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Preface
      

      
      
      
      Programming with Types is the culmination of multiple years of learning about type systems and software correctness, distilled into a practical
         book with real-world applications.
      

      
      I’ve always liked learning how to write better code, but if I were to point out exactly when I started down this path, I’d
         say it was 2015. I was switching teams at that point and wanted to get up to speed on modern C++. I started watching C++ conference
         videos, picked up Alexander Stepanov’s books on generic programming, and gained a completely different perspective on how
         to write code.
      

      
      In parallel, I was learning Haskell in my spare time and working my way through the advanced features of its type system.
         Programming in a functional language makes it obvious how some of the features taken for granted in such languages get adopted
         by more mainstream languages as time goes by.
      

      
      I read several books on the topic, from Stepanov’s Elements of Programming and From Mathematics to Generic Programming to Bartosz Milewski’s Category Theory for Programmers and Benjamin Pierce’s Types and Programming Languages. As you might be able to tell from the titles, these books are more on the theoretical/mathematical side. While learning
         more about type systems, I could tell that the code I was writing at work became better. There is a direct link between the
         more theoretical realm of type system design and the day-to-day production software. This isn’t a revolutionary discovery:
         fancy type system features exist to address real-world problems.
      

      
      I realized that not every practicing programmer has the time and patience to read dense books with mathematical proofs. On
         the other hand, my time wasn’t wasted reading such books: they made me a better software engineer. I figured there is room
         for a book that covers type systems and the benefits they provide more informally, focusing on practical applications anyone
         can use in their day job.
      

      
      Programming with Types aims to provide a walk-through of type system features starting from basic types, covering function types and subtyping,
         OOP, generic programming, and higher kinded types such as functors and monads. Instead of focusing on the theory behind these
         features, I describe each one of them in terms of practical applications. The book shows how and when to use each of these
         features to improve your code.
      

      
      The code samples were originally supposed to be in C++. The C++ type system is powerful and more feature-rich than languages
         such as Java and C#. On the other hand, C++ is a complex language, and I didn’t want to limit the audience of the book, so
         I decided to use TypeScript instead. TypeScript has a powerful type system too, but its syntax is more accessible, so it should
         be easy to work through most examples even if you’re coming from another language. Appendix B provides a quick cheat sheet
         for the subset of TypeScript used in this book.
      

      
      I hope you enjoy reading this book and learn some new techniques that you can apply to your projects right away.
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About This Book
      

      
      
      
      Programming with Types aims to show how you can use type systems to write better, safer code. Although most books discussing type systems focus
         on more formal aspects, this book takes a pragmatic approach. It contains numerous examples, applications, and scenarios that
         you will encounter in your day job.
      

      
      
      
Who should read this book
      

      
      This book is for practicing programmers who want to learn more about how type systems work and how to use them to improve
         code quality. You should have some experience using an object-oriented language such as Java, C#, C++, or JavaScript/ TypeScript.
         You should also have some minimum software design experience. Although the book will provide various techniques for writing
         robust, composable, and better-encapsulated code, it assumes that you know why these properties are desirable.
      

      
      
      
      
How this book is organized: a road map
      

      
      This book has 11 chapters covering various aspects of programming with types:

      
      

      
         
         	
Chapter 1 introduces types and type systems, discussing why they exist and how they are useful. We go over types of type systems and
            talk about typing strength, static typing, and dynamic typing.
         

         
         	
Chapter 2 covers basic types common across most languages and gotchas to be aware of when using them. Common basic types are the empty
            and unit types, Booleans, numbers, strings, arrays, and references.
         

         
         	
Chapter 3 is about composition: various ways in which types can be combined to define new types. The chapter also shows different ways
            to implement the visitor design pattern and defines algebraic data types.
         

         
         	
Chapter 4 talks about type safety—how we can use types to reduce ambiguity and prevent errors. The chapter also shows how we can add
            or remove typing information from our code by using type casting.
         

         
         	
Chapter 5 introduces function types and what we can do when we have the ability to create function variables. The chapter shows alternative
            ways to implement the strategy pattern and state machines, and introduces the fundamental map(), filter(), and reduce() algorithms.
         

         
         	
Chapter 6 builds on the preceding chapter and shows a few advanced applications of function types, from a simplified decorator pattern
            to resumable functions and asynchronous functions.
         

         
         	
Chapter 7 introduces subtyping and discusses type compatibility. We look at applications of top and bottom types and then see how sum
            types, collections, and function types relate to one another from a subtyping perspective.
         

         
         	
Chapter 8 talks about the key elements of object-oriented programming and when to use each one. The chapter covers interfaces, inheritance,
            composition, and mix-ins.
         

         
         	
Chapter 9 introduces generic programming and its first application: generic data structures. Generic data structures separate the layout
            of the data from the data itself; iterators enable traversal of these data structures.
         

         
         	
Chapter 10 continues the topic of generic programming and discusses generic algorithms and iterator categories. Generic algorithms are
            algorithms we can reuse across different types of data. Iterators act as an interface between data structures and algorithms,
            and depending on their capabilities, they enable different algorithms.
         

         
         	
Chapter 11, the final chapter, introduces higher kinded types and explains what functors and monads are and how they can be used. The
            chapter ends with some pointers for further study.
         

         
         	The chapters in the book build on concepts introduced in earlier chapters, so you should read them in order. That being said,
            there are four major topics in the book that are fairly independent. The first four chapters cover fundamentals; chapters 5 and 6 cover function types; chapters 7 and 8 cover subtyping; and chapters 9, 10, and 11 are about generic programming.
         

         
      

      
      
      
      
About the code
      

      
      This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source
         code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes, code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line
         of code.
      

      
      In many cases, the original source code has been reformatted; I’ve added line breaks and reworked indentation to accommodate
         the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
         ([image: ]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
         Code annotations accompany many of the listings, highlighting important concepts.
      

      
      All the code samples in this book are available on GitHub at https://github.com/vladris/programming-with-types/. The code was built with version 3.3 of TypeScript, targeting the ES6 standard, with strict settings.
      

      
      
      
      
About the author
      

      
      Vlad Riscutia is a software engineer at Microsoft with more than a decade of experience. During this time, he has led several
         major software projects and mentored many junior engineers.
      

      
      
      
      
Book forum
      

      
      Purchase of Programming with Types includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/programming-with-types. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.
      

      
      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
         whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
         lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
         as long as the book is in print.
      

      
      
      

About the Cover Illustration
      

      
      
      
      
      
Saint-Sauver
      

      
      The figure on the cover of Programming with Types is captioned “Fille Lipporette en habit de Noce,” or “Liporette girl in wedding dress.” The illustration is taken from a
         collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
         collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
         each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
         they lived and what their trade or station in life was just by their dress.
      

      
      The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to
         tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
         cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.
      

      
      At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
         computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
         by Grasset de Saint-Sauveur’s pictures.
      

      
      
      
      
      


Chapter 1. Introduction to typing
      

      
      This chapter covers

      
      

      
         
         	
Why type systems exist
         

         
         	Benefits of strongly typed code

         
         	Types of type systems

         
         	Common features of type systems

         
      

      
      The Mars Climate Orbiter disintegrated in the planet’s atmosphere because a component developed by Lockheed produced momentum
         measurements in pound-force seconds (U.S. units), whereas another component developed by NASA expected momentum to be measured
         in Newton seconds (metric units). Using different types for the two measures would have prevented the catastrophe.
      

      
      As we will see throughout this book, type checkers provide powerful ways to eliminate whole classes of errors, provided they
         are given enough information. As software complexity increases, so does the need to provide better correctness guarantees.
         Monitoring and testing can show that the software is behaving according to spec at a given point in time, given specific input.
         Types give us more general proofs that the code will behave according to spec regardless of input.
      

      
      Programming language research is coming up with ever-more-powerful type systems. (See, for example, languages like Elm and
         Idris.) Haskell is gaining in popularity. At the same time, there are ongoing efforts to bring compile-time type checking
         to dynamically typed languages: Python added support for type hints, and TypeScript is a language created for the sole purpose
         of providing compile-time type checking to JavaScript.
      

      
      There clearly is value in typing code, and leveraging the features of the type systems that your programming languages provide
         will help you write better, safer code.
      

      
      
      
1.1. Whom this book is for
      

      
      This is a book for practicing programmers. You should be comfortable writing code in a mainstream programming language like
         Java, C#, C++, or JavaScript/TypeScript. The code examples in this book are in TypeScript, but most of the content is language-agnostic.
         In fact, the examples don’t always use idiomatic TypeScript. Where possible, code examples are written to be accessible to
         programmers coming from other languages. See appendix A for how to build the code samples in this book and appendix B for
         a short TypeScript cheat sheet.
      

      
      If you are developing object-oriented code at your day job, you might have heard of algebraic data types (ADTs), lambdas,
         generics, functors, or monads, and would like to better understand what these are and how they are relevant to your work.
      

      
      This book will teach you how to rely on the type system of your programming language to design code that is less error-prone,
         better componentized, and easier to understand. We’ll see how errors which could happen at run time and cause an entire system
         to malfunction can be transformed into compilation errors and caught before they can cause any damage.
      

      
      A lot of the literature on type systems is formal. This book focuses on practical applications of type systems; thus, math
         is kept to a minimum. That being said, you should be familiar with basic algebra concepts like functions and sets. We will
         rely on these to explain some of the relevant concepts.
      

      
      
      
      
1.2. Why types exist
      

      
      At the low level of hardware and machine code, the program logic (the code) and the data it operates on are both represented as bits. At this level, there is no difference between the code and the
         data, so errors can easily happen when the system mistakes one for the other. These errors range from program crashes to severe
         security vulnerabilities in which an attacker “tricks” the system into executing their input data as code.
      

      
      An example of this kind of loose interpretation is the JavaScript eval() function, which evaluates a string as code. It works well when the string provided is valid Java-Script code but causes a
         run-time error when it isn’t, as shown in the next listing.
      

      
      
      

      
      
      Listing 1.1. Trying to interpret data as code
      

      console.log(eval("40+2"));           1

console.log(eval("Hello world!"));   2

      
      

      
         
         	
1 Prints “42” to the console


         
         	
2 Raises “SyntaxError: unexpected token: identifier”


         
      

      
      
      1.2.1. 0s and 1s
      

      
      Beyond distinguishing between code and data, we need to know how to interpret a piece of data. The 16-bit sequence 1100001010100011 can represent the unsigned 16-bit integer 49827, the signed 16-bit integer -15709, the UTF-8 encoded character '£', or something completely different, as we can see in figure 1.1. The hardware our programs run on stores everything as sequences of bits, so we need an extra layer to give meaning to this
         data.
      

      
      
      
      Figure 1.1. A sequence of bits can be interpreted in multiple ways.
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      Types give meaning to this data and tell our software how to interpret a given sequence of bits in a given context so that
         it preserves the intended meaning.
      

      
      Types also constrain the set of valid values a variable can take. A signed 16-bit integer can represent any integer value
         from -32768 to 32767 but nothing else. The ability to restrict the range of allowed values helps eliminate whole classes of errors by not allowing
         invalid values to appear at run time, as shown in figure 1.2. Viewing types as sets of possible values is important to understanding many of the concepts covered in this book.
      

      
      
      
      Figure 1.2. The sequence of bits typed as a signed 16-bit integer. The type information (16-bit signed integer) tells the compiler and/or
         run time that the sequence of bits represents an integer value between -32768 and 32767, ensuring the correct interpretation as -15709.
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      As we will see in section 1.3, many other safety properties are enforced by the system when we add properties to our code,
         such as marking a value as const or a member as private.
      

      
      
      
      1.2.2. What are types and type systems?
      

      
      Because this book talks about types and type systems, let’s define these terms before moving forward.

      
      
         
            
         
         
            
               	
            

         
      

      Type

      
      
      
      A type is a classification of data that defines the operations that can be done on that data, the meaning of the data, and the set
         of allowed values. Typing is checked by the compiler and/or run time to ensure the integrity of the data, enforce access restrictions,
         and interpret the data as meant by the developer.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      In some cases, we will simplify our discussion and ignore the operations part, so we’ll look at types simply as sets, which
         represent all the possible values an instance of that type can take.
      

      
      
         
            
         
         
            
               	
            

         
      

      Type System

      
      
      A type system is a set of rules that assigns and enforces types to elements of a programming language. These elements can be variables,
         functions, and other higher-level constructs. Type systems assign types through notation you provide in the code or implicitly
         by deducing the type of a certain element based on context. They allow various conversions between types and disallow others.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      Now that we’ve defined types and type systems, let’s see how the rules of a type system are enforced. Figure 1.3 shows, at a high-level, how source code gets executed.
      

      
      
      
      Figure 1.3. Source code is transformed by a compiler or interpreter into code that can be executed by a run time. The run time is a physical
         computer or a virtual machine, such as Java’s JVM, or a browser’s JavaScript engine.
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      At a very high level, the source code we write gets transformed by a compiler or interpreter into instructions for a machine,
         or run time. This run time can be a physical computer, in which case the instructions are CPU instructions, or it can be a virtual machine,
         with its own instruction set and facilities.
      

      
      
         
            
         
         
            
               	
            

         
      

      Type Checking

      
      
      The process of type checking ensures that the rules of the type system are respected by the program. This type checking is done by the compiler when converting
         the code or by the run time while executing the code. The component of the compiler that handles enforcement of the typing
         rules is called a type checker.
      

      
      
         
            
         
         
            
               	
            

         
      

      
      If type checking fails, meaning that the rules of the type system are not respected by the program, we end up with a failure
         to compile or with a run-time error. We will go over the difference between compile-time type checking versus execution-time
         (or run-time) type checking in more detail in section 1.4.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Type checking and proofs
         
         There is a lot of formal theory behind type systems. The remarkable Curry-Howard correspondence, also known as proofs-as-programs, shows the close connection between logic and type theory. It shows that we can view a type as a logic proposition, and a
            function from one type to another as a logic implication. A value of a type is equivalent to evidence that the proposition
            is true.
         

         
         Take a function that receives as argument a boolean and returns a string.
         

         
         Boolean to string

         
         function booleanToString(b: boolean): string {
    if (b) {
        return "true";
    } else {
        return "false";
    }
}

         
         This function can also be interpreted as “boolean implies string.” Given evidence of the proposition boolean, this function (implication) can produce evidence of the proposition string. Evidence of boolean is a value of that type, true or false. When we have that, this function (implication) will give us evidence of string as either the string "true" or the string "false".
         

         
         The close relationship between logic and type theory shows that a program that respects the type system rules is equivalent
            to a logic proof. In other words, the type system is the language in which we write these proofs. The Curry-Howard correspondence
            is important because it brings logic rigor to the guarantees that a program will behave correctly.
         

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      
      
      
1.3. Benefits of type systems
      

      
      Because ultimately data is all 0s and 1s, properties of the data, such as how to interpret it, whether it is immutable, and
         its visibility, are type-level properties. We declare a variable as a number, and the type checker ensures that we don’t interpret
         its data as a string. We declare a variable as private or read-only, and although the data itself in memory is no different from public mutable data, the type checker can make sure we do not refer to a private variable outside
         its scope or try to change read-only data.
      

      
      The main benefits of typing are correctness, immutability, encapsulation, composability, and readability. All five are fundamental features of good software design and behavior. Systems evolve over time. These features counterbalance
         the entropy that inevitably tries to creep into the system.
      

      
      
      1.3.1. Correctness
      

      
      Correct code means code that behaves according to its specification, producing expected results without creating run-time
         errors or crashes. Types help us add more strictness to the code to ensure that it behaves correctly.
      

      
      As an example, let’s say we want to find the index of the string "Script" within another string. Without providing enough type information, we can allow a value of any type to be passed as an argument to our function. We are going to hit run-time errors if the argument is not a string, as
         the next listing shows.
      

      
      
      
      Listing 1.2. Insufficient type information
      

      function scriptAt(s: any): number {       1
    return s.indexOf("Script");
}

console.log(scriptAt("TypeScript"));      2
console.log(scriptAt(42));                3

      
      

      
         
         	
1 Argument s has type any, which allows a value of any type.


         
         	
2 This line correctly prints “4” to the console.


         
         	
3 Passing a number as an argument causes a run-time TypeError.


         
      

      
      The program is incorrect, as 42 is not a valid argument to the scriptAt function, but the compiler did not reject it because we hadn’t provided enough type information. Let’s refine the code by
         constraining the argument to a value of type string in the next listing.
      

      
      
      
      Listing 1.3. Refined type information
      

      function scriptAt(s: string): number {    1
    return s.indexOf("Script");
}

console.log(scriptAt("TypeScript"));
console.log(scriptAt(42));                2

      
      

      
         
         	
1 Argument s now has type string.


         
         	
2 Code fails to compile at this line due to type mismatch.


         
      

      
      Now the incorrect program is rejected by the compiler with this error message:

      
      Argument of type '42' is not assignable to parameter of type 'string'

      
      Leveraging the type system, we transformed what used to be a run-time issue that could have been hit in production, affecting
         our customers, into a harmless compile-time issue that we must fix before deploying our code. The type checker makes sure
         we never try to pass apples as oranges; thus, our code becomes more robust.
      

      
      Errors occur when a program gets into a bad state, which means that the current combination of all its live variables is invalid for whatever reason. One technique for eliminating
         some of these bad states is reducing the state space by constraining the number of possible values that variables can take,
         like in figure 1.4.
      

      
      
      
      Figure 1.4. Declaring a type correctly, we can disallow invalid values. The first type is too loose and allows for values we don’t want.
         The second, more restrictive type won’t compile if the code tries to assign an unwanted value to a variable.
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      We can define the state space of a running program as the combination of all possible values of all its live variables. That is, the Cartesian product
         of the type of each variable. Remember, a type can be viewed as a set of possible values for a variable. The Cartesian product
         of two sets is the set comprised of all ordered pairs from the two sets.
      

      
      
         
            
         
         
            
               	
            

         
      

      
         
         Security
         
         An important byproduct of disallowing potential bad states is more secure code. Many attacks rely on executing user-provided
            data, buffer overruns, and other such techniques, which can often be mitigated with a strong-enough type system and good type
            definitions.
         

         
         Code correctness goes beyond eliminating innocent bugs in the code to preventing malicious attacks.

         
      

      
         
            
         
         
            
               	
            

         
      

      
      
      
      1.3.2. Immutability
      

      
      Immutability is another property closely related to viewing our running system as moving through its state space. When we
         are in a known-good state, if we can keep parts of that state from changing, we reduce the possibility of errors.
      

      
      Let’s take a simple example in which we attempt to prevent division by 0 by checking the value of our divisor and throwing an error if the divisor is 0, as shown in the following listing. If the value can change after we inspect it, the check is not very valuable.
      

      
      
      
      Listing 1.4. Bad mutation
      

      function safeDivide(): number {
    let x: number = 42;

     if (x == 0) throw new Error("x should not be 0");    1

    x = x - 42;                                           2

    return 42 / x;                                        3
}

      
      

      
         
         	
1 Check if x is valid.


         
         	
2 Bug: x becomes 0 after the check.


         
         	
3 Division by 0 results in Infinity.


         
      

      
      This happens all the time in real programs, in subtle ways: a variable gets changed concurrently by a different thread or
         obscurely by another called function. Just as in this example, as soon as a value changes, we lose any guarantees we were
         hoping to get from the checks we performed. Making x a constant, we get a compilation error when we try to mutate it in the next listing.
      

      
      
      
      Listing 1.5. Immutability
      

      function safeDivide(): number {
    const x: number = 42;                1

    if (x == 0) throw new Error("x should not be 0");

    x = x - 42;                          2

    return 42 / x;
}

      
      

      
         
         	
1 x is declared using the keyword const instead of the keyword let.


         
         	
2 This line no longer compiles as x is immutable and cannot be reassigned.


         
      

      
      The bug is rejected by the compiler with the following error message:

      
      Cannot assign to 'x' because it is a constant.

      
      In terms of in-memory representation, there is no difference between a mutable and an immutable x. The constness property is meaningful only for the compiler. It is a property enabled by the type system.
      

      
      Marking state that shouldn’t change as such by adding the const notation to our type prevents the kind of mutations with which we lose guarantees we previously checked for. Immutability is especially useful when concurrency is involved, as data races become impossible if data is immutable.
      

      
      Optimizing compilers can emit more-efficient code when dealing with immutable variables, as their values can be inlined. Some
         functional programming languages make all data immutable: a function takes some data as input and returns other data without
         ever changing its input. In such cases, when we validate a variable and confirm that it is in a good state, we are guaranteed
         it will be in a good state for its whole lifetime. The trade-off, of course, is that we end up copying data when we could
         have operated on it in-place, which is not always desirable.
      

      
      Making everything immutable might not always be feasible. That being said, making as much of the data immutable as you reasonably
         can will tremendously reduce the opportunity for issues such as preconditions not being met and data races.
      

      
      
      
      1.3.3. Encapsulation
      

      
      Encapsulation is the ability to hide some of the internals of our code, be it a function, a class, or a module. As you probably know, encapsulation
         is desirable, as it helps us deal with complexity: we split the code into smaller components, and each component exposes only
         what is strictly needed to the outside world, while its implementation details are kept hidden and isolated.
      

      
      In the next listing, let’s extend our safe division example to a class that tries to ensure that division by 0 never happens.
      

      
      
      
      Listing 1.6. Not enough encapsulation
      

      class SafeDivisor {
    divisor: number = 1;

    setDivisor(value: number) {
        if (value == 0) throw new Error("Value should not be 0");    1

        this.divisor = value;
    }

    divide(x: number): number {
        return x / this.divisor;                                     2
    }
}

function exploit(): number {
    let sd = new SafeDivisor();

    sd.divisor = 0;                                                  3
    return sd.divide(42);                                            4
}

      
      

      
         
         	
1 Ensure that divisor does not become 0 by checking value before assigning


         
         	
2 Division by 0 should never happen.


         
         	
3 Because the divisor member is public, the check can be bypassed.


         
         	
4 Division by 0 returns Infinity.


         
      

      
      In this case we can no longer make the divisor immutable, as we do want to give callers of our API the ability to update it.
         The problem is that callers can bypass the 0 check and directly set divisor to any value because it is visible to them. The fix in this case is to mark it as private and scope it to the class, as the following listing shows.
      

      
      
      
      Listing 1.7. Encapsulation
      

      class SafeDivisor {
    private divisor: number = 1;             1

    setDivisor(value: number) {
        if (value == 0) throw new Error("Value should not be 0");

        this.divisor = value;
    }

    divide(x: number): number {
        return x / this.divisor;
    }
}

function exploit() {
    let sd = new SafeDivisor();

    sd.divisor = 0;                          2
    sd.divide(42);
}

      
      

      
         
         	
1 Member is now marked as private.


         
         	
2 This line fails to compile as divisor can no longer be referenced outside the class.


         
      

      
      A public and a private member have the same in-memory representation; the fact that the problematic code no longer compiles in the second example
         is simply due to the type notations we provided. In fact, public, private, and other visibility kinds are properties of the type in which they appear.
      

      
      Encapsulation, or information hiding, enables us to split logic and data across a public interface and a nonpublic implementation.
         This is extremely helpful in large systems, as working against interfaces (or abstractions) reduces the mental effort it takes
         to understand what a particular piece of code does. We need to understand and reason about only the interfaces of components,
         not all their implementation details. It also helps by scoping nonpublic information within a boundary and guarantees that
         external code cannot modify it, as it simply does not have access to it.
      

      
      Encapsulation appears at multiple layers: a service exposes its API as an interface, a module exports its interface and hides
         implementation details, a class exposes only its public members, and so on. Like nesting dolls, the weaker the relationship
         between two parts of the code, the less information they share. This strengthens the guarantees a component can make about
         the data it manages internally, as no outside code can be allowed to modify it without going through the component’s interface.
      

      
      
      
      1.3.4. Composability
      

      
      Let’s say we want to find the first negative number in an array of numbers and the first one-character string in an array
         of strings. Without thinking about how we can break down this problem into composable pieces and put them back together into
         a composable system, we could end up with two functions: findFirstNegativeNumber() and findFirstOneCharacterString(), as shown in the following listing.
      

      
      
      
      Listing 1.8. Noncomposable system
      

      function findFirstNegativeNumber(numbers: number[])
    : number | undefined {
    for (let i of numbers) {
        if (i < 0) return i;
    }
}

function findFirstOneCharacterString(strings: string[])
    : string | undefined {
    for (let str of strings) {
        if (str.length == 1) return str;
    }
}

      
      The two functions search for the first negative number and for the first one-character string, respectively. If no such element
         is found, the functions return undefined (implicitly, by exiting the function without a return statement).
      

      
      If a new requirement comes in that we should also log an error whenever we fail to find an element, we need to update both
         functions, as shown in the next listing.
      

      
      
      
      Listing 1.9. Noncomposable system update
      

      function findFirstNegativeNumber(numbers: number[])
    : number | undefined {
    for (let i of numbers) {
        if (i < 0) return i;
    }
    console.error("No matching value found");
}

function findFirstOneCharacterString(strings: string[])
    : string | undefined {
    for (let str of strings) {
        if (str.length == 1) return str;
    }
    console.error("No matching value found");
}

      
      This is already less than ideal. What if we forget to apply the update everywhere? Such issues compound in large systems.
         Looking more closely at what each function does, we can tell that the algorithm is the same; but in one case, we operate on
         numbers with one condition, and in the other, we operate on strings with a different condition. We can provide a generic algorithm
         parameterized on the type it operates on and the condition it checks for, as shown in the following listing. Such an algorithm
         does not depend on the other parts of the system, and we can reason about it in isolation.
      

      
      
      
      Listing 1.10. Composable system
      

      function first<T>(range: T[], p: (elem: T) => boolean)
    : T | undefined {
    for (let elem of range) {
        if (p (elem)) return elem;
    }
}

function findFirstNegativeNumber(numbers: number[])
    : number | undefined {
    return first(numbers, n => n < 0);
}

function findFirstOneCharacterString(strings: string[])
    : string | undefined {
    return first(strings, str => str.length == 1);
}

      
      Don’t worry if the syntax of this looks a bit strange; we’ll cover inline functions such as n => n < 0 in chapter 5 and generics in chapters 9 and 10.
      

      
      If we want to add logging to this implementation, we need only to update the implementation of first. Better still, if we figure out a more efficient algorithm, simply updating the implementation benefits all callers.
      

      
      As we’ll learn in chapter 10 when we discuss generic algorithms and iterators, we can make this function even more general. Currently, it only operates
         on an array of some type T. It can be extended to traverse any data structure.
      

      
      If the code is not composable, we need a different function for each data type, data structure, and condition, even though
         they all fundamentally implement the same abstraction. Having the ability to abstract and then mix and match components reduces
         a lot of duplication. Generic types enable us to express these kinds of abstractions.
      

      
      Having the ability to combine independent components yields a modular system and less code to maintain. Composability becomes
         important as the size of the code and the number of components increase. In a composable system, the parts are loosely coupled;
         at the same time, code does not get duplicated in each subsystem. New requirements can usually be incorporated by updating
         a single component instead of making large changes across the whole system, at the same time understanding that such a system
         requires less thought, as we can reason about its parts in isolation.
      

      
      
      
      
      1.3.5. Readability
      

      
      Code is read many more times than it is written. Typing makes it clear what a function expects from its arguments, what the
         prerequisites for a generic algorithm are, what interfaces a class implements, and so on. This information is valuable because
         we can reason about readable code in isolation: just by looking at a definition, we should be able to easily understand how
         the code is supposed to work without having to navigate the sources to find callers and callees.
      

      
      Naming and comments are important parts of this, too, but typing adds another layer of information, as it allows us to name
         constraints. Let’s look at an untyped find() function declaration in the following listing.
      

      
      
      
      Listing 1.11. Untyped find()
      

      declare function find(range: any, pred: any): any;

      
      Just looking at this function, it’s hard to tell what kind of arguments it expects. We need to read the implementation, pass
         in our best guess, and see whether we get a run-time error or hope that the documentation covers this.
      

      
      Contrast the following code with the previous declaration.

      
      
      
      Listing 1.12. Typed find()


      declare function first<T>(range: T[],
    p: (elem: T) => boolean): T | undefined;

      
      Reading this declaration, we see that for any type T, we need to provide an array T[] as the range argument and a function that takes a T and returns a boolean as the -p argument. We can also immediately see that the function is going to return a T or -undefined.
      

      
      Instead of having to find the implementation or look up the documentation, just reading this declaration tells us exactly
         what type of arguments to pass and reduces our cognitive load, as we can treat it as a self-contained, separate entity. Having
         such type information explicit, available not only to the compiler but also to the developer, makes understanding the code
         a lot easier.
      

      
      Most modern languages provide some level of type inference, which means deducing the type of a variable based on context. This is useful, as it saves us redundant typing, but becomes
         a problem when the compiler can understand the code easily while it becomes too effortful for people to do so. A spelled-out
         type is much more valuable than a comment, as it is enforced by the compiler.
      

      
      
      
      
      
1.4. Types of type systems
      

      
      Nowadays, most languages and run times provide some form of typing. We realized long ago that being able to interpret code
         as data and data as code can lead to catastrophic results. The main distinction between contemporary type systems lies in when types get checked and how strict the checks are.
      

      
      With static typing, type checking is performed at compile time, so when compilation is done, the run-time values are guaranteed
         to have correct types. Dynamic typing, on the other hand, defers type checking to the run time, so type mismatches become
         run-time errors.
      

