

 [image: cover]

iOS 7 in Action

 Brendan G. Lim and Martin Conte Mac Donell

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Jennifer Stout
Copyeditor: Linda Recktenwald
Proofreader: Alyson Brener
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617291425

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Basics and necessities

 Chapter 1. Introduction to iOS development

 Chapter 2. Views and view controller basics

 Chapter 3. Using storyboards to organize and visualize your views

 Chapter 4. Using and customizing table views

 Chapter 5. Using collection views

 2. Building real-world applications

 Chapter 6. Retrieving remote data

 Chapter 7. Photos and videos and the Assets Library

 Chapter 8. Social integration with Twitter and Facebook

 Chapter 9. Advanced view customization

 Chapter 10. Location and mapping with Core Location and MapKit

 Chapter 11. Persistence and object management with Core Data

 3. Application extras

 Chapter 12. Using AirPlay for streaming and external display

 Chapter 13. Integrating push notifications

 Chapter 14. Applying motion effects and dynamics

 Appendix

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Basics and necessities

 Chapter 1. Introduction to iOS development

 1.1. Developing for iOS

 1.1.1. Different kind of design interaction

 1.1.2. Getting ready to develop for iOS

 1.2. Creating your first iOS application

 1.2.1. Creating the Hello Time application in Xcode

 1.2.2. Creating the application interface

 1.2.3. Connecting your user interface to your code

 1.2.4. Implementing the clock functionality

 1.2.5. Building and running your application

 1.3. iOS development fundamentals

 1.3.1. Object-oriented programming

 1.3.2. Objective-C syntax and message passing

 1.3.3. The Model-View-Controller pattern

 1.3.4. Frameworks introduction

 1.4. Overview of Apple’s development tools

 1.4.1. Creating different types of projects in Xcode

 1.4.2. Getting familiar with Xcode’s workspace

 1.4.3. iOS Simulator

 1.5. Summary

 Chapter 2. Views and view controller basics

 2.1. Enhancing Hello Time

 2.1.1. Switching between night and day modes

 2.1.2. Adding support for landscape mode

 2.2. Introducing views

 2.2.1. Screens, windows, and views

 2.2.2. Views and the coordinate system

 2.2.3. User interface controls

 2.2.4. Responding to actions and events

 2.2.5. Custom tint colors

 2.3. View controller basics

 2.3.1. Introducing view controllers

 2.3.2. The view controller lifecycle

 2.3.3. Different types of view controllers

 2.3.4. Different status bar styles

 2.4. Supporting different orientations

 2.4.1. Enabling support for portrait and landscape

 2.4.2. Updating your views for different orientations

 2.5. Summary

 Chapter 3. Using storyboards to organize and visualize your views

 3.1. Building a task management app

 3.1.1. Creating the Tasks app project in Xcode

 3.1.2. Creating the interface for listing tasks

 3.1.3. Adding a navigation controller

 3.1.4. Creating and viewing a task

 3.1.5. Connecting your views within the storyboard

 3.2. Exploring Xcode’s interface editor

 3.2.1. Overview of Xcode’s interface editor

 3.2.2. The inspector sections

 3.3. Using storyboards to manage your views

 3.3.1. How does storyboarding benefit you?

 3.3.2. Scenes within storyboards

 3.3.3. Transitioning between scenes with segues

 3.3.4. Passing data between view controllers with segues

 3.3.5. Problems with using storyboarding

 3.4. Summary

 Chapter 4. Using and customizing table views

 4.1. Introduction to table views

 4.1.1. Anatomy of a table view

 4.2. Using table views to display data

 4.2.1. Setting up your Albums application

 4.2.2. Providing data through a data source

 4.2.3. Custom table view cells with prototype cells

 4.3. Managing selection and deletion within a table view

 4.3.1. Deleting rows within a table view

 4.3.2. Handling the selection and deselection of rows

 4.4. Summary

 Chapter 5. Using collection views

 5.1. Introducing collection views

 5.2. Using collection views to display data

 5.2.1. Adding a UICollectionViewController as a new scene

 5.2.2. Supplying a collection view with data

 5.2.3. Creating a custom collection view cell

 5.3. Customizing a collection view layout

 5.3.1. Collection view flow layouts

 5.3.2. Using the flow layout delegate protocol

 5.4. Summary

 2. Building real-world applications

 Chapter 6. Retrieving remote data

 6.1. Retrieving data using NSURLSession

 6.2. Understanding data serialization and interacting with external services

 6.3. Advanced HTTP requests

 6.4. Using web views to display remote pages

 6.5. Popular open source networking libraries

 6.5.1. AFNetworking

 6.5.2. RestKit

 6.6. Summary

 Chapter 7. Photos and videos and the Assets Library

 7.1. Overview of the Assets Library framework

 7.1.1. The Assets Library, groups, and individual assets

 7.1.2. Setting up the Media Info project

 7.2. Retrieving photos and videos with the image picker

 7.2.1. Preparing and presenting the image picker controller

 7.2.2. Selecting assets from the image picker

 7.3. Capturing photos and videos with the camera

 7.3.1. Checking for camera availability

 7.3.2. Taking photos and videos with the camera

 7.3.3. Saving newly captured photos and videos to the Assets Library

 7.4. Retrieving assets and accessing metadata

 7.4.1. Setting up your view to display the metadata

 7.4.2. Retrieving an asset from the Assets Library

 7.4.3. Accessing metadata for photos and videos

 7.5. Summary

 Chapter 8. Social integration with Twitter and Facebook

 8.1. Accessing accounts with the Accounts framework

 8.1.1. Accessing Twitter accounts and account properties

 8.1.2. Accessing Facebook accounts

 8.2. Using the Social framework to post content

 8.2.1. Posting to Twitter using the Tweet Composer view

 8.2.2. Posting to Facebook

 8.3. Making API requests with the Social framework

 8.3.1. Retrieving a Twitter stream using an SLRequest

 8.3.2. Retrieving a Facebook news feed

 8.4. Summary

 Chapter 9. Advanced view customization

 9.1. Going beyond the Interface Builder with custom views

 9.2. Creating basic animations

 9.3. Using advanced animation techniques

 9.4. Summary

 Chapter 10. Location and mapping with Core Location and MapKit

 10.1. Introduction to the Core Location framework

 10.1.1. Representing a location with CLLocation

 10.1.2. The location manager

 10.1.3. Setting up Speed Map in Xcode

 10.2. Retrieving location, heading, and speed

 10.2.1. Retrieving your current location with the location manager

 10.2.2. Geocoding a location

 10.3. Introduction to the MapKit framework

 10.3.1. Using the map view to display a map

 10.3.2. Retrieving user location using MapKit

 10.3.3. Using annotations in a map

 10.3.4. Adding a map to your application

 10.4. Summary

 Chapter 11. Persistence and object management with Core Data

 11.1. Introduction to Core Data

 11.1.1. Differences between Core Data and traditional databases

 11.1.2. What Core Data doesn’t do well

 11.1.3. Setting up your application

 11.2. Managed objects, entities, relationships

 11.2.1. Managed object models and contexts

 11.2.2. Entities and managed objects

 11.2.3. Relationships between entities

 11.2.4. Generating managed object classes for your entities

 11.3. Working with managed objects

 11.3.1. Creating, updating, and deleting managed objects

 11.3.2. Using fetch requests to retrieve managed objects

 11.3.3. Filtering results using predicates

 11.3.4. Using a fetched results controller to manage results in a table view

 11.3.5. Adding and removing tasks from a list

 11.4. Summary

 3. Application extras

 Chapter 12. Using AirPlay for streaming and external display

 12.1. Introduction to AirPlay

 12.1.1. Examples of AirPlay integration

 12.1.2. Setting up your application

 12.2. Controlling and enabling AirPlay output

 12.2.1. Enabling AirPlay support using built-in media players

 12.2.2. Displaying an AirPlay controller to a view

 12.2.3. Streaming audio to an AirPlay destination in your application

 12.3. Using external screens with AirPlay

 12.3.1. Creating a custom view controller for external screens

 12.3.2. Displaying content on an external screen

 12.4. Summary

 Chapter 13. Integrating push notifications

 13.1. Apple’s Push Notification service

 13.2. Configuring your app to send and receive push notifications

 13.3. Sending push notifications

 13.4. Registering and scheduling local notifications

 13.5. Summary

 Chapter 14. Applying motion effects and dynamics

 14.1. Creating your application

 14.2. Using motion effects

 14.2.1. Adding the parallax effect

 14.3. Using UIKit Dynamics

 14.3.1. Introduction to UIKit Dynamics

 14.3.2. Applying the gravity behavior

 14.3.3. Applying a collision behavior

 14.3.4. Adding dynamic behavior

 14.3.5. Creating a custom UIDynamicBehavior subclass

 14.4. Summary

 Appendix

 A.1. Introduction to Objective-C

 A.1.1. Class syntax

 A.1.2. Message passing

 A.1.3. Properties

 A.2. Using blocks

 A.2.1. Block literals

 A.2.2. Block pointers

 A.2.3. Block invocation

 A.2.4. Common usage

 A.3. Optimizing applications with Grand Central Dispatch

 Grand Central Dispatch

 Dispatch queues

 Queue priorities

 A.4. Understanding automatic reference counting

 Properties and attributes

 Blocks

 A.5. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 We wrote this book as a guide that you can count on and refer to as you develop your own apps for iOS using the iOS 7 SDK.
 We tried to cover topics in a simple and immersive way—a way that allows you to learn by getting your hands dirty. It’s always
 easier to learn something new by doing, and that’s exactly what you’ll find in this book, and that’s what defines books in the In Action series. The book will allow you to learn at your own pace by building real-world applications for each of the topics covered
 in each of the chapters.

