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INTRODUCTION

Twenty-four centuries ago, a Greek man stood at the sea’s edge watching ships disappear in the distance. Aristotle must have passed much time there, quietly observing many vessels, for eventually he was struck by a peculiar thought. All ships seemed to vanish hull first, then masts and sails. He wondered, how could that be? On a flat earth, ships should dwindle evenly until they disappear as a tiny featureless dot. That the masts and sails vanish first, Aristotle saw in a flash of genius, is a sign that the earth is curved. To observe the large-scale structure of our planet, Aristotle had looked through the window of geometry.

Today we explore space as millennia ago we explored the earth. A few people have traveled to the moon. Unmanned ships have ventured to the outer reaches of the solar system. It is feasible that within this millennium we will reach the nearest star—a journey of about fifty years at the probably-some-day-attainable speed of one-tenth the speed of light. But measured even in multiples of the distance to Alpha Centauri, the outer reaches of the universe are several billion measuring sticks away. It is unlikely that we will ever be able to watch a vessel approach the horizon of space as Aristotle did on earth. Yet we have discerned much about the nature and structure of the universe as Aristotle did, by observing, employing logic, and staring blankly into space an awful lot. Over the centuries, genius and geometry have helped us gaze beyond our horizons. What can you prove about space? How do you know where you are? Can space be curved? How many dimensions are there? How does geometry explain the natural order and unity of the cosmos? These are the questions behind the five geometric revolutions of world history.

It started with a little scheme hatched by Pythagoras: to employ mathematics as the abstract system of rules that can model the physical universe. Then came a concept of space removed from the ground we trod upon, or the water we swam through. It was the birth of abstraction and proof. Soon the Greeks seemed to be able to find geometric answers to every scientific question, from the theory of the lever to the orbits of the heavenly bodies. But Greek civilization declined and the Romans conquered the Western world. One day just before Easter in a.d. 415, a woman was pulled from a chariot and killed by an ignorant mob. This scholar, devoted to geometry, to Pythagoras, and to rational thought, was the last famous scholar to work in the library at Alexandria before the descent of civilization into the thousand years of the Dark Ages.

Soon after civilization reemerged, so did geometry, but it was a new kind of geometry. It came from a man most civilized—he liked to gamble, sleep until the afternoon, and criticize the Greeks because he considered their method of geometric proof too taxing. To save mental labor, René Descartes married geometry and number. With his idea of coordinates, place and shape could be manipulated as never before, and number could be visualized geometrically. These techniques enabled calculus and the development of modern technology. Thanks to Descartes, geometric concepts such as coordinates and graphs, sines and cosines, vectors and tensors, angles and curvature, appear in every context of physics from solid state electronics to the large-scale structure of space-time, from the technology of transistors and computers to lasers and space travel. But Descartes’s work also enabled a more abstract—and revolutionary—idea, the idea of curved space. Do all triangles really have angle sums of 180 degrees, or is that only true if the triangle is on a flat piece of paper? It is not just a question of origami. The mathematics of curved space caused a revolution in the logical foundations, not only of geometry but of all of mathematics. And it made possible Einstein’s theory of relativity. Einstein’s geometric theory of space and that extra dimension, time, and of the relation of space-time to matter and energy, represented a paradigm change of a magnitude not seen in physics since Newton. It sure seemed radical. But that was nothing, compared to the latest revolution.

One day in June 1984, a scientist announced that he had made a breakthrough in the theory that would explain everything from why subatomic particles exist, and how they interact, to the large-scale structure of space-time and the nature of black holes. This man believed that the key to understanding the unity and order of the universe lies in geometry—geometry of a new and rather bizarre nature. He was carried off the stage by a group of men in white uniforms.

It turned out the event was staged. But the sentiment and genius were real. John Schwarz had been working for a decade and a half on a theory, called string theory, that most physicists reacted to in much the same way they would react to a stranger with a crazed expression asking for money on the street. Today, most physicists believe that string theory is correct: the geometry of space is responsible for the physical laws governing that which exists within it.

The manifesto of the seminal revolution in geometry was written by a mystery man named Euclid. If you don’t recall much of that deadly subject called Euclidean Geometry, it is probably because you slept through it. To gaze upon geometry the way it is usually presented is a good way to turn a young mind to stone. But Euclidean geometry is actually an exciting subject, and Euclid’s work a work of beauty whose impact rivaled that of the Bible, whose ideas were as radical as those of Marx and Engels. For with his book, Elements, Euclid opened a window through which the nature of our universe has been revealed. And as his geometry has passed through four more revolutions, scientists and mathematicians have shattered theologians’ beliefs, destroyed philosophers’ treasured worldviews, and forced us to reexamine and reimagine our place in the cosmos. These revolutions, and the prophets and stories behind them, are the subject of this book.
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1. The First Revolution

[image: image]UCLID was a man who possibly did not discover even one significant law of geometry. Yet he is the most famous geometer ever known and for good reason: for millennia it has been his window that people first look through when they view geometry. Here and now, he is our poster boy for the first great revolution in the concept of space—the birth of abstraction, and the idea of proof.

