

 Spring Microservices in Action

 John Carnell

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	

 Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

 Acquisition editor: Greg Wild

Development editor: Marina Michaels

Technical development editor: Raphael Villela

Copyeditor: Katie Petito

Proofreader: Melody Dolab

Technical proofreader: Joshua White

Review editor: Aleksandar Dragosavljevic

Typesetter: Marija Tudor

Cover designer: Marija Tudor

 ISBN 9781617293986

 Printed in the United States of America

 5 6 7 8 9 10 – SP – 22 21 20 19

Dedication

 To my brother Jason, who even in his darkest moments showed me the true meaning of strength and dignity. You are a role model as a brother, husband, and father.

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter 1. Welcome to the cloud, Spring

 Chapter 2. Building microservices with Spring Boot

 Chapter 3. Controlling your configuration with Spring Cloud configuration server

 Chapter 4. On service discovery

 Chapter 5. When bad things happen: client resiliency patterns with Spring Cloud and Netflix Hystrix

 Chapter 6. Service routing with Spring Cloud and Zuul

 Chapter 7. Securing your microservices

 Chapter 8. Event-driven architecture with Spring Cloud Stream

 Chapter 9. Distributed tracing with Spring Cloud Sleuth and Zipkin

 Chapter 10. Deploying your microservices

 Appendix A. Running a cloud on your desktop

 Appendix B. OAuth2 grant types

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter 1. Welcome to the cloud, Spring

 1.1. What’s a microservice?

 1.2. What is Spring and why is it relevant to microservices?

 1.3. What you’ll learn in this book

 1.4. Why is this book relevant to you?

 1.5. Building a microservice with Spring Boot

 1.6. Why change the way we build applications?

 1.7. What exactly is the cloud?

 1.8. Why the cloud and microservices?

 1.9. Microservices are more than writing the code

 1.9.1. Core microservice development pattern

 1.9.2. Microservice routing patterns

 1.9.3. Microservice client resiliency patterns

 1.9.4. Microservice security patterns

 1.9.5. Microservice logging and tracing patterns

 1.9.6. Microservice build/deployment patterns

 1.10. Using Spring Cloud in building your microservices

 1.10.1. Spring Boot

 1.10.2. Spring Cloud Config

 1.10.3. Spring Cloud service discovery

 1.10.4. Spring Cloud/Netflix Hystrix and Ribbon

 1.10.5. Spring Cloud/Netflix Zuul

 1.10.6. Spring Cloud Stream

 1.10.7. Spring Cloud Sleuth

 1.10.8. Spring Cloud Security

 1.10.9. What about provisioning?

 1.11. Spring Cloud by example

 1.12. Making sure our examples are relevant

 1.13. Summary

 Chapter 2. Building microservices with Spring Boot

 2.1. The architect’s story: designing the microservice architecture

 2.1.1. Decomposing the business problem

 2.1.2. Establishing service granularity

 2.1.3. Talking to one another: service interfaces

 2.2. When not to use microservices

 2.2.1. Complexity of building distributed systems

 2.2.2. Server sprawl

 2.2.3. Type of application

 2.2.4. Data transformations and consistency

 2.3. The developer’s tale: building a microservice with Spring Boot and Java

 2.3.1. Getting started with the skeleton project

 2.3.2. Booting your Spring Boot application: writing the Bootstrap class

 2.3.3. Building the doorway into the microservice: the Spring Boot controller

 2.4. The DevOps story: building for the rigors of runtime

 2.4.1. Service assembly: packaging and deploying your microservices

 2.4.2. Service bootstrapping: managing configuration of your microservices

 2.4.3. Service registration and discovery: how clients communicate with your microservices

 2.4.4. Communicating a microservice’s health

 2.5. Pulling the perspectives together

 2.6. Summary

 Chapter 3. Controlling your configuration with Spring Cloud configuration server

 3.1. On managing configuration (and complexity)

 3.1.1. Your configuration management architecture

 3.1.2. Implementation choices

 3.2. Building our Spring Cloud configuration server

 3.2.1. Setting up the Spring Cloud Config Bootstrap class

 3.2.2. Using Spring Cloud configuration server with the filesystem

 3.3. Integrating Spring Cloud Config with a Spring Boot client

 3.3.1. Setting up the licensing service Spring Cloud Config server dependencies

 3.3.2. Configuring the licensing service to use Spring Cloud Config

 3.3.3. Wiring in a data source using Spring Cloud configuration server

 3.3.4. Directly Reading Properties using the @Value Annotation

 3.3.5. Using Spring Cloud configuration server with Git

 3.3.6. Refreshing your properties using Spring Cloud configuration server

 3.4. Protecting sensitive configuration information

 3.4.1. Download and install Oracle JCE jars needed for encryption

 3.4.2. Setting up an encryption key

 3.4.3. Encrypting and decrypting a property

 3.4.4. Configure microservices to use encryption on the client side

 3.5. Closing thoughts

 3.6. Summary

 Chapter 4. On service discovery

 4.1. Where’s my service?

 4.2. On service discovery in the cloud

 4.2.1. The architecture of service discovery

 4.2.2. Service discovery in action using Spring and Netflix Eureka

 4.3. Building your Spring Eureka Service

 4.4. Registering services with Spring Eureka

 4.5. Using service discovery to look up a service

 4.5.1. Looking up service instances with Spring DiscoveryClient

 4.5.2. Invoking services with Ribbon-aware Spring RestTemplate

 4.5.3. Invoking services with Netflix Feign client

 4.6. Summary

 Chapter 5. When bad things happen: client resiliency patterns with Spring Cloud and Netflix Hystrix

 5.1. What are client-side resiliency patterns?

 5.1.1. Client-side load balancing

 5.1.2. Circuit breaker

 5.1.3. Fallback processing

 5.1.4. Bulkheads

 5.2. Why client resiliency matters

 5.3. Enter Hystrix

 5.4. Setting up the licensing server to use Spring Cloud and Hystrix

 5.5. Implementing a circuit breaker using Hystrix

 5.5.1. Timing out a call to the organization microservice

 5.5.2. Customizing the timeout on a circuit breaker

 5.6. Fallback processing

 5.7. Implementing the bulkhead pattern

 5.8. Getting beyond the basics; fine-tuning Hystrix

 5.8.1. Hystrix configuration revisited

 5.9. Thread context and Hystrix

 5.9.1. ThreadLocal and Hystrix

 5.9.2. The HystrixConcurrencyStrategy in action

 5.10. Summary

 Chapter 6. Service routing with Spring Cloud and Zuul

 6.1. What is a services gateway?

 6.2. Introducing Spring Cloud and Netflix Zuul

 6.2.1. Setting up the Zuul Spring Boot project

 6.2.2. Using Spring Cloud annotation for the Zuul service

 6.2.3. Configuring Zuul to communicate with Eureka

 6.3. Configuring routes in Zuul

 6.3.1. Automated mapping routes via service discovery

 6.3.2. Mapping routes manually using service discovery

 6.3.3. Manual mapping of routes using static URLs

 6.3.4. Dynamically reload route configuration

 6.3.5. Zuul and service timeouts

 6.4. The real power of Zuul: filters

 6.5. Building your first Zuul pre-filter generating correlation IDs

 6.5.1. Using the correlation ID in your service calls

 6.6. Building a post filter receiving correlation IDs

 6.7. Building a dynamic route filter

 6.7.1. Building the skeleton of the routing filter

 6.7.2. Implementing the run() method

 6.7.3. Forwarding the route

 6.7.4. Pulling it all together

 6.8. Summary

 Chapter 7. Securing your microservices

 7.1. Introduction to OAuth2

 7.2. Starting small: using Spring and OAuth2 to protect a single endpoint

 7.2.1. Setting up the EagleEye OAuth2 authentication service

 7.2.2. Registering client applications with the OAuth2 service

 7.2.3. Configuring EagleEye users

 7.2.4. Authenticating the user

 7.3. Protecting the organization service using OAuth2

 7.3.1. Adding the Spring Security and OAuth2 jars to the individual services

 7.3.2. Configuring the service to point to your OAuth2 authentication service

 7.3.3. Defining who and what can access the service

 7.3.4. Propagating the OAuth2 access token

 7.4. JavaScript Web Tokens and OAuth2

 7.4.1. Modifying the authentication service to issue JavaScript Web Tokens

 7.4.2. Consuming JavaScript Web Tokens in your microservices

 7.4.3. Extending the JWT Token

 7.4.4. Parsing a custom field out of a JavaScript token

 7.5. Some closing thoughts on microservice security

 Use HTTPS/Secure Sockets Layer (SSL) for all service communication

 Use a services gateway to access your microservices

 Zone your services into a public API and private API

 Limit the attack surface of your microservices by locking down unneeded network ports

 7.6. Summary

 Chapter 8. Event-driven architecture with Spring Cloud Stream

 8.1. The case for messaging, EDA, and microservices

 8.1.1. Using synchronous request-response approach to communicate state change

 8.1.2. Using messaging to communicate state changes between services

 8.1.3. Downsides of a messaging architecture

 8.2. Introducing Spring Cloud Stream

 8.2.1. The Spring Cloud Stream architecture

 8.3. Writing a simple message producer and consumer

 8.3.1. Writing the message producer in the organization service

 8.3.2. Writing the message consumer in the licensing service

 8.3.3. Seeing the message service in action

 8.4. A Spring Cloud Stream use case: distributed caching

 8.4.1. Using Redis to cache lookups

 8.4.2. Defining custom channels

 8.4.3. Bringing it all together: clearing the cache when a message is received

 8.5. Summary

 Chapter 9. Distributed tracing with Spring Cloud Sleuth and Zipkin

 9.1. Spring Cloud Sleuth and the correlation ID

 9.1.1. Adding Spring Cloud sleuth to licensing and organization

 9.1.2. Anatomy of a Spring Cloud Sleuth trace

 9.2. Log aggregation and Spring Cloud Sleuth

 9.2.1. A Spring Cloud Sleuth/Papertrail implementation in action

 9.2.2. Create a Papertrail account and configure a syslog connector

 9.2.3. Redirecting Docker output to Papertrail

 9.2.4. Searching for Spring Cloud Sleuth trace IDs in Papertrail

 9.2.5. Adding the correlation ID to the HTTP response with Zuul

 9.3. Distributed tracing with Open Zipkin

 9.3.1. Setting up the Spring Cloud Sleuth and Zipkin dependencies

 9.3.2. Configuring the services to point to Zipkin

 9.3.3. Installing and configuring a Zipkin server

 9.3.4. Setting tracing levels

 9.3.5. Using Zipkin to trace transactions

 9.3.6. Visualizing a more complex transaction

 9.3.7. Capturing messaging traces

 9.3.8. Adding custom spans

 9.4. Summary

 Chapter 10. Deploying your microservices

 10.1. EagleEye: setting up your core infrastructure in the cloud

 10.1.1. Creating the PostgreSQL database using Amazon RDS

 10.1.2. Creating the Redis cluster in Amazon

 10.1.3. Creating an ECS cluster

 10.2. Beyond the infrastructure: deploying EagleEye

 10.2.1. Deploying the EagleEye services to ECS manually

 10.3. The architecture of a build/deployment pipeline

 10.4. Your build and deployment pipeline in action

 10.5. Beginning your build deploy/pipeline: GitHub and Travis CI

 10.6. Enabling your service to build in Travis CI

 10.6.1. Core build run-time configuration

 10.6.2. Pre-build tool installations

 10.6.3. Executing the build

 10.6.4. Tagging the source control code

 10.6.5. Building the microservices and creating the Docker images

 10.6.6. Pushing the images to Docker Hub

 10.6.7. Starting the services in Amazon ECS

 10.6.8. Kicking off the platform tests

 10.7. Closing thoughts on the build/deployment pipeline

 10.8. Summary

 Appendix A. Running a cloud on your desktop

 A.1. Required software

 A.2. Downloading the projects from GitHub

 A.3. Anatomy of each chapter

 A.4. Building and compiling the projects

 A.5. Building the Docker image

 A.6. Launching the services with Docker Compose

 Appendix B. OAuth2 grant types

 B.1. Password grants

 B.2. Client credential grants

 B.3. Authorization code grants

 B.4. Implicit grant

 B.5. How tokens are refreshed

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 It’s ironic that in writing a book, the last part of the book you write is often the beginning of the book. It’s also often the most difficult part to put down on paper. Why? Because you have to explain to everyone why you’re so passionate about a subject that you spent the last one and a half years of your life writing a book about it. It’s hard to articulate why anyone would spend such a large amount of time on a technical book. One rarely writes software books for the money or the fame.

 Here’s the reason why I wrote this book: I love writing code. It’s a calling for me and it’s also a creative activity—akin to drawing, painting, or playing an instrument. Those outside the field of software development have a hard time understanding this. I especially like building distributed applications. For me, it’s an amazing thing to see an application work across dozens (even hundreds) of servers. It’s like watching an orchestra playing a piece of music. While the final product of an orchestra is beautiful, the making of it is often a lot of hard work and requires a significant amount of practice. The same goes for writing a massively distributed application.

 Since I entered the software development field 25 years ago, I’ve watched the industry struggle with the “right” way to build distributed applications. I’ve seen distributed service standards such as CORBA rise and fall. Monstrously big companies have tried to push big and, often, proprietary protocols. Anyone remember Microsoft’s Distributed Component Object Model (DCOM) or Oracle’s J2EE’s Enterprise Java Beans 2 (EJB)? I watched as technology companies and their followers rushed to build service-oriented architectures (SOA) using heavy XML-based schemas.

 In each case, these approaches for building distributed systems often collapsed under their own weight. I’m not saying that these technologies weren’t used to build some very powerful applications. The reality is that they couldn’t keep up with the demand of the users. Ten years ago, smartphones were just being introduced to the market and cloud computing was in the earliest stage of infancy. Also, the standards and technology for distributed application development were too complicated for the average developer to understand and easily use in practice. Nothing speaks truth in the software development industry like written code. When the standards get in the way of this, the standards quickly get discarded.

 When I first heard of the microservices approach to building applications I was more than a little skeptical. “Great, another silver-bullet approach to building distributed applications,” I thought. However, as I started diving into the concepts, I realized the simplicity of microservices could be a game changer. A microservice architecture focuses on building small services that use simple protocols (HTTP and JSON) to communicate. That’s it. You can write a microservice with nearly any programming language. There’s beauty in this simplicity.

 However, while building an individual microservice is easy, operationalizing and scaling it is difficult. Getting hundreds of small distributed components to work together and then building a resilient application from them can be incredibly difficult to do. In distributed computing, failure is a fact of life and how your application deals with it is incredibly difficult to get right. To paraphrase my colleagues Chris Miller and Shawn Hagwood: “If it’s not breaking once in a while, you’re not building.”

 It’s these failures that inspired me to write this book. I hate to build things from scratch when I don’t have to. The reality is that Java is the lingua franca for most application development efforts, especially in the enterprise. The Spring framework has for many organizations become the de facto framework for most application development. I’d already been doing application development in Java for almost 20 years (I remember the Dancing Duke applet) and Spring for almost 10 years. As I began my microservices journey, I was delighted and excited to watch the emergence of Spring Cloud.

 The Spring Cloud framework provides out-of-the-box solutions for many of the common development and operational problems you’ll run into as a microservice developer. Spring Cloud lets you use only the pieces you need and minimizes the amount of work you need to do to build and deploy production-ready Java micro-services. It does this by using other battle-hardened technologies from companies and groups such as Netflix, HashiCorp, and the Apache foundation.

 I’ve always considered myself an average developer who, at the end of the day, has deadlines to meet. That’s why I undertook the project of writing this book. I wanted a book that I could use in my day-to-day work. I wanted something with direct (and hopefully) straightforward code examples. I always want to make sure that the material in this book can be consumed as individual chapters or in its entirety. I hope you find this book useful and I hope you enjoy reading it as much as I enjoyed writing it.

Acknowledgments

 As I sit down to write these acknowledgments, I can’t help but think back to 2014 when I ran my first marathon. Writing a book is a lot like running a marathon. Writing the proposal and the outline for the book is much like the training process. It gets your thoughts in shape, it focuses you for what’s ahead and, yes, near the end of the process, it can be more than a little tedious and brutal.

 When you start writing the book, it’s a lot like race day. You start the marathon excited and full of energy. You know you’re trying to do something bigger than anything you might have done before and it’s both exciting and nerve-wracking. This is what you’ve trained for, but at the same time, there’s always that small voice of doubt in the back of your mind that says you won’t finish what you started.

 What I’ve learned from running is that races aren’t completed one mile at a time. Instead, they’re run one foot in front of the other. The miles run are the sum of the individual footsteps. When my children are struggling with something, I laugh and ask them, “How do you write a book? One word, one single step at a time.” They usually roll their eyes, but in the end there’s no other way around this indisputable and ironclad law.

 However, when you run a marathon, you might be the one running the race, but you’re never running it alone. There’s a whole team of people there to give you support, time, and advice along the way. It has been the same experience writing this book.

 I’d like to start by thanking Manning for the support they gave me in writing this book. It started with Greg Wild, my acquisitions editor, who patiently worked with me as I refined the core concepts in this book and guided me through the proposal process. Along the way, Marina Michaels, my development editor, kept me honest and challenged me to become a better author. I’d also like to thank Raphael Villela and Joshua White, my technical editors, who constantly checked my work and ensured the overall quality of the examples and the code I produced. I’m extremely grateful for the time, talent, and commitment each of these individuals put into into the overall project. I’d also like to thank the reviewers who provided feedback on the manuscript throughout the writing and development process: Aditya Kumar, Adrian M. Rossi, Ashwin Raj, Christian Bach, Edgar Knapp, Jared Duncan, Jiri Pik, John Guthrie, Mirko Bernardoni, Paul Balogh, Pierluigi Riti, Raju Myadam, Rambabu Posa, Sergey Evsikov, and Vipul Gupta.

 I want to close these acknowledgments with a deep sense of thanks for the love and time my family has given me in working on this project. To my wife Janet, you have been my best friend and the love of my life. When I’m tired and want to give up, I only have to listen for the sound of your footsteps next to me to know that you’re always running beside me, never telling me no, and always pushing me forward.

 To my son Christopher, you’re growing up to be an incredible young man. I cannot wait for the day when you truly discover your passion, because there will be nothing in this world that can stop you from reaching your goals.

 To my daughter Agatha, I’d give all the money I have to see the world through your eyes for just 10 minutes. The experience would make me a better author and more importantly a better person. Your intellect, your power of observation, and creativity humble me.

 To my four-year-old son, Jack: Buddy, thank you being patient with me whenever I said, “I can’t play right now because Daddy has to work on the book.” You always make me laugh and you make this whole family complete. Nothing makes me happier than when I see you being the jokester and playing with everyone in the family.

 My race with this book is done. Like my marathon, I’ve left nothing on the table in writing this book. I have nothing but gratitude for the Manning team and the MEAP readers who bought this book early and gave me so much valuable feedback. I hope in the end that you enjoy this book as much as I enjoyed writing it. Thank you.

About this Book

 Spring Microservices in Action was written for the practicing Java/Spring developer who needs hands-on advice and examples of how to build and operationalize microservice-based applications. When I wrote this book, I wanted it to be based around core microservice patterns that aligned with Spring Boot and Spring Cloud examples that demonstrated the patterns in action. As such, you’ll find specific microservice design patterns discussed in almost every chapter, along with examples of the patterns implemented using Spring Boot and Spring Cloud.

You should read this book if

 	You’re a Java developer who has experience building distributed applications (1-3 years).

 	You have a background in Spring (1+ years).

 	You’re interested in learning how to build microservice-based applications.

 	You’re interested in how you can use microservices for building cloud-based applications.

 	You want to know if Java and Spring are relevant technologies for building microservice-based applications.

 	You’re interested in seeing what goes into deploying a microservice-based application to the cloud.

How this book is organized

 Spring Microservices in Action consists of 10 chapters and two appendixes:

 	
Chapter 1 introduces you to why the microservices architecture is an important and relevant approach to building applications, especially cloud-based applications.

 	
Chapter 2 walks you through how to build your first REST-based microservice using Spring Boot. This chapter will guide you in how to look at your microservices through the eyes of an architect, an application engineer, and a DevOps engineer.

 	
Chapter 3 introduces you to how to manage the configuration of your microservices using Spring Cloud Config. Spring Cloud Config helps you guarantee that your service’s configuration information is centralized in a single repository, versioned and repeatable across all instances of your services.

 	
Chapter 4 introduces you to one of the first microservice routing patterns: service discovery. In this chapter, you’ll learn how to use Spring Cloud and Net-flix’s Eureka service to abstract away the location of your services from the clients consuming them.

 	
Chapter 5 is all about protecting the consumers of your microservices when one or more microservice instances is down or in a degraded state. This chapter will demonstrate how to use Spring Cloud and Netflix Hystrix (and Netflix Ribbon) to implement client-side load balancing of calls, the circuit breaker pattern, the fallback pattern, and the bulkhead pattern.

 	
Chapter 6 covers the microservice routing pattern: the service gateway. Using Spring Cloud with Netflix’s Zuul server, you’ll build a single entry point for all microservices to be called through. We’ll discuss how to use Zuul’s filter API to build policies that can be enforced against all services flowing through the service gateway.

 	
Chapter 7 covers how to implement service authentication and authorization using Spring Cloud security and OAuth2. We’ll cover the basics of setting up an OAuth2 service to protect your services and also how to use JavaScript Web Tokens (JWT) in your OAuth2 implementation.

 	
Chapter 8 looks at how you can introduce asynchronous messaging into your microservices using Spring Cloud Stream and Apache Kafka.

 	
Chapter 9 shows how to implement common logging patterns such as log correlation, log aggregation, and tracing using Spring Cloud Sleuth and Open Zipkin.

 	
Chapter 10 is the cornerstone project for the book. You’ll take the services you’ve built in the book and deploy them to Amazon Elastic Container Service (ECS). We’ll also discuss how to automate the build and deployment of your microservices using tools such as Travis CI.

 	
Appendix A covers how to set up your desktop development environment so that you can run all the code examples in this book. This appendix covers how the local build process works and also how to start up Docker locally if you want to run the code examples locally.

 	
Appendix B is supplemental material on OAuth2. OAuth2 is an extremely flexible authentication model, and this chapter provides a brief overview of the different manners in which OAuth2 can be used to protect an application and its corresponding microservices.

About the code

 Spring Microservices in Action includes code in every chapter. All code examples are available in my GitHub repository, and each chapter has its own repository. You can find an overview page with links to each chapter’s code repository at https://github.com/carnellj/spmia_overview. A zip containing all source code is also available from the publisher’s website at www.manning.com/books/spring-microservices-in-action.

 All code in this book is built to run on Java 8 using Maven as the main build tool. Please refer to appendix A of this book for full details on the software tools you’ll need to compile and run the code examples.

 One of the core concepts I followed as I wrote this book was that the code examples in each chapter should run independently of those in the other chapters. As such, every service we create for a chapter builds to a corresponding Docker image. When code from previous chapters is used, it’s included as both source and a built Docker image. We use Docker compose and the built Docker images to guarantee that you have a reproducible run-time environment for every chapter.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this wasn’t enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

Author Online

 Purchase of Spring Microservices in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/books/spring-microservices-in-action. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contributions to the AO remain voluntary (and unpaid). We suggest you ask the author challenging questions, lest his interest stray!

About the Author

 [image:]

 JOHN CARNELL is a senior cloud engineer at Genesys, where he works in Genesys’s PureCloud division. John spends the majority of his day hands-on building telephony-based microservices using the AWS platform. His day-to-day job centers on designing and building microservices across a number of technology platforms including Java, Clojure, and Go.

 John is a prolific speaker and writer. He regularly speaks at local user groups and has been a regular speaker on “The No Fluff Just Stuff Software Symposium.” Over the last 20 years, John has authored, co-authored, and been a technical reviewer for a number of Java-based technology books and industry publications.

 John holds a Bachelor of the Arts (BA) from Marquette University and a Masters of Business Administration (MBA) from the University of Wisconsin Oshkosh.

 John is a passionate technologist and is constantly exploring new technologies and programming languages. When John isn’t speaking, writing, or coding, he lives with his wife Janet, his three children, Christopher, Agatha, and Jack, and yes, his dog Vader, in Cary, North Carolina.

 During his free time (which there’s very little of) John runs, chases after his children, and studies Filipino martial arts.

 John can be reached at john_carnell@yahoo.com.

About the Cover Illustration

 The figure on the cover of Spring Microservices in Action is captioned a “A Man from Croatia.” This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs, published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist who spent many years studying the botany, geology, and ethnography of many parts of the Austrian Empire, as well as the Veneto, the Julian Alps, and the western Balkans, inhabited in the past by peoples of the Illyrian tribes. Hand drawn illustrations accompany the many scientific papers and books that Hacquet published.

 The rich diversity of the drawings in Hacquet’s publications speaks vividly of the uniqueness and individuality of the eastern Alpine and northwestern Balkan regions just 200 years ago. This was a time when the dress codes of two villages separated by a few miles identified people uniquely as belonging to one or the other, and when members of a social class or trade could be easily distinguished by what they were wearing. Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another, and today the inhabitants of the picturesque towns and villages in the Slovenian Alps or Balkan coastal towns are not readily distinguishable from the residents of other parts of Europe.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on costumes from two centuries ago, brought back to life by illustrations such as this one.

 1. Welcome to the cloud, Spring

 This chapter covers:

 	Understanding microservices and why companies use them

 	Using Spring, Spring Boot, and Spring Cloud for building microservices

 	Learning why the cloud and microservices are relevant to microservice-based applications

 	Building microservices involves more than building service code

 	Understanding the parts of cloud-based development

 	Using Spring Boot and Spring Cloud in microservice development

 The one constant in the field of software development is that we as software developers sit in the middle of a sea of chaos and change. We all feel the churn as new technologies and approaches appear suddenly on the scene, causing us to reevaluate how we build and deliver solutions for our customers. One example of this churn is the rapid adoption by many organizations of building applications using microservices. Microservices are distributed, loosely coupled software services that carry out a small number of well-defined tasks.

 This book introduces you to the microservice architecture and why you should consider building your applications with them. We’re going to look at how to build microservices using Java and two Spring framework projects: Spring Boot and Spring Cloud. If you’re a Java developer, Spring Boot and Spring Cloud will provide an easy migration path from building traditional, monolithic Spring applications to microservice applications that can be deployed to the cloud.

1.1. What’s a microservice?

 Before the concept of microservices evolved, most web-based applications were built using a monolithic architectural style. In a monolithic architecture, an application is delivered as a single deployable software artifact. All the UI (user interface), business, and database access logic are packaged together into a single application artifact and deployed to an application server.

 While an application might be a deployed as a single unit of work, most of the time there will be multiple development teams working on the application. Each development team will have their own discrete pieces of the application they’re responsible for and oftentimes specific customers they’re serving with their functional piece. For example, when I worked at a large financial services company, we had an in-house, custom-built customer relations management (CRM) application that involved the coordination of multiple teams including the UI, the customer master, the data warehouse, and the mutual funds team. Figure 1.1 illustrates the basic architecture of this application.

 Figure 1.1. Monolithic applications force multiple development teams to artificially synchronize their delivery because their code needs to be built, tested, and deployed as an entire unit.

 [image:]

 The problem here is that as the size and complexity of the monolithic CRM application grew, the communication and coordination costs of the individual teams working on the application didn’t scale. Every time an individual team needed to make a change, the entire application had to be rebuilt, retested and redeployed.

 The concept of a microservice originally crept into the software development community’s consciousness around 2014 and was a direct response to many of the challenges of trying to scale both technically and organizationally large, monolithic applications. Remember, a microservice is a small, loosely coupled, distributed service. Microservices allow you to take a large application and decompose it into easy-to--manage components with narrowly defined responsibilities. Microservices help combat the traditional problems of complexity in a large code base by decomposing the large code base down into small, well-defined pieces. The key concept you need to embrace as you think about microservices is decomposing and unbundling the functionality of your applications so they’re completely independent of one another. If we take the CRM application we saw in figure 1.1 and decompose it into microservices, it might look like what’s shown in figure 1.2.

 Figure 1.2. Using a microservice architecture our CRM application would be decomposed into a set of microservices completely independent of each other, allowing each development team to move at their own pace.

 [image:]

 Looking at figure 1.2, you can see that each functional team completely owns their service code and service infrastructure. They can build, deploy, and test independently of each other because their code, source control repository, and the infrastructure (app server and database) are now completely independent of the other parts of the application.

 A microservice architecture has the following characteristics:

 	Application logic is broken down into small-grained components with well-defined boundaries of responsibility that coordinate to deliver a solution.

 	Each component has a small domain of responsibility and is deployed completely independently of one another. Microservices should have responsibility for a single part of a business domain. Also, a microservice should be reusable across multiple applications.

 	Microservices communicate based on a few basic principles (notice I said principles, not standards) and employ lightweight communication protocols such as HTTP and JSON (JavaScript Object Notation) for exchanging data between the service consumer and service provider.

 	The underlying technical implementation of the service is irrelevant because the applications always communicate with a technology-neutral protocol (JSON is the most common). This means an application built using a microservice application could be built with multiple languages and technologies.

 	Microservices—by their small, independent, and distributed nature—allow organizations to have small development teams with well-defined areas of responsibility. These teams might work toward a single goal such as delivering an application, but each team is responsible only for the services on which they’re working.

 I often joke with my colleagues that microservices are the gateway drug for building cloud applications. You start building microservices because they give you a high degree of flexibility and autonomy with your development teams, but you and your team quickly find that the small, independent nature of microservices makes them easily deployable to the cloud. Once the services are in the cloud, their small size makes it easy to start up large numbers of instances of the same service, and suddenly your applications become more scalable and, with forethought, more resilient.

1.2. What is Spring and why is it relevant to microservices?

 Spring has become the de facto development framework for building Java-based applications. At its core, Spring is based on the concept of dependency injection. In a normal Java application, the application is decomposed into classes where each class often has explicit linkages to other classes in the application. The linkages are the invocation of a class constructor directly in the code. Once the code is compiled, these linkage points can’t be changed.

 This is problematic in a large project because these external linkages are brittle and making a change can result in multiple downstream impacts to other code. A dependency injection framework, such as Spring, allows you to more easily manage large Java projects by externalizing the relationship between objects within your application through convention (and annotations) rather than those objects having hard-coded knowledge about each other. Spring sits as an intermediary between the different Java classes of your application and manages their dependencies. Spring essentially lets you assemble your code together like a set of Lego bricks that snap together.

 Spring’s rapid inclusion of features drove its utility, and the framework quickly became a lighter weight alternative for enterprise application Java developers looking for a way to building applications using the J2EE stack. The J2EE stack, while powerful, was considered by many to be bloatware, with many features that were never used by application development teams. Further, a J2EE application forced you to use a full-blown (and heavy) Java application server to deploy your applications.

 What’s amazing about the Spring framework and a testament to its development community is its ability to stay relevant and reinvent itself. The Spring development team quickly saw that many development teams were moving away from monolithic applications where the application’s presentation, business, and data access logic were packaged together and deployed as a single artifact. Instead, teams were moving to highly distributed models where services were being built as small, distributed services that could be easily deployed to the cloud. In response to this shift, the Spring development team launched two projects: Spring Boot and Spring Cloud.

 Spring Boot is a re-envisioning of the Spring framework. While it embraces core features of Spring, Spring Boot strips away many of the “enterprise” features found in Spring and instead delivers a framework geared toward Java-based, REST-oriented (Representational State Transfer)[1] microservices. With a few simple annotations, a Java developer can quickly build a REST microservice that can be packaged and deployed without the need for an external application container.

 1

 While we cover REST later in chapter 2, it’s worthwhile to read Roy Fielding’s PHD dissertation on building REST-based applications (http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm). It’s still one of the best explanations of REST available.

 Note

 While we cover REST in more detail in chapter 2, the core concept behind REST is that your services should embrace the use of the HTTP verbs (GET, POST, PUT, and DELETE) to represent the core actions of the service and use a lightweight web-oriented data serialization protocol, such as JSON, for requesting and receiving data from the service.

 Because microservices have become one of the more common architectural patterns for building cloud-based applications, the Spring development community has given us Spring Cloud. The Spring Cloud framework makes it simple to operationalize and deploy microservices to a private or public cloud. Spring Cloud wraps several popular cloud-management microservice frameworks under a common framework and makes the use and deployment of these technologies as easy to use as annotating your code. I cover the different components within Spring Cloud later in this chapter.

1.3. What you’ll learn in this book

 This book is about building microservice-based applications using Spring Boot and Spring Cloud that can be deployed to a private cloud run by your company or a public cloud such as Amazon, Google, or Pivotal. With this book, we cover with hands-on examples

 	What a microservice is and the design considerations that go into building a microservice-based application

 	When you shouldn’t build a microservice-based application

 	How to build microservices using the Spring Boot framework

 	The core operational patterns that need to be in place to support microservice applications, particularly a cloud-based application

 	How you can use Spring Cloud to implement these operational patterns

 	How to take what you’ve learned and build a deployment pipeline that can be used to deploy your services to a private, internally managed cloud or a public cloud provider

 By the time you’re done reading this book, you should have the knowledge needed to build and deploy a Spring Boot-based microservice. You’ll also understand the key design decisions need to operationalize your microservices. You’ll understand how service configuration management, service discovery, messaging, logging and tracing, and security all fit together to deliver a robust microservices environment. Finally, you’ll see how your microservices can be deployed within a private or public cloud.

1.4. Why is this book relevant to you?

 If you’ve gotten this far into reading chapter 1, I suspect that

 	You’re a Java developer.

 	You have a background in Spring.

 	You’re interested in learning how to build microservice-based applications.

 	You’re interested in how to use microservices to build cloud-based applications.

 	You want to know if Java and Spring are relevant technologies for building microservice-based applications.

 	You’re interested in seeing what goes into deploying a microservice-based application to the cloud.

 I chose to write this book for two reasons. First, while I’ve seen many good books on the conceptual aspects of microservices, I couldn’t a find a good Java-based book on implementing microservices. While I’ve always considered myself a programming language polyglot (someone who knows and speaks several languages), Java is my core development language and Spring has been the development framework I “reach” for whenever I build a new application. When I first came across Spring Boot and Spring Cloud, I was blown away. Spring Boot and Spring Cloud greatly simplified my development life when it came to building microservice-based applications running in the cloud.

 Second, as I’ve worked throughout my career as both an architect and engineer, I’ve found that many times the technology books that I purchase have tended to go to one of two extremes. They are either conceptual without concrete code examples, or are mechanical overviews of a particular framework or programming language. I wanted a book that would be a good bridge and middle ground between the architecture and engineering disciplines. As you read this book, I want to give you a solid introduction to the microservice patterns development and how they’re used in real-world application development, and then back these patterns up with practical and easy-to-understand code examples using Spring Boot and Spring Cloud.

 Let’s shift gears for a moment and walk through building a simple microservice using Spring Boot.

1.5. Building a microservice with Spring Boot

 I’ve always had the opinion that a software development framework is well thought out and easy to use if it passes what I affectionately call the “Carnell Monkey Test.” If a monkey like me (the author) can figure out a framework in 10 minutes or less, it has promise. That’s how I felt the first time I wrote a sample Spring Boot service. I want you to have to the same experience and joy, so let’s take a minute to see how to write a simple “Hello World” REST-service using Spring Boot.

 In this section, we’re not going to do a detailed walkthrough of much of the code presented. Our goal is to give you a taste of writing a Spring Boot service. We’ll go into much more detail in chapter 2.

 Figure 1.3 shows what your service is going to do and the general flow of how Spring Boot microservice will process a user’s request.

 Figure 1.3. Spring Boot abstracts away the common REST microservice task (routing to business logic, parsing HTTP parameters from the URL, mapping JSON to/from Java Objects), and lets the developer focus on the business logic for the service.

 [image:]

 This example is by no means exhaustive or even illustrative of how you should build a production-level microservice, but it should cause you to take a pause because of how little code it took to write it. We’re not going to go through how to set up the project build files or the details of the code until chapter 2. If you’d like to see the Maven pom.xml file and the actual code, you can find it in the chapter 1 section of the downloadable code. All the source code for chapter 1 can be retrieved from the GitHub repository for the book at https://github.com/carnellj/spmia-chapter1.

 Note

 Please make sure you read appendix A before you try to run the code examples for the chapters in this book. Appendix A covers the general pro-ject layout of all the projects in the book, how to run the build scripts, and how to fire up the Docker environment. The code examples in this chapter are simple and designed to be run natively right from your desktop without the information in additional chapters. However, in later chapters you’ll quickly begin using Docker to run all the services and infrastructure used in this book. Don’t go too far into the book without reading appendix A on setting up your desktop environment.

 For this example, you’re going to have a single Java class called simpleservice/src/com/thoughtmechanix/application/simpleservice/Application.java that will be used to expose a REST endpoint called /hello.

 The following listing shows the code for Application.java.

 Listing 1.1. Hello World with Spring Boot: a simple Spring microservice

 [image:]

 [image:]

 In listing 1.1 you’re basically exposing a single GET HTTP endpoint that will take two parameters (firstName and lastName) on the URL and then return a simple JSON string that has a payload containing the message “Hello firstName lastName”. If you were to call the endpoint /hello/john/carnell on your service (which I’ll show shortly) the return of the call would be

 {"message":"Hello john carnell"}

 Let’s fire up your service. To do this, go to the command prompt and issue the following command:

 mvn spring-boot:run

 This command, mvn, will use a Spring Boot plug-in to start the application using an embedded Tomcat server.

 Java vs. Groovy and Maven vs. Gradle

 The Spring Boot framework has strong support for both Java and the Groovy programming languages. You can build microservices with Groovy and no project setup. Spring Boot also supports both Maven and the Gradle build tools. I’ve limited the examples in this book to Java and Maven. As a long-time Groovy and Gradle aficionado, I have a healthy respect for the language and the build tool, but to keep the book manageable and the material focused, I’ve chosen to go with Java and Maven to reach the largest audience possible.

 If everything starts correctly, you should see what’s shown in figure 1.4 from your command-line window.

 Figure 1.4. Your Spring Boot service will communicate the endpoints exposed and the port of the service via the console.

 [image:]

 If you examine the screen in figure 1.4, you’ll notice two things. First, a Tomcat server was started on port 8080. Second, a GET endpoint of /hello/{firstName}/{lastName} is exposed on the server.

 You’re going to call your service using a browser-based REST tool called POSTMAN (https://www.getpostman.com/). Many tools, both graphical and command line, are available for invoking a REST-based service, but I’ll use POSTMAN for all my examples in this book. Figure 1.5 shows the POSTMAN call to the http://localhost:8080/hello/john/carnell endpoint and the results returned from the service.

 Figure 1.5. The response from the /hello endpoint shows the data you’ve requested represented as a JSON payload.

 [image:]

 Obviously, this simple example doesn’t demonstrate the full power of Spring Boot. But what it should show is that you can write a full HTTP JSON REST-based service with route-mapping of URL and parameters in Java with as few as 25 lines of code. As any experienced Java developer will tell you, writing anything meaningful in 25 lines of code in Java is extremely difficult. Java, while being a powerful language, has acquired a reputation of being wordy compared to other languages.

 We’re done with our brief tour of Spring Boot. We now have to ask this question: because we can write our applications using a microservice approach, does this mean we should? In the next section, we’ll walk through why and when a microservice approach is justified for building your applications.

1.6. Why change the way we build applications?

 We’re at an inflection point in history. Almost all aspects of modern society are now wired together via the internet. Companies that used to serve local markets are suddenly finding that they can reach out to a global customer base. However, with a larger global customer base also comes global competition. These competitive pressures mean the following forces are impacting the way developers have to think about building applications:

 	
Complexity has gone way up— Customers expect that all parts of an organization know who they are. “Siloed” applications that talk to a single database and don’t integrate with other applications are no longer the norm. Today’s applications need to talk to multiple services and databases residing not only inside a company’s data center, but also to external service providers over the internet.

 	
Customers want faster delivery— Customers no longer want to wait for the next annual release or version of a software package. Instead, they expect the features in a software product to be unbundled so that new functionality can be released quickly in weeks (even days) without having to wait for an entire product release.

 	
Performance and scalability— Global applications make it extremely difficult to predict how much transaction volume is going to be handled by an application and when that transaction volume is going to hit. Applications need to scale up across multiple servers quickly and then scale back down when the volume needs have passed.

 	
Customers expect their applications to be available— Because customers are one click away from a competitor, a company’s applications must be highly resilient. Failures or problems in one part of the application shouldn’t bring down the entire application.

 To meet these expectations, we, as application developers, have to embrace the paradox that to build high-scalable and highly redundant applications we need to break our applications into small services that can be built and deployed independently of one another. If we “unbundle” our applications into small services and move them away from a single monolithic artifact, we can build systems that are

 	
Flexible— Decoupled services can be composed and rearranged to quickly deliver new functionality. The smaller the unit of code that one is working with, the less complicated it is to change the code and the less time it takes to test deploy the code.

 	
Resilient— Decoupled services mean an application is no longer a single “ball of mud” where a degradation in one part of the application causes the whole application to fail. Failures can be localized to a small part of the application and contained before the entire application experiences an outage. This also enables the applications to degrade gracefully in case of an unrecoverable error.

 	
Scalable— Decoupled services can easily be distributed horizontally across multiple servers, making it possible to scale the features/services appropriately. With a monolithic application where all the logic for the application is intertwined, the entire application needs to scale even if only a small part of the application is the bottleneck. Scaling on small services is localized and much more cost-effective.

 To this end, as we begin our discussion of microservices keep the following in mind:

 Small, Simple, and Decoupled Services = Scalable, Resilient, and Flexible Applications

1.7. What exactly is the cloud?

 The term “cloud” has become overused. Every software vendor has a cloud and everyone’s platform is cloud-enabled, but if you cut through the hype, three basic models exist in cloud-based computing. These are

 	Infrastructure as a Service (IaaS)

 	Platform as a Service (PaaS)

 	Software as a Service (SaaS)

 To better understand these concepts, let’s map the everyday task of making a meal to the different models of cloud computing. When you want to eat a meal, you have four choices:

 	You can make the meal at home.

 	You can go to the grocery store and buy a meal pre-made that you heat up and serve.

 	You can get a meal delivered to your house.

 	You can get in the car and eat at restaurant.

 Figure 1.6 shows each model.

 Figure 1.6. The different cloud computing models come down to who’s responsible for what: the cloud vendor or you.

 [image:]

 The difference between these options is about who’s responsible for cooking these meals and where the meal is going to be cooked. In the on-premise model, eating a meal at home requires you to do all the work, using your own oven and ingredients already in the home. A store-bought meal is like using the Infrastructure as a Service (IaaS) model of computing. You’re using the store’s chef and oven to pre-bake the meal, but you’re still responsible for heating the meal and eating it at the house (and cleaning up the dishes afterward).

 In a Platform as a Service (PaaS) model you still have responsibility for the meal, but you further rely on a vendor to take care of the core tasks associated with making a meal. For example, in a PaaS model, you supply the plates and furniture, but the restaurant owner provides the oven, ingredients, and the chef to cook them. In the Software as a Service (SaaS) model, you go to a restaurant where all the food is prepared for you. You eat at the restaurant and then you pay for the meal when you’re done. you also have no dishes to prepare or wash.

 The key items at play in each of these models are ones of control: who’s responsible for maintaining the infrastructure and what are the technology choices available for building the application? In a IaaS model, the cloud vendor provides the basic infrastructure, but you’re accountable for selecting the technology and building the final solution. On the other end of the spectrum, with a SaaS model, you’re a passive consumer of the service provided by the vendor and have no input on the technology selection or any accountability to maintain the infrastructure for the application.

 Emerging cloud platforms

 I’ve documented the three core cloud platform types (IaaS, PaaS, SaaS) that are in use today. However, new cloud platform types are emerging. These new platforms include Functions as a Service (FaaS) and Container as a Service (CaaS). FaaS-based (https://en.wikipedia.org/wiki/Function_as_a_Service) applications use technologies like Amazon’s Lambda technologies and Google Cloud functions to build applications deployed as “serverless” chunks of code that run completely on the cloud provider’s platform computing infrastructure. With a FaaS platform, you don’t have to manage any server infrastructure and only pay for the computing cycles required to execute the function.

 With the Container as a Service (CaaS) model, developers build and deploy their microservices as portable virtual containers (such as Docker) to a cloud provider. Unlike an IaaS model, where you the developer have to manage the virtual machine the service is deployed to, with CaaS you’re deploying your services in a lightweight virtual container. The cloud provider runs the virtual server the container is running on as well as the provider’s comprehensive tools for building, deploying, monitoring, and scaling containers. Amazon’s Elastic Container Service (ECS) is an example of a CaaS-based platform. In chapter 10 of this book, we’ll see how to deploy the microservices you’ve built to Amazon ECS.

 It’s important to note that with both the FaaS and CaaS models of cloud computing, you can still build a microservice-based architecture. Remember, the concept of microservices revolves around building small services, with limited responsibility, using an HTTP-based interface to communicate. The emerging cloud computing platforms, such as FaaS and CaaS, are really about alternative infrastructure mechanisms for deploying microservices.

1.8. Why the cloud and microservices?

 One of the core concepts of a microservice-based architecture is that each service is packaged and deployed as its own discrete and independent artifact. Service instances should be brought up quickly and each instance of the service should be indistinguishable from another.

 As a developer writing a microservice, sooner or later you’re going to have to decide whether your service is going to be deployed to one of the following:

 	
Physical server— While you can build and deploy your microservices to a physical machine(s), few organizations do this because physical servers are constrained. You can’t quickly ramp up the capacity of a physical server and it can become extremely costly to scale your microservice horizontally across multiple physical servers.

 	
Virtual machine images— One of the key benefits of microservices is their ability to quickly start up and shut down microservice instances in response to scalability and service failure events. Virtual machines are the heart and soul of the major cloud providers. A microservice can be packaged up in a virtual machine image and multiple instances of the service can then be quickly deployed and started in either a IaaS private or public cloud.

 	
Virtual container— Virtual containers are a natural extension of deploying your microservices on a virtual machine image. Rather than deploying a service to a full virtual machine, many developers deploy their services as Docker containers (or equivalent container technology) to the cloud. Virtual containers run inside a virtual machine; using a virtual container, you can segregate a single virtual machine into a series of self-contained processes that share the same virtual machine image.

 The advantage of cloud-based microservices centers around the concept of elasticity. Cloud service providers allow you to quickly spin up new virtual machines and containers in a matter of minutes. If your capacity needs for your services drop, you can spin down virtual servers without incurring any additional costs. Using a cloud provider to deploy your microservices gives you significantly more horizontal scalability (adding more servers and service instances) for your applications. Server elasticity also means that your applications can be more resilient. If one of your microservices is having problems and is falling over, spinning up new service instances can you keep your application alive long enough for your development team to gracefully resolve the issue.

 For this book, all the microservices and corresponding service infrastructure will be deployed to an IaaS-based cloud provider using Docker containers. This is a common deployment topology used for microservices:

 	
Simplified infrastructure management— IaaS cloud providers give you the ability to have the most control over your services. New services can be started and stopped with simple API calls. With an IaaS cloud solution, you only pay for the infrastructure that you use.

 	
Massive horizontal scalability— IaaS cloud providers allow you to quickly and succinctly start one or more instances of a service. This capability means you can quickly scale services and route around misbehaving or failing servers.