      
      Strong typing does few if any implicit type conversions, whereas weaker type systems allow more implicit type conversions.

      
      
      1.4.1. Dynamic and static typing
      

      
      JavaScript is dynamically typed, and TypeScript is statically typed. In fact, TypeScript was created to add static type checking
         to JavaScript. Converting what would otherwise be run-time errors to compilation errors, especially in large applications,
         makes code more maintainable and resilient. This book focuses on static typing and statically typed languages, but it’s good
         to understand the alternative.
      

      
      Dynamic typing does not impose any typing constraints at compile time. The colloquial name duck typing comes from the phrase “If it waddles like a duck and it quacks like a duck, it must be a duck.” Code can attempt to freely
         use a variable in any way it wants, and typing is applied by the run time. We can simulate dynamic typing in TypeScript by
         using the any keyword, which allows untyped variables.
      

      
      We can implement a quacker() function that takes a duck argument of type any and calls quack() on it. As long as we pass it an object that has a quack() method, everything works. If, on the other hand, we pass something that can’t quack(), we get a run-time TypeError, as shown in the following listing.
      

      
      
      
      Listing 1.13. Dynamic typing
      

      function quacker(duck: any) {                                 1
    duck.quack();
}

quacker({ quack: function () { console.log("quack"); } });    2
quacker(42);                                                  3

      
      

      
         
         	
1 The function takes an argument of type any, so it bypasses compile-time type checking.


         
         	
2 We pass an object with a quack() method, so the call prints “quack.”


         
         	
3 This causes a run-time error: TypeError: duck.quack is not a function.


         
      

      
      Static typing, on the other hand, performs type checks at compile time, so attempting to pass an argument of the wrong type
         causes a compilation error. To leverage the static typing features of TypeScript, we can update the code by declaring a Duck interface and properly typing the function’s argument, as shown in listing 1.14. Note that in TypeScript, we do not have to explicitly declare that we are implementing the Duck interface. As long as we provide a quack() function, the compiler considers the interface to be implemented. In other languages, we would have to be explicit by declaring a class as implementing the interface.
      

      
      
      
      Listing 1.14. Static typing
      

      interface Duck {                                           1
    quack(): void;
}

function quacker(duck: Duck) {                             2
    duck.quack();
}

quacker({ quack: function () { console.log("quack"); } });
quacker(42);                                               3

      
      

      
         
         	
1 Interface declaration for an object we expect has a quack() method


         
         	
2 Updated function now requires an argument of type Duck.


         
         	
3 Compile error: Argument of type ‘42’ is not assignable to parameter of type ‘Duck’.


         
      

      
      Catching these types of errors at compile time, before they can cause a running program to malfunction, is the key benefit
         of static typing.
      

      
      
      
      1.4.2. Weak and strong typing
      

      
      We often hear the terms strong typing and weak typing to describe a type system. The strength of a type system describes how strict the system is with regard to enforcing type
         constraints. A weak type system implicitly tries to convert values from their actual types to the types expected when the
         value is used.
      

      
      Consider this question: Does milk equal white? In a strongly typed world, no, milk is a liquid, and it makes no sense to compare
         it to a color. In a weakly typed world, we can say, “Well, milk’s color is white, so yes, it does equal white.” In the strongly
         typed world, we can explicitly convert milk to a color by making the question more explicit: Does the color of milk equal
         white? In the weakly typed world, we don’t need this refinement.
      

      
      JavaScript is weakly typed. We can see this by using the any type in TypeScript and deferring to JavaScript to handle typing at run time. JavaScript provides two equality operators:
         ==, which checks whether two values are equal, and ===, which checks both that the values and the type of the values are equal, as shown in the next listing. Because JavaScript
         is weakly typed, an expression such as "42" == 42 evaluates to true. This is surprising, because "42" is text, whereas 42 is a number.
      

      
      
      
      Listing 1.15. Weak typing
      

      const a: any = "hello world";
const b: any = 42;

console.log(a == b);        1

console.log("42" == b);     2

console.log("42" === b);    3

      
      

      
         
         	
1 Prints “false,” though comparing a string to a number is allowed.


         
         	
2 Prints “true”; the JavaScript run time implicitly converts the values to the same type.


         
         	
3 Prints “false”; the === operator also compares the types.


         
      

      
      Implicit type conversions are handy in that we don’t have to write more code to explicitly convert between types, but they
         are dangerous because in many cases we do not want conversions to happen and are surprised by the results. TypeScript, being
         strongly typed, doesn’t compile any of the preceding comparisons when we properly declare a to be a string and b to be a number, as the following listing shows.
      

      
      
      
      Listing 1.16. Strong typing
      

      const a: string =c"hello world";    1
const b: number = 42;               1

console.log(a == b);                2

                                    2
console.log("42" == b);             2

                                    2
console.log("42" === b);            2

      
      

      
         
         	
1 a and b are no longer declared as any, so they get type checked.


