-platform, and capable of running on Windows, Mac, and Linux.


  Although the majority of .NET is written in (and primarily designed for consumption by) C#, F# has great support for interacting with C# code. .NET provides a great deal of functionality and capabilities that you can directly use from F#, whether it’s working with the file system, automated memory management, web development, or databases. In addition, you can download over 200,000 ready-made packages from the official NuGet website. .NET and the set of libraries it comes with are fully open sourced by Microsoft and free to use.


  
    I thought .NET was Windows only!


    The original incarnation of .NET, the .NET Framework, was indeed Windows only, although it had an open source cross-platform sibling called Mono. Today, .NET Framework is effectively in maintenance mode and has been replaced by what was initially known as .NET Core (and now simply .NET). The latest long-term supported version of .NET at the time of writing is .NET 6.

  


  You can reference any .NET assembly from F#, and vice versa. F# has interoperability features to allow seamless interaction across languages while also taking advantage of F#-specific features to make dealing with .NET libraries more convenient. You can consume and create classes with inheritance, interfaces, properties, and methods. Indeed, one of the strengths of F# is that it permits the developer to mix both FP and OO styles where appropriate.


  So, if you’re already a .NET developer, you’re not going to have to give up the libraries that you already know or the knowledge you’ve learned over the past years regarding the Common Language Runtime (CLR), garbage collection, reflection, and so forth. And if you’re not a C# expert, the documentation you read about .NET, even if the samples are written C#, will generally be just as applicable to F#.


  Figure 2.1 shows how the three main languages (C#, F#, and VB .NET) running on .NET today can work together in a single application. All three compile into the same interoperable Intermediary Language (IL), and exist on top of the same CLR.


  
    [image: ]


    Figure 2.1 A simplified view of the .NET language and runtime landscape

  


  In terms of tooling, the main integrated development environments (IDEs), such as Visual Studio, Visual Studio Code (VS Code), and JetBrains Rider all have very good F# tooling. If you’re coming from a C# background, the experience won’t have quite as many bells and whistles (after all, C#’s tooling is probably best-in-class), but if you’re coming from other languages, F# might be a pleasant surprise, with editor autocompletion, type hints, semantic navigation, and refactorings plus excellent command-line tooling through the .NET command-line Interface (CLI).


  In short, F# has all the pieces in place for you to take full advantage of the .NET ecosystem and allow you to write basically anything you want.


  
2.3 Creating your first F# program



  There’s one thing I’ve learned from teaching F# for some years now, and that’s that you won’t learn it unless you do it. So let’s start as we mean to go on and write some basic F# together.


  
2.3.1 Installing F#


  As an integral part of .NET, F# can be installed on Linux, Mac, and Windows operating systems. To install it, navigate to https://dotnet.microsoft.com/en-us/download/dotnet/6.0 and follow the instructions to install version 6 of the .NET SDK (not just the runtime!) for your operating system. Once you’re done installing, congratulations! You’ve now successfully installed F#!


  
2.3.2 The .NET CLI


  Historically, .NET was very much a thing that was highly coupled to Microsoft’s own IDE, Visual Studio. Today, things are very different: .NET can be installed without any IDE and has a rich and extensible command-line tooling platform known as the .NET CLI. The CLI lets us perform many actions that historically would only have been possible through Visual Studio, such as creating, building, running, and testing your applications.


  Wherever possible, we’ll be using the .NET CLI that is included with .NET 6 for all such activities. There are many benefits to this approach; for example, it works consistently across all operating systems (which makes my life as an author much easier!) and can be much more easily automated than using a GUI. However, if you prefer a point-and-click approach, the main IDEs all support the ability to create applications via menus and wizards.


  
2.3.3 Hello World in F#


  Let’s create a basic F# console application using the .NET CLI. Start by opening a terminal window and enter the following commands:

  mkdir helloworld              ❶
cd helloworld                 ❷
dotnet new console -lang F#   ❸


  ❶ Creates a directory called HelloWorld


  ❷ Navigates into that directory


  ❸ Creates a new console application in the F# language


  
    Can I create other application types?


    The dotnet new command can create a whole host of different application types (e.g., web apps, class libraries, etc.), called templates. You can see all the available templates using the dotnet new --list command. What’s especially good is that the templates stored in dotnet are extensible, so you can build your own and share them on .NET’s NuGet package management system.

  


  The very first time you run this, you’ll get a bunch of text, but at the end, you should see something like the following:

  Processing post-creation actions...
Running 'dotnet restore' on 
C:\Users\isaac\code\helloworld\helloworld.fsproj...
  Determining projects to restore...
  Restored C:\Users\isaac\code\helloworld\helloworld.fsproj (in 151 ms).
Restore succeeded.


  If you now get a directory listing using, for example, the dir or ls commands, you’ll see that two files have been created:

  helloworld.fsproj
Program.fs


  
    Why do I need to specify F#?


    Don’t forget that .NET supports three languages: C#, F#, and Visual Basic (VB) .NET. C# is the default language for the .NET CLI, so you need to specify -lang F# whenever you want to create a new template that supports both F# and C#. However, you can switch F# to be the default language instead by setting the DOTNET_NEW_PREFERRED_ LANG environment variable to the value F#. Doing this means you won’t have to enter -lang ever again.

  


  We’ll investigate the contents of those files in a short while, but for now, let’s just run the application using the command dotnet run. After a short delay, you should see the following output:

  Hello world from F#


  Congratulations! You’ve now created and run your very first F# application!


  
2.4 Getting Started with Visual Studio Code


  It’s time to look at some F# for the first time. While you could use a simple text editor to do this—F# applications are just text files—let’s take this opportunity to install a free, dedicated code editor called Visual Studio Code, or VSCode. VSCode is an extensible, (mostly) open source, free code editor that works across the three main OS choices: Linux, Mac, and Windows. VS Code can be downloaded and installed from https://code.visualstudio.com/; follow the appropriate installation guide for your operating system.


  
    What IDEs can I use with F#?


    There are three main options for F# IDE that I would recommend today: Microsoft Visual Studio, which is Windows-only and has a free community edition and paid licenses, as well as a sibling for Apple, VS For Mac. Second, JetBrains Rider is a commercial IDE that works across all three OSs. Lastly, there’s VS Code.

  


  
2.4.1 The Ionide extension


  Out of the box, VS Code doesn’t support F#. That’s not a surprise or a problem because VS Code is designed to be an extensible and language-agnostic code editor. To add F# support, you need to install the Ionide extension. This free extension provides rich F# support, including code completion, type hinting, navigation, and refactorings:


  
    	
      Navigate to the Extensions panel (View Menu > Extensions).

    


    	
      In the search box, search for Ionide.

    


    	
      Find the Ionide-fsharp extension and click the Install button.

    

  


  After a short delay, the extension will install. You’re now good to go!


  
2.4.2 Exploring F# with VS Code


  Let’s start by loading the HelloWorld application that you created earlier into VS Code. One way to do that is by navigating within a terminal into the helloworld directory you created earlier and entering the command

  code .


  Note the period (.) at the end, which tells VS Code to open in the current directory. You’ll now be looking at a window something like figure 2.2.


  
    [image: ]


    Figure 2.2 The VS Code window. Note the default sidebar position is on the left of the code editor.

  


  Double-click the Program.fs file to open it in the main editor pane:















