

 Kubernetes in Action

 Marko Lukša

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Elesha Hyde
Review editor: Aleksandar Dragosavljević
Technical development editor: Jeanne Boyarsky
Project editor: Kevin Sullivan
Copyeditor: Katie Petito
Proofreader: Melody Dolab
Technical proofreader: Antonio Magnaghi
Illustrator: Chuck Larson
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617293726

 Printed in the United States of America

 2 3 4 5 6 7 8 9 10 – SP – 22 21 20 19 18

Dedication

 To my parents, who have always put their children’s needs above their own

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Author

 About the Cover Illustration

 1. Overview

 Chapter 1. Introducing Kubernetes

 Chapter 2. First steps with Docker and Kubernetes

 2. Core concepts

 Chapter 3. Pods: running containers in Kubernetes

 Chapter 4. Replication and other controllers: deploying managed pods

 Chapter 5. Services: enabling clients to discover and talk to pods

 Chapter 6. Volumes: attaching disk storage to containers

 Chapter 7. ConfigMaps and Secrets: configuring applications

 Chapter 8. Accessing pod metadata and other resources from applications

 Chapter 9. Deployments: updating applications declaratively

 Chapter 10. StatefulSets: deploying replicated stateful applications

 3. Beyond the basics

 Chapter 11. Understanding Kubernetes internals

 Chapter 12. Securing the Kubernetes API server

 Chapter 13. Securing cluster nodes and the network

 Chapter 14. Managing pods’ computational resources

 Chapter 15. Automatic scaling of pods and cluster nodes

 Chapter 16. Advanced scheduling

 Chapter 17. Best practices for developing apps

 Chapter 18. Extending Kubernetes

 Appendix A. Using kubectl with multiple clusters

 Appendix B. Setting up a multi-node cluster with kubeadm

 Appendix C. Using other container runtimes

 Appendix D. Cluster Federation

 Kubernetes resources covered in the book

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About This Book

 About the Author

 About the Cover Illustration

 1. Overview

 Chapter 1. Introducing Kubernetes

 1.1. Understanding the need for a system like Kubernetes

 1.1.1. Moving from monolithic apps to microservices

 1.1.2. Providing a consistent environment to applications

 1.1.3. Moving to continuous delivery: DevOps and NoOps

 1.2. Introducing container technologies

 1.2.1. Understanding what containers are

 1.2.2. Introducing the Docker container platform

 1.2.3. Introducing rkt—an alternative to Docker

 1.3. Introducing Kubernetes

 1.3.1. Understanding its origins

 1.3.2. Looking at Kubernetes from the top of a mountain

 1.3.3. Understanding the architecture of a Kubernetes cluster

 1.3.4. Running an application in Kubernetes

 1.3.5. Understanding the benefits of using Kubernetes

 1.4. Summary

 Chapter 2. First steps with Docker and Kubernetes

 2.1. Creating, running, and sharing a container image

 2.1.1. Installing Docker and running a Hello World container

 2.1.2. Creating a trivial Node.js app

 2.1.3. Creating a Dockerfile for the image

 2.1.4. Building the container image

 2.1.5. Running the container image

 2.1.6. Exploring the inside of a running container

 2.1.7. Stopping and removing a container

 2.1.8. Pushing the image to an image registry

 2.2. Setting up a Kubernetes cluster

 2.2.1. Running a local single-node Kubernetes cluster with Minikube

 2.2.2. Using a hosted Kubernetes cluster with Google Kubernetes Engine

 2.2.3. Setting up an alias and command-line completion for kubectl

 2.3. Running your first app on Kubernetes

 2.3.1. Deploying your Node.js app

 2.3.2. Accessing your web application

 2.3.3. The logical parts of your system

 2.3.4. Horizontally scaling the application

 2.3.5. Examining what nodes your app is running on

 2.3.6. Introducing the Kubernetes dashboard

 2.4. Summary

 2. Core concepts

 Chapter 3. Pods: running containers in Kubernetes

 3.1. Introducing pods

 3.1.1. Understanding why we need pods

 3.1.2. Understanding pods

 3.1.3. Organizing containers across pods properly

 3.2. Creating pods from YAML or JSON descriptors

 3.2.1. Examining a YAML descriptor of an existing pod

 3.2.2. Creating a simple YAML descriptor for a pod

 3.2.3. Using kubectl create to create the pod

 3.2.4. Viewing application logs

 3.2.5. Sending requests to the pod

 3.3. Organizing pods with labels

 3.3.1. Introducing labels

 3.3.2. Specifying labels when creating a pod

 3.3.3. Modifying labels of existing pods

 3.4. Listing subsets of pods through label selectors

 3.4.1. Listing pods using a label selector

 3.4.2. Using multiple conditions in a label selector

 3.5. Using labels and selectors to constrain pod scheduling

 3.5.1. Using labels for categorizing worker nodes

 3.5.2. Scheduling pods to specific nodes

 3.5.3. Scheduling to one specific node

 3.6. Annotating pods

 3.6.1. Looking up an object’s annotations

 3.6.2. Adding and modifying annotations

 3.7. Using namespaces to group resources

 3.7.1. Understanding the need for namespaces

 3.7.2. Discovering other namespaces and their pods

 3.7.3. Creating a namespace

 3.7.4. Managing objects in other namespaces

 3.7.5. Understanding the isolation provided by namespaces

 3.8. Stopping and removing pods

 3.8.1. Deleting a pod by name

 3.8.2. Deleting pods using label selectors

 3.8.3. Deleting pods by deleting the whole namespace

 3.8.4. Deleting all pods in a namespace, while keeping the namespace

 3.8.5. Deleting (almost) all resources in a namespace

 3.9. Summary

 Chapter 4. Replication and other controllers: deploying managed pods

 4.1. Keeping pods healthy

 4.1.1. Introducing liveness probes

 4.1.2. Creating an HTTP-based liveness probe

 4.1.3. Seeing a liveness probe in action

 4.1.4. Configuring additional properties of the liveness probe

 4.1.5. Creating effective liveness probes

 4.2. Introducing ReplicationControllers

 4.2.1. The operation of a ReplicationController

 4.2.2. Creating a ReplicationController

 4.2.3. Seeing the ReplicationController in action

 4.2.4. Moving pods in and out of the scope of a ReplicationController

 4.2.5. Changing the pod template

 4.2.6. Horizontally scaling pods

 4.2.7. Deleting a ReplicationController

 4.3. Using ReplicaSets instead of ReplicationControllers

 4.3.1. Comparing a ReplicaSet to a ReplicationController

 4.3.2. Defining a ReplicaSet

 4.3.3. Creating and examining a ReplicaSet

 4.3.4. Using the ReplicaSet’s more expressive label selectors

 4.3.5. Wrapping up ReplicaSets

 4.4. Running exactly one pod on each node with DaemonSets

 4.4.1. Using a DaemonSet to run a pod on every node

 4.4.2. Using a DaemonSet to run pods only on certain nodes

 4.5. Running pods that perform a single completable task

 4.5.1. Introducing the Job resource

 4.5.2. Defining a Job resource

 4.5.3. Seeing a Job run a pod

 4.5.4. Running multiple pod instances in a Job

 4.5.5. Limiting the time allowed for a Job pod to complete

 4.6. Scheduling Jobs to run periodically or once in the future

 4.6.1. Creating a CronJob

 4.6.2. Understanding how scheduled jobs are run

 4.7. Summary

 Chapter 5. Services: enabling clients to discover and talk to pods

 5.1. Introducing services

 Explaining services with an example

 5.1.1. Creating services

 5.1.2. Discovering services

 5.2. Connecting to services living outside the cluster

 5.2.1. Introducing service endpoints

 5.2.2. Manually configuring service endpoints

 5.2.3. Creating an alias for an external service

 5.3. Exposing services to external clients

 5.3.1. Using a NodePort service

 5.3.2. Exposing a service through an external load balancer

 5.3.3. Understanding the peculiarities of external connections

 5.4. Exposing services externally through an Ingress resource

 Understanding why Ingresses are needed

 Understanding that an Ingress controller is required

 5.4.1. Creating an Ingress resource

 5.4.2. Accessing the service through the Ingress

 5.4.3. Exposing multiple services through the same Ingress

 5.4.4. Configuring Ingress to handle TLS traffic

 5.5. Signaling when a pod is ready to accept connections

 5.5.1. Introducing readiness probes

 5.5.2. Adding a readiness probe to a pod

 5.5.3. Understanding what real-world readiness probes should do

 5.6. Using a headless service for discovering individual pods

 5.6.1. Creating a headless service

 5.6.2. Discovering pods through DNS

 5.6.3. Discovering all pods—even those that aren’t ready

 5.7. Troubleshooting services

 5.8. Summary

 Chapter 6. Volumes: attaching disk storage to containers

 6.1. Introducing volumes

 6.1.1. Explaining volumes in an example

 6.1.2. Introducing available volume types

 6.2. Using volumes to share data between containers

 6.2.1. Using an emptyDir volume

 6.2.2. Using a Git repository as the starting point for a volume

 6.3. Accessing files on the worker node’s filesystem

 6.3.1. Introducing the hostPath volume

 6.3.2. Examining system pods that use hostPath volumes

 6.4. Using persistent storage

 6.4.1. Using a GCE Persistent Disk in a pod volume

 6.4.2. Using other types of volumes with underlying persistent storage

 6.5. Decoupling pods from the underlying storage technology

 6.5.1. Introducing PersistentVolumes and PersistentVolumeClaims

 6.5.2. Creating a PersistentVolume

 6.5.3. Claiming a PersistentVolume by creating a PersistentVolumeClaim

 6.5.4. Using a PersistentVolumeClaim in a pod

 6.5.5. Understanding the benefits of using PersistentVolumes and claims

 6.5.6. Recycling PersistentVolumes

 6.6. Dynamic provisioning of PersistentVolumes

 6.6.1. Defining the available storage types through StorageClass resources

 6.6.2. Requesting the storage class in a PersistentVolumeClaim

 6.6.3. Dynamic provisioning without specifying a storage class

 6.7. Summary

 Chapter 7. ConfigMaps and Secrets: configuring applications

 7.1. Configuring containerized applications

 7.2. Passing command-line arguments to containers

 7.2.1. Defining the command and arguments in Docker

 7.2.2. Overriding the command and arguments in Kubernetes

 7.3. Setting environment variables for a container

 Making the interval in your fortune image configurable through an environment variable

 7.3.1. Specifying environment variables in a container definition

 7.3.2. Referring to other environment variables in a variable’s value

 7.3.3. Understanding the drawback of hardcoding environment variables

 7.4. Decoupling configuration with a ConfigMap

 7.4.1. Introducing ConfigMaps

 7.4.2. Creating a ConfigMap

 7.4.3. Passing a ConfigMap entry to a container as an environment variable

 7.4.4. Passing all entries of a ConfigMap as environment variables at once

 7.4.5. Passing a ConfigMap entry as a command-line argument

 7.4.6. Using a configMap volume to expose ConfigMap entries as files

 7.4.7. Updating an app’s config without having to restart the app

 7.5. Using Secrets to pass sensitive data to containers

 7.5.1. Introducing Secrets

 7.5.2. Introducing the default token Secret

 7.5.3. Creating a Secret

 7.5.4. Comparing ConfigMaps and Secrets

 7.5.5. Using the Secret in a pod

 7.5.6. Understanding image pull Secrets

 7.6. Summary

 Chapter 8. Accessing pod metadata and other resources from applications

 8.1. Passing metadata through the Downward API

 8.1.1. Understanding the available metadata

 8.1.2. Exposing metadata through environment variables

 8.1.3. Passing metadata through files in a downwardAPI volume

 8.2. Talking to the Kubernetes API server

 8.2.1. Exploring the Kubernetes REST API

 8.2.2. Talking to the API server from within a pod

 8.2.3. Simplifying API server communication with ambassador containers

 8.2.4. Using client libraries to talk to the API server

 8.3. Summary

 Chapter 9. Deployments: updating applications declaratively

 9.1. Updating applications running in pods

 9.1.1. Deleting old pods and replacing them with new ones

 9.1.2. Spinning up new pods and then deleting the old ones

 9.2. Performing an automatic rolling update with a ReplicationController

 9.2.1. Running the initial version of the app

 9.2.2. Performing a rolling update with kubectl

 9.2.3. Understanding why kubectl rolling-update is now obsolete

 9.3. Using Deployments for updating apps declaratively

 9.3.1. Creating a Deployment

 9.3.2. Updating a Deployment

 9.3.3. Rolling back a deployment

 9.3.4. Controlling the rate of the rollout

 9.3.5. Pausing the rollout process

 9.3.6. Blocking rollouts of bad versions

 9.4. Summary

 Chapter 10. StatefulSets: deploying replicated stateful applications

 10.1. Replicating stateful pods

 10.1.1. Running multiple replicas with separate storage for each

 10.1.2. Providing a stable identity for each pod

 10.2. Understanding StatefulSets

 10.2.1. Comparing StatefulSets with ReplicaSets

 10.2.2. Providing a stable network identity

 10.2.3. Providing stable dedicated storage to each stateful instance

 10.2.4. Understanding StatefulSet guarantees

 10.3. Using a StatefulSet

 10.3.1. Creating the app and container image

 10.3.2. Deploying the app through a StatefulSet

 10.3.3. Playing with your pods

 10.4. Discovering peers in a StatefulSet

 Introducing SRV records

 10.4.1. Implementing peer discovery through DNS

 10.4.2. Updating a StatefulSet

 10.4.3. Trying out your clustered data store

 10.5. Understanding how StatefulSets deal with node failures

 10.5.1. Simulating a node’s disconnection from the network

 10.5.2. Deleting the pod manually

 10.6. Summary

 3. Beyond the basics

 Chapter 11. Understanding Kubernetes internals

 11.1. Understanding the architecture

 Components of the Control Plane

 Components running on the worker nodes

 Add-on components

 11.1.1. The distributed nature of Kubernetes components

 11.1.2. How Kubernetes uses etcd

 11.1.3. What the API server does

 11.1.4. Understanding how the API server notifies clients of resource changes

 11.1.5. Understanding the Scheduler

 11.1.6. Introducing the controllers running in the Controller Manager

 11.1.7. What the Kubelet does

 11.1.8. The role of the Kubernetes Service Proxy

 11.1.9. Introducing Kubernetes add-ons

 11.1.10. Bringing it all together

 11.2. How controllers cooperate

 11.2.1. Understanding which components are involved

 11.2.2. The chain of events

 11.2.3. Observing cluster events

 11.3. Understanding what a running pod is

 11.4. Inter-pod networking

 11.4.1. What the network must be like

 11.4.2. Diving deeper into how networking works

 11.4.3. Introducing the Container Network Interface

 11.5. How services are implemented

 11.5.1. Introducing the kube-proxy

 11.5.2. How kube-proxy uses iptables

 11.6. Running highly available clusters

 11.6.1. Making your apps highly available

 11.6.2. Making Kubernetes Control Plane components highly available

 11.7. Summary

 Chapter 12. Securing the Kubernetes API server

 12.1. Understanding authentication

 12.1.1. Users and groups

 12.1.2. Introducing ServiceAccounts

 12.1.3. Creating ServiceAccounts

 12.1.4. Assigning a ServiceAccount to a pod

 12.2. Securing the cluster with role-based access control

 12.2.1. Introducing the RBAC authorization plugin

 12.2.2. Introducing RBAC resources

 12.2.3. Using Roles and RoleBindings

 12.2.4. Using ClusterRoles and ClusterRoleBindings

 12.2.5. Understanding default ClusterRoles and ClusterRoleBindings

 12.2.6. Granting authorization permissions wisely

 12.3. Summary

 Chapter 13. Securing cluster nodes and the network

 13.1. Using the host node’s namespaces in a pod

 13.1.1. Using the node’s network namespace in a pod

 13.1.2. Binding to a host port without using the host’s network namespace

 13.1.3. Using the node’s PID and IPC namespaces

 13.2. Configuring the container’s security context

 Understanding what’s configurable in the security context

 Running a pod without specifying a security context

 13.2.1. Running a container as a specific user

 13.2.2. Preventing a container from running as root

 13.2.3. Running pods in privileged mode

 13.2.4. Adding individual kernel capabilities to a container

 13.2.5. Dropping capabilities from a container

 13.2.6. Preventing processes from writing to the container’s filesystem

 13.2.7. Sharing volumes when containers run as different users

 13.3. Restricting the use of security-related features in pods

 13.3.1. Introducing the PodSecurityPolicy resource

 13.3.2. Understanding runAsUser, fsGroup, and supplementalGroups policies

 13.3.3. Configuring allowed, default, and disallowed capabilities

 13.3.4. Constraining the types of volumes pods can use

 13.3.5. Assigning different PodSecurityPolicies to different users and groups

 13.4. Isolating the pod network

 13.4.1. Enabling network isolation in a namespace

 13.4.2. Allowing only some pods in the namespace to connect to a server pod

 13.4.3. Isolating the network between Kubernetes namespaces

 13.4.4. Isolating using CIDR notation

 13.4.5. Limiting the outbound traffic of a set of pods

 13.5. Summary

 Chapter 14. Managing pods’ computational resources

 14.1. Requesting resources for a pod’s containers

 14.1.1. Creating pods with resource requests

 14.1.2. Understanding how resource requests affect scheduling

 14.1.3. Understanding how CPU requests affect CPU time sharing

 14.1.4. Defining and requesting custom resources

 14.2. Limiting resources available to a container

 14.2.1. Setting a hard limit for the amount of resources a container can use

 14.2.2. Exceeding the limits

 14.2.3. Understanding how apps in containers see limits

 14.3. Understanding pod QoS classes

 14.3.1. Defining the QoS class for a pod

 14.3.2. Understanding which process gets killed when memory is low

 14.4. Setting default requests and limits for pods per namespace

 14.4.1. Introducing the LimitRange resource

 14.4.2. Creating a LimitRange object

 14.4.3. Enforcing the limits

 14.4.4. Applying default resource requests and limits

 14.5. Limiting the total resources available in a namespace

 14.5.1. Introducing the ResourceQuota object

 14.5.2. Specifying a quota for persistent storage

 14.5.3. Limiting the number of objects that can be created

 14.5.4. Specifying quotas for specific pod states and/or QoS classes

 14.6. Monitoring pod resource usage

 14.6.1. Collecting and retrieving actual resource usages

 14.6.2. Storing and analyzing historical resource consumption statistics

 14.7. Summary

 Chapter 15. Automatic scaling of pods and cluster nodes

 15.1. Horizontal pod autoscaling

 15.1.1. Understanding the autoscaling process

 15.1.2. Scaling based on CPU utilization

 15.1.3. Scaling based on memory consumption

 15.1.4. Scaling based on other and custom metrics

 15.1.5. Determining which metrics are appropriate for autoscaling

 15.1.6. Scaling down to zero replicas

 15.2. Vertical pod autoscaling

 15.2.1. Automatically configuring resource requests

 15.2.2. Modifying resource requests while a pod is running

 15.3. Horizontal scaling of cluster nodes

 15.3.1. Introducing the Cluster Autoscaler

 15.3.2. Enabling the Cluster Autoscaler

 15.3.3. Limiting service disruption during cluster scale-down

 15.4. Summary

 Chapter 16. Advanced scheduling

 16.1. Using taints and tolerations to repel pods from certain nodes

 16.1.1. Introducing taints and tolerations

 16.1.2. Adding custom taints to a node

 16.1.3. Adding tolerations to pods

 16.1.4. Understanding what taints and tolerations can be used for

 16.2. Using node affinity to attract pods to certain nodes

 Comparing node affinity to node selectors

 Examining the default node labels

 16.2.1. Specifying hard node affinity rules

 16.2.2. Prioritizing nodes when scheduling a pod

 16.3. Co-locating pods with pod affinity and anti-affinity

 16.3.1. Using inter-pod affinity to deploy pods on the same node

 16.3.2. Deploying pods in the same rack, availability zone, or geographic region

 16.3.3. Expressing pod affinity preferences instead of hard requirements

 16.3.4. Scheduling pods away from each other with pod anti-affinity

 16.4. Summary

 Chapter 17. Best practices for developing apps

 17.1. Bringing everything together

 17.2. Understanding the pod’s lifecycle

 17.2.1. Applications must expect to be killed and relocated

 17.2.2. Rescheduling of dead or partially dead pods

 17.2.3. Starting pods in a specific order

 17.2.4. Adding lifecycle hooks

 17.2.5. Understanding pod shutdown

 17.3. Ensuring all client requests are handled properly

 17.3.1. Preventing broken client connections when a pod is starting up

 17.3.2. Preventing broken connections during pod shut-down

 17.4. Making your apps easy to run and manage in Kubernetes

 17.4.1. Making manageable container images

 17.4.2. Properly tagging your images and using imagePullPolicy wisely

 17.4.3. Using multi-dimensional instead of single-dimensional labels

 17.4.4. Describing each resource through annotations

 17.4.5. Providing information on why the process terminated

 17.4.6. Handling application logs

 17.5. Best practices for development and testing

 17.5.1. Running apps outside of Kubernetes during development

 17.5.2. Using Minikube in development

 17.5.3. Versioning and auto-deploying resource manifests

 17.5.4. Introducing Ksonnet as an alternative to writing YAML/JSON manifests

 17.5.5. Employing Continuous Integration and Continuous Delivery (CI/CD)

 17.6. Summary

 Chapter 18. Extending Kubernetes

 18.1. Defining custom API objects

 18.1.1. Introducing CustomResourceDefinitions

 18.1.2. Automating custom resources with custom controllers

 18.1.3. Validating custom objects

 18.1.4. Providing a custom API server for your custom objects

 18.2. Extending Kubernetes with the Kubernetes Service Catalog

 18.2.1. Introducing the Service Catalog

 18.2.2. Introducing the Service Catalog API server and Controller Manager

 18.2.3. Introducing Service Brokers and the OpenServiceBroker API

 18.2.4. Provisioning and using a service

 18.2.5. Unbinding and deprovisioning

 18.2.6. Understanding what the Service Catalog brings

 18.3. Platforms built on top of Kubernetes

 18.3.1. Red Hat OpenShift Container Platform

 18.3.2. Deis Workflow and Helm

 18.4. Summary

 Appendix A. Using kubectl with multiple clusters

 A.1. Switching between Minikube and Google Kubernetes Engine

 Switching to Minikube

 Switching to GKE

 Going further

 A.2. Using kubectl with multiple clusters or namespaces

 A.2.1. Configuring the location of the kubeconfig file

 A.2.2. Understanding the contents of the kubeconfig file

 A.2.3. Listing, adding, and modifying kube config entries

 A.2.4. Using kubectl with different clusters, users, and contexts

 A.2.5. Switching between contexts

 A.2.6. Listing contexts and clusters

 A.2.7. Deleting contexts and clusters

 Appendix B. Setting up a multi-node cluster with kubeadm

 B.1. Setting up the OS and required packages

 B.1.1. Creating the virtual machine

 B.1.2. Configuring the network adapter for the VM

 B.1.3. Installing the operating system

 B.1.4. Installing Docker and Kubernetes

 B.1.5. Cloning the VM

 B.2. Configuring the master with kubeadm

 Running kubeadm init to initialize the master

 B.2.1. Understanding how kubeadm runs the components

 B.3. Configuring worker nodes with kubeadm

 B.3.1. Setting up the container network

 B.4. Using the cluster from your local machine

 Appendix C. Using other container runtimes

 C.1. Replacing Docker with rkt

 C.1.1. Configuring Kubernetes to use rkt

 C.1.2. Trying out rkt with Minikube

 C.2. Using other container runtimes through the CRI

 C.2.1. Introducing the CRI-O Container Runtime

 C.2.2. Running apps in virtual machines instead of containers

 Appendix D. Cluster Federation

 D.1. Introducing Kubernetes Cluster Federation

 D.2. Understanding the architecture

 D.3. Understanding federated API objects

 D.3.1. Introducing federated versions of Kubernetes resources

 D.3.2. Understanding what federated resources do

 Kubernetes resources covered in the book

 Index

 List of Figures

 List of Tables

 List of Listings

 front matter

Preface

 After working at Red Hat for a few years, in late 2014 I was assigned to a newly-established team called Cloud Enablement. Our task was to bring the company’s range of middleware products to the OpenShift Container Platform, which was then being developed on top of Kubernetes. At that time, Kubernetes was still in its infancy—version 1.0 hadn’t even been released yet.

 Our team had to get to know the ins and outs of Kubernetes quickly to set a proper direction for our software and take advantage of everything Kubernetes had to offer. When faced with a problem, it was hard for us to tell if we were doing things wrong or merely hitting one of the early Kubernetes bugs.

 Both Kubernetes and my understanding of it have come a long way since then. When I first started using it, most people hadn’t even heard of Kubernetes. Now, virtually every software engineer knows about it, and it has become one of the fastest-growing and most-widely-adopted ways of running applications in both the cloud and on-premises datacenters.

 In my first month of dealing with Kubernetes, I wrote a two-part blog post about how to run a JBoss WildFly application server cluster in OpenShift/Kubernetes. At the time, I never could have imagined that a simple blog post would ultimately lead the people at Manning to contact me about whether I would like to write a book about Kubernetes. Of course, I couldn’t say no to such an offer, even though I was sure they’d approached other people as well and would ultimately pick someone else.

 And yet, here we are. After more than a year and a half of writing and researching, the book is done. It’s been an awesome journey. Writing a book about a technology is absolutely the best way to get to know it in much greater detail than you’d learn as just a user. As my knowledge of Kubernetes has expanded during the process and Kubernetes itself has evolved, I’ve constantly gone back to previous chapters I’ve written and added additional information. I’m a perfectionist, so I’ll never really be absolutely satisfied with the book, but I’m happy to hear that a lot of readers of the Manning Early Access Program (MEAP) have found it to be a great guide to Kubernetes.

 My aim is to get the reader to understand the technology itself and teach them how to use the tooling to effectively and efficiently develop and deploy apps to Kubernetes clusters. In the book, I don’t put much emphasis on how to actually set up and maintain a proper highly available Kubernetes cluster, but the last part should give readers a very solid understanding of what such a cluster consists of and should allow them to easily comprehend additional resources that deal with this subject.

 I hope you’ll enjoy reading it, and that it teaches you how to get the most out of the awesome system that is Kubernetes.

Acknowledgments

 Before I started writing this book, I had no clue how many people would be involved in bringing it from a rough manuscript to a published piece of work. This means there are a lot of people to thank.

 First, I’d like to thank Erin Twohey for approaching me about writing this book, and Michael Stephens from Manning, who had full confidence in my ability to write it from day one. His words of encouragement early on really motivated me and kept me motivated throughout the last year and a half.

 I would also like to thank my initial development editor Andrew Warren, who helped me get my first chapter out the door, and Elesha Hyde, who took over from Andrew and worked with me all the way to the last chapter. Thank you for bearing with me, even though I’m a difficult person to deal with, as I tend to drop off the radar fairly regularly.

 I would also like to thank Jeanne Boyarsky, who was the first reviewer to read and comment on my chapters while I was writing them. Jeanne and Elesha were instrumental in making the book as nice as it hopefully is. Without their comments, the book could never have received such good reviews from external reviewers and readers.

 I’d like to thank my technical proofreader, Antonio Magnaghi, and of course all my external reviewers: Al Krinker, Alessandro Campeis, Alexander Myltsev, Csaba Sari, David DiMaria, Elias Rangel, Erisk Zelenka, Fabrizio Cucci, Jared Duncan, Keith Donaldson, Michael Bright, Paolo Antinori, Peter Perlepes, and Tiklu Ganguly. Their positive comments kept me going at times when I worried my writing was utterly awful and completely useless. On the other hand, their constructive criticism helped improve sections that I’d quickly thrown together without enough effort. Thank you for pointing out the hard-to-understand sections and suggesting ways of improving the book. Also, thank you for asking the right questions, which made me realize I was wrong about two or three things in the initial versions of the manuscript.

 I also need to thank readers who bought the early version of the book through Manning’s MEAP program and voiced their comments in the online forum or reached out to me directly—especially Vimal Kansal, Paolo Patierno, and Roland Huß, who noticed quite a few inconsistencies and other mistakes. And I would like to thank everyone at Manning who has been involved in getting this book published. Before I finish, I also need to thank my colleague and high school friend Aleš Justin, who brought me to Red Hat, and my wonderful colleagues from the Cloud Enablement team. If I hadn’t been at Red Hat or in the team, I wouldn’t have been the one to write this book.

 Lastly, I would like to thank my wife and my son, who were way too understanding and supportive over the last 18 months, while I was locked in my office instead of spending time with them.

 Thank you all!

About This Book

 Kubernetes in Action aims to make you a proficient user of Kubernetes. It teaches you virtually all the concepts you need to understand to effectively develop and run applications in a Kubernetes environment.

 Before diving into Kubernetes, the book gives an overview of container technologies like Docker, including how to build containers, so that even readers who haven’t used these technologies before can get up and running. It then slowly guides you through most of what you need to know about Kubernetes—from basic concepts to things hidden below the surface.

Who should read this book

 The book focuses primarily on application developers, but it also provides an overview of managing applications from the operational perspective. It’s meant for anyone interested in running and managing containerized applications on more than just a single server.

 Both beginner and advanced software engineers who want to learn about container technologies and orchestrating multiple related containers at scale will gain the expertise necessary to develop, containerize, and run their applications in a Kubernetes environment.

 No previous exposure to either container technologies or Kubernetes is required. The book explains the subject matter in a progressively detailed manner, and doesn’t use any application source code that would be too hard for non-expert developers to understand.

 Readers, however, should have at least a basic knowledge of programming, computer networking, and running basic commands in Linux, and an understanding of well-known computer protocols like HTTP.

How this book is organized: a roadmap

 This book has three parts that cover 18 chapters.

 Part 1 gives a short introduction to Docker and Kubernetes, how to set up a Kubernetes cluster, and how to run a simple application in it. It contains two chapters:

 	
Chapter 1 explains what Kubernetes is, how it came to be, and how it helps to solve today’s problems of managing applications at scale.

 	
Chapter 2 is a hands-on tutorial on how to build a container image and run it in a Kubernetes cluster. It also explains how to run a local single-node Kubernetes cluster and a proper multi-node cluster in the cloud.

 Part 2 introduces the key concepts you must understand to run applications in Kubernetes. The chapters are as follows:

 	
Chapter 3 introduces the fundamental building block in Kubernetes—the pod—and explains how to organize pods and other Kubernetes objects through labels.

 	
Chapter 4 teaches you how Kubernetes keeps applications healthy by automatically restarting containers. It also shows how to properly run managed pods, horizontally scale them, make them resistant to failures of cluster nodes, and run them at a predefined time in the future or periodically.

 	
Chapter 5 shows how pods can expose the service they provide to clients running both inside and outside the cluster. It also shows how pods running in the cluster can discover and access services, regardless of whether they live in or out of the cluster.

 	
Chapter 6 explains how multiple containers running in the same pod can share files and how you can manage persistent storage and make it accessible to pods.

 	
Chapter 7 shows how to pass configuration data and sensitive information like credentials to apps running inside pods.

 	
Chapter 8 describes how applications can get information about the Kubernetes environment they’re running in and how they can talk to Kubernetes to alter the state of the cluster.

 	
Chapter 9 introduces the concept of a Deployment and explains the proper way of running and updating applications in a Kubernetes environment.

 	
Chapter 10 introduces a dedicated way of running stateful applications, which usually require a stable identity and state.

 Part 3 dives deep into the internals of a Kubernetes cluster, introduces some additional concepts, and reviews everything you’ve learned in the first two parts from a higher perspective. This is the last group of chapters:

 	
Chapter 11 goes beneath the surface of Kubernetes and explains all the components that make up a Kubernetes cluster and what each of them does. It also explains how pods communicate through the network and how services perform load balancing across multiple pods.

 	
Chapter 12 explains how to secure your Kubernetes API server, and by extension the cluster, using authentication and authorization.

 	
Chapter 13 teaches you how pods can access the node’s resources and how a cluster administrator can prevent pods from doing that.

 	
Chapter 14 dives into constraining the computational resources each application is allowed to consume, configuring the applications’ Quality of Service guarantees, and monitoring the resource usage of individual applications. It also teaches you how to prevent users from consuming too many resources.

 	
Chapter 15 discusses how Kubernetes can be configured to automatically scale the number of running replicas of your application, and how it can also increase the size of your cluster when your current number of cluster nodes can’t accept any additional applications.

 	
Chapter 16 shows how to ensure pods are scheduled only to certain nodes or how to prevent them from being scheduled to others. It also shows how to make sure pods are scheduled together or how to prevent that from happening.

 	
Chapter 17 teaches you how you should develop your applications to make them good citizens of your cluster. It also gives you a few pointers on how to set up your development and testing workflows to reduce friction during development.

 	
Chapter 18 shows you how you can extend Kubernetes with your own custom objects and how others have done it and created enterprise-class application platforms.

 As you progress through these chapters, you’ll not only learn about the individual Kubernetes building blocks, but also progressively improve your knowledge of using the kubectl command-line tool.

About the code

 While this book doesn’t contain a lot of actual source code, it does contain a lot of manifests of Kubernetes resources in YAML format and shell commands along with their outputs. All of this is formatted in a fixed-width font like this to separate it from ordinary text.

 Shell commands are mostly in bold, to clearly separate them from their output, but sometimes only the most important parts of the command or parts of the command’s output are in bold for emphasis. In most cases, the command output has been reformatted to make it fit into the limited space in the book. Also, because the Kubernetes CLI tool kubectl is constantly evolving, newer versions may print out more information than what’s shown in the book. Don’t be confused if they don’t match exactly.

 Listings sometimes include a line-continuation marker (➥) to show that a line of text wraps to the next line. They also include annotations, which highlight and explain the most important parts.

 Within text paragraphs, some very common elements such as Pod, Replication-Controller, ReplicaSet, DaemonSet, and so forth are set in regular font to avoid over-proliferation of code font and help readability. In some places, “Pod” is capitalized to refer to the Pod resource, and lowercased to refer to the actual group of running containers.

 All the samples in the book have been tested with Kubernetes version 1.8 running in Google Kubernetes Engine and in a local cluster run with Minikube. The complete source code and YAML manifests can be found at https://github.com/luksa/kubernetes-in-action or downloaded from the publisher’s website at www.manning.com/books/kubernetes-in-action.

Book forum

 Purchase of Kubernetes in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/kubernetes-in-action. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Other online resources

 You can find a wide range of additional Kubernetes resources at the following locations:

 	The Kubernetes website at https://kubernetes.io

 	The Kubernetes Blog, which regularly posts interesting info (http://blog.kubernetes.io)

 	The Kubernetes community’s Slack channel at http://slack.k8s.io

 	The Kubernetes and Cloud Native Computing Foundation’s YouTube channels:

 	https://www.youtube.com/channel/UCZ2bu0qutTOM0tHYa_jkIwg

 	https://www.youtube.com/channel/UCvqbFHwN-nwalWPjPUKpvTA

 To gain a deeper understanding of individual topics or even to help contribute to Kubernetes, you can also check out any of the Kubernetes Special Interest Groups (SIGs) at https://github.com/kubernetes/kubernetes/wiki/Special-Interest-Groups-(SIGs).

 And, finally, as Kubernetes is open source, there’s a wealth of information available in the Kubernetes source code itself. You’ll find it at https://github.com/kubernetes/kubernetes and related repositories.

About the Author

 [image:]

 Marko Lukša is a software engineer with more than 20 years of professional experience developing everything from simple web applications to full ERP systems, frameworks, and middleware software. He took his first steps in programming back in 1985, at the age of six, on a second-hand ZX Spectrum computer his father had bought for him. In primary school, he was the national champion in the Logo programming competition and attended summer coding camps, where he learned to program in Pascal. Since then, he has developed software in a wide range of programming languages.

 In high school, he started building dynamic websites when the web was still relatively young. He then moved on to developing software for the healthcare and telecommunications industries at a local company, while studying computer science at the University of Ljubljana, Slovenia. Eventually, he ended up working for Red Hat, initially developing an open source implementation of the Google App Engine API, which utilized Red Hat’s JBoss middleware products underneath. He also worked in or contributed to projects like CDI/Weld, Infinispan/JBoss Data-Grid, and others.

 Since late 2014, he has been part of Red Hat’s Cloud Enablement team, where his responsibilities include staying up-to-date on new developments in Kubernetes and related technologies and ensuring the company’s middleware software utilizes the features of Kubernetes and OpenShift to their full potential.

About the Cover Illustration

 The figure on the cover of Kubernetes in Action is a “Member of the Divan,” the Turkish Council of State or governing body. The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street, London. The title page is missing from the collection and we have been unable to track it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration bears the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book ... 200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan. The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for the day. The Manning editor didn’t have on his person the substantial amount of cash that was required for the purchase, and a credit card and check were both politely turned down. With the seller flying back to Ankara that evening, the situation was getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with a handshake. The seller proposed that the money be transferred to him by wire, and the editor walked out with the bank information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have happened a long time ago. We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

 Part 1. Overview

 Chapter 1. Introducing Kubernetes

 This chapter covers

 	Understanding how software development and deployment has changed over recent years

 	Isolating applications and reducing environment differences using containers

 	Understanding how containers and Docker are used by Kubernetes

 	Making developers’ and sysadmins’ jobs easier with Kubernetes

 Years ago, most software applications were big monoliths, running either as a single process or as a small number of processes spread across a handful of servers. These legacy systems are still widespread today. They have slow release cycles and are updated relatively infrequently. At the end of every release cycle, developers package up the whole system and hand it over to the ops team, who then deploys and monitors it. In case of hardware failures, the ops team manually migrates it to the remaining healthy servers.

 Today, these big monolithic legacy applications are slowly being broken down into smaller, independently running components called microservices. Because microservices are decoupled from each other, they can be developed, deployed, updated, and scaled individually. This enables you to change components quickly and as often as necessary to keep up with today’s rapidly changing business requirements.

 But with bigger numbers of deployable components and increasingly larger datacenters, it becomes increasingly difficult to configure, manage, and keep the whole system running smoothly. It’s much harder to figure out where to put each of those components to achieve high resource utilization and thereby keep the hardware costs down. Doing all this manually is hard work. We need automation, which includes automatic scheduling of those components to our servers, automatic configuration, supervision, and failure-handling. This is where Kubernetes comes in.

 Kubernetes enables developers to deploy their applications themselves and as often as they want, without requiring any assistance from the operations (ops) team. But Kubernetes doesn’t benefit only developers. It also helps the ops team by automatically monitoring and rescheduling those apps in the event of a hardware failure. The focus for system administrators (sysadmins) shifts from supervising individual apps to mostly supervising and managing Kubernetes and the rest of the infrastructure, while Kubernetes itself takes care of the apps.

 Note

 Kubernetes is Greek for pilot or helmsman (the person holding the ship’s steering wheel). People pronounce Kubernetes in a few different ways. Many pronounce it as Koo-ber-nay-tace, while others pronounce it more like Koo-ber-netties. No matter which form you use, people will understand what you mean.

 Kubernetes abstracts away the hardware infrastructure and exposes your whole datacenter as a single enormous computational resource. It allows you to deploy and run your software components without having to know about the actual servers underneath. When deploying a multi-component application through Kubernetes, it selects a server for each component, deploys it, and enables it to easily find and communicate with all the other components of your application.

 This makes Kubernetes great for most on-premises datacenters, but where it starts to shine is when it’s used in the largest datacenters, such as the ones built and operated by cloud providers. Kubernetes allows them to offer developers a simple platform for deploying and running any type of application, while not requiring the cloud provider’s own sysadmins to know anything about the tens of thousands of apps running on their hardware.

 With more and more big companies accepting the Kubernetes model as the best way to run apps, it’s becoming the standard way of running distributed apps both in the cloud, as well as on local on-premises infrastructure.

1.1. Understanding the need for a system like Kubernetes

 Before you start getting to know Kubernetes in detail, let’s take a quick look at how the development and deployment of applications has changed in recent years. This change is both a consequence of splitting big monolithic apps into smaller microservices and of the changes in the infrastructure that runs those apps. Understanding these changes will help you better see the benefits of using Kubernetes and container technologies such as Docker.

 1.1.1. Moving from monolithic apps to microservices

 Monolithic applications consist of components that are all tightly coupled together and have to be developed, deployed, and managed as one entity, because they all run as a single OS process. Changes to one part of the application require a redeployment of the whole application, and over time the lack of hard boundaries between the parts results in the increase of complexity and consequential deterioration of the quality of the whole system because of the unconstrained growth of inter-dependencies between these parts.

 Running a monolithic application usually requires a small number of powerful servers that can provide enough resources for running the application. To deal with increasing loads on the system, you then either have to vertically scale the servers (also known as scaling up) by adding more CPUs, memory, and other server components, or scale the whole system horizontally, by setting up additional servers and running multiple copies (or replicas) of an application (scaling out). While scaling up usually doesn’t require any changes to the app, it gets expensive relatively quickly and in practice always has an upper limit. Scaling out, on the other hand, is relatively cheap hardware-wise, but may require big changes in the application code and isn’t always possible—certain parts of an application are extremely hard or next to impossible to scale horizontally (relational databases, for example). If any part of a monolithic application isn’t scalable, the whole application becomes unscalable, unless you can split up the monolith somehow.

 Splitting apps into microservices

 These and other problems have forced us to start splitting complex monolithic applications into smaller independently deployable components called microservices. Each microservice runs as an independent process (see figure 1.1) and communicates with other microservices through simple, well-defined interfaces (APIs).

 Figure 1.1. Components inside a monolithic application vs. standalone microservices

 [image:]

 Microservices communicate through synchronous protocols such as HTTP, over which they usually expose RESTful (REpresentational State Transfer) APIs, or through asynchronous protocols such as AMQP (Advanced Message Queueing Protocol). These protocols are simple, well understood by most developers, and not tied to any specific programming language. Each microservice can be written in the language that’s most appropriate for implementing that specific microservice.

 Because each microservice is a standalone process with a relatively static external API, it’s possible to develop and deploy each microservice separately. A change to one of them doesn’t require changes or redeployment of any other service, provided that the API doesn’t change or changes only in a backward-compatible way.

 Scaling microservices

 Scaling microservices, unlike monolithic systems, where you need to scale the system as a whole, is done on a per-service basis, which means you have the option of scaling only those services that require more resources, while leaving others at their original scale. Figure 1.2 shows an example. Certain components are replicated and run as multiple processes deployed on different servers, while others run as a single application process. When a monolithic application can’t be scaled out because one of its parts is unscalable, splitting the app into microservices allows you to horizontally scale the parts that allow scaling out, and scale the parts that don’t, vertically instead of horizontally.

 Figure 1.2. Each microservice can be scaled individually.

 [image:]

 Deploying microservices

 As always, microservices also have drawbacks. When your system consists of only a small number of deployable components, managing those components is easy. It’s trivial to decide where to deploy each component, because there aren’t that many choices. When the number of those components increases, deployment-related decisions become increasingly difficult because not only does the number of deployment combinations increase, but the number of inter-dependencies between the components increases by an even greater factor.

 Microservices perform their work together as a team, so they need to find and talk to each other. When deploying them, someone or something needs to configure all of them properly to enable them to work together as a single system. With increasing numbers of microservices, this becomes tedious and error-prone, especially when you consider what the ops/sysadmin teams need to do when a server fails.

 Microservices also bring other problems, such as making it hard to debug and trace execution calls, because they span multiple processes and machines. Luckily, these problems are now being addressed with distributed tracing systems such as Zipkin.

 Understanding the divergence of environment requirements

 As I’ve already mentioned, components in a microservices architecture aren’t only deployed independently, but are also developed that way. Because of their independence and the fact that it’s common to have separate teams developing each component, nothing impedes each team from using different libraries and replacing them whenever the need arises. The divergence of dependencies between application components, like the one shown in figure 1.3, where applications require different versions of the same libraries, is inevitable.

 Figure 1.3. Multiple applications running on the same host may have conflicting dependencies.

 [image:]

 Deploying dynamically linked applications that require different versions of shared libraries, and/or require other environment specifics, can quickly become a nightmare for the ops team who deploys and manages them on production servers. The bigger the number of components you need to deploy on the same host, the harder it will be to manage all their dependencies to satisfy all their requirements.

 1.1.2. Providing a consistent environment to applications

 Regardless of how many individual components you’re developing and deploying, one of the biggest problems that developers and operations teams always have to deal with is the differences in the environments they run their apps in. Not only is there a huge difference between development and production environments, differences even exist between individual production machines. Another unavoidable fact is that the environment of a single production machine will change over time.

 These differences range from hardware to the operating system to the libraries that are available on each machine. Production environments are managed by the operations team, while developers often take care of their development laptops on their own. The difference is how much these two groups of people know about system administration, and this understandably leads to relatively big differences between those two systems, not to mention that system administrators give much more emphasis on keeping the system up to date with the latest security patches, while a lot of developers don’t care about that as much.

 Also, production systems can run applications from multiple developers or development teams, which isn’t necessarily true for developers’ computers. A production system must provide the proper environment to all applications it hosts, even though they may require different, even conflicting, versions of libraries.

 To reduce the number of problems that only show up in production, it would be ideal if applications could run in the exact same environment during development and in production so they have the exact same operating system, libraries, system configuration, networking environment, and everything else. You also don’t want this environment to change too much over time, if at all. Also, if possible, you want the ability to add applications to the same server without affecting any of the existing applications on that server.

 1.1.3. Moving to continuous delivery: DevOps and NoOps

 In the last few years, we’ve also seen a shift in the whole application development process and how applications are taken care of in production. In the past, the development team’s job was to create the application and hand it off to the operations team, who then deployed it, tended to it, and kept it running. But now, organizations are realizing it’s better to have the same team that develops the application also take part in deploying it and taking care of it over its whole lifetime. This means the developer, QA, and operations teams now need to collaborate throughout the whole process. This practice is called DevOps.

 Understanding the benefits

 Having the developers more involved in running the application in production leads to them having a better understanding of both the users’ needs and issues and the problems faced by the ops team while maintaining the app. Application developers are now also much more inclined to give users the app earlier and then use their feedback to steer further development of the app.

 To release newer versions of applications more often, you need to streamline the deployment process. Ideally, you want developers to deploy the applications themselves without having to wait for the ops people. But deploying an application often requires an understanding of the underlying infrastructure and the organization of the hardware in the datacenter. Developers don’t always know those details and, most of the time, don’t even want to know about them.

 Letting developers and sysadmins do what they do best

 Even though developers and system administrators both work toward achieving the same goal of running a successful software application as a service to its customers, they have different individual goals and motivating factors. Developers love creating new features and improving the user experience. They don’t normally want to be the ones making sure that the underlying operating system is up to date with all the security patches and things like that. They prefer to leave that up to the system administrators.

 The ops team is in charge of the production deployments and the hardware infrastructure they run on. They care about system security, utilization, and other aspects that aren’t a high priority for developers. The ops people don’t want to deal with the implicit interdependencies of all the application components and don’t want to think about how changes to either the underlying operating system or the infrastructure can affect the operation of the application as a whole, but they must.

 Ideally, you want the developers to deploy applications themselves without knowing anything about the hardware infrastructure and without dealing with the ops team. This is referred to as NoOps. Obviously, you still need someone to take care of the hardware infrastructure, but ideally, without having to deal with peculiarities of each application running on it.

 As you’ll see, Kubernetes enables us to achieve all of this. By abstracting away the actual hardware and exposing it as a single platform for deploying and running apps, it allows developers to configure and deploy their applications without any help from the sysadmins and allows the sysadmins to focus on keeping the underlying infrastructure up and running, while not having to know anything about the actual applications running on top of it.

1.2. Introducing container technologies

 In section 1.1 I presented a non-comprehensive list of problems facing today’s development and ops teams. While you have many ways of dealing with them, this book will focus on how they’re solved with Kubernetes.

 Kubernetes uses Linux container technologies to provide isolation of running applications, so before we dig into Kubernetes itself, you need to become familiar with the basics of containers to understand what Kubernetes does itself, and what it offloads to container technologies like Docker or rkt (pronounced “rock-it”).

 1.2.1. Understanding what containers are

 In section 1.1.1 we saw how different software components running on the same machine will require different, possibly conflicting, versions of dependent libraries or have other different environment requirements in general.

 When an application is composed of only smaller numbers of large components, it’s completely acceptable to give a dedicated Virtual Machine (VM) to each component and isolate their environments by providing each of them with their own operating system instance. But when these components start getting smaller and their numbers start to grow, you can’t give each of them their own VM if you don’t want to waste hardware resources and keep your hardware costs down. But it’s not only about wasting hardware resources. Because each VM usually needs to be configured and managed individually, rising numbers of VMs also lead to wasting human resources, because they increase the system administrators’ workload considerably.

 Isolating components with Linux container technologies

 Instead of using virtual machines to isolate the environments of each microservice (or software processes in general), developers are turning to Linux container technologies. They allow you to run multiple services on the same host machine, while not only exposing a different environment to each of them, but also isolating them from each other, similarly to VMs, but with much less overhead.

 A process running in a container runs inside the host’s operating system, like all the other processes (unlike VMs, where processes run in separate operating systems). But the process in the container is still isolated from other processes. To the process itself, it looks like it’s the only one running on the machine and in its operating system.

 Comparing virtual machines to containers

 Compared to VMs, containers are much more lightweight, which allows you to run higher numbers of software components on the same hardware, mainly because each VM needs to run its own set of system processes, which requires additional compute resources in addition to those consumed by the component’s own process. A container, on the other hand, is nothing more than a single isolated process running in the host OS, consuming only the resources that the app consumes and without the overhead of any additional processes.

 Because of the overhead of VMs, you often end up grouping multiple applications into each VM because you don’t have enough resources to dedicate a whole VM to each app. When using containers, you can (and should) have one container for each application, as shown in figure 1.4. The end-result is that you can fit many more applications on the same bare-metal machine.

 Figure 1.4. Using VMs to isolate groups of applications vs. isolating individual apps with containers

 [image:]

 When you run three VMs on a host, you have three completely separate operating systems running on and sharing the same bare-metal hardware. Underneath those VMs is the host’s OS and a hypervisor, which divides the physical hardware resources into smaller sets of virtual resources that can be used by the operating system inside each VM. Applications running inside those VMs perform system calls to the guest OS’ kernel in the VM, and the kernel then performs x86 instructions on the host’s physical CPU through the hypervisor.

 Note

 Two types of hypervisors exist. Type 1 hypervisors don’t use a host OS, while Type 2 do.

 Containers, on the other hand, all perform system calls on the exact same kernel running in the host OS. This single kernel is the only one performing x86 instructions on the host’s CPU. The CPU doesn’t need to do any kind of virtualization the way it does with VMs (see figure 1.5).

 Figure 1.5. The difference between how apps in VMs use the CPU vs. how they use them in containers

 [image:]

 The main benefit of virtual machines is the full isolation they provide, because each VM runs its own Linux kernel, while containers all call out to the same kernel, which can clearly pose a security risk. If you have a limited amount of hardware resources, VMs may only be an option when you have a small number of processes that you want to isolate. To run greater numbers of isolated processes on the same machine, containers are a much better choice because of their low overhead. Remember, each VM runs its own set of system services, while containers don’t, because they all run in the same OS. That also means that to run a container, nothing needs to be booted up, as is the case in VMs. A process run in a container starts up immediately.

 Introducing the mechanisms that make container isolation possible

 By this point, you’re probably wondering how exactly containers can isolate processes if they’re running on the same operating system. Two mechanisms make this possible. The first one, Linux Namespaces, makes sure each process sees its own personal view of the system (files, processes, network interfaces, hostname, and so on). The second one is Linux Control Groups (cgroups), which limit the amount of resources the process can consume (CPU, memory, network bandwidth, and so on).

 Isolating processes with Linux Namespaces

 By default, each Linux system initially has one single namespace. All system resources, such as filesystems, process IDs, user IDs, network interfaces, and others, belong to the single namespace. But you can create additional namespaces and organize resources across them. When running a process, you run it inside one of those namespaces. The process will only see resources that are inside the same namespace. Well, multiple kinds of namespaces exist, so a process doesn’t belong to one namespace, but to one namespace of each kind.

 The following kinds of namespaces exist:

 	Mount (mnt)

 	Process ID (pid)

 	Network (net)

 	Inter-process communication (ipc)

 	UTS

 	User ID (user)

 Each namespace kind is used to isolate a certain group of resources. For example, the UTS namespace determines what hostname and domain name the process running inside that namespace sees. By assigning two different UTS namespaces to a pair of processes, you can make them see different local hostnames. In other words, to the two processes, it will appear as though they are running on two different machines (at least as far as the hostname is concerned).

 Likewise, what Network namespace a process belongs to determines which network interfaces the application running inside the process sees. Each network interface belongs to exactly one namespace, but can be moved from one namespace to another. Each container uses its own Network namespace, and therefore each container sees its own set of network interfaces.

 This should give you a basic idea of how namespaces are used to isolate applications running in containers from each other.

 Limiting resources available to a process

 The other half of container isolation deals with limiting the amount of system resources a container can consume. This is achieved with cgroups, a Linux kernel feature that limits the resource usage of a process (or a group of processes). A process can’t use more than the configured amount of CPU, memory, network bandwidth, and so on. This way, processes cannot hog resources reserved for other processes, which is similar to when each process runs on a separate machine.

 1.2.2. Introducing the Docker container platform

 While container technologies have been around for a long time, they’ve become more widely known with the rise of the Docker container platform. Docker was the first container system that made containers easily portable across different machines. It simplified the process of packaging up not only the application but also all its libraries and other dependencies, even the whole OS file system, into a simple, portable package that can be used to provision the application to any other machine running Docker.

 When you run an application packaged with Docker, it sees the exact filesystem contents that you’ve bundled with it. It sees the same files whether it’s running on your development machine or a production machine, even if it the production server is running a completely different Linux OS. The application won’t see anything from the server it’s running on, so it doesn’t matter if the server has a completely different set of installed libraries compared to your development machine.

 For example, if you’ve packaged up your application with the files of the whole Red Hat Enterprise Linux (RHEL) operating system, the application will believe it’s running inside RHEL, both when you run it on your development computer that runs Fedora and when you run it on a server running Debian or some other Linux distribution. Only the kernel may be different.

 This is similar to creating a VM image by installing an operating system into a VM, installing the app inside it, and then distributing the whole VM image around and running it. Docker achieves the same effect, but instead of using VMs to achieve app isolation, it uses Linux container technologies mentioned in the previous section to provide (almost) the same level of isolation that VMs do. Instead of using big monolithic VM images, it uses container images, which are usually smaller.

 A big difference between Docker-based container images and VM images is that container images are composed of layers, which can be shared and reused across multiple images. This means only certain layers of an image need to be downloaded if the other layers were already downloaded previously when running a different container image that also contains the same layers.

 Understanding Docker concepts

 Docker is a platform for packaging, distributing, and running applications. As we’ve already stated, it allows you to package your application together with its whole environment. This can be either a few libraries that the app requires or even all the files that are usually available on the filesystem of an installed operating system. Docker makes it possible to transfer this package to a central repository from which it can then be transferred to any computer running Docker and executed there (for the most part, but not always, as we’ll soon explain).

 Three main concepts in Docker comprise this scenario:

 	
Images—A Docker-based container image is something you package your application and its environment into. It contains the filesystem that will be available to the application and other metadata, such as the path to the executable that should be executed when the image is run.

 	
Registries—A Docker Registry is a repository that stores your Docker images and facilitates easy sharing of those images between different people and computers. When you build your image, you can either run it on the computer you’ve built it on, or you can push (upload) the image to a registry and then pull (download) it on another computer and run it there. Certain registries are public, allowing anyone to pull images from it, while others are private, only accessible to certain people or machines.

 	
Containers—A Docker-based container is a regular Linux container created from a Docker-based container image. A running container is a process running on the host running Docker, but it’s completely isolated from both the host and all other processes running on it. The process is also resource-constrained, meaning it can only access and use the amount of resources (CPU, RAM, and so on) that are allocated to it.

 Building, distributing, and running a Docker image

 Figure 1.6 shows all three concepts and how they relate to each other. The developer first builds an image and then pushes it to a registry. The image is thus available to anyone who can access the registry. They can then pull the image to any other machine running Docker and run the image. Docker creates an isolated container based on the image and runs the binary executable specified as part of the image.

 Figure 1.6. Docker images, registries, and containers

 [image:]

 Comparing virtual machines and Docker containers

 I’ve explained how Linux containers are generally like virtual machines, but much more lightweight. Now let’s look at how Docker containers specifically compare to virtual machines (and how Docker images compare to VM images). Figure 1.7 again shows the same six applications running both in VMs and as Docker containers.

 Figure 1.7. Running six apps on three VMs vs. running them in Docker containers

 [image:]

 You’ll notice that apps A and B have access to the same binaries and libraries both when running in a VM and when running as two separate containers. In the VM, this is obvious, because both apps see the same filesystem (that of the VM). But we said that each container has its own isolated filesystem. How can both app A and app B share the same files?

 Understanding image layers

 I’ve already said that Docker images are composed of layers. Different images can contain the exact same layers because every Docker image is built on top of another image and two different images can both use the same parent image as their base. This speeds up the distribution of images across the network, because layers that have already been transferred as part of the first image don’t need to be transferred again when transferring the other image.

 But layers don’t only make distribution more efficient, they also help reduce the storage footprint of images. Each layer is only stored once. Two containers created from two images based on the same base layers can therefore read the same files, but if one of them writes over those files, the other one doesn’t see those changes. Therefore, even if they share files, they’re still isolated from each other. This works because container image layers are read-only. When a container is run, a new writable layer is created on top of the layers in the image. When the process in the container writes to a file located in one of the underlying layers, a copy of the whole file is created in the top-most layer and the process writes to the copy.

 Understanding the portability limitations of container images

 In theory, a container image can be run on any Linux machine running Docker, but one small caveat exists—one related to the fact that all containers running on a host use the host’s Linux kernel. If a containerized application requires a specific kernel version, it may not work on every machine. If a machine runs a different version of the Linux kernel or doesn’t have the same kernel modules available, the app can’t run on it.

 While containers are much more lightweight compared to VMs, they impose certain constraints on the apps running inside them. VMs have no such constraints, because each VM runs its own kernel.

 And it’s not only about the kernel. It should also be clear that a containerized app built for a specific hardware architecture can only run on other machines that have the same architecture. You can’t containerize an application built for the x86 architecture and expect it to run on an ARM-based machine because it also runs Docker. You still need a VM for that.

 1.2.3. Introducing rkt—an alternative to Docker

 Docker was the first container platform that made containers mainstream. I hope I’ve made it clear that Docker itself doesn’t provide process isolation. The actual isolation of containers is done at the Linux kernel level using kernel features such as Linux Namespaces and cgroups. Docker only makes it easy to use those features.

 After the success of Docker, the Open Container Initiative (OCI) was born to create open industry standards around container formats and runtime. Docker is part of that initiative, as is rkt (pronounced “rock-it”), which is another Linux container engine.

 Like Docker, rkt is a platform for running containers. It puts a strong emphasis on security, composability, and conforming to open standards. It uses the OCI container image format and can even run regular Docker container images.

 This book focuses on using Docker as the container runtime for Kubernetes, because it was initially the only one supported by Kubernetes. Recently, Kubernetes has also started supporting rkt, as well as others, as the container runtime.

 The reason I mention rkt at this point is so you don’t make the mistake of thinking Kubernetes is a container orchestration system made specifically for Docker-based containers. In fact, over the course of this book, you’ll realize that the essence of Kubernetes isn’t orchestrating containers. It’s much more. Containers happen to be the best way to run apps on different cluster nodes. With that in mind, let’s finally dive into the core of what this book is all about—Kubernetes.

1.3. Introducing Kubernetes

 We’ve already shown that as the number of deployable application components in your system grows, it becomes harder to manage them all. Google was probably the first company that realized it needed a much better way of deploying and managing their software components and their infrastructure to scale globally. It’s one of only a few companies in the world that runs hundreds of thousands of servers and has had to deal with managing deployments on such a massive scale. This has forced them to develop solutions for making the development and deployment of thousands of software components manageable and cost-efficient.

 1.3.1. Understanding its origins

 Through the years, Google developed an internal system called Borg (and later a new system called Omega), that helped both application developers and system administrators manage those thousands of applications and services. In addition to simplifying the development and management, it also helped them achieve a much higher utilization of their infrastructure, which is important when your organization is that large. When you run hundreds of thousands of machines, even tiny improvements in utilization mean savings in the millions of dollars, so the incentives for developing such a system are clear.

 After having kept Borg and Omega secret for a whole decade, in 2014 Google introduced Kubernetes, an open-source system based on the experience gained through Borg, Omega, and other internal Google systems.

 1.3.2. Looking at Kubernetes from the top of a mountain

 Kubernetes is a software system that allows you to easily deploy and manage containerized applications on top of it. It relies on the features of Linux containers to run heterogeneous applications without having to know any internal details of these applications and without having to manually deploy these applications on each host. Because these apps run in containers, they don’t affect other apps running on the same server, which is critical when you run applications for completely different organizations on the same hardware. This is of paramount importance for cloud providers, because they strive for the best possible utilization of their hardware while still having to maintain complete isolation of hosted applications.

 Kubernetes enables you to run your software applications on thousands of computer nodes as if all those nodes were a single, enormous computer. It abstracts away the underlying infrastructure and, by doing so, simplifies development, deployment, and management for both development and the operations teams.

 Deploying applications through Kubernetes is always the same, whether your cluster contains only a couple of nodes or thousands of them. The size of the cluster makes no difference at all. Additional cluster nodes simply represent an additional amount of resources available to deployed apps.

 Understanding the core of what Kubernetes does

 Figure 1.8 shows the simplest possible view of a Kubernetes system. The system is composed of a master node and any number of worker nodes. When the developer submits a list of apps to the master, Kubernetes deploys them to the cluster of worker nodes. What node a component lands on doesn’t (and shouldn’t) matter—neither to the developer nor to the system administrator.

 Figure 1.8. Kubernetes exposes the whole datacenter as a single deployment platform.

 [image:]

 The developer can specify that certain apps must run together and Kubernetes will deploy them on the same worker node. Others will be spread around the cluster, but they can talk to each other in the same way, regardless of where they’re deployed.

 Helping developers focus on the core app features

 Kubernetes can be thought of as an operating system for the cluster. It relieves application developers from having to implement certain infrastructure-related services into their apps; instead they rely on Kubernetes to provide these services. This includes things such as service discovery, scaling, load-balancing, self-healing, and even leader election. Application developers can therefore focus on implementing the actual features of the applications and not waste time figuring out how to integrate them with the infrastructure.

 Helping ops teams achieve better resource utilization

 Kubernetes will run your containerized app somewhere in the cluster, provide information to its components on how to find each other, and keep all of them running. Because your application doesn’t care which node it’s running on, Kubernetes can relocate the app at any time, and by mixing and matching apps, achieve far better resource utilization than is possible with manual scheduling.

 1.3.3. Understanding the architecture of a Kubernetes cluster

 We’ve seen a bird’s-eye view of Kubernetes’ architecture. Now let’s take a closer look at what a Kubernetes cluster is composed of. At the hardware level, a Kubernetes cluster is composed of many nodes, which can be split into two types:

 	The master node, which hosts the Kubernetes Control Plane that controls and manages the whole Kubernetes system

 	Worker nodes that run the actual applications you deploy

 Figure 1.9 shows the components running on these two sets of nodes. I’ll explain them next.

 Figure 1.9. The components that make up a Kubernetes cluster

 [image:]

 The Control Plane

 The Control Plane is what controls the cluster and makes it function. It consists of multiple components that can run on a single master node or be split across multiple nodes and replicated to ensure high availability. These components are

 	The Kubernetes API Server, which you and the other Control Plane components communicate with

 	
The Scheduler, which schedules your apps (assigns a worker node to each deployable component of your application)

 	The Controller Manager, which performs cluster-level functions, such as replicating components, keeping track of worker nodes, handling node failures, and so on

 	
etcd, a reliable distributed data store that persistently stores the cluster configuration.

 The components of the Control Plane hold and control the state of the cluster, but they don’t run your applications. This is done by the (worker) nodes.

 The nodes

 The worker nodes are the machines that run your containerized applications. The task of running, monitoring, and providing services to your applications is done by the following components:

 	Docker, rkt, or another container runtime, which runs your containers

 	The Kubelet, which talks to the API server and manages containers on its node

 	The Kubernetes Service Proxy (kube-proxy), which load-balances network traffic between application components

 We’ll explain all these components in detail in chapter 11. I’m not a fan of explaining how things work before first explaining what something does and teaching people to use it. It’s like learning to drive a car. You don’t want to know what’s under the hood. You first want to learn how to drive it from point A to point B. Only after you learn how to do that do you become interested in how a car makes that possible. After all, knowing what’s under the hood may someday help you get the car moving again after it breaks down and leaves you stranded at the side of the road.

 1.3.4. Running an application in Kubernetes

 To run an application in Kubernetes, you first need to package it up into one or more container images, push those images to an image registry, and then post a description of your app to the Kubernetes API server.

 The description includes information such as the container image or images that contain your application components, how those components are related to each other, and which ones need to be run co-located (together on the same node) and which don’t. For each component, you can also specify how many copies (or replicas) you want to run. Additionally, the description also includes which of those components provide a service to either internal or external clients and should be exposed through a single IP address and made discoverable to the other components.

 Understanding how the description results in a running container

 When the API server processes your app’s description, the Scheduler schedules the specified groups of containers onto the available worker nodes based on computational resources required by each group and the unallocated resources on each node at that moment. The Kubelet on those nodes then instructs the Container Runtime (Docker, for example) to pull the required container images and run the containers.

 Examine figure 1.10 to gain a better understanding of how applications are deployed in Kubernetes. The app descriptor lists four containers, grouped into three sets (these sets are called pods; we’ll explain what they are in chapter 3). The first two pods each contain only a single container, whereas the last one contains two. That means both containers need to run co-located and shouldn’t be isolated from each other. Next to each pod, you also see a number representing the number of replicas of each pod that need to run in parallel. After submitting the descriptor to Kubernetes, it will schedule the specified number of replicas of each pod to the available worker nodes. The Kubelets on the nodes will then tell Docker to pull the container images from the image registry and run the containers.

 Figure 1.10. A basic overview of the Kubernetes architecture and an application running on top of it

 [image:]

 Keeping the containers running

 Once the application is running, Kubernetes continuously makes sure that the deployed state of the application always matches the description you provided. For example, if you specify that you always want five instances of a web server running, Kubernetes will always keep exactly five instances running. If one of those instances stops working properly, like when its process crashes or when it stops responding, Kubernetes will restart it automatically.

 Similarly, if a whole worker node dies or becomes inaccessible, Kubernetes will select new nodes for all the containers that were running on the node and run them on the newly selected nodes.

 Scaling the number of copies

 While the application is running, you can decide you want to increase or decrease the number of copies, and Kubernetes will spin up additional ones or stop the excess ones, respectively. You can even leave the job of deciding the optimal number of copies to Kubernetes. It can automatically keep adjusting the number, based on real-time metrics, such as CPU load, memory consumption, queries per second, or any other metric your app exposes.

 Hitting a moving target

 We’ve said that Kubernetes may need to move your containers around the cluster. This can occur when the node they were running on has failed or because they were evicted from a node to make room for other containers. If the container is providing a service to external clients or other containers running in the cluster, how can they use the container properly if it’s constantly moving around the cluster? And how can clients connect to containers providing a service when those containers are replicated and spread across the whole cluster?