 	
High redundancy through geographic distribution— By necessity, IaaS providers have multiple data centers. By deploying your microservices using an IaaS cloud provider, you can gain a higher level of redundancy beyond using clusters in a data center.

 Why not PaaS-based microservices?

 Earlier in the chapter we discussed three types of cloud platforms (Infrastructure as a Service, Platform as a Service, and Software as a Services). For this book, I’ve chosen to focus specifically on building microservices using an IaaS-based approach. While certain cloud providers will let you abstract away the deployment infrastructure for your microservice, I’ve chosen to remain vendor-independent and deploy all parts of my application (including the servers).

 For instance, Amazon, Cloud Foundry, and Heroku give you the ability to deploy your services without having to know about the underlying application container. They provide a web interface and APIs to allow you to deploy your application as a WAR or JAR file. Setting up and tuning the application server and the corresponding Java container are abstracted away from you. While this is convenient, each cloud provider’s platform has different idiosyncrasies related to its individual PaaS solution.

OEBPS/Images/01fig02_alt.jpg
Mutual funds
microservice

Mutual funds
Mutual funds team S0UrGe code repository. database

Customer
mastor
microservice
Customer
mastor

Data
warehouse

Ulweb.
‘application

Ui source code
repostory

Invokes all business
logic as REST-based
POty

OEBPS/Images/01fig03_alt.jpg
¥ 2D
GET neep: //Localhost 8080 /he1 1o/ Jon/carne11 [4 mm— A client makes an
2 4 = HITP GET request to

your Hello microservi

srTe smarus:200
(“massage*: *Hello Jomn carnellt)
A
pe.
The clent receives the response from your

service as JSON. The success or falure of
the callis returned s an HITP status code.

Spring Boo will parse
the HITP request and map
the route based on the HTTP
Verb, the URL, and potential
parameters defined for the
URL A route maps toa
method in a Spring
RestController class.

Once Spring Baot has identifed the route
it will map any parameters defined inside

the route to a Java method that will carry

out the work.

For an HTTP PUT or Post,
" aJSON passed in the HTTP
body is mapped toa
Java class.

Once the business logic
is executed, Spring Boot

_ will convert a Java object
t0JSON.

Once all of the data has been mapped,
Spring Boot will exccute the busir

OEBPS/Images/fmfig00.jpg

OEBPS/Images/01fig01_alt.jpg
IR, S SN S
of responsibity with their own Al their work is synchronized
requirements and delivery demands. into a single code base.

/

Java appiication server
(JBoss, Websphero, WebLogic, Tomeal)

Mutual funds team

Typical
o Spring-based
web appliations
Customer master
toam

Al

Data warshousing
toam

W ===

Mutualfunds Customer master
database databaso

o /

The entire application also has knowledge of
‘and access to all of the data sources used
withinithe aculication.

OEBPS/Images/common0a.jpg

OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/Images/common0b.jpg

OEBPS/Images/01fig04_alt.jpg
Our /nelio endpoint is mapped with two variables: firstName and lastame.

5B serviet. FilterRegistrationsean | Mapping filter: ‘requestContextFilter to: /o]
S0 n o Reaues thapp ngtandlerAdapter | Looking for @ControllerAdvice: org. springframework.boot. contex
itartup dote [Thy Mor 23 06:09:30 EOT 20171\ root of context hierarchy

<. 51000, Redues (HappingHand e Happ ng : Mapped "{[/hello/{firstNane}/{lastNose}] ,methods= GET}" onto
in-hello(java. Lang. String, java. Lang. String)

S50 Reues ihapp i gHand\eropp ng - Mapped "{/error]}" onto public org.springfrasework.http.Respe
ingf ramework,boot .autoconf igure. e, Bas cErrarCont ol Ler errar (avax. serviet . nt p.HetpServietRequest)
S0, e (Happ ngHond Mo n - Mapped "{L/error] ,produces=(text/htal]}* onto public org.sprir
Vigure.ueb. BasicErrorControlLer. rrorHtaL(javax. serviet, hitp. HitpServietRequest, Javax. serviet. ht . e pse

0.5, hongler. SinpleUr Uand Lertiapping © Mapped URL path [/webjars/we] onto handler of type [class org.

0.5, handler. SinpleUr Uandlertapping © Mapped URL path [/+x) onto handler of type [class org.springfr

0.5, hondler. SinpleUr Uandlertiapping : Mapped URL path [/we/favicon. ico] onto handler of type [class
|
0.5.1 .. Annotat ionMBeanExporter Registering beans for WX exposure on startup
Cbe el Toncatnbeadedse s LetContainer AToncat started on port(s): 8080 (netp)
teservice. Application ‘Started Application in 2,261 seconds (W running for 5.113)

The service will Nstsa te pirt: D080 for incosslig HTTP Fequiests.

OEBPS/Images/ch01ex01-0.jpg
package com.thoughtmechanix.simpli

smport
import
tmport
tmport
import
import

WL

org. spring ranework boot . SpringApplication;
org. springtranework boot .autocontigure. SpringBootAppl ication;
org. epringranework.web. bind. annotation. RequestHapping;

org. springfranework.web.bind.annotat on. RequestMothod

org. springtranework. web.bind.annotat ion. RestController;
org.springfranework web.bind annotat ion. Pathvariable.

Tells the Spring Boot framework that this class

is the entry paint for the Spring Boot service Jella peing Boot you'te going

o expose the code in this class
25 2 Spring RestControlle class

aspringBootappl ication —
aRestcontroller <
GRequestapping (value="hello")

] AllURLS exposed in tis application

public class Application { willbe prefaced with fhllo prefix.

public static void main(string(] args) (
SpringApplication.run (Application.class, args);

OEBPS/Images/ch01ex01-1.jpg
Spring Boot will expose an endpoint as a
GET-based REST endpoint that wil ake two
parameters: firstName and lastName.

Requestapping (value="/ (£1rstiane) /{1astitane] *,
method - Requestiethod.GET)
public String hello(evathVarisble(*firstame®) String firsthams, <
aPathvariable(*lastNane®) String lasthame) (
return String. format (*(\ "message*s\"Kello s ¥o\"}",
firtiane, lastitame) ;

} Maps the firstName and lastName

parameters passed in on the URL to two
Returns a simple JSON string that you manually ariables passed into the helo function
Freses fprasrss, shsbdpanis: - prmhiapelns oot

OEBPS/Images/cover.jpeg

OEBPS/Images/01fig06.jpg
Fumiture Fumiture Fumiture Furniture
Plates. Plates Plates Plates
oven oven Oven oven

Ingredients Ingredients Ingredients. Ingredients.
Chef Chef. Chef. Chef

Homemade Store bought Devered Restaurant

Onpremise laas Paas Saas
You manage Provider manages

OEBPS/Images/01fig05_alt.jpg
ITP GET for the /helto/john/carnell endpc

/

e— /w Nonvronment

[N —-c——— roams
o o 9
bty Gootes Heseny Ten S 00X T 0
Preay. . v Tmv

¢

00N i ekiraed back Sonithe e