The concept of space began, naturally enough, as a concept of place, our place, earth. It began with a development the Egyptians and Babylonians called “earth measurement.” The Greek word for that is geometry, but the subjects are not at all alike. The Greeks were the first to realize that nature could be understood employing mathematics—that geometry could be applied to reveal, not merely to describe. Evolving geometry from simple descriptions of stone and sand, the Greeks extracted the ideals of point, line, and plane. Stripping away the window-dressing of matter, they uncovered a structure possessing a beauty civilization had never before seen. At the climax of this struggle to invent mathematics stands Euclid. The story of Euclid is a story of revolution. It is the story of the axiom, the theorem, the proof, the story of the birth of reason itself.



2. The Geometry of Taxation

[image: image]HE ROOTS of the Greek achievements sprouted in the ancient civilizations of Babylon and Egypt. Yeats wrote of Babylonian indifference, a trait that in mathematics, held them back from achieving greatness. Pre-Greek humanity noticed many clever formulae, tricks of calculation and engineering, but like our political leaders, they sometimes accomplished amazing feats with astonishingly little comprehension of what they were doing. Nor did they care. They were builders, working in the dark, groping, feeling their way, erecting a structure here, laying down stepping stones there, achieving purpose without ever achieving understanding.

They weren’t the first. Human beings have been counting and calculating, taxing, and shortchanging each other since well before recorded times. Some alleged counting tools dating back to 30,000 b.c. might just be sticks decorated by artists with intuitive mathematical sensibilities. But others are intriguingly different. On the shores of Lake Edward, now in the Democratic Republic of Congo, archeologists unearthed a small bone, 8,000 years old, with a tiny piece of quartz stuck in a groove at one end. Its creator, an artist or mathematician—we’ll never know for sure—cut three columns of notches into the bone’s side. Scientists believe this bone, called the Ishango bone, is probably the earliest example ever found of a numerical recording device.

The thought of performing operations on numbers was much slower in coming because performing arithmetic requires a certain degree of abstraction. Anthropologists tell us that among many tribes, if two hunters fired two arrows to fell two gazelles, then got two hernias lugging them back toward camp, the word used for “two” might be different in each case. In these civilizations, you really couldn’t add apples and oranges. It seems to have taken many thousands of years for humans to discover that these were all instances of the same concept: the abstract number, 2.

The first major steps in this direction were taken in the sixth millennium b.c., when the people of the Nile Valley began to turn away from nomadic life and focus on cultivating the valley. The deserts of northern Africa are among the driest and most barren spots in the world. Only the Nile River, swollen with equatorial rains and melted snow from the Abyssinian highlands, could, like a god, bring life and sustenance to the desert. In ancient times, in mid-June each year, the Nile Valley, dry and desolate and dusty, would feel the river drive forward and rise, filling up its bed, spreading fertile mud over the countryside. Long before the classical Greek writer Herodotus described Egypt as “the gift of the Nile,” Ramses III left an account indicating how the Egyptians worshipped this god, the Nile, called Hapi, with offerings of honey, wine, gold, turquoise—all that the Egyptians valued. Even the name, “Egypt,” means “black earth” in the Coptic language.
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Each year, the inundation of the valley lasted four months. By October, the river would begin to shrivel and shrink until the land had baked dry once more by the following summer. The eight dry months were divided into two seasons, the perit for cultivation and the shemu for harvesting. The Egyptians began to establish settled communities built on mounds that, during the floods, became tiny islands joined by causeways. They built a system of irrigation and grain storage. Agricultural life became the basis for the Egyptian calendar and Egyptian life. Bread and beer became their staples. By 3500 b.c., the Egyptians had mastered minor industry, such as crafts and metalworking. Around that time, they also developed writing.

The Egyptians had always had death, but with wealth and settlement, they now also had taxes. Taxes were perhaps the first imperative for the development of geometry, for although in theory the Pharaoh owned all land and possessions, in reality temples and even private individuals owned real estate. The government assessed land taxes based on the height of the year’s flood and the surface area of the holdings. Those who refused to pay might be beaten into submission on the spot by the police. Borrowing was possible but the interest rate was based on a “keep it simple” philosophy: 100 percent per year. Since much was at stake, the Egyptians developed fairly reliable, if tortuous, methods of calculating the area of a square, rectangle, and trapezoid. To find the area of a circle, they approximated it by a square with sides equal to eight-ninths the diameter. This is equivalent to using a value of 256/81, or 3.16, for pi, an overestimate, but off by only 0.6 percent. History does not record whether taxpayers griped about the inequity.

The Egyptians employed their mathematical knowledge to impressive ends. Picture a windswept, desolate desert, the date, 2580 b.c. The architect had laid out a papyrus with the plans for your structure. His job was easy—square base, triangular faces—and, oh yeah, it has to be 480 feet high and made of solid stone blocks weighing over 2 tons each. You were charged with overseeing completion of structure. Sorry, no laser sight, no fancy surveyor’s instruments at your disposal, just some wood and rope.

As many homeowners know, marking the foundation of a building or the perimeter of even a simple patio using only a carpenter’s square and measuring tape is a difficult task. In building this pyramid, just a degree off from true, and thousands of tons of rocks, thousands of person-years later, hundreds of feet in the air, the triangular faces of your pyramid miss, forming not an apex but a sloppy four-pointed spike. The Pharaohs, worshipped as gods, with armies who cut the phalluses off enemy dead just to help them keep count, were not the kind of all-powerful deities you would want to present with a crooked pyramid. Applied Egyptian geometry became a well-developed subject.

To perform their surveying, the Egyptians utilized a person called a harpedonopta, literally, a “rope stretcher.” The harpedonopta employed three slaves, who handled the rope for him. The rope had knots in it at prescribed distances so that by stretching it taut with the knots as vertices, you could form a triangle with sides of given lengths—and hence angles of given measures. For instance, if you stretch a rope with knots at 30 yards, 40 yards, and 50 yards, you get a right angle between the sides of 30 and 40 yards. (The word hypotenuse in Greek originally meant “stretched against”). The method was ingenious—and more sophisticated than it might seem. Today we would say that the rope stretchers formed not lines, but geodesic curves along the surface of the earth. We shall see that this is precisely the method, although in an imaginary, extremely small (technically, “infinitesimal”) form, that we employ today to analyze the local properties of space in the field of mathematics known as differential geometry. And it is the Pythagorean theorem whose verity is the test of flat space.

While the Egyptians were settling the Nile, in the region between the Persian Gulf and Palestine another urbanization occurred. It began in Mesopotamia, the region between the Tigris and Euphrates Rivers, during the fourth millennium b.c. Sometime between 2000 and 1700 b.c. the non-Semitic people living just north of the Persian Gulf conquered their southern neighbors. Their victorious ruler, Hammurabi, named the combined kingdom after the city of Babylon. To the Babylonians we credit a system of mathematics considerably more sophisticated than that of the Egyptians.

Aliens gazing at earth through some super-telescope from 23,400,000,000,000,000 miles away can now observe Babylonian and Egyptian life and habits. For those of us stuck here, it is a bit harder to piece things together. We know Egyptian mathematics principally from two sources: the Rhind Papyrus, named for A. H. Rhind, who donated it to the British Museum, and the Moscow Papyrus, which resides in the Museum of Fine Arts in Moscow. Our best knowledge of the Babylonians comes from the ruins at Nineveh, where some 1,500 tablets were found. Unfortunately, none contained mathematical text. Luckily, a few hundred clay tablets were excavated in the region of Assyria, mostly from the ruins of Nippur and Kis. If combing through ruins is like searching a bookstore, these were the shops that had a math section. The ruins contained reference tables, textbooks, and other items that reveal much about Babylonian mathematical thought.

We know, for instance, that the Babylonian equivalent of an engineer would not just throw manpower at a project. To dig, say, a canal, he would note that the cross-section was trapezoidal, calculate the volume of dirt that had to be moved, take into account how much digging a man could do in a day, and come up with the number of man-days needed for the job. Babylonian moneylenders even calculated compound interest.

The Babylonians did not write equations. All their calculations were expressed as word problems. For instance, one tablet contained the spellbinder, “four is the length and five is the diagonal. What is the breadth? Its size is not known. Four times four is sixteen. Five times five is twenty-five. You take sixteen from twenty-five and there remains nine. What times what shall I take in order to get nine? Three times three is nine. Three is the breadth.” Today, we would write “x2 = 52 – 42.” The disadvantage of the rhetorical statement of problems isn’t as much the obvious one—its lack of compactness—but that the prose cannot be manipulated as an equation can, and rules of algebra, for instance, are not easily applied. It took thousands of years before this particular shortcoming was remedied: the oldest known use of the plus sign for addition occurs in a German manuscript written in 1481.

The excerpt above indicates that the Babylonians appear to have known the Pythagorean theorem, that for a right triangle the square of the hypotenuse is equal to the sum of the squares of the bases. As the rope stretcher’s trick indicates, the Egyptians seem to have known this relation as well, but the Babylonian scribes filled their clay tablets with impressive tables of triplets of numbers exhibiting this dependence. They recorded low-lying triplets such as 3,4,5 or 5,12,13, but also others as large as 3456,3367,4825. The chances of finding a triplet that works by randomly checking threesomes of numbers is slim. For instance, in the first dozen numbers, 1, 2, …, 12, there are hundreds of ways to choose distinct triplets; of all these only the triplet 3,4,5 satisfies the theorem. Unless the Babylonians employed armies of calculators who spent their entire careers doing such calculations, we can conclude that they knew at least enough elementary number theory to generate these triplets.

Despite the Egyptians’ accomplishments and the Babylonians’ cleverness, their contributions to mathematics were limited to providing the later Greeks with a collection of concrete mathematical facts and rules of thumb. They were like classical field biologists patiently cataloguing species, not modern geneticists seeking to gain an understanding of how the organism develops and functions. For instance, though both civilizations knew the Pythagorean theorem, neither analyzed the general law that today we would write as a2 + b2 = c2 (where c is the length of the hypotenuse of a right triangle, and a and b the lengths of the other two sides). They seem never to have questioned why such a relationship might exist, or how they might apply it to gain further knowledge. Is it exact, or does it only hold approximately? As a matter of principle, this is a critical question. In purely practical terms, who cares? Before the ancient Greeks came along, no one did.

Consider a problem that became the biggest headache in geometry in ancient Greece, but didn’t bother the Egyptians or Babylonians at all. It’s wonderfully simple. Given a square with sides measuring one unit in length, what is the length of the diagonal? The Babylonians calculated this as (converted to decimal notation) 1.4142129. That answer is accurate to three sexigesimal places (the Babylonians used a base sixty system). The Pythagorean Greeks realized the number cannot be written as a whole number or fraction, a situation that we today recognize as meaning that it is given by an endless string of decimals with no pattern: 1.414213562 … To the Greeks, this caused great trauma, a crisis of religious proportion, for the sake of which at least one scholar was murdered. Murdered for squealing about the value of the square root of 2? Why? The answer lies at the heart of Greek greatness.



3. Among the Seven Sages

[image: image]HE DISCOVERY that mathematics is more than algorithms for calculating volumes of dirt or the magnitude of taxes is credited to a lone Greek merchant-turned-philosopher named Thales a bit more than 2,500 years ago. It is he who sets the stage for the great discoveries of the Pythagoreans, and eventually the Elements of Euclid. He lived at a time when, across the world, alarm clocks went off, in one way or another, waking the human mind. In India, Siddhartha Gautama Buddha, born around 560 b.c., began the spread of Buddhism. In China, Laotzu and his younger contemporary Confucius, born in 551 b.c., made intellectual progress of enormous consequence. In Greece, too, a Golden Age was beginning.

Near the west coast of Asia Minor, a river named Meander, the river from which the word meander is coined, spills into a dismal swampy plain in the country that today is Turkey. In the midst of that swamp, some 2,500 years ago, stood the most prosperous Greek city of its time, Miletus. It was then a coastal city, on a gulf now filled in by silt, in a region known as Ionia. Miletus was shut in by water and mountains, with only one convenient route to the interior, but at least four harbors, a center of maritime trade for the eastern Aegean. From here, vessels snaked their way south among the islands and peninsulas toward Cyprus, Phoenicia, and Egypt, or headed west to European Greece.

In this city, in the seventh century b.c., began a revolution in human thought, a mutiny against superstition and sloppy thinking that was to continue its development for nearly a millennium, and leave behind the foundations of modern reasoning.

Our knowledge of these groundbreaking thinkers is uncertain, often based on the biased writings of later scholars such as Aristotle and Plato, sometimes on contradictory accounts. Most of these legendary figures had Greek names, but they did not accept Greek myth. They were often persecuted, driven into exile, even suicide—at least according to the stories passed down about them.

Despite the differing accounts, it is generally agreed that in Miletus, around 640 b.c., a proud mother and father parented a baby boy they named Thales. Thales of Miletus has the honor of most often being named the world’s first scientist or mathematician. Attaching this early date to these professions apparently does not threaten the primacy of that oldest profession, the sex business, as sections of padded leather designed for female sexual gratification were one of the items for which Miletus was known. We don’t know whether Thales traded in those, or in salted fish, wool, or the other commodities for which Miletus was famous; but he was a wealthy merchant, and he used his cash to do what he pleased, retiring to devote himself to study and travel.

Ancient Greece comprised a number of small, politically independent political units, the city-states. Some were democratic, others controlled by a small aristocracy or a tyrannical king. Of Greek daily life, we know the most about Athens, but a citizen’s life had many similarities throughout the Hellenes, and changed little over the few centuries following Thales, except during times of famine or war. The Greeks seemed to like socializing, at the barbershop, the temple, the marketplace. Socrates was a fan of the shoemaker’s shop. Diogenes Laertius wrote of a cobbler, named Simon, who first introduced Socratic dialogues as a form of conversation. In the remains of a fifth-century b.c. shop, archeologists have unearthed a chip of a wine cup bearing the name “Simon.”

The ancient Greeks also enjoyed dinner parties. In Athens, dinner would be followed by the symposium—literally, “together drinking.” Revelers gulped diluted wine, discussing philosophy, singing songs, reciting jokes and riddles. Those failing at riddles, or committing various gaffes, were assessed punishments such as having to dance naked around the room. But if Greek partying is reminiscent of college life, so is their focus on knowledge. The Greeks valued inquiry.

Thales seems to have had the insatiable thirst for learning that characterized so many Greeks who shaped its Golden Age. In his travels to Babylon, he studied the science and mathematics of astronomy, and gained local fame by bringing this knowledge to Greece. One of Thales’ legendary accomplishments was to predict the solar eclipse of 585 b.c. Herodotus tells us that it occurred during a battle, stopped the fighting, and brought on a lasting peace.

Thales also spent extended amounts of time in Egypt. The Egyptians had the expertise to build the pyramids, yet lacked the insight needed to measure their height. Thales sought theoretical explanations for the facts discovered empirically by the Egyptians. With such understanding, Thales could derive geometric techniques, one from another, or he could steal the solution for one problem from that of another because he had extracted the abstract principle from the particular practical application. He stunned the Egyptians by showing them how they could measure the height of the pyramids employing a knowledge of the properties of similar triangles. Thales later used a similar technique to measure the distance of a ship at sea. He became a celebrity in ancient Egypt.

In Greece, Thales was named by his contemporaries as one of the Seven Sages, the seven wisest men in the world. His feats were all the more impressive considering the primitive sense of mathematics possessed by the average person alive at that time. For instance, even centuries later, the great Greek thinker Epicurus still maintained that the sun was no huge ball of fire, but rather, “just as big as we see it.”

Thales made the first steps toward the systemization of geometry. He was the first to prove geometric theorems of the kind Euclid would gather in his Elements centuries later. Realizing that rules were needed for determining what might validly follow from what, Thales also invented the first system of logical reasoning. He was the first to consider the concept of congruence of spatial figures, that two figures in a plane can be considered equal if you can slide and rotate one to coincide exactly with the other. Extending the idea of equality from number to spatial objects was a giant leap in the mathematization of space. It is also not as obvious as it may seem to those of us indoctrinated to this early in our school days. In fact, as we will see, it involves the assumption of homogeneity, that a figure neither warps nor alters size as it moves, which is not true in all spaces, including our own physical space. Thales kept the Egyptian name “earth measurement” for his mathematics, but being Greek, used the Greek word geometry.

Thales asserted that via observation and reasoning we should be able to explain all that happens in nature. He eventually came to the revolutionary conclusion that nature follows regular laws. Thunderclaps are not the loud noises made by angry Zeus. There has to be a better explanation, obtained by observation and reasoning. And in mathematics, conclusions about the world should be verified via rules, not guesses and observation.

Thales also addressed the concept of physical space. He recognized that all matter in the world, despite its vast variety, must be intrinsically the same stuff. In the absence of any evidence, it was an amazing leap of intuition. The next natural question was, of course, what is this fundamental stuff? Here, living in a city of harbors, intuition led Thales to choose water. Ironically, Thales’ student and fellow Milesian, Anaximander, came by a comparable leap of intuition to the idea of evolution, and for the lower animal from which humans evolved, chose the fish.

When Thales was a frail old man, fearful of his own senility, he met Euclid’s most important forerunner, Pythagoras of Samos. Samos was a city on a large island of the same name, in the Aegean Sea, not far from Miletus. A visitor to the island today can still find some shattered columns, and basalt remains of a theater overlooking the site of its ancient harbor. In Pythagoras’ day, it flourished. When Pythagoras was eighteen, his father died. His uncle gave him some silver and a letter of introduction, and sent him off to visit the philosopher Pherecydes, on the nearby island of Lesbos, the island from which the term lesbian is derived.

According to legend, Pherecydes had studied the secret books of the Phoenicians, and introduced to Greece the belief in immortality of the soul and reincarnation, which Pythagoras embraced as cornerstones of his religious philosophy. Pythagoras and Pherecydes became lifelong friends, but Pythagoras did not stay long on Lesbos. By the time he was twenty, Pythagoras journeyed to Miletus, where he met Thales.

The historical picture is one of a young boy with long stringy hair, dressed not in the traditional Greek tunic, but instead clad in pants, a kind of ancient hippy, visiting the famous old sage. Thales by then was a man cognizant that his earlier brilliance had dimmed considerably. Seeing perhaps a glimmer of his own youth in the boy, he apologized for his diminished mental state.

We know little of what Thales actually said to Pythagoras, but we do know he was a great influence on the young genius. Years after Thales’ death, Pythagoras would sometimes be found sitting at home, singing songs of praise to the departed visionary. All ancient accounts of the meeting agree on one thing: Thales gave Pythagoras the Horace Greeley treatment, but instead of telling him to go west, young man, Thales recommended Egypt.



4. The Secret Society

[image: image]YTHAGORAS took Thales up on his recommendation to go to Egypt, but there, Pythagoras found no poetry in Egyptian mathematics. Geometric objects were physical entities. A line was the rope the harpedonopta tugged, or the edge of a field. A rectangle was the boundary of a plot of land, or the face of a stone block. Space was mud, soil, and air. To the Greeks, not the Egyptians, goes the credit for the idea that brings romance and metaphor to mathematics: that space can be a mathematical abstraction, and, just as important, that the abstraction can apply to many different circumstances. Sometimes a line is just a line. But the same line can represent the edge of a pyramid, the boundary of a field, or the path the crow flies. Knowledge about one transfers to the other.

According to legend, Pythagoras was walking by a blacksmith’s shop one day, when he heard the tone of various hammers pounding on a heavy anvil. This made him think. After some experimentation with strings, he discovered harmonic progressions, and the relationship between the length of a vibrating string and the pitch of the musical note it produces. A string twice as long, for instance, produces a note with half the pitch. A simple observation, but a deep and revolutionary act, it is often considered the first example in history of an empirical discovery of a natural law.

Millions of years ago, somebody eeked or hrmphed and another somebody uttered immortal words, now lost, but what must have meant something like “I know what you mean.” The idea of language had arrived. In science, Pythagoras’ law of harmonics represents an equal milestone, the first example of the physical world phrased in mathematical terms. In his day, it must be remembered, the mathematics of simple numerical phenomena was unknown. For instance, to the Pythagoreans it was a revelation that multiplying the dimensions of a rectangle gave you its area.

For Pythagoras, much of the intrigue of mathematics came from the many numerical patterns he and his followers discovered. The Pythagoreans envisioned the integers as pebbles or dots, which they laid out in certain geometric patterns. They found that some numbers can be formed by laying the pebbles equally spaced in two columns of two, three of three, and so on, so that the array forms a square. The Pythagoreans called any number of pebbles you can arrange this way “square numbers,” which is why we call these numbers “squares” today: 4, 9, 16, etc. Other numbers, they found, could be formed by laying out the pebbles in columns of one, two, three and so on, to form triangles: 3, 6, 10, etc.

The properties of square and triangular numbers fascinated Pythagoras. For instance, the second square number, 4, is equal to the sum of the first two odd numbers, 1 + 3. The third, 9, is equal to the sum of the first three odd numbers, 1 + 3 + 5, and so on. (This is also true for the first square, 1 = 1.) While the square numbers all equal the sum of consecutive odd numbers, Pythagoras noticed that in the same way the triangular numbers are sums of all consecutive numbers, both even and odd. And square and triangular numbers are related: if you add a triangular number to the preceding or to the next triangular number, you get a square number.

The Pythagorean theorem, too, must have seemed magical. Imagine ancient scholars scrutinizing triangles of every ilk, not just the rare right triangle, measuring their angles and sides, rotating and comparing them. If such an investigation occurred today, universities might well have a discipline devoted to it. “My son is on the math faculty at Berkeley,” some proud mother would say. “He’s a professor of triangles.” One day her boy notices a peculiar regularity, that in every right triangle the square of the length of the hypotenuse equals the sum of the squares of the other two sides. It proves true for big ones, small ones, fat ones, short ones, for every right triangle ever measured, yet not for any other type of triangle. It’s a discovery that would surely rate a headline on the front page of the New York Times: “Surprising Regularity Discovered in the Right Triangle,” and in smaller print, “Applications Still Years Away.”

[image: image]

Why should the sides of all right triangles always obey such a simple relationship? The Pythagorean theorem can be proved using a kind of geometric multiplication Pythagoras often employed. We don’t know if this is how he proved this theorem, but proving it this way is revealing because it is purely geometric. Today, simpler proofs exist, which rely on algebra or even trigonometry, neither of which were developed in Pythagoras’ day. But the geometric proof isn’t difficult; it’s really just a twisted mathematician’s version of a connect-the-dots activity.

To prove the Pythagorean theorem the geometric way, the only computational fact you’ll need is that the area of a square is equal to the square of the length of one of its sides. This is just a modern restatement of Pythagoras’ pebble analogy. Given any right triangle, the goal is to form three squares from it: one square whose sides each are equal in length to the hypotenuse; and two other squares whose sides correspond in length to the triangle’s other two sides. The area of each of these three squares is then the square of the length of one of the triangle’s sides. If we can show that the hypotenuse square’s area is equal to the combined area of the other two squares, then we will have proved the Pythagorean theorem.

To make things simple, let’s give the sides of the triangle names. The hypotenuse already has a name, albeit a lengthy one, so we’ll keep that, except we will capitalize it to distinguish the name of our particular line, Hypotenuse, from the term the hypotenuse. Let’s call the other two sides of the triangle Alexei and Nicolai. Coincidentally, these are the names of the author’s two sons. At the time of this writing, Alexei is the longer, and Nicolai is the shorter, so let’s use that convention in naming the sides of the triangle (the proof works equally well with sides of equal length). We begin the construction by drawing a square whose sides are each the combined length of Alexei and Nicolai. Next, draw a dot on each side, dividing each side into one segment with Alexei’s length, and another with Nicolai’s length, and connect the dots. There are different ways to do this. The two ways we are interested in are illustrated in the figure on page 22. One results in a square whose sides match Hypotenuse, plus four “leftover” triangles. The other results in two squares whose sides match Alexei and Nicolai, plus two leftover rectangles which may be cut along their diagonals to form four leftover triangles identical to the leftovers we got doing it the other way.

The rest is just accounting. The two subdivided squares have identical areas, so after discarding the four leftover triangles from each, the real estate that remains in one square remains equal to that in the other. But in one figure that area is the square of the length of Hypotenuse, and in the other it is the sum of the squares of Alexei’s and Nicolai’s length. So we have proved the theorem!

Impressed by such new triumphs of knowledge, one of Pythagoras’ disciples wrote that “were it not for number and its nature, nothing that exists would be clear to anybody.” A reflection of their fundamental philosophy, the Pythagoreans invented the term mathematics, from the Greek word mathema, which meant “science.” The word’s origin reflects the close connection between the two subjects, though today there is a sharp distinction between mathematics and science, a distinction, as we shall see, that didn’t become clear until the nineteenth century.

There is also a distinction between intelligent talk and blather, a distinction that Pythagoras did not always make. Pythagoras’ awe of numerical relations swept him into forming many mystic numerological beliefs. He was the first to divide numbers into the categories “odd” and “even,” but he took the extra step of personifying them: the odd he called “masculine,” the even, “feminine.” He associated specific numbers with ideas, such as the number 1 with reason, 2 with opinion, 4 with justice. Since 4 in his system was represented by a square, the square was associated with justice, the origin of the expression we still use today, “a square deal.” In the interests of giving Pythagoras a square deal, one must recognize that it is easier to judge the brilliant from the blather with the perspective of a couple thousand years.

[image: image]

Pythagoras was a charismatic figure and a genius, but he was also a good self-promoter. In Egypt, he not only learned Egyptian geometry but became the first Greek to learn Egyptian hieroglyphics, and eventually became an Egyptian priest, or the equivalent, initiated into their sacred rites. This gave him access to all their mysteries, even to the secret rooms in their temples. He remained in Egypt for at least thirteen years. When he left, it wasn’t of his own volition—the Persians invaded and took him prisoner. Pythagoras landed in Babylon, where he eventually obtained his freedom, and gained a thorough knowledge of Babylonian mathematics as well. He finally returned to Samos, at the age of fifty. By the time Pythagoras made it back to his homeland, he had synthesized the philosophy of space and mathematics he was intent on preaching; all he needed were some followers.

His knowledge of hieroglyphics led many Greeks to believe he had special powers. He encouraged tales that set him apart from normal citizens. One of the more bizarre stories had him attacking a poisonous snake and biting the snake to death. Another describes a thief who broke into Pythagoras’ home and saw such bizarre things that he fled empty-handed, refusing ever to reveal the strange things he saw. Pythagoras had a golden birthmark on his thigh, which he displayed as a sign of divinity. The people of Samos did not prove extremely susceptible to his preachings, so Pythagoras soon left for a less sophisticated home, Croton, an Italian city colonized by Greeks. There, he established his “society” of followers.

The life and legend that developed around Pythagoras in many ways parallels that of a later charismatic leader, Jesus Christ. It is hard to believe that the myths told about Pythagoras did not influence the creation of some of the later stories about Christ. Pythagoras, for instance, was believed by many to be the son of God, in this case, Apollo. His mother was called Parthenis, which means “virgin.” Before traveling to Egypt, Pythagoras lived the life of a hermit on Mount Carmel, like Christ’s solitary vigil on the mountain. A Jewish sect, the Essenes, appropriated this myth and is said to have later had a connection to John the Baptist. There is also a myth that Pythagoras returned from the dead, although, according to the story, Pythagoras faked this by hiding in a secret underground chamber. Many of Christ’s miraculous powers and deeds were first ascribed to Pythagoras: he is said to have appeared in two places at once; he could calm waters and control winds; he was once greeted by a divine voice; he was believed to have the ability to walk on water.

Pythagoras’ philosophy also had some similarities to that of Christ. For instance, he preached that you should love your enemies. But in philosophy, he was closer to his contemporary Siddhartha Gautama Buddha (c. 560–480 b.c.). Both believed in reincarnation, possibly as an animal, so even an animal could be inhabited by what was once a human soul. Thus, both placed a high value on all life, opposing the common practice of animal sacrifice and preaching strict vegetarianism. According to one story, Pythagoras once stopped a man from beating a dog by telling the man he recognized the canine as an old friend of his, reincarnated.

Pythagoras felt that possessions got in the way of the pursuit of divine truths. Greeks of that period would sometimes wear wool, and often used colors on their garments. Well-to-do men occasionally tossed a capelike mantle over their shoulders, fastened with a gold pin or brooch, proudly displaying their wealth. Pythagoras rejected luxury and banned his followers from any clothing except that made from simple white linen. They earned no money, but relied on the charity of the Croton populace and perhaps the wealth of some of his followers, who pooled their possessions and lived in a communal lifestyle. It is hard to determine the nature of his organization because, in their attitudes and customs, people of that time and place were so different. For instance, two of the ways Pythagoras’s set distinguished themselves from the ordinary were by not urinating in public and not having sex in front of others.

Secrecy played an important role in Pythagorean society, perhaps based on his experience with the secret practices of the Egyptian priesthood. Or perhaps, the motivation was a desire to avoid the trouble that would be caused by revealing revolutionary ideas that might stir opposition. One of Pythagoras’ discoveries became such a secret that according to legend, the Pythagoreans forbade its revelation on penalty of death.

Recall the problem of determining the length of the diagonal of the unit square. The Babylonians calculated it to six decimal places, but for the Pythagoreans, this was not good enough. They wanted to know its exact value. How could you pretend to know anything about the space inside a square if you didn’t know that? The trouble was, though they could achieve better and better approximations, none of the numbers they produced turned out to be the exact answer. But the Pythagoreans were not easily daunted. They had the imagination to ask themselves, does this number even exist? They concluded that it does not, and they had the ingenuity to prove it.

Today, we know that the length of the diagonal is equal to the square root of 2, an irrational number. That means that it cannot be written in decimal form with a finite number of digits, or equivalently, that it cannot be represented as a whole number or fraction, the only kind of numbers the Pythagoreans knew. Their proof that the number does not exist was actually a proof that it cannot be written in fractional form.

Clearly, Pythagoras had a problem. The fact that the length of the diagonal of a square could not be expressed as any number was not good for a visionary who preaches that number is everything. Should he alter his philosophy: number is everything, except for the certain geometric magnitudes which we find really mysterious?

Pythagoras could have pushed up the invention of the real number system by many centuries, had he done a simple thing: given the diagonal a name, say, d, or even better, √2, and considered it some new kind of number. Had he done that, he might have pre-empted Descartes’s coordinate revolution, for, absent a numerical representation, the need to describe this new type of number begged for the invention of the number line. Instead, Pythagoras retreated from his promising practice of associating geometric figures with numbers, and proclaimed that some lengths cannot be expressed as a number. The Pythagoreans called such lengths alogon, “not a ratio,” which we today translate as “irrational.” The word alogon had a double meaning, though: it also meant “not to be spoken.” Pythagoras had solved his dilemma with a doctrine that would have been hard to defend, so, in keeping with his overall doctrine of secrecy, he banned his followers from revealing the embarrassing paradox. Not all obeyed. According to legend, one of his followers, Hippasus, did reveal the paradox. Today people are murdered for many reasons—love, politics, money, religion—but not because somebody squealed about the square root of 2. To the Pythagoreans, though, mathematics was a religion, so when Hippasus broke the oath of silence, he was assassinated.

Resistance to irrationals continued for thousands of years. In the late nineteenth century, when the gifted German mathematician Georg Cantor did groundbreaking work to put them on firmer footing, his former teacher, a crab named Leopold Kronecker who “opposed” the irrationals, violently disagreed with Cantor and sabotaged his career at every turn. Cantor, unable to tolerate this, had a breakdown and spent his last days in a mental institution.

Pythagoras also ended his life in trouble. Around 510 b.c., some Pythagoreans traveled to a nearby city named Sybaris, apparently seeking followers. Few details of their mission survive, except that they were murdered. Later, a faction of Sybarites fled to Croton, escaping from a tyrant, Telys, who had recently gained power in the city. Telys demanded their return. Pythagoras broke one of his cardinal rules: Stay out of politics. He persuaded the Crotonites not to deport the exiles. A war ensued, which Croton won, but to Pythagoras, the damage was done. He now had political enemies. Around 500 b.c., they attacked his group. Pythagoras fled. It is not clear what happened to him after that: most sources say he committed suicide; others say he lived out his years quietly and died around the age of one hundred.

The Pythagorean society continued for some time after the attack, until another attack, around 460 b.c., slaughtered all but a couple of his followers. His teachings survived in some form until about 300 b.c. They were revived by the Romans, in the first century before Christ, and became a dominating force within the budding Roman Empire. Pythagoreanism became an influence in many religions of that time, such as Alexandrian Judaism, the aging ancient Egyptian religion, and, as we have seen, in Christianity. In the second century a.d., Pythagorean mathematics, in association with the School of Plato, received new impetus. Pythagoras’ intellectual descendants were again squelched by Justinian, the eastern Roman emperor, in the fourth century a.d. The Romans hated the long hair and beards of Pythagoras’ Greek philosopher descendants, and their use of drugs, such as opium, not to mention their un-Christian beliefs. Justinian closed the academy and forbade the teaching of philosophy. Pythagoreanism flickered for a couple more centuries, then disappeared into the Dark Ages around a.d. 600.
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