 To allow clients to easily find containers that provide a specific service, you can tell Kubernetes which containers provide the same service and Kubernetes will expose all of them at a single static IP address and expose that address to all applications running in the cluster. This is done through environment variables, but clients can also look up the service IP through good old DNS. The kube-proxy will make sure connections to the service are load balanced across all the containers that provide the service. The IP address of the service stays constant, so clients can always connect to its containers, even when they’re moved around the cluster.

 1.3.5. Understanding the benefits of using Kubernetes

 If you have Kubernetes deployed on all your servers, the ops team doesn’t need to deal with deploying your apps anymore. Because a containerized application already contains all it needs to run, the system administrators don’t need to install anything to deploy and run the app. On any node where Kubernetes is deployed, Kubernetes can run the app immediately without any help from the sysadmins.

 Simplifying application deployment

 Because Kubernetes exposes all its worker nodes as a single deployment platform, application developers can start deploying applications on their own and don’t need to know anything about the servers that make up the cluster.

 In essence, all the nodes are now a single bunch of computational resources that are waiting for applications to consume them. A developer doesn’t usually care what kind of server the application is running on, as long as the server can provide the application with adequate system resources.

 Certain cases do exist where the developer does care what kind of hardware the application should run on. If the nodes are heterogeneous, you’ll find cases when you want certain apps to run on nodes with certain capabilities and run other apps on others. For example, one of your apps may require being run on a system with SSDs instead of HDDs, while other apps run fine on HDDs. In such cases, you obviously want to ensure that particular app is always scheduled to a node with an SSD.

 Without using Kubernetes, the sysadmin would select one specific node that has an SSD and deploy the app there. But when using Kubernetes, instead of selecting a specific node where your app should be run, it’s more appropriate to tell Kubernetes to only choose among nodes with an SSD. You’ll learn how to do that in chapter 3.

 Achieving better utilization of hardware

 By setting up Kubernetes on your servers and using it to run your apps instead of running them manually, you’ve decoupled your app from the infrastructure. When you tell Kubernetes to run your application, you’re letting it choose the most appropriate node to run your application on based on the description of the application’s resource requirements and the available resources on each node.

 By using containers and not tying the app down to a specific node in your cluster, you’re allowing the app to freely move around the cluster at any time, so the different app components running on the cluster can be mixed and matched to be packed tightly onto the cluster nodes. This ensures the node’s hardware resources are utilized as best as possible.

 The ability to move applications around the cluster at any time allows Kubernetes to utilize the infrastructure much better than what you can achieve manually. Humans aren’t good at finding optimal combinations, especially when the number of all possible options is huge, such as when you have many application components and many server nodes they can be deployed on. Computers can obviously perform this work much better and faster than humans.

 Health checking and self-healing

 Having a system that allows moving an application across the cluster at any time is also valuable in the event of server failures. As your cluster size increases, you’ll deal with failing computer components ever more frequently.

 Kubernetes monitors your app components and the nodes they run on and automatically reschedules them to other nodes in the event of a node failure. This frees the ops team from having to migrate app components manually and allows the team to immediately focus on fixing the node itself and returning it to the pool of available hardware resources instead of focusing on relocating the app.

 If your infrastructure has enough spare resources to allow normal system operation even without the failed node, the ops team doesn’t even need to react to the failure immediately, such as at 3 a.m. They can sleep tight and deal with the failed node during regular work hours.

 Automatic scaling

 Using Kubernetes to manage your deployed applications also means the ops team doesn’t need to constantly monitor the load of individual applications to react to sudden load spikes. As previously mentioned, Kubernetes can be told to monitor the resources used by each application and to keep adjusting the number of running instances of each application.

 If Kubernetes is running on cloud infrastructure, where adding additional nodes is as easy as requesting them through the cloud provider’s API, Kubernetes can even automatically scale the whole cluster size up or down based on the needs of the deployed applications.

 Simplifying application development

 The features described in the previous section mostly benefit the operations team. But what about the developers? Does Kubernetes bring anything to their table? It definitely does.

 If you turn back to the fact that apps run in the same environment both during development and in production, this has a big effect on when bugs are discovered. We all agree the sooner you discover a bug, the easier it is to fix it, and fixing it requires less work. It’s the developers who do the fixing, so this means less work for them.

 Then there’s the fact that developers don’t need to implement features that they would usually implement. This includes discovery of services and/or peers in a clustered application. Kubernetes does this instead of the app. Usually, the app only needs to look up certain environment variables or perform a DNS lookup. If that’s not enough, the application can query the Kubernetes API server directly to get that and/or other information. Querying the Kubernetes API server like that can even save developers from having to implement complicated mechanisms such as leader election.

 As a final example of what Kubernetes brings to the table, you also need to consider the increase in confidence developers will feel knowing that when a new version of their app is going to be rolled out, Kubernetes can automatically detect if the new version is bad and stop its rollout immediately. This increase in confidence usually accelerates the continuous delivery of apps, which benefits the whole organization.

1.4. Summary

 In this introductory chapter, you’ve seen how applications have changed in recent years and how they can now be harder to deploy and manage. We’ve introduced Kubernetes and shown how it, together with Docker and other container platforms, helps deploy and manage applications and the infrastructure they run on. You’ve learned that

 	Monolithic apps are easier to deploy, but harder to maintain over time and sometimes impossible to scale.

 	Microservices-based application architectures allow easier development of each component, but are harder to deploy and configure to work as a single system.

 	Linux containers provide much the same benefits as virtual machines, but are far more lightweight and allow for much better hardware utilization.

 	Docker improved on existing Linux container technologies by allowing easier and faster provisioning of containerized apps together with their OS environments.

 	Kubernetes exposes the whole datacenter as a single computational resource for running applications.

 	Developers can deploy apps through Kubernetes without assistance from sysadmins.

 	Sysadmins can sleep better by having Kubernetes deal with failed nodes automatically.

 In the next chapter, you’ll get your hands dirty by building an app and running it in Docker and then in Kubernetes.

 Chapter 2. First steps with Docker and Kubernetes

 This chapter covers

 	Creating, running, and sharing a container image with Docker

 	Running a single-node Kubernetes cluster locally

 	Setting up a Kubernetes cluster on Google Kubernetes Engine

 	Setting up and using the kubectl command-line client

 	Deploying an app on Kubernetes and scaling it horizontally

 Before you start learning about Kubernetes concepts in detail, let’s see how to create a simple application, package it into a container image, and run it in a managed Kubernetes cluster (in Google Kubernetes Engine) or in a local single-node cluster. This should give you a slightly better overview of the whole Kubernetes system and will make it easier to follow the next few chapters, where we’ll go over the basic building blocks and concepts in Kubernetes.

2.1. Creating, running, and sharing a container image

 As you’ve already learned in the previous chapter, running applications in Kubernetes requires them to be packaged into container images. We’ll do a basic introduction to using Docker in case you haven’t used it yet. In the next few sections you’ll

 	Install Docker and run your first “Hello world” container

 	Create a trivial Node.js app that you’ll later deploy in Kubernetes

 	Package the app into a container image so you can then run it as an isolated container

 	Run a container based on the image

 	Push the image to Docker Hub so that anyone anywhere can run it

 2.1.1. Installing Docker and running a Hello World container

 First, you’ll need to install Docker on your Linux machine. If you don’t use Linux, you’ll need to start a Linux virtual machine (VM) and run Docker inside that VM. If you’re using a Mac or Windows and install Docker per instructions, Docker will set up a VM for you and run the Docker daemon inside that VM. The Docker client executable will be available on your host OS, and will communicate with the daemon inside the VM.

 To install Docker, follow the instructions at http://docs.docker.com/engine/installation/ for your specific operating system. After completing the installation, you can use the Docker client executable to run various Docker commands. For example, you could try pulling and running an existing image from Docker Hub, the public Docker registry, which contains ready-to-use container images for many well-known software packages. One of them is the busybox image, which you’ll use to run a simple echo "Hello world" command.

 Running a Hello World container

 If you’re unfamiliar with busybox, it’s a single executable that combines many of the standard UNIX command-line tools, such as echo, ls, gzip, and so on. Instead of the busybox image, you could also use any other full-fledged OS container image such as Fedora, Ubuntu, or other similar images, as long as it includes the echo executable.

 How do you run the busybox image? You don’t need to download or install anything. Use the docker run command and specify what image to download and run and (optionally) what command to execute, as shown in the following listing.

 Listing 2.1. Running a Hello world container with Docker

 $ docker run busybox echo "Hello world"
Unable to find image 'busybox:latest' locally
latest: Pulling from docker.io/busybox
9a163e0b8d13: Pull complete
fef924a0204a: Pull complete
Digest: sha256:97473e34e311e6c1b3f61f2a721d038d1e5eef17d98d1353a513007cf46ca6bd
Status: Downloaded newer image for docker.io/busybox:latest
Hello world

 This doesn’t look that impressive, but when you consider that the whole “app” was downloaded and executed with a single command, without you having to install that app or anything else, you’ll agree it’s awesome. In your case, the app was a single executable (busybox), but it might as well have been an incredibly complex app with many dependencies. The whole process of setting up and running the app would have been exactly the same. What’s also important is that the app was executed inside a container, completely isolated from all the other processes running on your machine.

 Understanding what happens behind the scenes

 Figure 2.1 shows exactly what happened when you performed the docker run command. First, Docker checked to see if the busybox:latest image was already present on your local machine. It wasn’t, so Docker pulled it from the Docker Hub registry at http://docker.io. After the image was downloaded to your machine, Docker created a container from that image and ran the command inside it. The echo command printed the text to STDOUT and then the process terminated and the container stopped.

 Figure 2.1. Running echo “Hello world” in a container based on the busybox container image

 [image:]

 Running other images

 Running other existing container images is much the same as how you ran the busybox image. In fact, it’s often even simpler, because you usually don’t need to specify what command to execute, the way you did in the example (echo "Hello world"). The command that should be executed is usually baked into the image itself, but you can override it if you want. After searching or browsing through the publicly available images on http://hub.docker.com or another public registry, you tell Docker to run the image like this:

