

 [image: cover]

Practical Probabilistic Programming

 Avi Pfeffer

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2016 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Dan Maharry
Technical development editors: Ravishankar Rajagopalan, Shabeesh Balan
Copyeditor: Sharon Wilkey
Proofreader: Katie Tennant
Technical proofreader: Alex Ihler
Typesetter: Dennis Dalinnik
Cover designer: Marija Tudor

 ISBN: 9781617292330

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

Dedication

 In loving memory of my mother, Claire Pfeffer

 z“l

 (May her memory be blessing)

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgements

 About this Book

 About the Author

 About the Cover Illustration

 1. Introducing probabilistic programming and Figaro

 Chapter 1. Probabilistic programming in a nutshell

 Chapter 2. A quick Figaro tutorial

 Chapter 3. Creating a probabilistic programming application

 2. Writing probabilistic programs

 Chapter 4. Probabilistic models and probabilistic programs

 Chapter 5. Modeling dependencies with Bayesian and Markov networks

 Chapter 6. Using Scala and Figaro collections to build up models

 Chapter 7. Object-oriented probabilistic modeling

 Chapter 8. Modeling dynamic systems

 3. Inference

 Chapter 9. The three rules of probabilistic inference

 Chapter 10. Factored inference algorithms

 Chapter 11. Sampling algorithms

 Chapter 12. Solving other inference tasks

 Chapter 13. Dynamic reasoning and parameter learning

 Appendix A. Obtaining and installing Scala and Figaro

 Appendix B. A brief survey of probabilistic programming systems

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgements

 About this Book

 About the Author

 About the Cover Illustration

 1. Introducing probabilistic programming and Figaro

 Chapter 1. Probabilistic programming in a nutshell

 1.1. What is probabilistic programming?

 1.1.1. How do we make judgment calls?

 1.1.2. Probabilistic reasoning systems help make decisions

 1.1.3. Probabilistic reasoning systems can reason in three ways

 1.1.4. Probabilistic programming systems: probabilistic reasoning systems expressed in a programming language

 1.2. Why probabilistic programming?

 1.2.1. Better probabilistic reasoning

 1.2.2. Better simulation languages

 1.3. Introducing Figaro: a probabilistic programming language

 1.3.1. Figaro vs. Java: building a simple probabilistic programming system

 1.4. Summary

 1.5. Exercises

 Chapter 2. A quick Figaro tutorial

 2.1. Introducing Figaro

 2.2. Creating models and running inference: Hello World revisited

 2.2.1. Building your first model

 2.2.2. Running inference and answering a query

 2.2.3. Building up models and making observations

 2.2.4. Understanding how the model is built

 2.2.5. Understanding repeated elements: when are they the same and when are they different?

 2.3. Working with basic building blocks: atomic elements

 2.3.1. Discrete atomic elements

 2.3.2. Continuous atomic elements

 2.4. Combining atomic elements by using compound elements

 2.4.1. If

 2.4.2. Dist

 2.4.3. Compound versions of atomic elements

 2.5. Building more-complex models with Apply and Chain

 2.5.1. Apply

 2.5.2. Chain

 2.6. Specifying evidence by using conditions and constraints

 2.6.1. Observations

 2.6.2. Conditions

 2.6.3. Constraints

 2.7. Summary

 2.8. Exercises

 Chapter 3. Creating a probabilistic programming application

 3.1. Understanding the big picture

 3.2. Running the code

 3.3. Exploring the architecture of a spam filter application

 3.3.1. Reasoning component architecture

 3.3.2. Learning component architecture

 3.4. Designing an email model

 3.4.1. Choosing the elements

 3.4.2. Defining the dependencies

 3.4.3. Defining the functional forms

 3.4.4. Using numerical parameters

 3.4.5. Working with auxiliary knowledge

 3.5. Building the reasoning component

 3.6. Creating the learning component

 3.7. Summary

 3.8. Exercises

 2. Writing probabilistic programs

 Chapter 4. Probabilistic models and probabilistic programs

 4.1. Probabilistic models defined

 4.1.1. Expressing general knowledge as a probability distribution over possible worlds

 4.1.2. Exploring probability distributions further

 4.2. Using a probabilistic model to answer queries

 4.2.1. Conditioning on the evidence to produce the posterior probability distribution

 4.2.2. Answering queries

 4.2.3. Using probabilistic inference

 4.3. The ingredients of probabilistic models

 4.3.1. Variables

 4.3.2. Dependencies

 4.3.3. Functional forms

 4.3.4. Numerical parameters

 4.4. Generative processes

 4.5. Models with continuous variables

 4.5.1. Using the beta-binomial model

 4.5.2. Representing continuous variables

 4.6. Summary

 4.7. Exercises

 Chapter 5. Modeling dependencies with Bayesian and Markov networks

 5.1. Modeling dependencies

 5.1.1. Directed dependencies

 5.1.2. Undirected dependencies

 5.1.3. Direct and indirect dependencies

 5.2. Using Bayesian networks

 5.2.1. Bayesian networks defined

 5.2.2. How a Bayesian network defines a probability distribution

 5.2.3. Reasoning with Bayesian networks

 5.3. Exploring a Bayesian network example

 5.3.1. Designing a computer system diagnosis model

 5.3.2. Reasoning with the computer system diagnosis model

 5.4. Using probabilistic programming to extend Bayesian networks: predicting product success

 5.4.1. Designing a product success prediction model

 5.4.2. Reasoning with the product success prediction model

 5.5. Using Markov networks

 5.5.1. Markov networks defined

 5.5.2. Representing and reasoning with Markov networks

 5.6. Summary

 5.7. Exercises

 Chapter 6. Using Scala and Figaro collections to build up models

 6.1. Using Scala collections

 6.1.1. Modeling dependence of many variables on a single variable

 6.1.2. Creating hierarchical models

 6.1.3. Modeling simultaneous dependence on two variables

 6.2. Using Figaro collections

 6.2.1. Understanding why Figaro collections are useful

 6.2.2. Revisiting the hierarchical model with Figaro collections

 6.2.3. Using Scala and Figaro collections together

 6.3. Modeling situations with an unknown number of objects

 6.3.1. Open-universe situations with an unknown number of objects

 6.3.2. Variable-size arrays

 6.3.3. Operations on variable-size arrays

 6.3.4. Example: predicting sales of an unknown number of new products

 6.4. Working with infinite processes

 6.4.1. The Process trait

 6.4.2. Example: a temporal health process

 6.4.3. Using the process

 6.5. Summary

 6.6. Exercises

 Chapter 7. Object-oriented probabilistic modeling

 7.1. Using object-oriented probabilistic models

 7.1.1. Understanding elements of object-oriented modeling

 7.1.2. Revisiting the printer model

 7.1.3. Reasoning about multiple printers

 7.2. Extending OO probability models with relations

 7.2.1. Describing general class-level models

 7.2.2. Describing a situation

 7.2.3. Representing the social media model in Figaro

 7.3. Modeling relational and type uncertainty

 7.3.1. Element collections and references

 7.3.2. Social media model with relational uncertainty

 7.3.3. Printer model with type uncertainty

 7.4. Summary

 7.5. Exercises

 Chapter 8. Modeling dynamic systems

 8.1. Dynamic probabilistic models

 8.2. Types of dynamic models

 8.2.1. Markov chains

 8.2.2. Hidden Markov models

 8.2.3. Dynamic Bayesian networks

 8.2.4. Models with variable structure over time

 8.3. Modeling systems that go on indefinitely

 8.3.1. Understanding Figaro universes

 8.3.2. Using universes to model ongoing systems

 8.3.3. Running a monitoring application

 8.4. Summary

 8.5. Exercises

 3. Inference

 Chapter 9. The three rules of probabilistic inference

 9.1. The chain rule: building joint distributions from conditional probability distributions

 9.2. The total probability rule: getting simple query results from a joint distribution

 9.3. Bayes’ rule: inferring causes from effects

 9.3.1. Understanding, cause, effect, and inference

 9.3.2. Bayes’ rule in practice

 9.4. Bayesian modeling

 9.4.1. Estimating the bias of a coin

 9.4.2. Predicting the next coin toss

 9.5. Summary

 9.6. Exercises

 Chapter 10. Factored inference algorithms

 10.1. Factors

 10.1.1. What is a factor?

 10.1.2. Factoring a probability distribution by using the chain rule

 10.1.3. Defining queries with factors by using the total probability rule

 10.2. The variable elimination algorithm

 10.2.1. Graphical interpretation of VE

 10.2.2. VE as algebraic operations

 10.3. Using VE

 10.3.1. Figaro-specific considerations for VE

 10.3.2. Designing your model to support efficient VE

 10.3.3. Applications of VE

 10.4. Belief propagation

 10.4.1. Basic principles of BP

 10.4.2. Properties of loopy BP

 10.5. Using BP

 10.5.1. Figaro-specific considerations for BP

 10.5.2. Designing your model to support effective BP

 10.5.3. Applications of BP

 10.6. Summary

 10.7. Exercises

 Chapter 11. Sampling algorithms

 11.1. The sampling principle

 11.1.1. Forward sampling

 11.1.2. Rejection sampling

 11.2. Importance sampling

 11.2.1. How importance sampling works

 11.2.2. Using importance sampling in Figaro

 11.2.3. Making importance sampling work for you

 11.2.4. Applications of importance sampling

 11.3. Markov chain Monte Carlo sampling

 11.3.1. How MCMC works

 11.3.2. Figaro’s MCMC algorithm: Metropolis-Hastings

 11.4. Getting MH to work well

 11.4.1. Customized proposals

 11.4.2. Avoiding hard conditions

 11.4.3. Applications of MH

 11.5. Summary

 11.6. Exercises

 Chapter 12. Solving other inference tasks

 12.1. Computing joint distributions

 12.2. Computing the most probable explanation

 12.2.1. Computing and querying the MPE in Figaro

 12.2.2. Using algorithms for solving MPE queries

 12.2.3. Exploring applications of MPE algorithms

 12.3. Computing the probability of evidence

 12.3.1. Observing evidence for probability-of-evidence computation

 12.3.2. Running probability-of-evidence algorithms

 12.4. Summary

 12.5. Exercises

 Chapter 13. Dynamic reasoning and parameter learning

 13.1. Monitoring the state of a dynamic system

 13.1.1. Mechanics of monitoring

 13.1.2. The particle-filtering algorithm

 13.1.3. Applications of filtering

 13.2. Learning model parameters

 13.2.1. Bayesian learning

 13.2.2. Maximum likelihood and MAP learning

 13.3. Going further with Figaro

 13.4. Summary

 13.5. Exercises

 Appendix A. Obtaining and installing Scala and Figaro

 A.1. Using sbt

 A.2. Installing and running Figaro without sbt

 A.3. Compiling from source

 Appendix B. A brief survey of probabilistic programming systems

 BUGS (www.mrc-bsu.cam.ac.uk/software/bugs/)

 Stan (http://mc-stan.org/)

 FACTORIE (http://factorie.cs.umass.edu/)

 ProbLog (https://dtai.cs.kuleuven.be/problog/)

 BLOG (https://sites.google.com/site/bloginference/)

 Church (https://probmods.org/play-space.html)

 Anglican (www.robots.ox.ac.uk/~fwood/anglican/)

 Venture (http://probcomp.csail.mit.edu/venture/)

 Dimple (http://dimple.probprog.org/)

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 In 1814, Pierre-Simon Laplace wrote, “Life’s most important questions are, for the most part, nothing but probability problems.”
 For well over a hundred years after that, the only way to answer such questions (while remaining true to the dictum) was to
 analyze each problem with pen and paper, obtain a formula for the result, and evaluate the formula by plugging in the numbers
 by hand. The advent of computers did not change this very much. It simply meant that more-complicated formulas could be evaluated,
 with more numbers, and the pen-and-paper analyses became more ambitious, often stretching to hundreds of pages.

 The analysis of a probability problem requires the formulation of a probability model that lays out the space of possibilities and, in some fashion, assigns a numerical probability to each of them. In the past,
 probability models were written down using a combination of natural language text and semi-formal mathematical notation. From
 the model, a formula or algorithm for calculating answers was derived by further mathematical manipulation. Each of these
 stages was laborious, error-prone, and problem-specific, placing severe practical limits on the applicability of probability
 theory. Despite Laplace, life’s most important questions remained unanswered.

 The first major step forward was the development of formal languages, such as Bayesian networks and Markov networks, for defining probability models. A formal language has a precise syntax,
 defining what counts as a correct expression, and a precise semantics, defining what each correct expression means (i.e.,
 exactly which probability model is represented by each expression). It thus became possible to describe probability models
 in machine-readable form and to develop a single algorithm for computing the consequences of any expressible probability model.

 In the foregoing narrative, there is a fly in the ointment: the lack of expressible probability models. The formal languages of Bayesian and Markov networks are, in fact, quite limited in their expressive
 power. They are, in a sense, probabilistic analogs of Boolean circuits. To get a sense of what this limitation means, consider
 the problem of writing payroll software for a large company. In a high-level programming language such as Java, this might
 involve tens of thousands of lines of code. Now, imagine trying to implement exactly the same functionality by wiring together
 Boolean gates. Such a task seems utterly impossible. The circuit would be unimaginably large, complicated, and opaque, because
 circuits lack the expressive power to capture the structure of the problem.

 In 1997, Avi Pfeffer, the author of this book and then still a student, along with his advisor Daphne Koller and collaborator
 David McAllester, published the seminal paper on probabilistic programming languages (PPLs), providing the key idea linking
 probability theory with the expressive power of high-level programming languages. The idea was to let programs be probability
 models by introducing stochastic elements and defining the meaning of a program to be the probability of each possible execution
 trace. This idea tied together in a productive way two of the most important branches of mathematics, and we are just beginning
 to explore the new possibilities that have emerged from it.

 This book takes the reader gently through these ideas using the Figaro language to illustrate the concepts and their applications.
 It avoids unnecessary mathematics and concentrates on real-world examples, which are laid out in detail and carefully explained.
 It is suitable for someone with a typical programming background. As a byproduct of working through the book, the reader will,
 with less effort than usual, acquire a strong grasp of the principles and techniques of Bayesian inference and statistical
 learning. Perhaps most importantly, the reader will learn the skill of modeling, which is among the most critical skills any
 scientist or engineer can have. Figaro and other PPLs allow one to express that skill directly, rapidly, and precisely.

 The book is an important step in moving probabilistic programming from the research laboratories where it has been developed,
 out into the real world. Undoubtedly the capabilities of PPL systems will, in some ways, fail to meet this challenge, and
 those research laboratories will have their work cut out. On the other hand, readers of this book will undoubtedly find creative
 ways to apply Figaro and its relatives to a wide range of new problems never imagined by the author.

 STUART RUSSELL

 PROFESSOR OF COMPUTER SCIENCE

 UNIVERSITY OF CALIFORNIA, BERKELEY

Preface

 Probabilistic programming is an exciting new field that is quickly gathering interest, moving out of the academic arena and
 into the world of programmers. In essence, probabilistic programming is a new way of creating models for probabilistic reasoning,
 which lets you predict or infer things you don’t know from observations. Probabilistic reasoning has long been one of the
 core approaches to machine learning, where you use a probabilistic model to describe what you know and learn from experience.
 Before probabilistic programming, probabilistic reasoning systems were limited to models with simple and fixed structures
 like Bayesian networks. Probabilistic programming sets probabilistic reasoning systems free from these shackles by providing
 the full power of programming languages to represent models. It’s analogous to moving from circuits to high-level programming
 languages.

 Although I didn’t realize it at the time, I’ve been working on probabilistic programming since my teens, when I developed
 a soccer simulation in BASIC. The simulation used instructions like “GOTO 1730 + RANDOM * 5” to express random sequencing
 of events. After careful tuning, the simulation was realistic enough to keep me entertained for hours. Of course, in the intervening
 years, probabilistic programming has matured a long way from GOTO statements with random targets.

 In 1997, I coauthored, with Daphne Koller and David McAllester, one of the first papers on probabilistic programming. The
 paper introduced a probabilistic Lisp-like language, but the main innovation of the paper was an algorithm for inferring likely
 aspects of the program based on evidence about its output. This innovation took probabilistic programming beyond typical probabilistic
 simulation languages by providing a means not only to run the program forward to obtain possible executions, but also to reason
 backward and infer why an observed result was produced.

 In the early 2000s, I developed IBAL (pronounced “eyeball”), which was the first general-purpose probabilistic programming
 system based on functional programming. IBAL was highly expressive and contained novel inference algorithms, but over the
 years I gradually became dissatisfied with its limitations, chief among which was the difficulty of interacting with data
 and integrating with applications. These limitations motivated me, in 2009, to begin developing a new probabilistic programming
 system, which I named Figaro. Figaro was designed with practicality as the foremost goal, without sacrificing the power of
 probabilistic programming. This led to the design decision of implementing Figaro as a Scala library, which makes it easy
 to integrate probabilistic programming models into a Java Virtual Machine application. At the same time, Figaro has possibly
 the widest range of representational features and inference algorithms of any probabilistic programming system I know of.
 Figaro is now an open source GitHub project and is up to version 3.3.

 Probabilistic programming can be a challenging technique to master because it requires multiple skills, principally the ability
 to write probabilistic models and the ability to write programs. For many programmers, writing programs comes naturally, but
 probabilistic modeling is a bit mysterious. This book is designed to take the mystery out of probabilistic modeling, to show
 you how to program effectively when creating probabilistic models, and to help you use probabilistic programming systems effectively.
 The book assumes no background in machine learning or probabilistic reasoning. Some experience with functional programming
 and Scala will be helpful, but you don’t have to be a Scala wizard to use the book, and your Scala expertise will probably
 grow as a result of reading it.

 After reading this book, you should be able to design probabilistic models for many applications to get meaningful information
 from your data, without needing a PhD in machine learning. If you’re an expert in some domain, the book will help you express
 the models you have in your head or on paper and make them operational, enabling you to evaluate and analyze different possibilities.
 If you are a data scientist, the book can help you develop richer, more detailed, and potentially more accurate models than
 are feasible with other tools. If you are a software engineer or architect looking to incorporate into your systems the ability
 to reason under uncertainty, this book will help you not only build models for handling uncertainty but also integrate these
 models into your application. Whatever reason you have for picking up this book, I hope you enjoy it and find it useful.

Acknowledgements

 This book has been many years in the making: from the first ideas about probabilistic programming through creating the IBAL
 and Figaro systems to conceiving, writing, and polishing the book with Manning. Countless people have contributed their efforts
 over the years to help make this book possible.

 This book owes its existence largely to the efforts of my team at Charles River Analytics: Joe Gorman, Scott Harrison, Michael
 Howard, Lee Kellogg, Alison O’Connor, Mike Reposa, Brian Ruttenberg, and Glenn Takata. Thanks also to Scott Neal Reilly who
 supported Figaro from the start.

 I learned most of what I know in artificial intelligence and machine learning from Daphne Koller, my mentor and collaborator.
 Stuart Russell gave me the first opportunity to study artificial intelligence and has provided me with encouragement throughout
 my career, as well as being a recent collaborator and the author of the foreword to this book. Mike Stonebraker gave me my
 first research opportunity on his Postgres project, and I learned a lot about building systems from working in his group.
 Alon Halevy invited me to spend the summer with him at AT&T Labs, where I first started talking about probabilistic programming
 with David McAllester; this resulted in the probabilistic Lisp paper with Daphne. Lise Getoor, office mate and collaborator,
 was someone I could talk to about these ideas when they were first germinating.

 My deep appreciation goes to Alex Ihler, who graciously lent his expertise to carefully read the book for technical accuracy.
 Alex has also been a tremendously useful sounding board for all things relating to inference in the past couple of years.

 Many others offered comments at various stages of development, including Ravishankar Rajagopalan and Shabeesh Balan, Chris
 Heneghan, Clemens Baader, Cristofer Weber, Earl Bingham, Giuseppe de Marco, Jaume Valls, Javier Guerra Giraldez, Kostas Passadis,
 Luca Campobasso, Lucas Gallindo, Mark Elston, Mark Miller, Nitin Gode, Odisseyas Pentakolos, Peter Rabinovitch, Phillip Bradford,
 Stephen Wakely, Taposh Dutta Roy, and Unnikrishnan Kumar.

 Thank you to the many great people at Manning Publications who have helped in making this book a reality. Thanks especially
 to my editor, Dan Maharry, who made this a far better book than I could have myself, and to Frank Pohlmann, who gave me the
 initial encouragement to write the book and helped prepare me for the process.

 Thank you to the Air Force Research Laboratory (AFRL) and to the Defense Advanced Research Projects Agency (DARPA) for funding
 some of the work described in this book under the Probabilistic Programming for Advancing Machine Learning (PPAML) program.
 Thanks in particular to several DARPA program managers, Bob Kohout, Tony Falcone, Kathleen Fisher, and Suresh Jagannathan,
 who believed in probabilistic programming and worked to help make it a practical reality. This material is based on work supported
 by the United States Air Force under Contract No. FA8750-14-C-0011. Any opinions, findings and conclusions or recommendations
 expressed in this material are those of the author and do not necessarily reflect the views of the United States Air Force.

 Lastly, this book would not have been possible without the love and support of my family. Thank you to my wife Debby Gelber
 and my children Dina, Nomi, and Ruti for being the wonderful people you are. And to my mother Claire Pfeffer, who raised me
 with love, my eternal gratitude. This book is dedicated to your memory.

About this Book

 Lots of decisions, whether in business, science, the military, or everyday life, involve judgment calls under uncertainty.
 When different factors sway you in different directions, how do you know what to pay attention to the most? Probabilistic
 models enable you to express all the relevant information about your situation. Probabilistic reasoning lets you use these
 models to determine the probability of the variables that make the most difference to your decision. You can use probabilistic
 reasoning to predict the things that are most likely to happen: will your product be a success at your target price; will the patient respond
 well to a particular treatment; will your candidate win the election if she takes a certain position? You can also use probabilistic
 reasoning to infer the likely reasons behind what happened: if the product failed, is it because the price was too high?

 Probabilistic reasoning is also one of the main approaches to machine learning. You encode your initial beliefs about your
 domain in a probabilistic model, such as the general behavior of users in response to products in your market. Then, given
 training data, perhaps about the response of users to specific products, you update your beliefs to get a new model. Now you
 can use your new model to predict future outcomes, like the success of a planned product, or infer likely causes of observed
 outcomes, like the reasons behind the failure of a new product.

 In the past, probabilistic reasoning used dedicated languages to represent probabilistic models. In recent years, we have
 come to realize that you can use ordinary programming languages, which has resulted in probabilistic programming. This has
 three major benefits. First, you get to benefit from all the features of the programming language, like rich data structures
 and control flow, when building your models. Second, your probabilistic model can easily be integrated with other applications.
 And third, you benefit from general-purpose inference algorithms for reasoning with your models.

 This book aims to provide you with the knowledge to use probabilistic programming in your everyday activities. In particular,
 it tells you

 	How to build probabilistic models and express them as probabilistic programs

 	How probabilistic reasoning works and is implemented in a variety of inference algorithms

 	How to use the Figaro probabilistic programming system to build practical probabilistic programs

 Figaro is implemented as a Scala library. Like Scala, it combines functional and object-oriented programming styles. It will
 be useful to you to know a little bit about functional programming. The book doesn’t make use of advanced functional programming
 concepts, so you should be able to understand it with just a little knowledge. Likewise, it will be helpful to you to know
 some Scala. Although Scala constructs are often explained in the book, this book in not an introduction to Scala. Again, the
 book generally does not use the more esoteric features of Scala, so a little exposure should be enough.

Roadmap

 Part 1 of the book is an introduction to probabilistic programming and Figaro. Chapter 1 begins by explaining what probabilistic programming is and why it is useful and then provides a brief introduction to Figaro.
 Chapter 2 is a tutorial on using Figaro, which will quickly get you up to speed on writing probabilistic programs. Chapter 3 provides a complete probabilistic programming application in the form of a spam filter, including a component that reasons
 about whether a given email is normal or spam and a component that learns the probabilistic model from training data. The
 goal of chapter 3 is to provide you with the big picture of how everything fits together before you get into the detail of modeling techniques.

 Part 2 is all about building probabilistic programs. It begins in chapter 4 with basic material on probabilistic models and probabilistic programs that is important to understand so you really know
 what you’re doing when you create probabilistic programs. Chapter 5 presents the two modeling frameworks that lie at the heart of probabilistic programming, Bayesian networks and Markov networks.
 Chapters 6 through 8 describe a set of useful programming techniques for building more advanced programs. Chapter 6 talks about using Scala and Figaro collections to organize programs involving many variables of the same type. Chapter 7 talks about object-oriented programming, which is as beneficial for probabilistic programming as it is for ordinary programs.
 Chapter 8 is about modeling dynamic systems. A dynamic system is a system whose state changes over time, and it’s an extremely common
 and important application of probabilistic reasoning that is discussed in depth in this chapter.

 Part 3 teaches you about probabilistic inference algorithms. It’s important to understand inference to use probabilistic programming
 effectively, so you can use the right algorithm for a task, configure it in the right way, and express your model in a way
 that supports effective reasoning. Part 3 strikes a balance between teaching you the theory behind the algorithms and giving you practical tips on how to use them.
 Chapter 9 is a foundational chapter that presents the three rules that capture the main ideas used in probabilistic inference. Chapters 10 and 11 describe the two main families of inference algorithms. Chapter 10 describes factored algorithms, including an introduction to factors and how they work, and the variable elimination and belief
 propagation algorithms. Chapter 11 covers sampling algorithms, with a particular focus on importance sampling and Markov chain Monte Carlo algorithms. While
 chapters 10 and 11 focus on the basic query of computing the probability of variables of interest, chapter 12 shows you how factored and sampling algorithms can be used to compute other queries, such as the joint probability of multiple
 variables, the most likely values of variables, and the probability of the observed evidence. Finally, chapter 13 discusses two advanced but important inference tasks: monitoring a dynamic system as it changes over time, and learning the
 numerical parameters of a probabilistic model from data.

 Each of the chapters has a set of exercises. These exercises range from simple calculations through programming tasks to open-ended
 thought exercises.

 The book also contains two appendixes. Appendix A contains installation instructions to get started with Figaro. Appendix B is a brief survey of other probabilistic programming systems.

About the code and exercises

 The code in the book is presented in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 The book contains many code examples, most of which are available in the online code base, which can be found at the book’s
 website, www.manning.com/books/practical-probabilistic-programming. The website also includes answers to selected exercises.

About the Author

 Avi Pfeffer is a probabilistic programming pioneer, having been active in the field since its earliest days. Avi is the lead
 designer and developer of Figaro. At Charles River Analytics, Avi is engaged in applying Figaro to diverse problems including
 malware analysis, vehicle health monitoring, climate modeling, and evaluating engineered systems.

 In his spare time, Avi is a singer, composer, and music producer. Avi lives in Cambridge, Massachusetts with his wife and
 three kids.

Author Online

 Purchase of Practical Probabilistic Programming includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, discuss exercises, and receive help from the author and from the community. To access the forum and subscribe to
 it, go to www.manning.com/books/practical-probabilistic-programming. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 The figure on the cover of Practical Probabilistic Programming is captioned “The Venetian.” The illustration is taken from a French travel book, Encyclopédie des Voyages by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenomenon at the time and travel guides
 such as this one were popular, introducing both the tourist and the armchair traveler to the inhabitants of other regions
 of France and abroad.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.
 The travel guide brings to life a sense of isolation and distance of that period and of every other historic period except
 our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life—or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Part 1. Introducing probabilistic programming and Figaro

 What is probabilistic programming? Why is it useful? How do you use it? These questions are the main subject of part 1. Chapter 1 introduces you to the basic ideas of probabilistic programming. It begins with the concept of a probabilistic reasoning system
 and shows you how probabilistic programming marries the traditional concept of probabilistic reasoning systems with programming
 language technology.

 In this book, you’ll use a probabilistic programming system called Figaro. Chapter 1 briefly introduces Figaro, while chapter 2 presents a quick tutorial of all the main Figaro concepts, so you can quickly start writing probabilistic programs. Chapter 3 presents a complete probabilistic programming application to give you a big-picture overview of how a practical application
 is put together. Though this chapter is placed near the beginning of the book so you start with the big picture, it’s worth
 revisiting as you read more of the book and have learned some of the deeper concepts.

Chapter 1. Probabilistic programming in a nutshell

 This chapter covers

 	What is probabilistic programming?

 	Why should I care about it? Why should my boss care?

 	How does it work?

 	Figaro—a system for probabilistic programming

 	A comparison between writing a probabilistic application with and without probabilistic programming

 In this chapter, you’ll learn how to make everyday decisions by using a probabilistic model and an inference algorithm—the
 two main components of a probabilistic reasoning system. You’ll also see how modern probabilistic programming languages make
 creating such reasoning systems far easier than a general-purpose language such as Java or Python would. This chapter also
 introduces Figaro, the probabilistic programming language based on Scala that’s used throughout the book.

1.1. What is probabilistic programming?

 Probabilistic programming is a way to create systems that help us make decisions in the face of uncertainty. Lots of everyday decisions involve judgment
 in determining relevant factors that we don’t directly observe. Historically, one way to help make decisions under uncertainty
 has been to use a probabilistic reasoning system. Probabilistic reasoning combines our knowledge of a situation with the laws of probability to determine those unobserved factors that are critical
 to the decision. Until recently, probabilistic reasoning systems have been limited in scope, and have been hard to apply to
 many real-world situations. Probabilistic programming is a new approach that makes probabilistic reasoning systems easier
 to build and more widely applicable.

 To understand probabilistic programming, you’ll start by looking at decision making under uncertainty and the judgment calls
 involved. Then you’ll see how probabilistic reasoning can help you make these decisions. You’ll look at three specific kinds
 of reasoning that probabilistic reasoning systems can do. Then you’ll be able to understand probabilistic programming and
 how it can be used to build probabilistic reasoning systems through the power of programming languages.

 1.1.1. How do we make judgment calls?

 In the real world, the questions we care about rarely have clear yes-or-no answers. If you’re launching a new product, for
 example, you want to know whether it will sell well. You might think it will be successful, because you believe it’s well
 designed and your market research indicates a need for it, but you can’t be sure. Maybe your competitor will come out with
 an even better product, or maybe it has a fatal flaw that will turn off the market, or maybe the economy will take a sudden
 turn for the worse. If you require being 100% sure, you won’t be able to make the decision of whether to launch the product
 (see figure 1.1).

 Figure 1.1. Last year everyone loved my product, but what will happen next year?

 [image:]

 The language of probability can help make decisions like these. When launching a product, you can use prior experience with
 similar products to estimate the probability that the product will be successful. You can then use this probability to help
 decide whether to go ahead and launch the product. You might care not only about whether the product will be successful, but
 also about how much revenue it will bring, or alternatively, how much you’ll lose if it fails. You can use the probabilities
 of different outcomes to make better-informed decisions.

 Okay, so probabilistic thinking can help you make hard decisions and judgment calls. But how do you do that? The general principal
 is expressed in the Fact note.

 	

 Fact

 A judgment call is based on knowledge + logic.

 	

 You have some knowledge of the problem you’re interested in. For example, you know a lot about your product, and you might
 have done some market research to find out what customers want. You also might have some intelligence about your competitors
 and access to economic predictions. Meanwhile, logic helps you get answers to your questions by using your knowledge.

