

 Hadoop in Practice, Second Edition

 Alex Holmes

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]
 	
 Manning Publications Co.
20 Baldwin Road
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Copyeditor: Andy Carroll
Proofreader: Melody Dolab
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617292224

 Printed in the United States of America

 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition of Hadoop in Practice

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Background and fundamentals

 Chapter 1. Hadoop in a heartbeat

 Chapter 2. Introduction to YARN

 2. Data logistics

 Chapter 3. Data serialization—working with text and beyond

 Chapter 4. Organizing and optimizing data in HDFS

 Chapter 5. Moving data into and out of Hadoop

 3. Big data patterns

 Chapter 6. Applying MapReduce patterns to big data

 Chapter 7. Utilizing data structures and algorithms at scale

 Chapter 8. Tuning, debugging, and testing

 4. Beyond MapReduce

 Chapter 9. SQL on Hadoop

 Chapter 10. Writing a YARN application

 Installing Hadoop and friends

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition of Hadoop in Practice

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Background and fundamentals

 Chapter 1. Hadoop in a heartbeat

 1.1. What is Hadoop?

 1.1.1. Core Hadoop components

 1.1.2. The Hadoop ecosystem

 1.1.3. Hardware requirements

 1.1.4. Hadoop distributions

 1.1.5. Who’s using Hadoop?

 1.1.6. Hadoop limitations

 1.2. Getting your hands dirty with MapReduce

 1.3. Chapter summary

 Chapter 2. Introduction to YARN

 2.1. YARN overview

 2.1.1. Why YARN?

 2.1.2. YARN concepts and components

 2.1.3. YARN configuration

 Technique 1 Determining the configuration of your cluster

 2.1.4. Interacting with YARN

 Technique 2 Running a command on your YARN cluster

 Technique 3 Accessing container logs

 Technique 4 Aggregating container log files

 2.1.5. YARN challenges

 2.2. YARN and MapReduce

 2.2.1. Dissecting a YARN MapReduce application

 2.2.2. Configuration

 2.2.3. Backward compatibility

 Technique 5 Writing code that works on Hadoop versions 1 and 2

 2.2.4. Running a job

 Technique 6 Using the command line to run a job

 2.2.5. Monitoring running jobs and viewing archived jobs

 2.2.6. Uber jobs

 Technique 7 Running small MapReduce jobs

 2.3. YARN applications

 2.3.1. NoSQL

 2.3.2. Interactive SQL

 2.3.3. Graph processing

 2.3.4. Real-time data processing

 2.3.5. Bulk synchronous parallel

 2.3.6. MPI

 2.3.7. In-memory

 2.3.8. DAG execution

 2.4. Chapter summary

 2. Data logistics

 Chapter 3. Data serialization—working with text and beyond

 3.1. Understanding inputs and outputs in MapReduce

 3.1.1. Data input

 3.1.2. Data output

 3.2. Processing common serialization formats

 3.2.1. XML

 Technique 8 MapReduce and XML

 3.2.2. JSON

 Technique 9 MapReduce and JSON

 3.3. Big data serialization formats

 3.3.1. Comparing SequenceFile, Protocol Buffers, Thrift, and Avro

 3.3.2. SequenceFile

 Technique 10 Working with SequenceFiles

 Technique 11 Using SequenceFiles to encode Protocol Buffers

 3.3.3. Protocol Buffers

 3.3.4. Thrift

 3.3.5. Avro

 Technique 12 Avro’s schema and code generation

 Technique 13 Selecting the appropriate way to use Avro in MapReduce

 Technique 14 Mixing Avro and non-Avro data in MapReduce

 Technique 15 Using Avro records in MapReduce

 Technique 16 Using Avro key/value pairs in MapReduce

 Technique 17 Controlling how sorting worksin MapReduce

 Technique 18 Avro and Hive

 Technique 19 Avro and Pig

 3.4. Columnar storage

 3.4.1. Understanding object models and storage formats

 3.4.2. Parquet and the Hadoop ecosystem

 3.4.3. Parquet block and page sizes

 Technique 20 Reading Parquet files via the command line

 Technique 21 Reading and writing Avro data in Parquet with Java

 Technique 22 Parquet and MapReduce

 Technique 23 Parquet and Hive/Impala

 Technique 24 Pushdown predicates and projection with Parquet

 3.4.4. Parquet limitations

 3.5. Custom file formats

 3.5.1. Input and output formats

 Technique 25 Writing input and output formats for CSV

 3.5.2. The importance of output committing

 3.6. Chapter summary

 Chapter 4. Organizing and optimizing data in HDFS

 4.1. Data organization

 4.1.1. Directory and file layout

 4.1.2. Data tiers

 4.1.3. Partitioning

 Technique 26 Using MultipleOutputs to partition your data

 Technique 27 Using a custom MapReduce partitioner

 4.1.4. Compacting

 Technique 28 Using filecrush to compact data

 Technique 29 Using Avro to store multiple small binary files

 4.1.5. Atomic data movement

 4.2. Efficient storage with compression

 Technique 30 Picking the right compression codec for your data

 Technique 31 Compression with HDFS, MapReduce, Pig, and Hive

 Technique 32 Splittable LZOP with MapReduce, Hive, and Pig

 4.3. Chapter summary

 Chapter 5. Moving data into and out of Hadoop

 5.1. Key elements of data movement

 Idempotence

 Aggregation

 Data format transformation

 Compression

 Availability and recoverability

 Reliable data transfer and data validation

 Resource consumption and performance

 Monitoring

 Speculative execution

 5.2. Moving data into Hadoop

 5.2.1. Roll your own ingest

 Technique 33 Using the CLI to load files

 Technique 34 Using REST to load files

 Technique 35 Accessing HDFS from behind a firewall

 Technique 36 Mounting Hadoop with NFS

 Technique 37 Using DistCp to copy data within and between clusters

 Technique 38 Using Java to load files

 5.2.2. Continuous movement of log and binary files into HDFS

 Technique 39 Pushing system log messages into HDFS with Flume

 Technique 40 An automated mechanism to copy files into HDFS

 Technique 41 Scheduling regular ingress activities with Oozie

 5.2.3. Databases

 Technique 42 Using Sqoop to import data from MySQL

 5.2.4. HBase

 Technique 43 HBase ingress into HDFS

 Technique 44 MapReduce with HBase as a data source

 5.2.5. Importing data from Kafka

 Technique 45 Using Camus to copy Avro data from Kafka into HDFS

 5.3. Moving data out of Hadoop

 5.3.1. Roll your own egress

 Technique 46 Using the CLI to extract files

 Technique 47 Using REST to extract files

 Technique 48 Reading from HDFS when behind a firewall

 Technique 49 Mounting Hadoop with NFS

 Technique 50 Using DistCp to copy data out of Hadoop

 Technique 51 Using Java to extract files

 5.3.2. Automated file egress

 Technique 52 An automated mechanism to export files from HDFS

 5.3.3. Databases

 Technique 53 Using Sqoop to export data to MySQL

 5.3.4. NoSQL

 5.4. Chapter summary

 3. Big data patterns

 Chapter 6. Applying MapReduce patterns to big data

 6.1. Joining

 Join data

 Technique 54 Picking the best join strategy for your data

 Technique 55 Filters, projections, and pushdowns

 6.1.1. Map-side joins

 Technique 56 Joining data where one dataset can fit into memory

 Technique 57 Performing a semi-join on large datasets

 Technique 58 Joining on presorted and prepartitioned data

 6.1.2. Reduce-side joins

 Technique 59 A basic repartition join

 Technique 60 Optimizing the repartition join

 Technique 61 Using Bloom filters to cut down on shuffled data

 6.1.3. Data skew in reduce-side joins

 Technique 62 Joining large datasets with high join-key cardinality

 Technique 63 Handling skews generated by the hash partitioner

 6.2. Sorting

 6.2.1. Secondary sort

 Technique 64 Implementing a secondary sort

 6.2.2. Total order sorting

 Technique 65 Sorting keys across multiple reducers

 6.3. Sampling

 Technique 66 Writing a reservoir-sampling InputFormat

 6.4. Chapter summary

 Chapter 7. Utilizing data structures and algorithms at scale

 7.1. Modeling data and solving problems with graphs

 7.1.1. Modeling graphs

 7.1.2. Shortest-path algorithm

 Technique 67 Find the shortest distance between two users

 7.1.3. Friends-of-friends algorithm

 Technique 68 Calculating FoFs

 7.1.4. Using Giraph to calculate PageRank over a web graph

 Technique 69 Calculate PageRank over a web graph

 7.2. Bloom filters

 Technique 70 Parallelized Bloom filter creation in MapReduce

 7.3. HyperLogLog

 7.3.1. A brief introduction to HyperLogLog

 Technique 71 Using HyperLogLog to calculate unique counts

 7.4. Chapter summary

 Chapter 8. Tuning, debugging, and testing

 8.1. Measure, measure, measure

 8.2. Tuning MapReduce

 8.2.1. Common inefficiencies in MapReduce jobs

 Technique 72 Viewing job statistics

 8.2.2. Map optimizations

 Technique 73 Data locality

 Technique 74 Dealing with a large number of input splits

 Technique 75 Generating input splits in the cluster with YARN

 8.2.3. Shuffle optimizations

 Technique 76 Using the combiner

 Technique 77 Blazingly fast sorting with binary comparators

 Technique 78 Tuning the shuffle internals

 8.2.4. Reducer optimizations

 Technique 79 Too few or too many reducers

 8.2.5. General tuning tips

 Technique 80 Using stack dumps to discover unoptimized user code

 Technique 81 Profiling your map and reduce tasks

 8.3. Debugging

 8.3.1. Accessing container log output

 Technique 82 Examining task logs

 8.3.2. Accessing container start scripts

 Technique 83 Figuring out the container startup command

 8.3.3. Debugging OutOfMemory errors

 Technique 84 Force container JVMs to generate a heap dump

 8.3.4. MapReduce coding guidelines for effective debugging

 Technique 85 Augmenting MapReduce code for better debugging

 8.4. Testing MapReduce jobs

 8.4.1. Essential ingredients for effective unit testing

 8.4.2. MRUnit

 Technique 86 Using MRUnit to unit-test MapReduce

 8.4.3. LocalJobRunner

 Technique 87 Heavyweight job testing with the LocalJobRunner

 8.4.4. MiniMRYarnCluster

 Technique 88 Using MiniMRYarnCluster to test your jobs

 8.4.5. Integration and QA testing

 8.5. Chapter summary

 4. Beyond MapReduce

 Chapter 9. SQL on Hadoop

 9.1. Hive

 9.1.1. Hive basics

 9.1.2. Reading and writing data

 Technique 89 Working with text files

 Technique 90 Exporting data to local disk

 9.1.3. User-defined functions in Hive

 Technique 91 Writing UDFs

 9.1.4. Hive performance

 Technique 92 Partitioning

 Technique 93 Tuning Hive joins

 9.2. Impala

 9.2.1. Impala vs. Hive

 9.2.2. Impala basics

 Technique 94 Working with text

 Technique 95 Working with Parquet

 Technique 96 Refreshing metadata

 9.2.3. User-defined functions in Impala

 Technique 97 Executing Hive UDFs in Impala

 9.3. Spark SQL

 9.3.1. Spark 101

 9.3.2. Spark on Hadoop

 9.3.3. SQL with Spark

 Technique 98 Calculating stock averages with Spark SQL

 Technique 99 Language-integrated queries

 Technique 100 Hive and Spark SQL

 9.4. Chapter summary

 Chapter 10. Writing a YARN application

 10.1. Fundamentals of building a YARN application

 10.1.1. Actors

 10.1.2. The mechanics of a YARN application

 10.2. Building a YARN application to collect cluster statistics

 Technique 101 A bare-bones YARN client

 Technique 102 A bare-bones ApplicationMaster

 Technique 103 Running the application and accessing logs

 Technique 104 Debugging using an unmanaged application master

 10.3. Additional YARN application capabilities

 10.3.1. RPC between components

 10.3.2. Service discovery

 10.3.3. Checkpointing application progress

 10.3.4. Avoiding split-brain

 10.3.5. Long-running applications

 10.3.6. Security

 10.4. YARN programming abstractions

 10.4.1. Twill

 10.4.2. Spring

 10.4.3. REEF

 10.4.4. Picking a YARN API abstraction

 10.5. Chapter summary

 Installing Hadoop and friends

 A.1. Code for the book

 Downloading

 Installing

 Adding the home directory to your path

 Running an example job

 Downloading the sources and building

 A.2. Recommended Java versions

 A.3. Hadoop

 Apache tarball installation

 Configuration for pseudo-distributed mode for Hadoop 1 and earlier

 Configuration for pseudo-distributed mode for Hadoop 2

 Set up SSH

 Java

 Environment settings

 Format HDFS

 Starting Hadoop 1 and earlier

 Starting Hadoop 2

 Creating a home directory for your user on HDFS

 Verifying the installation

 Stopping Hadoop 1

 Stopping Hadoop 2

 Hadoop 1.x UI ports

 Hadoop 2.x UI ports

 A.4. Flume

 Getting more information

 Installation on Apache Hadoop 1.x systems

 Installation on Apache Hadoop 2.x systems

 A.5. Oozie

 Getting more information

 Installation on Hadoop 1.x systems

 Installation on Hadoop 2.x systems

 A.6. Sqoop

 Getting more information

 Installation

 A.7. HBase

 Getting more information

 Installation

 A.8. Kafka

 Getting more information

 Installation

 A.9. Camus

 Getting more information

 Installation on Hadoop 1

 Installation on Hadoop 2

 A.10. Avro

 Getting more information

 Installation

 A.11. Apache Thrift

 Getting more information

 Building Thrift 0.7

 A.12. Protocol Buffers

 Getting more information

 Building Protocol Buffers

 A.13. Snappy

 Getting more information

 A.14. LZOP

 Getting more information

 Building LZOP

 A.15. Elephant Bird

 Getting more information

 A.16. Hive

 Getting more information

 Installation

 A.17. R

 Getting more information

 Installation on Red Hat–based systems

 Installation on non–Red Hat systems

 A.18. RHadoop

 Getting more information

 rmr/rhdfs installation

 A.19. Mahout

 Getting more information

 Installation

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition of Hadoop in Practice

 A new book from Manning, Hadoop in Practice, is definitely the most modern book on the topic. Important subjects, like what commercial variants such as MapR offer, and the many different releases and APIs get uniquely good coverage in this book.

 Ted Dunning, Chief Application Architect, MapR Technologies

 Comprehensive coverage of advanced Hadoop usage, including high-quality code samples.

 Chris Nauroth, Senior Staff Software Engineer The Walt Disney Company

 A very pragmatic and broad overview of Hadoop and the Hadoop tools ecosystem, with a wide set of interesting topics that tickle the creative brain.

 Mark Kemna, Chief Technology Officer, Brilig

 A practical introduction to the Hadoop ecosystem.

 Philipp K. Janert, Principal Value, LLC

 This book is the horizontal roof that each of the pillars of individual Hadoop technology books hold. It expertly ties together all the Hadoop ecosystem technologies.

 Ayon Sinha, Big Data Architect, Britely

 I would take this book on my path to the future.

 Alexey Gayduk, Senior Software Engineer, Grid Dynamics

 A high-quality and well-written book that is packed with useful examples. The breadth and detail of the material is by far superior to any other Hadoop reference guide. It is perfect for anyone who likes to learn new tools/technologies while following pragmatic, real-world examples.

 Amazon reviewer

Preface

 I first encountered Hadoop in the fall of 2008 when I was working on an internet crawl-and-analysis project at Verisign. We were making discoveries similar to those that Doug Cutting and others at Nutch had made several years earlier about how to efficiently store and manage terabytes of crawl-and-analyzed data. At the time, we were getting by with our homegrown distributed system, but the influx of a new data stream and requirements to join that stream with our crawl data couldn’t be supported by our existing system in the required timeline.

 After some research, we came across the Hadoop project, which seemed to be a perfect fit for our needs—it supported storing large volumes of data and provided a compute mechanism to combine them. Within a few months, we built and deployed a MapReduce application encompassing a number of MapReduce jobs, woven together with our own MapReduce workflow management system, onto a small cluster of 18 nodes. It was a revelation to observe our MapReduce jobs crunching through our data in minutes. Of course, what we weren’t expecting was the amount of time that we would spend debugging and performance-tuning our MapReduce jobs. Not to mention the new roles we took on as production administrators—the biggest surprise in this role was the number of disk failures we encountered during those first few months supporting production.

 As our experience and comfort level with Hadoop grew, we continued to build more of our functionality using Hadoop to help with our scaling challenges. We also started to evangelize the use of Hadoop within our organization and helped kick-start other projects that were also facing big data challenges.

 The greatest challenge we faced when working with Hadoop, and specifically MapReduce, was relearning how to solve problems with it. MapReduce is its own flavor of parallel programming, and it’s quite different from the in-JVM programming that we were accustomed to. The first big hurdle was training our brains to think MapReduce, a topic which the book Hadoop in Action by Chuck Lam (Manning Publications, 2010) covers well.

 After one is used to thinking in MapReduce, the next challenge is typically related to the logistics of working with Hadoop, such as how to move data in and out of HDFS and effective and efficient ways to work with data in Hadoop. These areas of Hadoop haven’t received much coverage, and that’s what attracted me to the potential of this book—the chance to go beyond the fundamental word-count Hadoop uses and covering some of the trickier and dirtier aspects of Hadoop.

 As I’m sure many authors have experienced, I went into this project confidently believing that writing this book was just a matter of transferring my experiences onto paper. Boy, did I get a reality check, but not altogether an unpleasant one, because writing introduced me to new approaches and tools that ultimately helped better my own Hadoop abilities. I hope that you get as much out of reading this book as I did writing it.

Acknowledgments

 First and foremost, I want to thank Michael Noll, who pushed me to write this book. He provided invaluable insights into how to structure the content of the book, reviewed my early chapter drafts, and helped mold the book. I can’t express how much his support and encouragement has helped me throughout the process.

 I’m also indebted to Cynthia Kane, my development editor at Manning, who coached me through writing this book and provided invaluable feedback on my work. Among the many notable “aha!” moments I had when working with Cynthia, the biggest one was when she steered me into using visual aids to help explain some of the complex concepts in this book.

 All of the Manning staff were a pleasure to work with, and a special shout out goes to Troy Mott, Nick Chase, Tara Walsh, Bob Herbstman, Michael Stephens, Marjan Bace, Maureen Spencer, and Kevin Sullivan.

 I also want to say a big thank you to all the reviewers of this book: Adam Kawa, Andrea Tarocchi, Anna Lahoud, Arthur Zubarev, Edward Ribeiro, Fillipe Massuda, Gerd Koenig, Jeet Marwah, Leon Portman, Mohamed Diouf, Muthuswamy Manigandan, Rodrigo Abreu, and Serega Sheypack. Jonathan Siedman, the primary technical reviewer, did a great job of reviewing the entire book.

 Many thanks to Josh Wills, the creator of Crunch, who kindly looked over the chapter that covered that topic. And more thanks go to Josh Patterson, who reviewed my Mahout chapter.

 Finally, a special thanks to my wife, Michal, who had to put up with a cranky husband working crazy hours. She was a source of encouragement throughout the entire process.

About this Book

 Doug Cutting, the creator of Hadoop, likes to call Hadoop the kernel for big data, and I would tend to agree. With its distributed storage and compute capabilities, Hadoop is fundamentally an enabling technology for working with huge datasets. Hadoop provides a bridge between structured (RDBMS) and unstructured (log files, XML, text) data and allows these datasets to be easily joined together. This has evolved from traditional use cases, such as combining OLTP and log files, to more sophisticated uses, such as using Hadoop for data warehousing (exemplified by Facebook) and the field of data science, which studies and makes new discoveries about data.

 This book collects a number of intermediary and advanced Hadoop examples and presents them in a problem/solution format. Each technique addresses a specific task you’ll face, like using Flume to move log files into Hadoop or using Mahout for predictive analysis. Each problem is explored step by step, and as you work through them, you’ll find yourself growing more comfortable with Hadoop and at home in the world of big data.

 This hands-on book targets users who have some practical experience with Hadoop and understand the basic concepts of MapReduce and HDFS. Manning’s Hadoop in Action by Chuck Lam contains the necessary prerequisites to understand and apply the techniques covered in this book.

 Many techniques in this book are Java-based, which means readers are expected to possess an intermediate-level knowledge of Java. An excellent text for all levels of Java users is Effective Java, Second Edition by Joshua Bloch (Addison-Wesley, 2008).

Roadmap

 This book has 10 chapters divided into four parts.

 Part 1 contains two chapters that form the introduction to this book. They review Hadoop basics and look at how to get Hadoop up and running on a single host. YARN, which is new in Hadoop version 2, is also examined, and some operational tips are provided for performing basic functions in YARN.

 Part 2, “Data logistics,” consists of three chapters that cover the techniques and tools required to deal with data fundamentals, how to work with various data formats, how to organize and optimize your data, and getting data into and out of Hadoop. Picking the right format for your data and determining how to organize data in HDFS are the first items you’ll need to address when working with Hadoop, and they’re covered in chapters 3 and 4 respectively. Getting data into Hadoop is one of the bigger hurdles commonly encountered when working with Hadoop, and chapter 5 is dedicated to looking at a variety of tools that work with common enterprise data sources.

 Part 3 is called “Big data patterns,” and it looks at techniques to help you work effectively with large volumes of data. Chapter 6 covers how to represent data such as graphs for use with MapReduce, and it looks at several algorithms that operate on graph data. Chapter 7 looks at more advanced data structures and algorithms such as graph processing and using HyperLogLog for working with large datasets. Chapter 8 looks at how to tune, debug, and test MapReduce performance issues, and it also covers a number of techniques to help make your jobs run faster.

 Part 4 is titled “Beyond MapReduce,” and it examines a number of technologies that make it easier to work with Hadoop. Chapter 9 covers the most prevalent and promising SQL technologies for data processing on Hadoop, and Hive, Impala, and Spark SQL are examined. The final chapter looks at how to write your own YARN application, and it provides some insights into some of the more advanced features you can use in your applications.

 The appendix covers instructions for the source code that accompanies this book, as well as installation instructions for Hadoop and all the other related technologies covered in the book.

 Finally, there are two bonus chapters available from the publisher’s website at www.manning.com/HadoopinPracticeSecondEdition: chapter 11 “Integrating R and Hadoop for statistics and more” and chapter 12 “Predictive analytics with Mahout.”

What’s new in the second edition?

 This second edition covers Hadoop 2, which at the time of writing is the current production-ready version of Hadoop. The first edition of the book covered Hadoop 0.22 (Hadoop 1 wasn’t yet out), and Hadoop 2 has turned the world upside-down and opened up the Hadoop platform to processing paradigms beyond MapReduce. YARN, the new scheduler and application manager in Hadoop 2, is complex and new to the community, which prompted me to dedicate a new chapter 2 to covering YARN basics and to discussing how MapReduce now functions as a YARN application.

 Parquet has also recently emerged as a new way to store data in HDFS—its columnar format can yield both space and time efficiencies in your data pipelines, and it’s quickly becoming the ubiquitous way to store data. Chapter 4 includes extensive coverage of Parquet, which includes how Parquet supports sophisticated object models such as Avro and how various Hadoop tools can use Parquet.

 How data is being ingested into Hadoop has also evolved since the first edition, and Kafka has emerged as the new data pipeline, which serves as the transport tier between your data producers and data consumers, where a consumer would be a system such as Camus that can pull data from Kafka into HDFS. Chapter 5, which covers moving data into and out of Hadoop, now includes coverage of Kafka and Camus.

 There are many new technologies that YARN now can support side by side in the same cluster, and some of the more exciting and promising technologies are covered in the new part 4, titled “Beyond MapReduce,” where I cover some compelling new SQL technologies such as Impala and Spark SQL. The last chapter, also new for this edition, looks at how you can write your own YARN application, and it’s packed with information about important features to support your YARN application.

Getting help

 You’ll no doubt have many questions when working with Hadoop. Luckily, between the wikis and a vibrant user community, your needs should be well covered:

 	The main wiki is located at http://wiki.apache.org/hadoop/, and it contains useful presentations, setup instructions, and troubleshooting instructions.

 	The Hadoop Common, HDFS, and MapReduce mailing lists can all be found at http://hadoop.apache.org/mailing_lists.html.

 	“Search Hadoop” is a useful website that indexes all of Hadoop and its ecosystem projects, and it provides full-text search capabilities: http://search-hadoop.com/.

 	You’ll find many useful blogs you should subscribe to in order to keep on top of current events in Hadoop. This preface includes a selection of my favorites:

 	Cloudera and Hortonworks are both prolific writers of practical applications on Hadoop—reading their blogs is always educational: http://www.cloudera.com/blog/ and http://hortonworks.com/blog/.

 	Michael Noll is one of the first bloggers to provide detailed setup instructions for Hadoop, and he continues to write about real-life challenges: www.michael-noll.com/.

 	There’s a plethora of active Hadoop Twitter users that you may want to follow, including Arun Murthy (@acmurthy), Tom White (@tom_e_white), Eric Sammer (@esammer), Doug Cutting (@cutting), and Todd Lipcon (@tlipcon). The Hadoop project tweets on @hadoop.

Code conventions and downloads

 All source code in listings or in text is presented in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts.

 All of the text and examples in this book work with Hadoop 2.x, and most of the MapReduce code is written using the newer org.apache.hadoop.mapreduce Map-Reduce APIs. The few examples that use the older org.apache.hadoop.mapred package are usually the result of working with a third-party library or a utility that only works with the old API.

 All of the code used in this book is available on GitHub at https://github.com/alexholmes/hiped2 and also from the publisher’s website at www.manning.com/HadoopinPracticeSecondEdition. The first section in the appendix shows you how to download, install, and get up and running with the code.

Third-party libraries

 I use a number of third-party libraries for convenience purposes. They’re included in the Maven-built JAR, so there’s no extra work required to work with these libraries.

Datasets

 Throughout this book, you’ll work with three datasets to provide some variety in the examples. All the datasets are small to make them easy to work with. Copies of the exact data used are available in the GitHub repository in the https://github.com/alexholmes/hiped2/tree/master/test-data directory. I also sometimes use data that’s specific to a chapter, and it’s available within chapter-specific subdirectories under the same GitHub location.

NASDAQ financial stocks

 I downloaded the NASDAQ daily exchange data from InfoChimps (www.infochimps.com). I filtered this huge dataset down to just five stocks and their start-of-year values from 2000 through 2009. The data used for this book is available on GitHub at https://github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt.

 The data is in CSV form, and the fields are in the following order:

 Symbol,Date,Open,High,Low,Close,Volume,Adj Close

Apache log data

 I created a sample log file in Apache Common Log Format[1] with some fake Class E IP addresses and some dummy resources and response codes. The file is available on GitHub at https://github.com/alexholmes/hiped2/blob/master/test-data/apachelog.txt.

 1 See http://httpd.apache.org/docs/1.3/logs.html#common.

Names

 Names were retrieved from the U.S. government census at www.census.gov/genealogy/www/data/1990surnames/dist.all.last, and this data is available at https://github.com/alexholmes/hiped2/blob/master/test-data/names.txt.

Author Online

 Purchase of Hadoop in Practice, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/HadoopinPractice, SecondEdition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the author challenging questions lest his interest strays!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the Cover Illustration

 The figure on the cover of Hadoop in Practice, Second Edition is captioned “Momak from Kistanja, Dalmatia.” The illustration is taken from a reproduction of an album of traditional Croatian costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 Kistanja is a small town located in Bukovica, a geographical region in Croatia. It is situated in northern Dalmatia, an area rich in Roman and Venetian history. The word “momak” in Croatian means a bachelor, beau, or suitor—a single young man who is of courting age—and the young man on the cover, looking dapper in a crisp, white linen shirt and a colorful, embroidered vest, is clearly dressed in his finest clothes, which would be worn to church and for festive occasions—or to go calling on a young lady.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

 Part 1. Background and fundamentals

 Part 1 of this book consists of chapters 1 and 2, which cover the important Hadoop fundamentals.

 Chapter 1 covers Hadoop’s components and its ecosystem and provides instructions for installing a pseudo-distributed Hadoop setup on a single host, along with a system that will enable you to run all of the examples in the book. Chapter 1 also covers the basics of Hadoop configuration, and walks you through how to write and run a MapReduce job on your new setup.

 Chapter 2 introduces YARN, which is a new and exciting development in Hadoop version 2, transitioning Hadoop from being a MapReduce-only system to one that can support many execution engines. Given that YARN is new to the community, the goal of this chapter is to look at some basics such as its components, how configuration works, and also how MapReduce works as a YARN application. Chapter 2 also provides an overview of some applications that YARN has enabled to execute on Hadoop, such as Spark and Storm.

 Chapter 1. Hadoop in a heartbeat

 This chapter covers

 	Examining how the core Hadoop system works

 	Understanding the Hadoop ecosystem

 	Running a MapReduce job

 We live in the age of big data, where the data volumes we need to work with on a day-to-day basis have outgrown the storage and processing capabilities of a single host. Big data brings with it two fundamental challenges: how to store and work with voluminous data sizes, and more important, how to understand data and turn it into a competitive advantage.

 Hadoop fills a gap in the market by effectively storing and providing computational capabilities for substantial amounts of data. It’s a distributed system made up of a distributed filesystem, and it offers a way to parallelize and execute programs on a cluster of machines (see figure 1.1). You’ve most likely come across Hadoop because it’s been adopted by technology giants like Yahoo!, Facebook, and Twitter to address their big data needs, and it’s making inroads across all industrial sectors.

 Figure 1.1. The Hadoop environment is a distributed system that runs on commodity hardware.

 [image:]

 Because you’ve come to this book to get some practical experience with Hadoop and Java,[1] I’ll start with a brief overview and then show you how to install Hadoop and run a MapReduce job. By the end of this chapter, you’ll have had a basic refresher on the nuts and bolts of Hadoop, which will allow you to move on to the more challenging aspects of working with it.

 1 To benefit from this book, you should have some practical experience with Hadoop and understand the basic concepts of MapReduce and HDFS (covered in Manning’s Hadoop in Action by Chuck Lam, 2010). Further, you should have an intermediate-level knowledge of Java—Effective Java, 2nd Edition by Joshua Bloch (Addison-Wesley, 2008) is an excellent resource on this topic.

 Let’s get started with a detailed overview.

1.1. What is Hadoop?

 Hadoop is a platform that provides both distributed storage and computational capabilities. Hadoop was first conceived to fix a scalability issue that existed in Nutch,[2] an open source crawler and search engine. At the time, Google had published papers that described its novel distributed filesystem, the Google File System (GFS), and MapReduce, a computational framework for parallel processing. The successful implementation of these papers’ concepts in Nutch resulted in it being split into two separate projects, the second of which became Hadoop, a first-class Apache project.

 2 The Nutch project, and by extension Hadoop, was led by Doug Cutting and Mike Cafarella.

 In this section we’ll look at Hadoop from an architectural perspective, examine how industry uses it, and consider some of its weaknesses. Once we’ve covered this background, we’ll look at how to install Hadoop and run a MapReduce job.

 Hadoop proper, as shown in figure 1.2, is a distributed master-slave architecture[3] that consists of the following primary components:

 3 A model of communication where one process, called the master, has control over one or more other processes, called slaves.

 Figure 1.2. High-level Hadoop 2 master-slave architecture

 [image:]

 	
Hadoop Distributed File System (HDFS) for data storage.

 	Yet Another Resource Negotiator (YARN), introduced in Hadoop 2, a general-purpose scheduler and resource manager. Any YARN application can run on a Hadoop cluster.

 	MapReduce, a batch-based computational engine. In Hadoop 2, MapReduce is implemented as a YARN application.

 Traits intrinsic to Hadoop are data partitioning and parallel computation of large datasets. Its storage and computational capabilities scale with the addition of hosts to a Hadoop cluster; clusters with hundreds of hosts can easily reach data volumes in the petabytes.

 In the first step in this section, we’ll examine the HDFS, YARN, and MapReduce architectures.

 1.1.1. Core Hadoop components

 To understand Hadoop’s architecture we’ll start by looking at the basics of HDFS.

HDFS

 HDFS is the storage component of Hadoop. It’s a distributed filesystem that’s modeled after the Google File System (GFS) paper.[4] HDFS is optimized for high throughput and works best when reading and writing large files (gigabytes and larger). To support this throughput, HDFS uses unusually large (for a filesystem) block sizes and data locality optimizations to reduce network input/output (I/O).

 4 See “The Google File System,” http://research.google.com/archive/gfs.html.

 Scalability and availability are also key traits of HDFS, achieved in part due to data replication and fault tolerance. HDFS replicates files for a configured number of times, is tolerant of both software and hardware failure, and automatically re-replicates data blocks on nodes that have failed.

 Figure 1.3 shows a logical representation of the components in HDFS: the Name-Node and the DataNode. It also shows an application that’s using the Hadoop filesystem library to access HDFS.

 Figure 1.3. An HDFS client communicating with the master NameNode and slave DataNodes

 [image:]

 Hadoop 2 introduced two significant new features for HDFS—Federation and High Availability (HA):

 	Federation allows HDFS metadata to be shared across multiple NameNode hosts, which aides with HDFS scalability and also provides data isolation, allowing different applications or teams to run their own NameNodes without fear of impacting other NameNodes on the same cluster.

 	High Availability in HDFS removes the single point of failure that existed in Hadoop 1, wherein a NameNode disaster would result in a cluster outage. HDFS HA also offers the ability for failover (the process by which a standby Name-Node takes over work from a failed primary NameNode) to be automated.

 Now that you have a bit of HDFS knowledge, it’s time to look at YARN, Hadoop’s scheduler.

YARN

 YARN is Hadoop’s distributed resource scheduler. YARN is new to Hadoop version 2 and was created to address challenges with the Hadoop 1 architecture:

 	Deployments larger than 4,000 nodes encountered scalability issues, and adding additional nodes didn’t yield the expected linear scalability improvements.

 	Only MapReduce workloads were supported, which meant it wasn’t suited to run execution models such as machine learning algorithms that often require iterative computations.

 For Hadoop 2 these problems were solved by extracting the scheduling function from MapReduce and reworking it into a generic application scheduler, called YARN. With this change, Hadoop clusters are no longer limited to running MapReduce workloads; YARN enables a new set of workloads to be natively supported on Hadoop, and it allows alternative processing models, such as graph processing and stream processing, to coexist with MapReduce. Chapters 2 and 10 cover YARN and how to write YARN applications.

 YARN’s architecture is simple because its primary role is to schedule and manage resources in a Hadoop cluster. Figure 1.4 shows a logical representation of the core components in YARN: the ResourceManager and the NodeManager. Also shown are the components specific to YARN applications, namely, the YARN application client, the ApplicationMaster, and the container.

 Figure 1.4. The logical YARN architecture showing typical communication between the core YARN components and YARN application components

 [image:]

 To fully realize the dream of a generalized distributed platform, Hadoop 2 introduced another change—the ability to allocate containers in various configurations. Hadoop 1 had the notion of “slots,” which were a fixed number of map and reduce processes that were allowed to run on a single node. This was wasteful in terms of cluster utilization and resulted in underutilized resources during MapReduce operations, and it also imposed memory limits for map and reduce tasks. With YARN, each container requested by an ApplicationMaster can have disparate memory and CPU traits, and this gives YARN applications full control over the resources they need to fulfill their work.

 You’ll work with YARN in more detail in chapters 2 and 10, where you’ll learn how YARN works and how to write a YARN application. Next up is an examination of MapReduce, Hadoop’s computation engine.

MapReduce

 MapReduce is a batch-based, distributed computing framework modeled after Google’s paper on MapReduce.[5] It allows you to parallelize work over a large amount of raw data, such as combining web logs with relational data from an OLTP database to model how users interact with your website. This type of work, which could take days or longer using conventional serial programming techniques, can be reduced to minutes using MapReduce on a Hadoop cluster.

 5 See “MapReduce: Simplified Data Processing on Large Clusters,” http://research.google.com/archive/mapreduce.html.

 The MapReduce model simplifies parallel processing by abstracting away the complexities involved in working with distributed systems, such as computational parallelization, work distribution, and dealing with unreliable hardware and software. With this abstraction, MapReduce allows the programmer to focus on addressing business needs rather than getting tangled up in distributed system complications.