 We assume that you’re already motivated to write your own iOS apps and want to get started right away, so we won’t spend much
 time convincing you. If you’ve never created an app before, rest assured that you will have created your very first one after
 the first chapter. This book will act as your trusted guide whether you want to dive into iOS development, or only want to
 learn how to use the new features available in iOS.

 You’ll learn what makes up an iOS application and thus gain a deep understanding of its different components. These many components
 have to come together to make an app truly great. As you go along, the topics you’ll learn will give you the knowledge you
 need to build more impressive apps on your own. And then we will have succeeded in what we set out to do!

Acknowledgments

 Many people helped bring this book to fruition—mentors, colleagues, reviewers, editors, friends, and family. We thank you
 all.

 The reviewers who read the manuscript in various stages of its development and provided invaluable feedback: Albert Choy,
 Andreas Walsh, Brent Stains, Chris Catalfo, Daniel Zajork, David Cabrero, Ecil Teodor, Gavin Whyte, John D. Lewis, Jonathan
 Twaddell, Mayur Patil, Moses Yeung, Richard Lebel, Stephen Wakely, Steve Tibbett, Yousef Ourabi, and Zorodzayi Mukuya.

 The readers of Manning’s Early Access Program (MEAP) for their comments and their corrections to our chapters as they were
 being written. You helped make this a better book.

 Our technical proofreader, Joe Smith, who reviewed the manuscript one last time shortly before it went into production.

 Finally, the team at Manning who worked with us and supported us, and allowed one of us (Brendan) to do this for a second
 time: Marjan Bace, Scott Meyers, Jennifer Stout, Kevin Sullivan, Linda Recktenwald, Alyson Brener, and the many others who
 helped along the way.

Brendan Lim

 I’d like to dedicate this book to my extremely loving and supportive wife, Edelweiss. Knowing what the experience would be
 like from the first book I wrote, she still had the patience to encourage me to finish my second. To my father, Chhorn, who
 has always pushed me to work hard and has been the best role model anybody could ask for: I can only hope to have a few of
 the many accomplishments you have achieved. To my mother, Brenda, who is the nicest and most caring and loving person I’ll
 ever know: I strive to be as loving and caring as you are, and to carry myself with the same smile that you always have on
 your face. Without the two of you, I wouldn’t be in this world, and I owe everything to you both. To my two brothers, Chhorn
 and Chhun, who have always been so supportive of me. To my niece, Madelyn and my nephew, Bryent and to the other members of
 my family: Edwin, Leticia, Mark, Beth, and Lisa. To all of my friends who have contributed directly and indirectly to the
 book.

Martin Conte Mac Donell

 The following (and not limited to this book) is dedicated to the memory of my little mentor, the one who taught me how to
 fight the unbearable and taught me The Meaning. To you and your life: you’re still teaching me how to be a better man. Without
 a word. As it should be. I’d also like to thank Victoria, who opened the gate to the garden and whom I admire and love profoundly.
 To my dear father, Juan José, my lovely mother, Maria Teresa, my wonderful sister, Lucia, and to my dearest friend, Ezequiel.
 These four incredible human beings have shaped me to be who I am today: thank you very much.

About this Book

 If you’re interested in developing apps for iOS, then this book is for you.

 There are a few prerequisites to be able to use the book effectively. First, you need to be interested in developing apps
 for iOS. You should have a Mac or at least a computer that’s running OS X. Also, although object-oriented methodologies and
 Objective-C are covered in the appendix, it’s helpful to have an understanding of both.

 With the prerequisites out of the way, this book is beneficial for developers new to iOS or those who are experienced iOS
 developers who want to learn more about creating apps for iOS. The book is structured so that you can skip a chapter if you
 already have a good understanding of the topic. Most of the chapters and the apps we create in them are atomic to allow you
 to read just the ones you need if you’re already experienced.

Roadmap

 This book has 14 chapters and is divided into 3 parts.

 Chapter 1 gets your development environment up and running, teaches you about iOS fundamentals, and lets you build your first application.

 Chapter 2 gives you an in-depth look at views, controls, and the view coordinate system. You also take a look at view controllers and
 how to support multiple orientations. This is done while enhancing the application that you built in the first chapter.

 Chapter 3 teaches you how to use storyboarding to organize the view controllers in your application. We’ll use different scenes and
 show you how to transition and pass data between them by creating a task management app.

 Chapter 4 introduces you to table views, table view controllers, and prototype cells so that you can organize and present data as lists.
 You’ll use a table view of albums in the Photos application.

 Chapter 5 looks at collection views and custom collection view cells. You’ll also use custom collection view flow layouts to organize
 photos in an application you create to display your photos.

 Chapter 6 goes into retrieving remote data using iOS and custom third-party libraries. You’ll learn how to use web views to display
 web pages within an application.

 Chapter 7 takes an in-depth look at the Assets Library framework, which allows you to access all of the media on your device. You’ll
 learn how to retrieve assets, display them, and capture photos and videos with the image picker. By the end of the chapter
 you’ll have an application that can display the metadata for a photo.

 Chapter 8 introduces you to the Accounts and Social frameworks by creating an application for access to Twitter and Facebook feeds.

 Chapter 9 explores advanced view customization by going beyond Interface Builder. You’ll learn how to create custom views and animations
 by creating your own animated clock application.

 Chapter 10 gives you an introduction to Core Location and MapKit. Using these two frameworks, you’ll learn how to retrieve your current
 location and heading and how to geocode location data. By the end of the chapter you’ll build an app that shows your current
 speed and location.

 Chapter 11 looks at persistence and object management by utilizing Core Data. You’ll find out the differences between Core Data and
 traditional databases and use this knowledge to build a Core Data–backed task management application.

 Chapter 12 teaches you how to use AirPlay for streaming media and to display content on external screens. You’ll learn how to create
 your own music application that streams and displays song information through an Apple TV.

 Chapter 13 explores how to notify users of your app by sending them push notifications. This chapter goes in depth on how to configure
 your app to send and receive remote push notifications and how to schedule local notifications.

 Chapter 14 explores adding the parallax effect and realistic animations such as gravity, bouncing, elasticity, and friction to views
 in your applications. You’ll see how easy it is to add these effects using iOS 7’s APIs for motion and UIKit Dynamics.

Code conventions and downloads

 There are many code examples throughout this book. These examples always appear in a fixed-width code font like this. If we want you to pay special attention to a part of an example, it appears in a bolded code font. Any class name or method within the normal text of the book appears in code font as well.

 Some of the lines of code are long and break due to the limitations of the printed page. Because of this, line-continuation
 markers ([image:]) may be included in code listings when necessary. Code annotations accompany some of the code listings, highlighting important
 concepts.

 Not all code examples in this book are complete. Often we show only a method or two from a class to focus on a particular
 topic. Complete source code for the applications found throughout the book can be downloaded from the publisher’s website
 at www.manning.com/iOS7inAction.

 An Intel-based Macintosh running OS X 10.7 or higher is required to develop iOS 7 applications. You also need to download
 the iOS SDK, but this is freely downloadable as soon as you sign up with Apple.

Author Online

 Purchase of iOS 7 in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/iOS7inAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of iOS 7 in Action is captioned “Morning Habit of a Russian Lady in 1764.” The illustration is taken from Thomas Jefferys’s A Collection of the Dresses of Different Nations, Ancient and Modern (4 volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer
 who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local
 dress customs of the lands he surveyed and mapped; they are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the eighteenth century and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jeffreys’s volumes speaks vividly of the uniqueness and individuality of the world’s nations
 centuries ago. Dress codes have changed, and the diversity by region and country, so rich at one time, has faded away. It
 is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have
 traded a cultural and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical
 life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of national costumes two centuries ago, brought back to life
 by Jeffreys’s pictures.

Part 1. Basics and necessities

 When the water’s cold, it’s better to jump in without hesitation. You’ll be doing just that as you learn the important principles
 necessary for iOS development. These are many of the core principles and tools you’ll be utilizing when you start creating
 more advanced applications.

 In chapter 1 you’ll be introduced to iOS, the development environment, and will even create your own Hello World application called Hello
 Time.

 Chapter 2 takes an in-depth look at the user interface layer of an iOS app. You’ll learn about views, controls, and view controllers.
 Chapter 3 expands on views and view controllers by going into storyboarding and scenes. By using storyboards you’ll be able to organize
 and transition among multiple view controllers in your application.

 In chapter 4 you’ll tackle the common problem of organizing data into a list. You’ll do this by using table views. We’ll then segue into
 chapter 5, where you’ll learn how to organize data using collection views.

Chapter 1. Introduction to iOS development

 This chapter covers

 	Introduction to iOS development

 	Designing applications for the mobile paradigm

 	Building and running your first iOS application

 	Objective-C and MVC primer

 	Overview of Apple’s development tools

 Developing iOS apps is something that many people wish they knew how to do. How many times have you heard people say, “If
 only there was an app for...”? By the end of this book you’ll be able to create those apps and possibly create one that could
 be downloaded by millions of people around the world. Even by the end of this chapter, you’ll be able to call yourself an
 iOS developer after we create our first iOS application together.

 Many people who want to develop for iOS get scared away by the perceived complexity of the platform. You’ll soon learn that
 once you focus on just the essentials, you won’t feel overwhelmed as most people do with other iOS books. It’s also crucial
 to be able to apply what you’ve learned by using that knowledge to create something tangible. The best way to learn is by
 doing, and that’s just what you’re going to do.

 Instead of just reading about these topics, you’ll be building useable applications so that you can see first-hand how they
 work and how you can use them in real-world applications. Throughout this book we’ll be covering core iOS topics and many
 of the great new things in iOS like UIKit Dynamics, AirPlay, Social framework, table and collection views, auto layout, animation,
 Core Data, and much more. By creating focused applications based on each topic, you’ll have a better understanding of what
 you’ve just learned. Within this chapter is a quick overview of iOS and then you’ll quickly jump into making your first iOS
 app, as shown in figure 1.1.

 Figure 1.1. Hello Time, a fully functioning clock application that tells the time, which we’ll build together by the end of this chapter

 [image:]

 You’ll be creating an app called Hello Time, which is a fully functioning clock application that tells the current time. While
 creating Hello Time you’ll become familiar with the ins and outs of iOS development. You’ll then review exactly what you did
 while creating the app and learn more iOS development fundamentals.

1.1. Developing for iOS

 iOS 7 is the seventh major release of Apple’s iOS Software Development Kit. The SDK provides many frameworks and tools used
 to create applications for iPhone, iPad, and iPod touch devices that you can release in Apple’s App Store. As you go through
 this book, you’ll learn why developing for iOS is different than developing for the web or desktop, and you’ll go through
 the steps of setting up your development environment to create your own iOS apps.

 1.1.1. Different kind of design interaction

 The iPhone’s release brought a new type of device into the mainstream that relied on fingertips for input with capacitive
 screens. It also allowed us to use natural multitouch gestures with our fingers that mimicked those once only found in the
 movies. It’s this type of interactive design that makes developing for iOS quite different from developing for desktop and
 web applications. It’s also this amazing level of interaction and ease of use that allows toddlers and young children to interact
 with iOS apps.

 On iOS devices, when browsing the web through Safari, you flick the screen upward with the tips of your fingers to scroll down. To go to the next photo in the Photos app, you flick to the left. When you use the Maps app, you pinch the screen to zoom outward. To zoom in, you could pinch outward or double-tap with one finger. If you want to “click” a button, you tap it. Other gestures allow you to interact with apps to reveal options for a particular item. For example, the Mail app displays a context menu after swiping to the left on an email.

 App developers also have to take into account that everything needs to be displayed on a small 3.5”–4” device. You’re limited
 with screen real estate, which requires you to present information to your users in a reasonable manner. You also need to
 take into account expected usage patterns and interactions. Almost everybody who uses apps on their phone uses them for short
 periods of time. You not only have to limit what’s presented on a screen of this size but also limit the number of interactions
 required to accomplish a particular task. It’s difficult to make something simple, but this type of design interaction can
 make your apps more successful than those of your competitors.

 1.1.2. Getting ready to develop for iOS

 To develop for iOS you’ll need to have an Intel-based Mac running at least Mac OS X v10.8.4 (Mountain Lion). You’ll have to
 install Xcode 5, Apple’s integrated development environment (IDE), to create iOS applications. Xcode is available for free,
 and you can find it by searching for it in the Apple App Store or by going to http://developer.apple.com/xcode/. Once you’ve downloaded and installed it, you’ll be ready to start creating your first application.

1.2. Creating your first iOS application

 Ready to create your first iOS app? Instead of a basic Hello World application, you’ll create something with more functionality
 that can serve as the base of a real-world application. You could even submit it to the App Store if you decided to spend
 a little more time on it. You’re going to create an application called Hello Time, which will be a fully functional clock
 that will show you the current time.

 1.2.1. Creating the Hello Time application in Xcode

 Before continuing, make sure that Xcode has finished installing. Once it’s installed, open it by choosing Applications > Xcode.
 Then you can start creating a new project by going to the application menu and choosing File > New > Project. You’ll then
 be presented with many different application templates to choose from. Choose Single View Application and click Next, as shown
 in figure 1.2.

 Figure 1.2. Choosing Single View Application as the template for your Hello Time project

 [image:]

 You’ll then be prompted to fill out the name of the project, organization, company identifier, and class prefix. The name
 of the project should be Hello Time. The organization name and company identifier as well as the class prefix are for you
 to decide. We’ll be using the prefix IA throughout the rest of the book to stand for “In Action.” This will help you identify
 your own files that are related to your project, which is important when you import other libraries into your projects. This
 is shown in figure 1.3.

 Figure 1.3. Options you need to specify when creating your new project

 [image:]

 After clicking Next, you’ll be prompted to save the project on your computer. Consider creating a new folder on your computer
 that holds all of your iOS applications. This will keep your projects organized and make them easy to find in the future.
 Once you’ve created your project, you’ll be taken to the main project window within Xcode. You can see all of the different
 files that were automatically created for you on the left side of the window in figure 1.4.

 Figure 1.4. Our newly created Hello Time project within Xcode

 [image:]

 Let’s get started piecing together the application, beginning with the interface.

 1.2.2. Creating the application interface

 On the left side of the window, click Main.storyboard to bring up Xcode’s interface editor. Your interface will be fairly
 simple and straightforward because you’re showing only one piece of information on the screen, which is the current time.
 You’re going to add a label to the view in the scene that was created for you in your app’s storyboard. This label will be
 used to display the current time.

 On the bottom right of the window you’ll see the Object Library. To make sure you’re able to see this, you can also manually
 show it by selecting View > Utilities > Show Object Library within the application menu (Control-Option-Command-3). Once you
 have the Object Library showing, find the Label object. You can do this by scrolling down through the list or by searching for it in the search field underneath, as shown
 in figure 1.5.

 Figure 1.5. Find the Label object in the bottom-right corner of the interface editor.

 [image:]

 Note that you may be in the icon view instead of the list view. You can change this by clicking the icon to the left of the
 search field. Drag this label into the blank view with the white background. Try to arrange it so that it is aligned in the center of the view, as shown in figure 1.6.

 Figure 1.6. Drag the label into the view and align it so that it is centered horizontally and vertically.

 [image:]

 You’re going to change the appearance of this text to make it look much better than the default label styling. With the label
 still selected within your view, go to the application menu and choose View > Utilities > Show Attributes Inspector (Option-Command-4).
 This will load a new window on the right that you can use to edit the object that’s currently selected. You can see this in
 figure 1.7.

 Figure 1.7. The attributes inspector after dragging the label into our view

 [image:]

 Change the font to System Bold with a size of 30.0. Also change the alignment so that the text is centered. After doing this
 your label might not appear correctly because the width of the label is too small to hold the default text, as shown in figure 1.8.

 Figure 1.8. Changing the font and alignment of your label within the attributes inspector

 [image:]

 Change the width of the label by clicking and dragging the two center anchors on the left and right sides of the label. Drag
 them so that the label’s width is the exact same width as the view it’s contained within. The height also needs some adjustment.
 Drag the middle anchor on the top of the label to make it taller. It should look similar to what’s shown in figure 1.9.

 Figure 1.9. Adjust the width and height of the label to ensure that the text fits after changing the font size.

 [image:]

 You’re almost finished with your view. The most important aspect is the ability to have your code communicate with different
 parts of your view.

 1.2.3. Connecting your user interface to your code

 You’re going to create a connection between your interface and your code. This connection will enable your code to communicate
 with the label you’ve just created. We’ll spend more time on this in the next chapter, but it’s important to note that this
 is something that you’ll be using with every application we create together.

 Open the assistant editor in Xcode by going to the top right of the window and choosing the middle tab within Editors. You
 can also open it by choosing View > Assistant Editors > Show Assistant Editor (Option-Command-4). The assistant editor automatically
 opens IAViewController.m for you because you were working on its view. Change this to show IAViewController.h, as shown in
 figure 1.10.

 Figure 1.10. Opening the assistant editor while working on the view will bring up the associated view controller.

 [image:]

 You’ll now create the connection between your label and your code, which is referred to as an outlet. You’ll be learning more about outlets and their importance in the next chapter. Create an outlet for your label by holding
 down Control on your keyboard, clicking your label, and dragging a connection to IAViewController in the assistant editor, as shown in figure 1.11.

 Figure 1.11. Clicking and dragging a connection from our label to our view controller to create an outlet

 [image:]

 Once you let go, you’ll see a popup that will ask you what you want to name your label. Call it timeLabel and click Connect. This will create a property for you within IAViewController.h that you can use within your code to make
 changes to your label—in this case, to display the current time. The code that will be inserted into your code should look like the following:

 @property (weak, nonatomic) IBOutlet UILabel *timeLabel;

 Now that your view is connected to your view controller, you can start working on implementing the clock functionality.

 1.2.4. Implementing the clock functionality

 You’ll now implement the functionality needed for a basic working clock. Find IAViewController.m to open the implementation
 of your view controller. Add the following method within Xcode’s code editor:

 - (void)checkTime:(id)sender
{
 NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
 [formatter setDateFormat:@"h:mm:ss a"];
 [self.timeLabel setText:[formatter stringFromDate:[NSDate date]]];

 [self performSelector:@selector(checkTime:) withObject:self
 [image:] afterDelay:1.0];
}

 This code can be seen added to IAViewController in figure 1.12.

 Figure 1.12. The checkTime: function added to IAViewController's implementation

 [image:]

 This method will get the current date and format it so that you’re displaying only the time. It will then change the text
 of timeLabel by calling setText:. The last line tells your controller to call this method again every second. This will cause the time to be updated on your
 label every second, just like a regular clock.

 The last thing you need to do is have this method called when your view loads. Luckily there’s a method called viewDidLoad that was already prepopulated for you when you created your project. This method is triggered after your view has finished
 loading and is the perfect place for you to trigger the checkTime: method. Add the following to the bottom of the viewDidLoad method:

 [self checkTime:self];

 Adding that line to call the checkTime: method will kick-start your clock, which will have it updating the time every second. After doing this, you won’t have to
 do anything else. Why’s that? Well, because you’ve already finished creating your first iOS application! Your interface has
 been set up and connected to your code. Your code will update the label in your view with the current time every second. You’ve
 created a fully functional clock application that tells the time.

 1.2.5. Building and running your application

 You can finally build and run your application to see just what we’ve built together. This is extremely simple to do. If you
 look at the top left of the Xcode window, you should see a button with a “play” icon on it and with the label Run underneath.
 Once you click it, Xcode will automatically build your application and then launch it within the iOS Simulator. If there is
 a problem building your application, the compiler will inform you of any errors it encountered.

 Click the Run button to build and run your application, as shown in figure 1.13.

 Figure 1.13. Click the Run button to build and launch your application.

 [image:]

 Once your application launches, you should see it running in the iOS Simulator. It will show the current time and update itself
 every second, as shown in figure 1.14.

 Figure 1.14. Our Hello Time application running within the iOS Simulator

 [image:]

 It’s amazing that you’ve already created your first iOS application. You’ve created the interface, connected an outlet between
 your label and your code, and added functionality to set the current time. How about we dig deeper into iOS development by
 exploring its fundamentals?

1.3. iOS development fundamentals

 When creating your application you didn’t need to write much Objective-C. Knowing Objective-C is just one piece of iOS development.
 It’s the same as knowing all the words of a particular language. If you know the meaning of all of the words in the English
 dictionary but don’t know how to form sentences, it’s like knowing Objective-C but not knowing how to use Apple’s APIs. Cocoa
 Touch is Apple’s API for creating iOS apps.

 We’ll give you a quick introduction to object-oriented programming, Objective-C syntax, MVC, and frameworks. There are whole
 books written on these topics, so we’ll just touch on a few important things that you should be familiar with before moving
 forward. If you’re interested in learning about these items in more detail, please take a look at the appendix.

 1.3.1. Object-oriented programming

 In a nutshell, object-oriented programming (OOP) is a concept in programming in which objects and their structure are generally
 more important than the logic needed to manipulate the objects. Before OOP was introduced, programs were seen as recipes or
 procedures with a set of instructions that you could follow from start to finish. As soon as programs started to become more
 complex, a new method was needed to reduce this complexity. Object-oriented programming helps solve this complexity by allowing
 you to break down and flesh out your logic in a more natural way.

 When things are broken out into objects, they are easier to understand; we relate to them because they are similar to the
 world around us. Objects can be named anything to represent something that would hold data within your program. An object
 could be a person defined by different properties such as name, age, sex, gender, and so on. It could also be a home with
 properties like address, city, state, price, bedrooms, bathrooms, and the like. Your Hello Time application could be changed
 to have a clock object that has the time. Instead, your Hello Time app has a Label object in its view that has a text property. You modified this text property on this object to display the current time.

 Every object in Objective-C is a child, or subclass, of NSObject. Objects are defined as classes, and they can have children and parents. Much like in the real world, subclasses, or children,
 inherit the properties of their parents. For instance, you could have a class called Automobile with properties make and model. You could then create a subclass of Automobile called Truck that would represent a different type of automobile. You wouldn’t need to re-create or redefine the make and model properties because it would inherit them from its parent. You could, however, add properties that are specific to a truck
 like the bed size, whether or not it has four-wheel drive, and so on.

 The concepts found in object-oriented programming are easily transferred from one language to the next. Even though we haven’t
 gone through many specifics and intricacies of OOP, you should have an understanding of what to expect and enough background
 to be able to move forward.

 1.3.2. Objective-C syntax and message passing

 The common response for people new to Objective-C is that the syntax makes the language look daunting and confusing. They
 are often thrown off by the use of brackets everywhere. Once you understand why and just how the syntax works, it will all make sense and become easy to read.

 Messages are passed to a particular object. Generally, whatever is declared on the left side within a set of brackets is the
 object, and whatever is on the right side is the message you’re passing to it.

 [object message];

 The message you’re passing to it has to be a predefined method or function that has been defined on that particular object.
 If one hasn’t been defined, you’ll get an error telling you that the object doesn’t know how to respond.

 You can even pass in an argument or a parameter with a message:

 [object message:parameter];

 Many people get confused when they see multiple parameters being passed in a method. The previous example has one parameter.
 Imagine if you had a method definition that looked like the following:

 -(void) message:(id)parameterOne secondParam:(id)parameterTwo;

 You would call this method by passing in the parameters as such:

 [object message:paramOne secondParam:paramTwo];

 As you can see, the whole name of the method, or the message you’re calling, is message:secondParam:. The parameters are declared after each colon defined in the method name.

 Let’s now take a look at creating a new instance of a real object in Objective-C. Here you’re creating a new instance of an
 NSString object.

 [[NSString alloc] init];

 This is the standard way of creating a new object instance. Don’t be confused by the multiple brackets. You can break this
 down to see how these messages are being passed. You’re first calling [NSString alloc] in the first set of brackets. Then you’re calling init. You could break this into two lines:

 NSString *string = [NSString alloc];
[string init];

 This is perfectly fine except that it’s much easier to do [[NSString alloc] init] instead of breaking it into two separate lines. The takeaway here is that whatever is returned within the inner set of brackets
 is then passed a message by the outer brackets.

 From the previous example you can also see that you’re returning a reference to a new NSString object and storing it as an instance variable called string. You did the same thing within the checkTime: method that you created in your Hello Time app when you needed to create something to format the time for you.

 NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
[formatter setDateFormat:@"h:mm:ss a"];

 You created an instance of NSDateFormatter and stored a reference to it in the variable named formatter. You then passed it a message to set the date format property by passing in a string value as the parameter.

 1.3.3. The Model-View-Controller pattern

 The Model-View-Controller (MVC) pattern is a design pattern that assigns objects in an application to one of three different
 roles. These roles are a model, a view, and a controller, as shown in figure 1.15. You may already be familiar with this pattern, because many other frameworks often implement MVC.

 Figure 1.15. Communication between models, views, and controllers within MVC

 [image:]

 Using MVC, models encapsulate data and logic specific to an application. You didn’t have any models in your Hello Time application;
 it wasn’t necessary because of its lack of complexity. A view object is something whose main purpose is to visually display
 information to the user. View objects learn through controllers about the model, which contains the data that they can display.
 You created your view by modifying the storyboard within the interface editor. Controllers act as the intermediary between
 view and model objects. You connected your view to your controller, and your controller made the changes to your label to
 display the current time every second.

 1.3.4. Frameworks introduction

 Frameworks are compiled libraries that you can use to add functionality to your applications. By default, when you create
 a new iOS project in Xcode, it automatically includes the frameworks UIKit, Foundation, and CoreGraphics. UIKit provides classes
 to create and manage user interfaces. Foundation provides the base layer of Objective-C classes. Core Graphics provides functionality
 based on the Quartz drawing engine. It aids with image manipulation, color management, gradients, shadings, and the like.
 These three frameworks give you the basic functionality to create iOS applications.

 If you wanted to access all of the photos and videos on your iOS device, you could use the Assets Library framework, which
 contains classes that allow you to do just that. If you were to build a web browser, you’d use the WebKit framework. You’ll
 be using various frameworks to add in functionality to the apps that you build in the book. You’ve now had a general overview
 and introduction to OOP, Objective-C syntax, message passing, MVC, and frameworks. Because you’ll be spending most of your
 time in Xcode, let’s go over it in more detail so that you become more comfortable with your development environment.

1.4. Overview of Apple’s development tools

 You’ll be spending almost all of your development time within Xcode and the iOS Simulator. If you’re not already familiar
 with these tools, this quick introduction should help you get started. Apple has a few other tools that you can use for development,
 but these are the two that you’ll be using 99% of the time. Let’s get started by getting familiar with Xcode and creating
 our first app together.

OEBPS/01fig03_alt.jpg

OEBPS/01fig04_alt.jpg

OEBPS/01fig01.jpg

OEBPS/01fig02_alt.jpg

OEBPS/common.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg

OEBPS/common1.jpg

OEBPS/01fig05_alt.jpg

OEBPS/01fig07_alt.jpg

OEBPS/01fig06_alt.jpg

OEBPS/cover.jpg

OEBPS/01fig09.jpg

OEBPS/01fig08_alt.jpg

OEBPS/01fig11_alt.jpg

OEBPS/01fig10_alt.jpg

OEBPS/01fig13_alt.jpg

OEBPS/01fig12_alt.jpg

OEBPS/01fig15.jpg

OEBPS/01fig14.jpg