 You need a way of specifying the knowledge, and you need logic for getting answers to your questions by using the knowledge.
 Probabilistic programming is all about providing ways to specify the knowledge and logic to answer questions. Before I describe
 what a probabilistic programming system is, I’ll describe the more general concept of a probabilistic reasoning system, which
 provides the basic means to specify knowledge and provide logic.

 1.1.2. Probabilistic reasoning systems help make decisions

 Probabilistic reasoning is an approach that uses a model of your domain to make decisions under uncertainty. Let’s take an
 example from the world of soccer. Suppose the statistics show that 9% of corner kicks result in a goal. You’re tasked with
 predicting the outcome of a particular corner kick. The attacking team’s center forward is 6′ 4″ and known for her heading
 ability. The defending team’s regular goalkeeper was just carted off on a stretcher and has been replaced by a substitute
 playing her first game. Besides that, there’s a howling wind that makes it difficult to control long kicks. So how do you figure out the probability?

 Figure 1.2 shows how to use a probabilistic reasoning system to find the answer. You encode your knowledge about corner kicks and all
 the relevant factors in a corner-kick model. You then supply evidence about this particular corner kick, namely, that the
 center forward is tall, the goalie is inexperienced, and the wind is strong. You tell the system that you want to know whether
 a goal will be scored. The inference algorithm returns the answer that a goal will be scored with 20% probability.

 Figure 1.2. How a probabilistic reasoning system predicts the outcome of a corner kick

 [image:]

 	

 Key Definitions

 	
General knowledge —What you know to hold true of your domain in general terms, without considering the details of a particular situation

 	
Probabilistic model —An encoding of general knowledge about a domain in quantitative, probabilistic terms

 	
Evidence —Specific information you have about a particular situation

 	
Query —A property of the situation you want to know

 	
Inference —The process of using a probabilistic model to answer a query, given evidence

 	

 In probabilistic reasoning, you create a model that captures all the relevant general knowledge of your domain in quantitative, probabilistic terms. In our example, the
 model might be a description of a corner-kick situation and all the relevant aspects of players and conditions that affect
 the outcome. Then, for a particular situation, you apply the model to any specific information you have to draw conclusions.
 This specific information is called the evidence. In this example, the evidence is that the center forward is tall, the goalie is inexperienced, and the wind is strong. The
 conclusions you draw can help you make decisions—for example, whether you should get a different goalie for the next game.
 The conclusions themselves are framed probabilistically, like the probability of different skill levels of the goalie.

 The relationship between the model, the information you provide, and the answers to queries is well defined mathematically
 by the laws of probability. The process of using the model to answer queries based on the evidence is called probabilistic inference, or simply inference. Fortunately, computer algorithms have been developed that do the math for you and make all the necessary calculations automatically.
 These algorithms are called inference algorithms.

 Figure 1.3 summarizes what you’ve learned.

 Figure 1.3. The basic components of a probabilistic reasoning system

 [image:]

 In a nutshell, what we’ve just discussed are the constituents of a probabilistic reasoning system and how you interact with
 one. But what can you do with such a system? How does it help you make decisions? The next section describes three kinds of
 reasoning that can be performed by a probabilistic reasoning system.

 1.1.3. Probabilistic reasoning systems can reason in three ways

 Probabilistic reasoning systems are flexible. They can answer queries about any aspect of your situation, given evidence about
 any other aspect. In practice, probabilistic reasoning systems perform three kinds of reasoning:

 	
Predict future events. You’ve already seen this in figure 1.2, where you predict whether a goal will be scored based on the current situation. Your evidence will typically consist of
 information about the current situation, such as the height of the center forward, the experience of the goalie, and the strength
 of the wind.

 	
Infer the cause of events. Fast-forward 10 seconds. The tall center forward just scored a goal with a header, squirting under the body of the goalie.
 What do you think of this rookie goalkeeper, given this evidence? Can you conclude that she’s poorly skilled? Figure 1.4 shows how to use a probabilistic reasoning system to answer this question. The model is the same corner-kick model you used
 before to predict whether a goal would be scored. (This is a useful property of probabilistic reasoning: the same model that
 can be used to predict a future result can be used after the fact to infer what caused that result.) The evidence here is
 the same as before, together with the fact that a goal was scored. The query is the skill level of the goalie, and the answer
 provides the probability of various skill levels.

 Figure 1.4. By altering the query and evidence, the system can now infer why a goal was scored.

 [image:]

 If you think about it, the first reasoning pattern describes reasoning forward in time, predicting future events based on
 what you know about the current situation, whereas the second reasoning pattern describes reasoning backward in time, inferring
 past conditions based on current outcomes. When you build probabilistic models, typically the models themselves follow a natural
 temporal sequence. A player takes the corner kick, then the wind operates on the ball as it’s coming in, then the center forward
 leaps up to try to head the ball, and then the goalie tries to make a save. But the reasoning can go both forward and backward.
 This is a key feature of probabilistic reasoning, which I’ll repeat throughout the book: the direction of reasoning doesn’t
 necessarily follow the direction of the model.

 	
Learn from past events to better predict future events. Now fast-forward another 10 minutes. The same team has won another corner kick. Everything is similar to before in this new
 situation—tall center forward, inexperienced goalie—but now the wind has died down. Using probabilistic reasoning, you can
 use what happened in the previous kick to help you predict what will happen on the next kick. Figure 1.5 shows how to do this. The evidence includes all evidence from last time (making a note that it was from last time), as well
 as the new information about the current situation. In answering the query about whether a goal will be scored this time, the inference algorithm first infers properties of the situation that led to a goal being scored
 the first time, such as the skill levels of the center forward and goalie. It then uses these updated properties to make a
 prediction about the new situation.

 Figure 1.5. By taking into account evidence from the outcome of the last corner kick, the probabilistic reasoning system can produce a
 better prediction of the next corner kick.

 [image:]

 All of these types of queries can help you make decisions, on many levels:

 	You can decide whether to substitute a defender for an attacker based on the probability that a goal will be scored with or
 without the extra defender.

 	You can decide how much to offer the goalie in her next contract negotiation based on your assessment of her skill.

 	You can decide whether to use the same goalie in the next game by using what you’ve learned about the goalie to help predict
 the outcome of the next game.

Learning a better model

 The preceding three reasoning patterns provide ways to reason about specific situations, given evidence. Another thing you
 can do with a probabilistic reasoning system is learn from the past to improve your general knowledge. In the third reasoning
 pattern, you saw how to learn from a particular past experience to better predict a specific future situation. Another way
 to learn from the past is to improve the model itself. Especially if you have a lot of past experiences to draw on, such as
 a lot of corner kicks, you might want to learn a new model representing your general knowledge of what typically happens in
 a corner kick. As figure 1.6 shows, this is achieved by a learning algorithm. Somewhat different from an inference algorithm, the goal of a learning algorithm
 is to produce a new model, not to answer queries. The learning algorithm begins with the original model and updates it based
 on the experience to produce the new model. The new model can then be used to answer queries in the future. Presumably, the
 answers produced when using the new model will be better informed than when using the original model.

 Figure 1.6. You can use a learning algorithm to learn a new model based on a set of experiences. This new model can then be used for future
 inferences.

 [image:]

 	

 Probabilistic reasoning systems and accurate predictions

 Like any machine learning system, a probabilistic reasoning system will be more accurate the more data you give it. The quality
 of the predictions depends on two things: the degree to which the original model accurately reflects real-world situations,
 and the amount of data you provide. In general, the more data you provide, the less important the original model is. The reason
 for this is that the new model is a balance between the original model and the information contained in the data. If you have
 very little data, the original model dominates, so it had better be accurate. If you have lots of data, the data will dominate
 and the new model will tend to forget the original model, which doesn’t matter as much. For example, if you’re learning from
 an entire soccer season, you should be able to learn the factors that contribute to a corner kick quite accurately. If you
 have only one game, you’ll need to start out with a good idea of the factors to be able to make accurate predictions about
 that game. Probabilistic reasoning systems will make good use of the given model and available data to make as accurate a
 prediction as possible.

 	

 Now you know what probabilistic reasoning is. What then, is probabilistic programming?

 1.1.4. Probabilistic programming systems: probabilistic reasoning system- ms expressed in a programming language

 Every probabilistic reasoning system uses a representation language to express its probabilistic models. There are a lot of representation languages out there. You may have heard of some of
 them, such as Bayesian networks (also known as belief networks) and hidden Markov models. The representation language controls
 what models can be handled by the system and what they look like. The set of models that can be represented by a language
 is called the expressive power of the language. For practical applications, you’d like to have as large an expressive power as possible.

 A probabilistic programming system is, very simply, a probabilistic reasoning system in which the representation language is a programming language.
 When I say programming language, I mean that it has all the features you typically expect in a programming language, such as variables, a rich variety of data types, control flow, functions, and so on. As you’ll come to see, probabilistic
 programming languages can express an extremely wide variety of probabilistic models and go far beyond most traditional probabilistic
 reasoning frameworks. Probabilistic programming languages have tremendous expressive power.

 Figure 1.7 illustrates the relationship between probabilistic programming systems and probabilistic reasoning systems in general. The
 figure can be compared with figure 1.3 to highlight the differences between the two systems. The main change is that models are expressed as programs in a programming
 language rather than as a mathematical construct like a Bayesian network. As a result of this change, evidence, queries, and
 answers all apply to variables in the program. Evidence might specify particular values for program variables, queries ask
 for the values of program variables, and answers are probabilities of different values of the query variables. In addition,
 a probabilistic programming system typically comes with a suite of inference algorithms. These algorithms apply to programs
 written in the language.

 Figure 1.7. A probabilistic programming system is a probabilistic reasoning system that uses a programming language to represent probabilistic
 models.

 [image:]

 Although many kinds of probabilistic programming systems exist (see appendix B for a survey), this book focuses on functional, Turing-complete systems. Functional means that they’re based on functional programming, but don’t let that scare you—you don’t need to know concepts such as
 lambda functions to use functional probabilistic programming systems. All this means is that functional programming provides
 the theoretical foundation behind these languages that lets them represent probabilistic models. Meanwhile, Turing-complete is jargon for a programming language that can encode any computation that can be done on a digital computer. If something
 can be done on a digital computer, it can be done with any Turing-complete language. Most of the programming languages you’re
 familiar with, such as C, Java, and Python, are Turing-complete. Because probabilistic programming languages are built on
 Turing-complete programming languages, they’re extremely flexible in the types of models that can be built.

 	

 Key Definitions

 	
Representation language —A language for encoding your knowledge about a domain in a model

 	
Expressive power —The ability of a representation language to encode various kinds of knowledge in its models

 	
Turing-complete —A language that can express any computation that can be performed on a digital computer

 	
Probabilistic programming language —A probabilistic representation language that uses a Turing-complete programming language to represent knowledge

 	

 Appendix B surveys some probabilistic programming systems besides Figaro, the system used in this book. Most of these systems use Turing-complete
 languages. Some, including BUGS and Dimple, don’t, but they’re nevertheless useful for their intended applications. This book
 focuses on the capabilities of Turing-complete probabilistic programming languages.

Representing probabilistic models as programs

 But how can a programming language be a probabilistic modeling language? How can you represent probabilistic models as programs?
 I’ll hint at the answer to this question here but save a deeper discussion for later in the book, when you have a better idea
 of what a probabilistic program looks like.

 A core idea in programming languages is execution. You execute a program to generate output. A probabilistic program is similar, except that instead of a single execution
 path, it can have many execution paths, each generating a different output. The determination of which execution path is followed
 is specified by random choices throughout the program. Each random choice has a number of possible outcomes, and the program
 encodes the probability of each outcome. Therefore, a probabilistic program can be thought of as a program you randomly execute
 to generate an output.

 Figure 1.8 illustrates this concept. In the figure, a probabilistic programming system contains a corner-kick program. This program
 describes the random process of generating the outcome of a corner kick. The program takes some inputs; in our example, these
 are the height of the center forward, the experience of the goalie, and the strength of the wind. Given the inputs, the program
 is randomly executed to generate outputs. Each random execution results in a particular output being generated. Because every random choice has multiple possible outcomes, many possible execution paths exist, resulting in different outputs.
 Any given output, such as a goal, can be generated by multiple execution paths.

 Figure 1.8. A probabilistic program defines a process of randomly generating outputs, given inputs.

 [image:]

 Let’s see how this program defines a probabilistic model. Any particular execution path results from a sequence of random
 choices having specific outcomes. Each random choice has a probability of occurring. If you multiply all these probabilities
 together, you get the probability of the execution path. So the program defines the probability of every execution path. If
 you imagine running the program many times, the fraction of times any given execution path will be generated is equal to its
 probability. The probability of an output is the fraction of times the program is run that result in that output. In figure 1.8, a goal is generated by 1/4 of the runs, so the probability of a goal is 1/4.

 	

 Note

 You might be wondering why the block in figure 1.8 is labeled Random Execution rather than Inference Algorithm, as it has been in other figures. Figure 1.8 shows what a probabilistic program means, as defining a random execution process, rather than how you use a probabilistic
 programming system, which is by using an inference algorithm to answer queries, given evidence. So although the structure
 of the figures is similar, they convey different concepts. As a matter of fact, random execution forms the basis for some
 inference algorithms as well, but many algorithms aren’t based on simple random execution.

 	

Making decisions with probabilistic programming

 It’s easy to see how you can use a probabilistic program to predict the future. Just execute the program randomly many times,
 using what you know about the present as inputs, and observe how many times each output is produced. In the corner-kick example
 of figure 1.8, you executed the program many times, given the inputs of tall center forward, inexperienced goalie, and strong wind. Because
 1/4 of those runs resulted in a goal, you can say that the probability of a goal, given these inputs, is 25%.

 The magic of probabilistic programming, however, is that it can also be used for all the kinds of probabilistic reasoning
 described in section 1.3.1. It can be used not only to predict the future, but also to infer facts that led to particular outcomes; you can “unwind”
 the program to discover the root causes of the outcomes. You can also apply a program in one situation, learn from the outcome,
 and then use what you’ve learned to make better predictions in the future. You can use probabilistic programming to help make
 all the decisions that can be informed by probabilistic thinking.

 How does this work? Probabilistic programming became practical when people realized that inference algorithms that work on
 simpler representation languages like Bayesian networks can be extended to work on programs. Part 3 of this book presents a variety of inference algorithms that make this possible. Fortunately, probabilistic programming systems
 come with a range of built-in inference algorithms that apply automatically to your programs. All you have to do is provide
 your knowledge of your domain in the form of a probabilistic program and specify the evidence, and the system takes care of
 the inference and learning.

 In this book, you’ll learn probabilistic reasoning through probabilistic programming. You’ll learn, first of all, what a probabilistic
 model is and how it can be used to draw conclusions. You’ll also learn some basic manipulations that are performed to draw
 those conclusions from a model made up of simple components. You’ll learn a variety of modeling techniques and how to implement
 them by using probabilistic programming. You’ll also gain an understanding of how the probabilistic inference algorithms work,
 so you can design and use your models effectively. By the end of this book, you’ll be able to use probabilistic programming
 confidently to draw useful conclusions that inform your decisions in the face of uncertainty.

1.2. Why probabilistic programming?

 Probabilistic reasoning is one of the foundational technologies of machine learning. It’s used by companies such as Google,
 Amazon, and Microsoft to make sense of the data available to them. Probabilistic reasoning has been used for applications
 as diverse as predicting stock prices, recommending movies, diagnosing computers, and detecting cyber intrusions. Many of
 these applications use techniques you’ll learn in this book.

 From the previous section, two points stand out:

 	Probabilistic reasoning can be used to predict the future, infer the past, and learn from the past to better predict the future.

 	Probabilistic programming is probabilistic reasoning using a Turing-complete programming language for representation.