 MapReduce decomposes work submitted by a client into small parallelized map and reduce tasks, as shown in figure 1.5. The map and reduce constructs used in MapReduce are borrowed from those found in the Lisp functional programming language, and they use a shared-nothing model to remove any parallel execution interdependencies that could add unwanted synchronization points or state sharing.[6]

 6 A shared-nothing architecture is a distributed computing concept that represents the notion that each node is independent and self-sufficient.

 Figure 1.5. A client submitting a job to MapReduce, breaking the work into small map and reduce tasks

 [image:]

 The role of the programmer is to define map and reduce functions where the map function outputs key/value tuples, which are processed by reduce functions to produce the final output. Figure 1.6 shows a pseudocode definition of a map function with regard to its input and output.

 Figure 1.6. A logical view of the map function that takes a key/value pair as input

 [image:]

 The power of MapReduce occurs between the map output and the reduce input in the shuffle and sort phases, as shown in figure 1.7.

 Figure 1.7. MapReduce’s shuffle and sort phases

 [image:]

 Figure 1.8 shows a pseudocode definition of a reduce function.

 Figure 1.8. A logical view of the reduce function that produces output for flat files, NoSQL rows, or any data sink

 [image:]

 With the advent of YARN in Hadoop 2, MapReduce has been rewritten as a YARN application and is now referred to as MapReduce 2 (or MRv2). From a developer’s perspective, MapReduce in Hadoop 2 works in much the same way it did in Hadoop 1, and code written for Hadoop 1 will execute without code changes on version 2.[7] There are changes to the physical architecture and internal plumbing in MRv2 that are examined in more detail in chapter 2.

 7 Some code may require recompilation against Hadoop 2 binaries to work with MRv2; see chapter 2 for more details.

 With some Hadoop basics under your belt, it’s time to take a look at the Hadoop ecosystem and the projects that are covered in this book.

 1.1.2. The Hadoop ecosystem

 The Hadoop ecosystem is diverse and grows by the day. It’s impossible to keep track of all of the various projects that interact with Hadoop in some form. In this book the focus is on the tools that are currently receiving the greatest adoption by users, as shown in figure 1.9.

 Figure 1.9. Hadoop and related technologies that are covered in this book

 [image:]

 MapReduce and YARN are not for the faint of heart, which means the goal for many of these Hadoop-related projects is to increase the accessibility of Hadoop to programmers and nonprogrammers. I’ll cover many of the technologies listed in figure 1.9 in this book and describe them in detail within their respective chapters. In addition, the appendix includes descriptions and installation instructions for technologies that are covered in this book.

 	

 Coverage of the Hadoop ecosystem in this book

 The Hadoop ecosystem grows by the day, and there are often multiple tools with overlapping features and benefits. The goal of this book is to provide practical techniques that cover the core Hadoop technologies, as well as select ecosystem technologies that are ubiquitous and essential to Hadoop.

 	

 Let’s look at the hardware requirements for your cluster.

 1.1.3. Hardware requirements

 The term commodity hardware is often used to describe Hadoop hardware requirements. It’s true that Hadoop can run on any old servers you can dig up, but you’ll still want your cluster to perform well, and you don’t want to swamp your operations department with diagnosing and fixing hardware issues. Therefore, commodity refers to mid-level rack servers with dual sockets, as much error-correcting RAM as is affordable, and SATA drives optimized for RAID storage. Using RAID on the DataNode filesystems used to store HDFS content is strongly discouraged because HDFS already has replication and error-checking built in; on the NameNode, RAID is strongly recommended for additional security.[8]

 8 HDFS uses disks to durably store metadata about the filesystem.

 From a network topology perspective with regard to switches and firewalls, all of the master and slave nodes must be able to open connections to each other. For small clusters, all the hosts would run 1 GB network cards connected to a single, good-quality switch. For larger clusters, look at 10 GB top-of-rack switches that have at least multiple 1 GB uplinks to dual-central switches. Client nodes also need to be able to talk to all of the master and slave nodes, but if necessary, that access can be from behind a firewall that permits connection establishment only from the client side.

 After reviewing Hadoop from a software and hardware perspective, you’ve likely developed a good idea of who might benefit from using it. Once you start working with Hadoop, you’ll need to pick a distribution to use, which is the next topic.

 1.1.4. Hadoop distributions

 Hadoop is an Apache open source project, and regular releases of the software are available for download directly from the Apache project’s website (http://hadoop.apache.org/releases.html#Download). You can either download and install Hadoop from the website or use a quickstart virtual machine from a commercial distribution, which is usually a great starting point if you’re new to Hadoop and want to quickly get it up and running.

 After you’ve whet your appetite with Hadoop and have committed to using it in production, the next question that you’ll need to answer is which distribution to use. You can continue to use the vanilla Hadoop distribution, but you’ll have to build the in-house expertise to manage your clusters. This is not a trivial task and is usually only successful in organizations that are comfortable with having dedicated Hadoop DevOps engineers running and managing their clusters.

 Alternatively, you can turn to a commercial distribution of Hadoop, which will give you the added benefits of enterprise administration software, a support team to consult when planning your clusters or to help you out when things go bump in the night, and the possibility of a rapid fix for software issues that you encounter. Of course, none of this comes for free (or for cheap!), but if you’re running mission-critical services on Hadoop and don’t have a dedicated team to support your infrastructure and services, then going with a commercial Hadoop distribution is prudent.

 	

 Picking the distribution that’s right for you

 It’s highly recommended that you engage with the major vendors to gain an understanding of which distribution suits your needs from a feature, support, and cost perspective. Remember that each vendor will highlight their advantages and at the same time expose the disadvantages of their competitors, so talking to two or more vendors will give you a more realistic sense of what the distributions offer. Make sure you download and test the distributions and validate that they integrate and work within your existing software and hardware stacks.

 	

 There are a number of distributions to choose from, and in this section I’ll briefly summarize each distribution and highlight some of its advantages.

Apache

 Apache is the organization that maintains the core Hadoop code and distribution, and because all the code is open source, you can crack open your favorite IDE and browse the source code to understand how things work under the hood. Historically the challenge with the Apache distributions has been that support is limited to the goodwill of the open source community, and there’s no guarantee that your issue will be investigated and fixed. Having said that, the Hadoop community is a very supportive one, and responses to problems are usually rapid, even if the actual fixes will likely take longer than you may be able to afford.

 The Apache Hadoop distribution has become more compelling now that administration has been simplified with the advent of Apache Ambari, which provides a GUI to help with provisioning and managing your cluster. As useful as Ambari is, though, it’s worth comparing it against offerings from the commercial vendors, as the commercial tooling is typically more sophisticated.

Cloudera

 Cloudera is the most tenured Hadoop distribution, and it employs a large number of Hadoop (and Hadoop ecosystem) committers. Doug Cutting, who along with Mike Caferella originally created Hadoop, is the chief architect at Cloudera. In aggregate, this means that bug fixes and feature requests have a better chance of being addressed in Cloudera compared to Hadoop distributions with fewer committers.

 Beyond maintaining and supporting Hadoop, Cloudera has been innovating in the Hadoop space by developing projects that address areas where Hadoop has been weak. A prime example of this is Impala, which offers a SQL-on-Hadoop system, similar to Hive but focusing on a near-real-time user experience, as opposed to Hive, which has traditionally been a high-latency system. There are numerous other projects that Cloudera has been working on: highlights include Flume, a log collection and distribution system; Sqoop, for moving relational data in and out of Hadoop; and Cloudera Search, which offers near-real-time search indexing.

Hortonworks

 Hortonworks is also made up of a large number of Hadoop committers, and it offers the same advantages as Cloudera in terms of the ability to quickly address problems and feature requests in core Hadoop and its ecosystem projects.

 From an innovation perspective, Hortonworks has taken a slightly different approach than Cloudera. An example is Hive: Cloudera’s approach was to develop a whole new SQL-on-Hadoop system, but Hortonworks has instead looked at innovating inside of Hive to remove its high-latency shackles and add new capabilities such as support for ACID. Hortonworks is also the main driver behind the next-generation YARN platform, which is a key strategic piece keeping Hadoop relevant. Similarly, Horton-works has used Apache Ambari for its administration tooling rather than developing an in-house proprietary administration tool, which is the path taken by the other distributions. Hortonworks’ focus on developing and expanding the Apache ecosystem tooling has a direct benefit to the community, as it makes its tools available to all users without the need for support contracts.

MapR

 MapR has fewer Hadoop committers on its team than the other distributions discussed here, so its ability to fix and shape Hadoop’s future is potentially more bounded than its peers.

 From an innovation perspective, MapR has taken a decidedly different approach to Hadoop support compared to its peers. From the start it decided that HDFS wasn’t an enterprise-ready filesystem, and instead developed its own proprietary filesystem, which offers compelling features such as POSIX compliance (offering random-write support and atomic operations), High Availability, NFS mounting, data mirroring, and snapshots. Some of these features have been introduced into Hadoop 2, but MapR has offered them from the start, and, as a result, one can expect that these features are robust.

 As part of the evaluation criteria, it should be noted that parts of the MapR stack, such as its filesystem and its HBase offering, are closed source and proprietary. This affects the ability of your engineers to browse, fix, and contribute patches back to the community. In contrast, most of Cloudera’s and Hortonworks’ stacks are open source, especially Hortonworks’, which is unique in that the entire stack, including the management platform, is open source.

 MapR’s notable highlights include being made available in Amazon’s cloud as an alternative to Amazon’s own Elastic MapReduce and being integrated with Google’s Compute Cloud.

 I’ve just scratched the surface of the advantages that the various Hadoop distributions offer; your next steps will likely be to contact the vendors and start playing with the distributions yourself.

 Next, let’s take a look at companies currently using Hadoop, and in what capacity they’re using it.

 1.1.5. Who’s using Hadoop?

 Hadoop has a high level of penetration in high-tech companies, and it’s starting to make inroads in a broad range of sectors, including the enterprise (Booz Allen Hamilton, J.P. Morgan), government (NSA), and health care.

 Facebook uses Hadoop, Hive, and HBase for data warehousing and real-time application serving.[9] Facebook’s data warehousing clusters are petabytes in size with thousands of nodes, and they use separate HBase-driven, real-time clusters for messaging and real-time analytics.

 9 See Dhruba Borthakur, “Looking at the code behind our three uses of Apache Hadoop” on Facebook at http://mng.bz/4cMc. Facebook has also developed its own SQL-on-Hadoop tool called Presto and is migrating away from Hive (see Martin Traverso, “Presto: Interacting with petabytes of data at Facebook,” http://mng.bz/p0Xz).

 Yahoo! uses Hadoop for data analytics, machine learning, search ranking, email antispam, ad optimization, ETL,[10] and more. Combined, it has over 40,000 servers running Hadoop with 170 PB of storage. Yahoo! is also running the first large-scale YARN deployments with clusters of up to 4,000 nodes.[11]

 10 Extract, transform, and load (ETL) is the process by which data is extracted from outside sources, transformed to fit the project’s needs, and loaded into the target data sink. ETL is a common process in data warehousing.

 11 There are more details on YARN and its use at Yahoo! in “Apache Hadoop YARN: Yet Another Resource Negotiator” by Vinod Kumar Vavilapalli et al., www.cs.cmu.edu/~garth/15719/papers/yarn.pdf.

 Twitter is a major big data innovator, and it has made notable contributions to Hadoop with projects such as Scalding, a Scala API for Cascading; Summingbird, a component that can be used to implement parts of Nathan Marz’s lambda architecture; and various other gems such as Bijection, Algebird, and Elephant Bird.

 eBay, Samsung, Rackspace, J.P. Morgan, Groupon, LinkedIn, AOL, Spotify, and StumbleUpon are some other organizations that are also heavily invested in Hadoop. Microsoft has collaborated with Hortonworks to ensure that Hadoop works on its platform.

 Google, in its MapReduce paper, indicated that it uses Caffeine,[12] its version of MapReduce, to create its web index from crawl data. Google also highlights applications of MapReduce to include activities such as a distributed grep, URL access frequency (from log data), and a term-vector algorithm, which determines popular keywords for a host.

 12 In 2010 Google moved to a real-time indexing system called Caffeine; see “Our new search index: Caffeine” on the Google blog (June 8, 2010), http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html.

 The number of organizations that use Hadoop grows by the day, and if you work at a Fortune 500 company you almost certainly use a Hadoop cluster in some capacity. It’s clear that as Hadoop continues to mature, its adoption will continue to grow.

 As with all technologies, a key part to being able to work effectively with Hadoop is to understand its shortcomings and design and architect your solutions to mitigate these as much as possible.

 1.1.6. Hadoop limitations

 High availability and security often rank among the top concerns cited with Hadoop. Many of these concerns have been addressed in Hadoop 2; let’s take a closer look at some of its weaknesses as of release 2.2.0.

 Enterprise organizations using Hadoop 1 and earlier had concerns with the lack of high availability and security. In Hadoop 1, all of the master processes are single points of failure, which means that a failure in the master process causes an outage. In Hadoop 2, HDFS now has high availability support, and the re-architecture of Map-Reduce with YARN has removed the single point of failure. Security is another area that has had its wrinkles, and it’s receiving focus.

High availability

 High availability is often mandated in enterprise organizations that have high uptime SLA requirements to ensure that systems are always on, even in the event of a node going down due to planned or unplanned circumstances. Prior to Hadoop 2, the master HDFS process could only run on a single node, resulting in single points of failure.[13] Hadoop 2 brings NameNode High Availability (HA) support, which means that multiple NameNodes for the same Hadoop cluster can be running. With the current design, one of the NameNodes is active and the other NameNode is designated as a standby process. In the event that the active NameNode experiences a planned or unplanned outage, the standby NameNode will take over as the active NameNode, which is a process called failover. This failover can be configured to be automatic, negating the need for human intervention. The fact that a NameNode failover occurred is transparent to Hadoop clients.

 13 In reality, the HDFS single point of failure may not be terribly significant; see “NameNode HA” by Suresh Srinivas and Aaron T. Myers, http://goo.gl/1iSab.

 The MapReduce master process (the JobTracker) doesn’t have HA support in Hadoop 2, but now that each MapReduce job has its own JobTracker process (a separate YARN ApplicationMaster), HA support is arguably less important.

 HA support in the YARN master process (the ResourceManager) is important, however, and development is currently underway to add this feature to Hadoop.[14]

 14 For additional details on YARN HA support, see the JIRA ticket titled “ResourceManager (RM) High-Availability (HA),” https://issues.apache.org/jira/browse/YARN-149.

Multiple datacenters

 Multiple datacenter support is another key feature that’s increasingly expected in enterprise software, as it offers strong data protection and locality properties due to data being replicated across multiple datacenters. Apache Hadoop, and most of its commercial distributions, has never had support for multiple datacenters, which poses challenges for organizations that have software running in multiple datacenters. WANdisco is currently the only solution available for Hadoop multidatacenter support.

Security

 Hadoop does offer a security model, but by default it’s disabled. With the security model disabled, the only security feature that exists in Hadoop is HDFS file- and directory-level ownership and permissions. But it’s easy for malicious users to subvert and assume other users’ identities. By default, all other Hadoop services are wide open, allowing any user to perform any kind of operation, such as killing another user’s MapReduce jobs.

 Hadoop can be configured to run with Kerberos, a network authentication protocol, which requires Hadoop daemons to authenticate clients, both users and other Hadoop components. Kerberos can be integrated with an organization’s existing Active Directory and therefore offers a single-sign-on experience for users. Care needs to be taken when enabling Kerberos, as any Hadoop tool that wishes to interact with your cluster will need to support Kerberos.

 Wire-level encryption can be configured in Hadoop 2 and allows data crossing the network (both HDFS transport[15] and MapReduce shuffle data[16]) to be encrypted. Encryption of data at rest (data stored by HDFS on disk) is currently missing in Hadoop.

 15 See the JIRA ticket titled “Add support for encrypting the DataTransferProtocol” at https://issues.apache.org/jira/browse/HDFS-3637.

 16 See the JIRA ticket titled “Add support for encrypted shuffle” at https://issues.apache.org/jira/browse/MAPREDUCE-4417.

 Let’s examine the limitations of some of the individual systems.

HDFS

 The weakness of HDFS is mainly its lack of high availability (in Hadoop 1.x and earlier), its inefficient handling of small files,[17] and its lack of transparent compression. HDFS doesn’t support random writes into files (only appends are supported), and it’s generally designed to support high-throughput sequential reads and writes over large files.

 17 Although HDFS Federation in Hadoop 2 has introduced a way for multiple NameNodes to share file metadata, the fact remains that metadata is stored in memory.

MapReduce

 MapReduce is a batch-based architecture, which means it doesn’t lend itself to use cases that need real-time data access. Tasks that require global synchronization or sharing of mutable data aren’t a good fit for MapReduce, because it’s a shared-nothing architecture, which can pose challenges for some algorithms.

Version incompatibilities

 The Hadoop 2 release brought with it some headaches with regard to MapReduce API runtime compatibility, especially in the org.hadoop.mapreduce

OEBPS/OEBPS/Images/01fig04_alt.jpg
The ResourceManager is the The NodeManager is the slave

AYARN clent is YARN master protess and is vesponsible YARN process that vuns on each node
vesponsble for creating for stheduing and managig vescuces, s vesponsble For lainching and
the YARN appication caled “eontainrs.” managing tontainers.

) D))

Client | ——————| ResourceManager j~—————3| NodeManager |-

ApplicationMaster |———— Container H
|
The Applcationtaster is ereated by S Contaiers are YARN B
the ResourceManager and i responsible appleation-speeifc protesses
for vequesting containers to perform that perform some funttion

appheation-specific work pertinent to the spplication

OEBPS/OEBPS/Images/01fig05.jpg
Input
data

mt submits

a MapReduee job

MapReduce decomposes the
job into map and veduce tasks
3nd sthedules them for vemote

execution on the slave
nodes

Job parts

OEBPS/OEBPS/Images/01fig02_alt.jpg
The YARN master perforns
the attual scheduling of work
For YARN applcations.

P

The MapReduce master is
vesponsible for organizirg where
eonutational work should be
schedsled o the slave rodes

p)

The HDFS master is vesponsible.
for partitioning the storage aeros
th slave rades and keeping track
of where data i lcated

P)

YARN master MapReduce master HDFS master
YARN slave MapReduce slave HOFS slave
YARN slave MapReduce slave HDFS slave
YARN slave MapReduce slave HDFS slave

OEBPS/OEBPS/Images/01fig03_alt.jpg
HDFS elents 4all

4o the

NameNode for metadata-related
ackiities and Dataodes for

veading and viting fles—

The HDFS NameNode keeps in memory the
metadata abot. the Slsystem such s which

Dataedes manage the blocks for eath N:}

NameNode
/ DataNode 2
Ampiilet. ot Block A DataNode 3
Client
application BlockB || DataNode 1
Hadoop ||| DataNode 3
filesystem |
client
DataNode 1 DataNode 2 DataNode 3
c o] A o] & &
[¢ A
%]
DataNodes commuricate Fils are made up of blocks, and each fle
with each other for can be vephcated mlbple times, mearing
Pielining Bl veads there are many identical copes of each
and wites block for the fle (by default, 3)

OEBPS/OEBPS/Images/pub.jpg

OEBPS/OEBPS/Images/01fig01_alt.jpg
The tomputation tier is a

general-purpose scheduler and
a distributed processing
‘ Sramework called MapReduce

Distributed computation | ~—|

N

Distributed storage pas=—=
Server cloud
P . —— Storage is provided via
s S S 2 dicbked Hlespston

called HDFS.

J

Hadoop vuns on
commodity hardware.

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/infin.jpg

OEBPS/OEBPS/Images/01fig06_alt.jpg
The map function takes as input a key/value paiv, which
vepresents a logical vecord from the input data source.

In the case of a Fle, this could be a line, or if the
(lnru('. source is a 4able in a database, it could be a vow

mapkey1, valuel) — list(key2, value2)

Gn map function produtes zevo or more output key/value paivs for
one input pair. For example, i the map function s a Bltering
map Function, it may only produce cutput if a certain condition is
met. Or it cld be performing a demultiplesing operation, where
2 single key/value yields multiple key/value output paivs.

OEBPS/OEBPS/Images/01fig08.jpg
The vedute functionis All of the map output values that
called once per unique weve emitted across all the mappers

< map outpuct key. (for "key2” ave provided in a list

reduce (key2, list (value2's)) —— list(key3, value3)

Like the map function, the veduce can output zevo-to-many)
key/valve pairs. Reducer autput can write to Rat fles

in HDFS, insert/update vows in a NoSQL database, or write

4o any data sink, depending on the vequirements of the job.

OEBPS/OEBPS/Images/01fig07_alt.jpg
The shuffle and sort phases are vesponsible for two primary aetivities: determining
the veducer that should veceive the map cutput. key/vahe paie (called partitioning);
and ensuing that all the input keys for a given veducer ave sorted.

Map output Shuffle +sot Sorted reduce Input
cat, docl — &\ cat, list(doc1,doc2) :l Reducer 1
Mapper 1 | dog,docl
hamster, doc1
chipmunk, 1ist(doc2)
Reducer 2
dog, 1ist(doc1,doc2)
cat, doc2
dog, doc2 .
Mepper2 | ik doca hamster, List(doc1,doc2) | Reducerd
hampster, doc2 >
Map oxtputs For the same key Guch s “hamster”) Eath veduter has all of
40 Lo the same veducer and are then tonbined to iks input keys sorted.

Bl pabiidovdi v the poditar

OEBPS/cover.jpeg
Hadoo

IN PRACTICE
SECOND EDITION

Alex Holmes

INCLUDES 104fTECHNIQUES

[| ST

OEBPS/OEBPS/Images/01fig09_alt.jpg
Figh-level Alternative

languages processing
Weave Summingbird ||

Predictive i

analytics i
Scalding iy Spark |i Miscellaneous
Cascalog som i 5

| | M@ Sa00P |

— SQL-on-Hadoop ElephantDB | |

Cascading

Pig

HDFS. YARN + MapReduce

& G-

Hadoop

