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    A new book from Manning, Hadoop in Practice, is definitely the most modern book on the topic. Important subjects, like what commercial variants such as MapR offer, and the many different releases and APIs get uniquely good coverage in this book.

    Ted Dunning, Chief Application Architect, MapR Technologies

  

  
    Comprehensive coverage of advanced Hadoop usage, including high-quality code samples.

    Chris Nauroth, Senior Staff Software Engineer The Walt Disney Company

  

  
    A very pragmatic and broad overview of Hadoop and the Hadoop tools ecosystem, with a wide set of interesting topics that tickle the creative brain.

    Mark Kemna, Chief Technology Officer, Brilig

  

  
    A practical introduction to the Hadoop ecosystem.

    Philipp K. Janert, Principal Value, LLC

  

  
    This book is the horizontal roof that each of the pillars of individual Hadoop technology books hold. It expertly ties together all the Hadoop ecosystem technologies.

    Ayon Sinha, Big Data Architect, Britely

  

  
    I would take this book on my path to the future.

    Alexey Gayduk, Senior Software Engineer, Grid Dynamics

  

  
    A high-quality and well-written book that is packed with useful examples. The breadth and detail of the material is by far superior to any other Hadoop reference guide. It is perfect for anyone who likes to learn new tools/technologies while following pragmatic, real-world examples.

    Amazon reviewer

  


  
Preface

  I first encountered Hadoop in the fall of 2008 when I was working on an internet crawl-and-analysis project at Verisign. We were making discoveries similar to those that Doug Cutting and others at Nutch had made several years earlier about how to efficiently store and manage terabytes of crawl-and-analyzed data. At the time, we were getting by with our homegrown distributed system, but the influx of a new data stream and requirements to join that stream with our crawl data couldn’t be supported by our existing system in the required timeline.

  After some research, we came across the Hadoop project, which seemed to be a perfect fit for our needs—it supported storing large volumes of data and provided a compute mechanism to combine them. Within a few months, we built and deployed a MapReduce application encompassing a number of MapReduce jobs, woven together with our own MapReduce workflow management system, onto a small cluster of 18 nodes. It was a revelation to observe our MapReduce jobs crunching through our data in minutes. Of course, what we weren’t expecting was the amount of time that we would spend debugging and performance-tuning our MapReduce jobs. Not to mention the new roles we took on as production administrators—the biggest surprise in this role was the number of disk failures we encountered during those first few months supporting production.

  As our experience and comfort level with Hadoop grew, we continued to build more of our functionality using Hadoop to help with our scaling challenges. We also started to evangelize the use of Hadoop within our organization and helped kick-start other projects that were also facing big data challenges.

  The greatest challenge we faced when working with Hadoop, and specifically MapReduce, was relearning how to solve problems with it. MapReduce is its own flavor of parallel programming, and it’s quite different from the in-JVM programming that we were accustomed to. The first big hurdle was training our brains to think MapReduce, a topic which the book Hadoop in Action by Chuck Lam (Manning Publications, 2010) covers well.

  After one is used to thinking in MapReduce, the next challenge is typically related to the logistics of working with Hadoop, such as how to move data in and out of HDFS and effective and efficient ways to work with data in Hadoop. These areas of Hadoop haven’t received much coverage, and that’s what attracted me to the potential of this book—the chance to go beyond the fundamental word-count Hadoop uses and covering some of the trickier and dirtier aspects of Hadoop.

  As I’m sure many authors have experienced, I went into this project confidently believing that writing this book was just a matter of transferring my experiences onto paper. Boy, did I get a reality check, but not altogether an unpleasant one, because writing introduced me to new approaches and tools that ultimately helped better my own Hadoop abilities. I hope that you get as much out of reading this book as I did writing it.
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About this Book

  Doug Cutting, the creator of Hadoop, likes to call Hadoop the kernel for big data, and I would tend to agree. With its distributed storage and compute capabilities, Hadoop is fundamentally an enabling technology for working with huge datasets. Hadoop provides a bridge between structured (RDBMS) and unstructured (log files, XML, text) data and allows these datasets to be easily joined together. This has evolved from traditional use cases, such as combining OLTP and log files, to more sophisticated uses, such as using Hadoop for data warehousing (exemplified by Facebook) and the field of data science, which studies and makes new discoveries about data.

  This book collects a number of intermediary and advanced Hadoop examples and presents them in a problem/solution format. Each technique addresses a specific task you’ll face, like using Flume to move log files into Hadoop or using Mahout for predictive analysis. Each problem is explored step by step, and as you work through them, you’ll find yourself growing more comfortable with Hadoop and at home in the world of big data.

  This hands-on book targets users who have some practical experience with Hadoop and understand the basic concepts of MapReduce and HDFS. Manning’s Hadoop in Action by Chuck Lam contains the necessary prerequisites to understand and apply the techniques covered in this book.

  Many techniques in this book are Java-based, which means readers are expected to possess an intermediate-level knowledge of Java. An excellent text for all levels of Java users is Effective Java, Second Edition by Joshua Bloch (Addison-Wesley, 2008).

  
Roadmap

  This book has 10 chapters divided into four parts.

  Part 1 contains two chapters that form the introduction to this book. They review Hadoop basics and look at how to get Hadoop up and running on a single host. YARN, which is new in Hadoop version 2, is also examined, and some operational tips are provided for performing basic functions in YARN.

  Part 2, “Data logistics,” consists of three chapters that cover the techniques and tools required to deal with data fundamentals, how to work with various data formats, how to organize and optimize your data, and getting data into and out of Hadoop. Picking the right format for your data and determining how to organize data in HDFS are the first items you’ll need to address when working with Hadoop, and they’re covered in chapters 3 and 4 respectively. Getting data into Hadoop is one of the bigger hurdles commonly encountered when working with Hadoop, and chapter 5 is dedicated to looking at a variety of tools that work with common enterprise data sources.

  Part 3 is called “Big data patterns,” and it looks at techniques to help you work effectively with large volumes of data. Chapter 6 covers how to represent data such as graphs for use with MapReduce, and it looks at several algorithms that operate on graph data. Chapter 7 looks at more advanced data structures and algorithms such as graph processing and using HyperLogLog for working with large datasets. Chapter 8 looks at how to tune, debug, and test MapReduce performance issues, and it also covers a number of techniques to help make your jobs run faster.

  Part 4 is titled “Beyond MapReduce,” and it examines a number of technologies that make it easier to work with Hadoop. Chapter 9 covers the most prevalent and promising SQL technologies for data processing on Hadoop, and Hive, Impala, and Spark SQL are examined. The final chapter looks at how to write your own YARN application, and it provides some insights into some of the more advanced features you can use in your applications.

  The appendix covers instructions for the source code that accompanies this book, as well as installation instructions for Hadoop and all the other related technologies covered in the book.

  Finally, there are two bonus chapters available from the publisher’s website at www.manning.com/HadoopinPracticeSecondEdition: chapter 11 “Integrating R and Hadoop for statistics and more” and chapter 12 “Predictive analytics with Mahout.”

  
What’s new in the second edition?

  This second edition covers Hadoop 2, which at the time of writing is the current production-ready version of Hadoop. The first edition of the book covered Hadoop 0.22 (Hadoop 1 wasn’t yet out), and Hadoop 2 has turned the world upside-down and opened up the Hadoop platform to processing paradigms beyond MapReduce. YARN, the new scheduler and application manager in Hadoop 2, is complex and new to the community, which prompted me to dedicate a new chapter 2 to covering YARN basics and to discussing how MapReduce now functions as a YARN application.

  Parquet has also recently emerged as a new way to store data in HDFS—its columnar format can yield both space and time efficiencies in your data pipelines, and it’s quickly becoming the ubiquitous way to store data. Chapter 4 includes extensive coverage of Parquet, which includes how Parquet supports sophisticated object models such as Avro and how various Hadoop tools can use Parquet.

  How data is being ingested into Hadoop has also evolved since the first edition, and Kafka has emerged as the new data pipeline, which serves as the transport tier between your data producers and data consumers, where a consumer would be a system such as Camus that can pull data from Kafka into HDFS. Chapter 5, which covers moving data into and out of Hadoop, now includes coverage of Kafka and Camus.

  There are many new technologies that YARN now can support side by side in the same cluster, and some of the more exciting and promising technologies are covered in the new part 4, titled “Beyond MapReduce,” where I cover some compelling new SQL technologies such as Impala and Spark SQL. The last chapter, also new for this edition, looks at how you can write your own YARN application, and it’s packed with information about important features to support your YARN application.

  
Getting help

  You’ll no doubt have many questions when working with Hadoop. Luckily, between the wikis and a vibrant user community, your needs should be well covered:

  

  
    	The main wiki is located at http://wiki.apache.org/hadoop/, and it contains useful presentations, setup instructions, and troubleshooting instructions.

    	The Hadoop Common, HDFS, and MapReduce mailing lists can all be found at http://hadoop.apache.org/mailing_lists.html.

    	“Search Hadoop” is a useful website that indexes all of Hadoop and its ecosystem projects, and it provides full-text search capabilities: http://search-hadoop.com/.

    	You’ll find many useful blogs you should subscribe to in order to keep on top of current events in Hadoop. This preface includes a selection of my favorites:
      

      
        	Cloudera and Hortonworks are both prolific writers of practical applications on Hadoop—reading their blogs is always educational: http://www.cloudera.com/blog/ and http://hortonworks.com/blog/.

        	Michael Noll is one of the first bloggers to provide detailed setup instructions for Hadoop, and he continues to write about real-life challenges: www.michael-noll.com/.

        	There’s a plethora of active Hadoop Twitter users that you may want to follow, including Arun Murthy (@acmurthy), Tom White (@tom_e_white), Eric Sammer (@esammer), Doug Cutting (@cutting), and Todd Lipcon (@tlipcon). The Hadoop project tweets on @hadoop.

      

    

  

  
Code conventions and downloads

  All source code in listings or in text is presented in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts.

  All of the text and examples in this book work with Hadoop 2.x, and most of the MapReduce code is written using the newer org.apache.hadoop.mapreduce Map-Reduce APIs. The few examples that use the older org.apache.hadoop.mapred package are usually the result of working with a third-party library or a utility that only works with the old API.

  All of the code used in this book is available on GitHub at https://github.com/alexholmes/hiped2 and also from the publisher’s website at www.manning.com/HadoopinPracticeSecondEdition. The first section in the appendix shows you how to download, install, and get up and running with the code.

  
Third-party libraries

  I use a number of third-party libraries for convenience purposes. They’re included in the Maven-built JAR, so there’s no extra work required to work with these libraries.

  
Datasets

  Throughout this book, you’ll work with three datasets to provide some variety in the examples. All the datasets are small to make them easy to work with. Copies of the exact data used are available in the GitHub repository in the https://github.com/alexholmes/hiped2/tree/master/test-data directory. I also sometimes use data that’s specific to a chapter, and it’s available within chapter-specific subdirectories under the same GitHub location.

  
NASDAQ financial stocks

  I downloaded the NASDAQ daily exchange data from InfoChimps (www.infochimps.com). I filtered this huge dataset down to just five stocks and their start-of-year values from 2000 through 2009. The data used for this book is available on GitHub at https://github.com/alexholmes/hiped2/blob/master/test-data/stocks.txt.

  The data is in CSV form, and the fields are in the following order:

  Symbol,Date,Open,High,Low,Close,Volume,Adj Close

  
Apache log data

  I created a sample log file in Apache Common Log Format[1] with some fake Class E IP addresses and some dummy resources and response codes. The file is available on GitHub at https://github.com/alexholmes/hiped2/blob/master/test-data/apachelog.txt.

  
    1 See http://httpd.apache.org/docs/1.3/logs.html#common.

  

  
Names

  Names were retrieved from the U.S. government census at www.census.gov/genealogy/www/data/1990surnames/dist.all.last, and this data is available at https://github.com/alexholmes/hiped2/blob/master/test-data/names.txt.

  
Author Online

  Purchase of Hadoop in Practice, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/HadoopinPractice, SecondEdition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.

  Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking the author challenging questions lest his interest strays!

  The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.


  
About the Cover Illustration

  The figure on the cover of Hadoop in Practice, Second Edition is captioned “Momak from Kistanja, Dalmatia.” The illustration is taken from a reproduction of an album of traditional Croatian costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

  Kistanja is a small town located in Bukovica, a geographical region in Croatia. It is situated in northern Dalmatia, an area rich in Roman and Venetian history. The word “momak” in Croatian means a bachelor, beau, or suitor—a single young man who is of courting age—and the young man on the cover, looking dapper in a crisp, white linen shirt and a colorful, embroidered vest, is clearly dressed in his finest clothes, which would be worn to church and for festive occasions—or to go calling on a young lady.

  Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

  Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

  


  Part 1. Background and fundamentals

  Part 1 of this book consists of chapters 1 and 2, which cover the important Hadoop fundamentals.

  Chapter 1 covers Hadoop’s components and its ecosystem and provides instructions for installing a pseudo-distributed Hadoop setup on a single host, along with a system that will enable you to run all of the examples in the book. Chapter 1 also covers the basics of Hadoop configuration, and walks you through how to write and run a MapReduce job on your new setup.

  Chapter 2 introduces YARN, which is a new and exciting development in Hadoop version 2, transitioning Hadoop from being a MapReduce-only system to one that can support many execution engines. Given that YARN is new to the community, the goal of this chapter is to look at some basics such as its components, how configuration works, and also how MapReduce works as a YARN application. Chapter 2 also provides an overview of some applications that YARN has enabled to execute on Hadoop, such as Spark and Storm.

  


  Chapter 1. Hadoop in a heartbeat

  This chapter covers

  

  
    	Examining how the core Hadoop system works

    	Understanding the Hadoop ecosystem

    	Running a MapReduce job

  

  We live in the age of big data, where the data volumes we need to work with on a day-to-day basis have outgrown the storage and processing capabilities of a single host. Big data brings with it two fundamental challenges: how to store and work with voluminous data sizes, and more important, how to understand data and turn it into a competitive advantage.

  Hadoop fills a gap in the market by effectively storing and providing computational capabilities for substantial amounts of data. It’s a distributed system made up of a distributed filesystem, and it offers a way to parallelize and execute programs on a cluster of machines (see figure 1.1). You’ve most likely come across Hadoop because it’s been adopted by technology giants like Yahoo!, Facebook, and Twitter to address their big data needs, and it’s making inroads across all industrial sectors.

  Figure 1.1. The Hadoop environment is a distributed system that runs on commodity hardware.
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  Because you’ve come to this book to get some practical experience with Hadoop and Java,[1] I’ll start with a brief overview and then show you how to install Hadoop and run a MapReduce job. By the end of this chapter, you’ll have had a basic refresher on the nuts and bolts of Hadoop, which will allow you to move on to the more challenging aspects of working with it.

  
    1 To benefit from this book, you should have some practical experience with Hadoop and understand the basic concepts of MapReduce and HDFS (covered in Manning’s Hadoop in Action by Chuck Lam, 2010). Further, you should have an intermediate-level knowledge of Java—Effective Java, 2nd Edition by Joshua Bloch (Addison-Wesley, 2008) is an excellent resource on this topic.

  

  Let’s get started with a detailed overview.

  
1.1. What is Hadoop?

  Hadoop is a platform that provides both distributed storage and computational capabilities. Hadoop was first conceived to fix a scalability issue that existed in Nutch,[2] an open source crawler and search engine. At the time, Google had published papers that described its novel distributed filesystem, the Google File System (GFS), and MapReduce, a computational framework for parallel processing. The successful implementation of these papers’ concepts in Nutch resulted in it being split into two separate projects, the second of which became Hadoop, a first-class Apache project.

  
    2 The Nutch project, and by extension Hadoop, was led by Doug Cutting and Mike Cafarella.

  

  In this section we’ll look at Hadoop from an architectural perspective, examine how industry uses it, and consider some of its weaknesses. Once we’ve covered this background, we’ll look at how to install Hadoop and run a MapReduce job.

  Hadoop proper, as shown in figure 1.2, is a distributed master-slave architecture[3] that consists of the following primary components:

  
    3 A model of communication where one process, called the master, has control over one or more other processes, called slaves.

  

  

  Figure 1.2. High-level Hadoop 2 master-slave architecture
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Hadoop Distributed File System (HDFS) for data storage.

    	Yet Another Resource Negotiator (YARN), introduced in Hadoop 2, a general-purpose scheduler and resource manager. Any YARN application can run on a Hadoop cluster.

    	MapReduce, a batch-based computational engine. In Hadoop 2, MapReduce is implemented as a YARN application.

  

  Traits intrinsic to Hadoop are data partitioning and parallel computation of large datasets. Its storage and computational capabilities scale with the addition of hosts to a Hadoop cluster; clusters with hundreds of hosts can easily reach data volumes in the petabytes.

  In the first step in this section, we’ll examine the HDFS, YARN, and MapReduce architectures.

  1.1.1. Core Hadoop components

  To understand Hadoop’s architecture we’ll start by looking at the basics of HDFS.

  
HDFS

  HDFS is the storage component of Hadoop. It’s a distributed filesystem that’s modeled after the Google File System (GFS) paper.[4] HDFS is optimized for high throughput and works best when reading and writing large files (gigabytes and larger). To support this throughput, HDFS uses unusually large (for a filesystem) block sizes and data locality optimizations to reduce network input/output (I/O).

  
    4 See “The Google File System,” http://research.google.com/archive/gfs.html.

  

  Scalability and availability are also key traits of HDFS, achieved in part due to data replication and fault tolerance. HDFS replicates files for a configured number of times, is tolerant of both software and hardware failure, and automatically re-replicates data blocks on nodes that have failed.

  Figure 1.3 shows a logical representation of the components in HDFS: the Name-Node and the DataNode. It also shows an application that’s using the Hadoop filesystem library to access HDFS.

  Figure 1.3. An HDFS client communicating with the master NameNode and slave DataNodes
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  Hadoop 2 introduced two significant new features for HDFS—Federation and High Availability (HA):

  

  
    	Federation allows HDFS metadata to be shared across multiple NameNode hosts, which aides with HDFS scalability and also provides data isolation, allowing different applications or teams to run their own NameNodes without fear of impacting other NameNodes on the same cluster.

    	High Availability in HDFS removes the single point of failure that existed in Hadoop 1, wherein a NameNode disaster would result in a cluster outage. HDFS HA also offers the ability for failover (the process by which a standby Name-Node takes over work from a failed primary NameNode) to be automated.

  

  Now that you have a bit of HDFS knowledge, it’s time to look at YARN, Hadoop’s scheduler.

  
YARN

  YARN is Hadoop’s distributed resource scheduler. YARN is new to Hadoop version 2 and was created to address challenges with the Hadoop 1 architecture:

  

  
    	Deployments larger than 4,000 nodes encountered scalability issues, and adding additional nodes didn’t yield the expected linear scalability improvements.

    	Only MapReduce workloads were supported, which meant it wasn’t suited to run execution models such as machine learning algorithms that often require iterative computations.

  

  For Hadoop 2 these problems were solved by extracting the scheduling function from MapReduce and reworking it into a generic application scheduler, called YARN. With this change, Hadoop clusters are no longer limited to running MapReduce workloads; YARN enables a new set of workloads to be natively supported on Hadoop, and it allows alternative processing models, such as graph processing and stream processing, to coexist with MapReduce. Chapters 2 and 10 cover YARN and how to write YARN applications.

  YARN’s architecture is simple because its primary role is to schedule and manage resources in a Hadoop cluster. Figure 1.4 shows a logical representation of the core components in YARN: the ResourceManager and the NodeManager. Also shown are the components specific to YARN applications, namely, the YARN application client, the ApplicationMaster, and the container.

  Figure 1.4. The logical YARN architecture showing typical communication between the core YARN components and YARN application components
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  To fully realize the dream of a generalized distributed platform, Hadoop 2 introduced another change—the ability to allocate containers in various configurations. Hadoop 1 had the notion of “slots,” which were a fixed number of map and reduce processes that were allowed to run on a single node. This was wasteful in terms of cluster utilization and resulted in underutilized resources during MapReduce operations, and it also imposed memory limits for map and reduce tasks. With YARN, each container requested by an ApplicationMaster can have disparate memory and CPU traits, and this gives YARN applications full control over the resources they need to fulfill their work.

  You’ll work with YARN in more detail in chapters 2 and 10, where you’ll learn how YARN works and how to write a YARN application. Next up is an examination of MapReduce, Hadoop’s computation engine.

  
MapReduce

  MapReduce is a batch-based, distributed computing framework modeled after Google’s paper on MapReduce.[5] It allows you to parallelize work over a large amount of raw data, such as combining web logs with relational data from an OLTP database to model how users interact with your website. This type of work, which could take days or longer using conventional serial programming techniques, can be reduced to minutes using MapReduce on a Hadoop cluster.

  
    5 See “MapReduce: Simplified Data Processing on Large Clusters,” http://research.google.com/archive/mapreduce.html.

  

  The MapReduce model simplifies parallel processing by abstracting away the complexities involved in working with distributed systems, such as computational parallelization, work distribution, and dealing with unreliable hardware and software. With this abstraction, MapReduce allows the programmer to focus on addressing business needs rather than getting tangled up in distributed system complications.

  MapReduce decomposes work submitted by a client into small parallelized map and reduce tasks, as shown in figure 1.5. The map and reduce constructs used in MapReduce are borrowed from those found in the Lisp functional programming language, and they use a shared-nothing model to remove any parallel execution interdependencies that could add unwanted synchronization points or state sharing.[6]

  
    6 A shared-nothing architecture is a distributed computing concept that represents the notion that each node is independent and self-sufficient.

  

  Figure 1.5. A client submitting a job to MapReduce, breaking the work into small map and reduce tasks
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  The role of the programmer is to define map and reduce functions where the map function outputs key/value tuples, which are processed by reduce functions to produce the final output. Figure 1.6 shows a pseudocode definition of a map function with regard to its input and output.

  Figure 1.6. A logical view of the map function that takes a key/value pair as input

  [image: ]

  The power of MapReduce occurs between the map output and the reduce input in the shuffle and sort phases, as shown in figure 1.7.

  Figure 1.7. MapReduce’s shuffle and sort phases
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  Figure 1.8 shows a pseudocode definition of a reduce function.

  Figure 1.8. A logical view of the reduce function that produces output for flat files, NoSQL rows, or any data sink
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  With the advent of YARN in Hadoop 2, MapReduce has been rewritten as a YARN application and is now referred to as MapReduce 2 (or MRv2). From a developer’s perspective, MapReduce in Hadoop 2 works in much the same way it did in Hadoop 1, and code written for Hadoop 1 will execute without code changes on version 2.[7] There are changes to the physical architecture and internal plumbing in MRv2 that are examined in more detail in chapter 2.

  
    7 Some code may require recompilation against Hadoop 2 binaries to work with MRv2; see chapter 2 for more details.

  

  With some Hadoop basics under your belt, it’s time to take a look at the Hadoop ecosystem and the projects that are covered in this book.

  1.1.2. The Hadoop ecosystem

  The Hadoop ecosystem is diverse and grows by the day. It’s impossible to keep track of all of the various projects that interact with Hadoop in some form. In this book the focus is on the tools that are currently receiving the greatest adoption by users, as shown in figure 1.9.

  Figure 1.9. Hadoop and related technologies that are covered in this book
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  MapReduce and YARN are not for the faint of heart, which means the goal for many of these Hadoop-related projects is to increase the accessibility of Hadoop to programmers and nonprogrammers. I’ll cover many of the technologies listed in figure 1.9 in this book and describe them in detail within their respective chapters. In addition, the appendix includes descriptions and installation instructions for technologies that are covered in this book.

  
    
      
    
    
      
        	
      

    
  

  Coverage of the Hadoop ecosystem in this book

  The Hadoop ecosystem grows by the day, and there are often multiple tools with overlapping features and benefits. The goal of this book is to provide practical techniques that cover the core Hadoop technologies, as well as select ecosystem technologies that are ubiquitous and essential to Hadoop.

  
    
      
    
    
      
        	
      

    
  

  Let’s look at the hardware requirements for your cluster.

  1.1.3. Hardware requirements

  The term commodity hardware is often used to describe Hadoop hardware requirements. It’s true that Hadoop can run on any old servers you can dig up, but you’ll still want your cluster to perform well, and you don’t want to swamp your operations department with diagnosing and fixing hardware issues. Therefore, commodity refers to mid-level rack servers with dual sockets, as much error-correcting RAM as is affordable, and SATA drives optimized for RAID storage. Using RAID on the DataNode filesystems used to store HDFS content is strongly discouraged because HDFS already has replication and error-checking built in; on the NameNode, RAID is strongly recommended for additional security.[8]

  
    8 HDFS uses disks to durably store metadata about the filesystem.

  

  From a network topology perspective with regard to switches and firewalls, all of the master and slave nodes must be able to open connections to each other. For small clusters, all the hosts would run 1 GB network cards connected to a single, good-quality switch. For larger clusters, look at 10 GB top-of-rack switches that have at least multiple 1 GB uplinks to dual-central switches. Client nodes also need to be able to talk to all of the master and slave nodes, but if necessary, that access can be from behind a firewall that permits connection establishment only from the client side.

  After reviewing Hadoop from a software and hardware perspective, you’ve likely developed a good idea of who might benefit from using it. Once you start working with Hadoop, you’ll need to pick a distribution to use, which is the next topic.

  1.1.4. Hadoop distributions

  Hadoop is an Apache open source project, and regular releases of the software are available for download directly from the Apache project’s website (http://hadoop.apache.org/releases.html#Download). You can either download and install Hadoop from the website or use a quickstart virtual machine from a commercial distribution, which is usually a great starting point if you’re new to Hadoop and want to quickly get it up and running.

  After you’ve whet your appetite with Hadoop and have committed to using it in production, the next question that you’ll need to answer is which distribution to use. You can continue to use the vanilla Hadoop distribution, but you’ll have to build the in-house expertise to manage your clusters. This is not a trivial task and is usually only successful in organizations that are comfortable with having dedicated Hadoop DevOps engineers running and managing their clusters.

  Alternatively, you can turn to a commercial distribution of Hadoop, which will give you the added benefits of enterprise administration software, a support team to consult when planning your clusters or to help you out when things go bump in the night, and the possibility of a rapid fix for software issues that you encounter. Of course, none of this comes for free (or for cheap!), but if you’re running mission-critical services on Hadoop and don’t have a dedicated team to support your infrastructure and services, then going with a commercial Hadoop distribution is prudent.

  
    
      
    
    
      
        	
      

    
  

  Picking the distribution that’s right for you

  It’s highly recommended that you engage with the major vendors to gain an understanding of which distribution suits your needs from a feature, support, and cost perspective. Remember that each vendor will highlight their advantages and at the same time expose the disadvantages of their competitors, so talking to two or more vendors will give you a more realistic sense of what the distributions offer. Make sure you download and test the distributions and validate that they integrate and work within your existing software and hardware stacks.

  
    
      
    
    
      
        	
      

    
  

  There are a number of distributions to choose from, and in this section I’ll briefly summarize each distribution and highlight some of its advantages.

  
Apache

  Apache is the organization that maintains the core Hadoop code and distribution, and because all the code is open source, you can crack open your favorite IDE and browse the source code to understand how things work under the hood. Historically the challenge with the Apache distributions has been that support is limited to the goodwill of the open source community, and there’s no guarantee that your issue will be investigated and fixed. Having said that, the Hadoop community is a very supportive one, and responses to problems are usually rapid, even if the actual fixes will likely take longer than you may be able to afford.

  The Apache Hadoop distribution has become more compelling now that administration has been simplified with the advent of Apache Ambari, which provides a GUI to help with provisioning and managing your cluster. As useful as Ambari is, though, it’s worth comparing it against offerings from the commercial vendors, as the commercial tooling is typically more sophisticated.

  
Cloudera

  Cloudera is the most tenured Hadoop distribution, and it employs a large number of Hadoop (and Hadoop ecosystem) committers. Doug Cutting, who along with Mike Caferella originally created Hadoop, is the chief architect at Cloudera. In aggregate, this means that bug fixes and feature requests have a better chance of being addressed in Cloudera compared to Hadoop distributions with fewer committers.

  Beyond maintaining and supporting Hadoop, Cloudera has been innovating in the Hadoop space by developing projects that address areas where Hadoop has been weak. A prime example of this is Impala, which offers a SQL-on-Hadoop system, similar to Hive but focusing on a near-real-time user experience, as opposed to Hive, which has traditionally been a high-latency system. There are numerous other projects that Cloudera has been working on: highlights include Flume, a log collection and distribution system; Sqoop, for moving relational data in and out of Hadoop; and Cloudera Search, which offers near-real-time search indexing.

  
Hortonworks

  Hortonworks is also made up of a large number of Hadoop committers, and it offers the same advantages as Cloudera in terms of the ability to quickly address problems and feature requests in core Hadoop and its ecosystem projects.

  From an innovation perspective, Hortonworks has taken a slightly different approach than Cloudera. An example is Hive: Cloudera’s approach was to develop a whole new SQL-on-Hadoop system, but Hortonworks has instead looked at innovating inside of Hive to remove its high-latency shackles and add new capabilities such as support for ACID. Hortonworks is also the main driver behind the next-generation YARN platform, which is a key strategic piece keeping Hadoop relevant. Similarly, Horton-works has used Apache Ambari for its administration tooling rather than developing an in-house proprietary administration tool, which is the path taken by the other distributions. Hortonworks’ focus on developing and expanding the Apache ecosystem tooling has a direct benefit to the community, as it makes its tools available to all users without the need for support contracts.

  
MapR

  MapR has fewer Hadoop committers on its team than the other distributions discussed here, so its ability to fix and shape Hadoop’s future is potentially more bounded than its peers.

  From an innovation perspective, MapR has taken a decidedly different approach to Hadoop support compared to its peers. From the start it decided that HDFS wasn’t an enterprise-ready filesystem, and instead developed its own proprietary filesystem, which offers compelling features such as POSIX compliance (offering random-write support and atomic operations), High Availability, NFS mounting, data mirroring, and snapshots. Some of these features have been introduced into Hadoop 2, but MapR has offered them from the start, and, as a result, one can expect that these features are robust.

  As part of the evaluation criteria, it should be noted that parts of the MapR stack, such as its filesystem and its HBase offering, are closed source and proprietary. This affects the ability of your engineers to browse, fix, and contribute patches back to the community. In contrast, most of Cloudera’s and Hortonworks’ stacks are open source, especially Hortonworks’, which is unique in that the entire stack, including the management platform, is open source.

  MapR’s notable highlights include being made available in Amazon’s cloud as an alternative to Amazon’s own Elastic MapReduce and being integrated with Google’s Compute Cloud.

  I’ve just scratched the surface of the advantages that the various Hadoop distributions offer; your next steps will likely be to contact the vendors and start playing with the distributions yourself.

  Next, let’s take a look at companies currently using Hadoop, and in what capacity they’re using it.

  1.1.5. Who’s using Hadoop?

  Hadoop has a high level of penetration in high-tech companies, and it’s starting to make inroads in a broad range of sectors, including the enterprise (Booz Allen Hamilton, J.P. Morgan), government (NSA), and health care.

  Facebook uses Hadoop, Hive, and HBase for data warehousing and real-time application serving.[9] Facebook’s data warehousing clusters are petabytes in size with thousands of nodes, and they use separate HBase-driven, real-time clusters for messaging and real-time analytics.

  
    9 See Dhruba Borthakur, “Looking at the code behind our three uses of Apache Hadoop” on Facebook at http://mng.bz/4cMc. Facebook has also developed its own SQL-on-Hadoop tool called Presto and is migrating away from Hive (see Martin Traverso, “Presto: Interacting with petabytes of data at Facebook,” http://mng.bz/p0Xz).

  

  Yahoo! uses Hadoop for data analytics, machine learning, search ranking, email antispam, ad optimization, ETL,[10] and more. Combined, it has over 40,000 servers running Hadoop with 170 PB of storage. Yahoo! is also running the first large-scale YARN deployments with clusters of up to 4,000 nodes.[11]

  
    10 Extract, transform, and load (ETL) is the process by which data is extracted from outside sources, transformed to fit the project’s needs, and loaded into the target data sink. ETL is a common process in data warehousing.

  

  
    11 There are more details on YARN and its use at Yahoo! in “Apache Hadoop YARN: Yet Another Resource Negotiator” by Vinod Kumar Vavilapalli et al., www.cs.cmu.edu/~garth/15719/papers/yarn.pdf.

  

  Twitter is a major big data innovator, and it has made notable contributions to Hadoop with projects such as Scalding, a Scala API for Cascading; Summingbird, a component that can be used to implement parts of Nathan Marz’s lambda architecture; and various other gems such as Bijection, Algebird, and Elephant Bird.

  eBay, Samsung, Rackspace, J.P. Morgan, Groupon, LinkedIn, AOL, Spotify, and StumbleUpon are some other organizations that are also heavily invested in Hadoop. Microsoft has collaborated with Hortonworks to ensure that Hadoop works on its platform.

  Google, in its MapReduce paper, indicated that it uses Caffeine,[12] its version of MapReduce, to create its web index from crawl data. Google also highlights applications of MapReduce to include activities such as a distributed grep, URL access frequency (from log data), and a term-vector algorithm, which determines popular keywords for a host.

  
    12 In 2010 Google moved to a real-time indexing system called Caffeine; see “Our new search index: Caffeine” on the Google blog (June 8, 2010), http://googleblog.blogspot.com/2010/06/our-new-search-index-caffeine.html.

  

  The number of organizations that use Hadoop grows by the day, and if you work at a Fortune 500 company you almost certainly use a Hadoop cluster in some capacity. It’s clear that as Hadoop continues to mature, its adoption will continue to grow.

  As with all technologies, a key part to being able to work effectively with Hadoop is to understand its shortcomings and design and architect your solutions to mitigate these as much as possible.

  1.1.6. Hadoop limitations

  High availability and security often rank among the top concerns cited with Hadoop. Many of these concerns have been addressed in Hadoop 2; let’s take a closer look at some of its weaknesses as of release 2.2.0.

  Enterprise organizations using Hadoop 1 and earlier had concerns with the lack of high availability and security. In Hadoop 1, all of the master processes are single points of failure, which means that a failure in the master process causes an outage. In Hadoop 2, HDFS now has high availability support, and the re-architecture of Map-Reduce with YARN has removed the single point of failure. Security is another area that has had its wrinkles, and it’s receiving focus.

  
High availability

  High availability is often mandated in enterprise organizations that have high uptime SLA requirements to ensure that systems are always on, even in the event of a node going down due to planned or unplanned circumstances. Prior to Hadoop 2, the master HDFS process could only run on a single node, resulting in single points of failure.[13] Hadoop 2 brings NameNode High Availability (HA) support, which means that multiple NameNodes for the same Hadoop cluster can be running. With the current design, one of the NameNodes is active and the other NameNode is designated as a standby process. In the event that the active NameNode experiences a planned or unplanned outage, the standby NameNode will take over as the active NameNode, which is a process called failover. This failover can be configured to be automatic, negating the need for human intervention. The fact that a NameNode failover occurred is transparent to Hadoop clients.

  
    13 In reality, the HDFS single point of failure may not be terribly significant; see “NameNode HA” by Suresh Srinivas and Aaron T. Myers, http://goo.gl/1iSab.

  

  The MapReduce master process (the JobTracker) doesn’t have HA support in Hadoop 2, but now that each MapReduce job has its own JobTracker process (a separate YARN ApplicationMaster), HA support is arguably less important.

  HA support in the YARN master process (the ResourceManager) is important, however, and development is currently underway to add this feature to Hadoop.[14]

  
    14 For additional details on YARN HA support, see the JIRA ticket titled “ResourceManager (RM) High-Availability (HA),” https://issues.apache.org/jira/browse/YARN-149.

  

  
Multiple datacenters

  Multiple datacenter support is another key feature that’s increasingly expected in enterprise software, as it offers strong data protection and locality properties due to data being replicated across multiple datacenters. Apache Hadoop, and most of its commercial distributions, has never had support for multiple datacenters, which poses challenges for organizations that have software running in multiple datacenters. WANdisco is currently the only solution available for Hadoop multidatacenter support.

  
Security

  Hadoop does offer a security model, but by default it’s disabled. With the security model disabled, the only security feature that exists in Hadoop is HDFS file- and directory-level ownership and permissions. But it’s easy for malicious users to subvert and assume other users’ identities. By default, all other Hadoop services are wide open, allowing any user to perform any kind of operation, such as killing another user’s MapReduce jobs.

  Hadoop can be configured to run with Kerberos, a network authentication protocol, which requires Hadoop daemons to authenticate clients, both users and other Hadoop components. Kerberos can be integrated with an organization’s existing Active Directory and therefore offers a single-sign-on experience for users. Care needs to be taken when enabling Kerberos, as any Hadoop tool that wishes to interact with your cluster will need to support Kerberos.

  Wire-level encryption can be configured in Hadoop 2 and allows data crossing the network (both HDFS transport[15] and MapReduce shuffle data[16]) to be encrypted. Encryption of data at rest (data stored by HDFS on disk) is currently missing in Hadoop.

  
    15 See the JIRA ticket titled “Add support for encrypting the DataTransferProtocol” at https://issues.apache.org/jira/browse/HDFS-3637.

  

  
    16 See the JIRA ticket titled “Add support for encrypted shuffle” at https://issues.apache.org/jira/browse/MAPREDUCE-4417.

  

  Let’s examine the limitations of some of the individual systems.

  
HDFS

  The weakness of HDFS is mainly its lack of high availability (in Hadoop 1.x and earlier), its inefficient handling of small files,[17] and its lack of transparent compression. HDFS doesn’t support random writes into files (only appends are supported), and it’s generally designed to support high-throughput sequential reads and writes over large files.

  
    17 Although HDFS Federation in Hadoop 2 has introduced a way for multiple NameNodes to share file metadata, the fact remains that metadata is stored in memory.

  

  
MapReduce

  MapReduce is a batch-based architecture, which means it doesn’t lend itself to use cases that need real-time data access. Tasks that require global synchronization or sharing of mutable data aren’t a good fit for MapReduce, because it’s a shared-nothing architecture, which can pose challenges for some algorithms.

  
Version incompatibilities

  The Hadoop 2 release brought with it some headaches with regard to MapReduce API runtime compatibility, especially in the org.hadoop.mapreduce
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