         
         	
2 All three comparisons fail to compile, as TypeScript doesn’t allow comparing different types.


         
      

      
      All the comparisons now cause the error "This condition will always return 'false' since the types 'string' and 'number' have no overlap". The type checker determines that we are trying to compare values of different types and rejects the code.
      

      
       Although a weak type system is easier to work with in the short term, as it doesn’t force programmers to explicitly convert
         values between types, it does not provide the same guarantees we get from a stronger type system. Most of the benefits described
         in this chapter and the techniques employed in the rest of this book lose their effectiveness if they are not properly enforced.
      

      
      Note that although a type system is either dynamic (type checking at run time) or static (type checking at compile time),
         its strength lies on a spectrum: the more implicit conversions it performs, the weaker it is. Most type systems, even strong
         ones, do provide some limited implicit casting for conversions that are deemed safe. A common example is conversions to boolean: if (a) in most languages would compile even if a is a number or a reference type. Another example is widening casts, which we’ll cover in detail in chapter 4. TypeScript uses only the number type to represent numeric values, but in languages in which, for example, we need a 16-bit integer but pass in an 8-bit integer, the conversion is usually done automatically, as there is no risk of data corruption. (A 16-bit integer can
         represent any value that an 8-bit integer can, and more.)
      

      
      
      
      1.4.3. Type inference
      

      
      In some cases, the compiler can infer the type of a variable or a function without us having to specify it explicitly. If
         we assign the value 42 to a variable, for example, the TypeScript compiler can infer that its type is number, so we don’t need to provide the type notations. We can do so if we want to be explicit and make the type clear to readers
         of the code, but the notation is not strictly required.
      

      
      Similarly, if a function returns a value of the same type on each return statement, we don’t need to spell out its return type explicitly in the function definition. The compiler can infer it from
         the code, as shown in the next listing.
      

      
      
      
      Listing 1.17. Type inference
      

      function add(x: number, y: number) {    1
    return x + y;
}

let sum = add(40, 2);                   2

      
      

      
         
         	
1 The function does not have an explicit return type, but the compiler infers it as number.


         
         	
2 The type of the variable sum is not explicitly declared as number; rather, it is inferred.


         
      

      
      Unlike dynamic typing, in which typing is performed only at run time, in these cases the typing is still determined and checked
         at compile time, but we don’t have to supply it explicitly. If typing is ambiguous, the compiler will issue an error and ask
         us to be more explicit by providing type notations.
      

      
      
      
      
      
1.5. In this book
      

      
      A strong, static type system enables us to write code that is more correct, more composable, and more readable. This book
         will cover common features of such modern type systems with a focus on practical applications of these features.
      

      
      We’ll start with primitive types, the out-of-the-box types available in most languages. We’ll cover using them correctly and avoiding some common pitfalls.
         In some cases, we show how to implement some of these types if your particular language does not provide them natively.
      

      
      Next, we’ll look at composition and how primitive types can be put together to build a large universe of types supporting
         your particular problem domain. There are multiple ways to combine types, so you’ll learn how to pick the right tool for the
         job depending on the particular problem you are trying to solve.
      

      
      Then we will cover function types and the new implementations that open to us when a type system can type functions and treat them as regular values. Functional
         programming is a very deep topic, so instead of attempting to explain it fully, we’ll borrow a set of useful concepts and
         apply them to a nonfunctional language to solve real-world problems.
      

      
      The next step in the evolution of type systems, after being able to type values, compose types, and type functions, is subtyping. We’ll go over what makes a type a subtype of another type and see how we can apply some object-oriented programming concepts
         to our code. We’ll discuss inheritance, composition, and the less-traditional mix-ins.
      

      
      We’ll continue with generics, which enable type variables and allow us to parameterize code on types. Generics open a whole new level of abstraction and
         composability, decoupling data from data structures, data structures from algorithms, and enabling adaptive algorithms.
      

      
      Last, we’ll cover higher kinded types, which are the next level of abstraction, parameterizing generic types. Higher kinded types formalize data structures such
         as monoids and monads. Many programming languages do not support higher kinded types today, but their extensive use in languages
         such as Haskell and increasing popularity will eventually lead to their adoption across more established languages.
      

      
      
      
      
Summary
      

      
      

      
         
         	A type is a classification of data that defines the operations that can be done on that data, the meaning of the data, and the set
            of allowed values.
         

         
         	A type system is a set of rules that assigns and enforces types to elements of a programming language.
         

         
         	Types restrict the range of values a variable can take, so in some cases, what would’ve been a run-time error becomes a compile-time
            error.
         

         
         	
Immutability is a property of the data enabled by typing, which ensures that values don’t change when they’re not supposed to.
         

         
         	
Visibility is another type-level property that determines which components are allowed to access which data.
         

         
         	Generic programming enables powerful decoupling and code reuse.

         
         	Type notations make code easier to understand for readers of the code.

         
         	Dynamic typing (or duck typing) determines types at run time.

         
         	Static typing checks types at compile time, catching type errors that otherwise would’ve become run-time errors.

         
         	The strength of a type system is a measure of how many implicit conversions between types are allowed.
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