 Put these two together and you have a slogan expressed in the Fact note.

 	

 Fact

 Probabilistic reasoning + Turing-complete = probabilistic programming

 	

 The motivation for probabilistic programming is that it takes two concepts that are powerful in their own right and puts them
 together. The result is an easier and more flexible way to use computers to help make decisions under uncertainty.

 1.2.1. Better probabilistic reasoning

 Most existing probabilistic representation languages are limited in the richness of the systems they can represent. Some relatively
 simple languages such as Bayesian networks assume a fixed set of variables and aren’t flexible enough to model domains in
 which the variables themselves can change. More-advanced languages with more flexibility have been developed in recent years.
 Some (for example, BUGS) also provide programming-language features including iteration and arrays, without being Turing-complete.
 The success of languages such as BUGS shows a need for richer, more structured representations. But moving to full-fledged,
 Turing-complete languages opens a world of possibilities for probabilistic reasoning. It’s now possible to model long-running
 processes with many interacting entities and events.

 Let’s consider the soccer example again, but now imagine that you’re in the business of sports analytics and want to recommend
 personnel decisions for a team. You could use accumulated statistics to make your decisions, but statistics don’t capture
 the context in which they were accumulated. You can achieve a more fine-grained, context-aware analysis by modeling the soccer
 season in detail. This requires modeling many dependent events and interacting players and teams. It would be hard to imagine
 building this model without the data structures and control flow provided by a full programming language.

 Now let’s think about the product launch example again, and look at making decisions for your business in an integrated way.
 The product launch isn’t an isolated incident, but follows phases of market analysis, research, and development, all of which
 have uncertainty in their outcome. The results of the product launch depend on all these phases, as well as an analysis of
 what else is available in the market. A full analysis will also look at how your competitors will respond to your product,
 as well as any new products they might bring. This problem is hard, because you have to conjecture about competing products.
 You may even have competitors you don’t know about yet. In this example, products are data structures produced by complex
 processes. Again, having a full programming language available to create the model would be helpful.

 One of the nice things about probabilistic programming, however, is that if you want to use a simpler probabilistic reasoning
 framework, you can. Probabilistic programming systems can represent a wide range of existing frameworks, as well as systems
 that can’t be represented in other frameworks. This book teaches many of these frameworks using probabilistic programming.
 So in learning probabilistic programming, you’ll also master many of the probabilistic reasoning frameworks commonly used
 today.

 1.2.2. Better simulation languages

 Turing-complete probabilistic modeling languages already exist. They’re commonly called simulation languages. We know that it’s possible to build simulations of complex processes such as soccer seasons by using programming languages.
 In this context, I use the term simulation language to describe a language that can represent the execution of complex processes with randomness. Just like probabilistic programs,
 these simulations are randomly executed to produce different outputs. Simulations are as widely used as probabilistic reasoning,
 in applications from military planning to component design to public health to sports predictions. Indeed, the widespread
 use of sophisticated simulations demonstrates the need for rich probabilistic modeling languages.

 But a probabilistic program is much more than a simulation. With a simulation, you can do only one of the things you can do
 with a probabilistic program: predict the future. You can’t use it to infer the root causes of the outcomes that are observed.
 And, although you can update a simulation with known current information as you go along, it’s hard to include unknown information
 that must be inferred. As a result, the ability to learn from past experience to improve future predictions and analyses is
 limited. You can’t use simulations for machine learning.

 A probabilistic program is like a simulation that you can analyze, not just run. The key insight in developing probabilistic
 programming is that many of the inference algorithms that can be used for simpler modeling frameworks can also be used on
 simulations. Hence, you have the ability to create a probabilistic model by writing a simulation and performing inferences
 on it.

 One final word. Probabilistic reasoning systems have been around for a while, with software such as Hugin, Netica, and BayesiaLab
 providing Bayesian network systems. But the more expressive representation languages of probabilistic programming are so new
 that we’re just beginning to discover their powerful applications. I can’t honestly tell you that probabilistic programming
 has already been used in a large number of fielded applications. But some significant applications exist. Microsoft has been
 able to determine the true skill level of players of online games by using probabilistic programming. Stuart Russell at the
 University of California at Berkeley has written a program to help enforce the United Nations Comprehensive Nuclear-Test-Ban
 Treaty by identifying seismic events that could indicate a nuclear explosion. Josh Tenenbaum at the Massachusetts Institute
 of Technology (MIT) and Noah Goodman at Stanford University have created probabilistic programs to model human cognition with
 considerable explanatory success. At Charles River Analytics, we’ve used probabilistic programming to infer components of
 malware instances and determine their evolution. But I believe these applications are only scratching the surface. Probabilistic
 programming systems are reaching the point where they can be used by larger numbers of people to make decisions in their own
 domains. By reading this book, you have a chance to get in on this new technology on the ground floor.

1.3. Introducing Figaro: a probabilistic programming language

 In this book, you’ll use a probabilistic programming system called Figaro. (I named Figaro after the character from Mozart’s
 opera “The Marriage of Figaro.” I love Mozart and played Dr. Bartolo in a Boston production of the opera.) The main goal of
 the book is to teach the principles of probabilistic programming, and the techniques you learn in this book should carry over
 to other probabilistic programming systems. Some of the available systems are listed with a brief description in appendix B. A secondary goal, however, is to give you hands-on experience with creating practical probabilistic programs, and provide
 you with tools you can use right away. For that reason, a lot of the examples are made concrete in Figaro code.

 Figaro, which is open source and maintained on GitHub, has been under development since 2009. It’s implemented as a Scala
 library. Figure 1.9 shows how Figaro uses Scala to implement a probabilistic programming system. The figure elaborates on figure 1.7, which describes the main components of a probabilistic programming system. Let’s start with the probabilistic model. In
 Figaro, the model consists of any number of data structures known as elements. Each element represents a variable that can take on any number of values in your situation. These data structures are implemented
 in Scala, and you write a Scala program to create a model using these data structures. You can supply evidence by providing
 information about the values of elements, and you can specify which elements you want to know about in your query. For the
 inference algorithm, you choose one of Figaro’s built-in inference algorithms and apply it to your model, to answer your query,
 given the evidence. The inference algorithms are implemented in Scala, and invoking an inference algorithm is simply a Scala
 function call. The results of inference are probabilities of various values of your query elements.

 Figure 1.9. How Figaro uses Scala to provide a probabilistic programming system

 [image:]

 Figaro’s embedding in Scala provides some major advantages. Some of these come from embedding in a general-purpose host language,
 compared to a standalone probabilistic language. Others come specifically because of the favorable properties of Scala. Here’s
 why it’s good to embed a probabilistic programming language in a general-purpose host language:

 	The evidence can be derived using a program in the host language. For example, you might have a program that reads a data
 file, processes the values in some way, and provides that as evidence for the Figaro model. It’s much harder to do this in
 a standalone language.

 	Similarly, you can use the answers provided by Figaro in a program. For example, if you have a program used by a soccer manager,
 the program can take the probability of a goal being scored to recommend to the manager what to do.

 	You can embed general-purpose code inside the probabilistic program. For example, suppose you have a physics model that simulates
 the trajectory of a headed ball through the air. You can incorporate this model inside a Figaro element.

 	You can use general programming techniques to build your Figaro model. For example, you might have a map containing Figaro
 elements corresponding to all the players in your squad and choose the appropriate elements for a situation based on the players
 involved in that situation.

 Here are some reasons that Scala is a particularly good choice of language for embedding a probabilistic programming system
 in:

 	Because Scala is a functional programming language, Figaro gets to benefit from functional programming too. Functional programming
 has been instrumental in probabilistic programming, and many models can be written naturally in a functional manner, as I’ll
 show in part 2.

 	Scala is object-oriented; one of the beauties of Scala is that it is both functional and object-oriented. Figaro is also object-oriented.
 As I’ll describe in part 2, object-orientation is a useful way to express several design patterns in probabilistic programming.

 Finally, some of Figaro’s advantages go beyond its embedding in Scala. These include the following:

 	Figaro can represent an extremely wide range of probabilistic models. The values of Figaro elements can be any type, including
 Booleans, integers, doubles, arrays, trees, graphs, and so on. The relationships between these elements can be defined by
 any function.

 	Figaro provides a rich framework for specifying evidence by using its conditions and constraints.

 	Figaro features a good variety of inference algorithms.

 	Figaro can represent and reason about dynamic models of situations that vary over time.

 	Figaro can include explicit decisions in its models and supports inferring optimal decisions.

 	

 Using Scala

 Because Figaro is a Scala library, you’ll need a working knowledge of Scala to use Figaro. This is a book on probabilistic
 programming, so I don’t teach Scala in this book. Many great resources for learning Scala are available, such as Twitter’s
 Scala School (http://twitter.github.io/scala_school). But in case you aren’t yet confident with Scala, I explain the Scala features used in the code as I go along. You’ll be
 able to follow the book even if you don’t know Scala yet.

 You don’t need to be a Scala wizard to benefit from probabilistic programming and Figaro, and I avoid using some of the more
 advanced and obscure features of Scala in this book. On the other hand, improving your Scala skills can help you become a
 better Figaro programmer. You might even find that your Scala skills improve as a result of reading this book.

 	

 For several reasons, Figaro is a favorable language for learning probabilistic programming:

 	Being implemented as a Scala library, Figaro can be used in Java and Scala programs, making it easy to integrate into applications.

 	Also related to being implemented as a library, rather than its own separate language, Figaro provides the full functionality
 of the host programming language to build your models. Scala is an advanced, modern programming language with many useful
 features for organizing programs, and you automatically benefit from those features when using Figaro.

 	Figaro is fully featured in terms of the range of algorithms it provides.

 This book emphasizes practical techniques and practical examples. Wherever possible, I explain the general modeling principle,
 as well as describe how to implement it in Figaro. This will stand you in good stead no matter what probabilistic programming
 system you end up using. Not all systems will be capable of easily implementing all the techniques in this book. For example, few object-oriented probabilistic programming systems currently exist. But with the
 right foundation, you can find a way to express what you need in your chosen language.

 1.3.1. Figaro vs. Java: building a simple probabilistic programming system

 To illustrate the benefits of probabilistic programming and Figaro, I’ll show a simple probabilistic application written two
 ways. First, I’ll show you how to write it in Java, with which you might be familiar. Then, I’ll show you what it looks like
 in Scala using Figaro. Although Scala has some advantages over Java, that’s not the main difference I’ll point out here. The
 key idea is that Figaro provides capabilities for representing probabilistic models and performing inference with them that aren’t available
 without probabilistic programming.

 Our little application will also serve as a Hello World example for Figaro. Imagine someone who gets up in the morning, checks
 if the weather is sunny, and utters a greeting that depends on the weather. This happens two days in a row. Also, the weather
 on the second day is dependent on the first day: the second day is more likely to be sunny if the first day is sunny. These
 English language statements can be quantified numerically by the numbers in table 1.1.

 Table 1.1. Quantifying the probabilities in the Hello World example

 	
 Today’s weather

 	Sunny
 	0.2

 	Not sunny
 	0.8

 	Today’s greeting

 	If today’s weather is sunny
 	“Hello, world!”
 	0.6

 	
 	“Howdy, universe!”
 	0.4

 	If today’s weather isn’t sunny
 	“Hello, world!”
 	0.2

 	
 	“Oh no, not again”
 	0.8

 	Tomorrow’s weather

 	If today’s weather is sunny
 	Sunny
 	0.8

 	
 	Not sunny
 	0.2

 	If today’s weather isn’t sunny
 	Sunny
 	0.05

 	
 	Not sunny
 	0.95

 	Tomorrow’s greeting

 	If tomorrow’s weather is sunny
 	“Hello, world!”
 	0.6

 	
 	“Howdy, universe!”
 	0.4

 	If tomorrow’s weather isn’t sunny
 	“Hello, world!”
 	0.2

 	
 	“Oh no, not again”
 	0.8

 The forthcoming chapters explain exactly how to interpret these numbers. For now, it’s enough to have an intuitive idea that
 today’s weather will be sunny with probability 0.2, meaning that it’s 20% likely that the weather will be sunny today. Likewise,
 if tomorrow’s weather is sunny, tomorrow’s greeting will be “Hello, world!” with probability 0.6, meaning that it’s 60% likely
 that the greeting will be “Hello, world!” and it’s 40% likely that the greeting will be “Howdy, universe!”

 Let’s set for ourselves three reasoning tasks to perform with this model. You saw in section 1.1.3 that the three types of reasoning you can do with a probabilistic model are to predict the future, infer past events that led to your observations, and learn from past events to better predict the future. You’ll do all of these with our simple model. The specific tasks are as follows:

 1. Predict the greeting today.

 2. Given an observation that today’s greeting is “Hello, world!” infer whether today is sunny.

 3. Learn from an observation that today’s greeting is “Hello, world!” to predict tomorrow’s greeting.

 Here’s how to do these tasks in Java.

 Listing 1.1. Hello World in Java

 [image:]

 [image:]

 I won’t describe how the calculations are performed using the rules of inference here. The code uses three rules of inference:
 the chain rule, the total probability rule, and Bayes’ rule. All these rules are explained in detail in chapter 9. For now, let’s point out two major problems with this code:

 	
There’s no way to define a structure to the model.
 The definition of the model is contained in a list of variable names with double values. When I described the model at the
 beginning of the section and showed the numbers in table 1.1, the model had a lot of structure and was relatively understandable, if only at an intuitive level. This list of variable
 definitions has no structure. The meaning of the variables is buried inside the variable names, which is always a bad idea.
 As a result, it’s hard to write down the model in this way, and it’s quite an error-prone process. It’s also hard to read
 and understand the code afterward and maintain it. If you need to modify the model (for example, the greeting also depends
 on whether you slept well), you’ll probably need to rewrite large portions of the model.

 	
Encoding the rules of inference yourself is difficult and error-prone.
 The second major problem is with the code that uses the rules of probabilistic inference to answer the queries. You have to
 have intimate knowledge of the rules of inference to write this code. Even if you have this knowledge, writing this code correctly
 is difficult. Testing whether you have the right answer is also difficult. And this is an extremely simple example. For a
 complex application, it would be impractical to create reasoning code in this way.

 Now let’s look at the Scala/Figaro code.

 Listing 1.2. Hello World in Figaro

 [image:]

 [image:]

 I’ll wait until the next chapter to explain this code in detail. For now, I want to point out that it solves the two problems
 with the Java code. First, the model definition describes exactly the structure of the model, in correspondence with table 1.1. You define four variables: sunnyToday, greetingToday, sunnyTomorrow, and greeting-Tomorrow. Each has a definition that corresponds to table 1.1. For example, here’s the definition of greetingToday:

 val greetingToday = If(sunnyToday,
 Select(0.6 -> "Hello, world!", 0.4 -> "Howdy, universe!"),
 Select(0.2 -> "Hello, world!", 0.8 -> "Oh no, not again"))

 This says that if today is sunny, today’s greeting is “Hello, world!” with probability 0.6 and “Howdy, universe!” with probability
 0.4. If today isn’t sunny, today’s greeting is “Hello, world!” with probability 0.2 and “Oh no, not again” with probability
 0.8. This is exactly what table 1.1 says for today’s greeting. Because the code explicitly describes the model, the codes is much easier to construct, read,
 and maintain. And if you need to change the model (for example, by adding a sleepQuality variable), this can be done in a modular way.

 Now let’s look at the code to perform the reasoning tasks. It doesn’t contain any calculations. Instead, it instantiates an
 algorithm (in this case, the variable elimination algorithm, one of several algorithms available in Figaro) and queries the
 algorithm to get the probability you want. Now, as described in part 3, this algorithm is based on the same rules of probabilistic inference that the Java program uses. All the hard work of organizing
 and applying the rules of inference is taken care of by the algorithm. Even for a large and complex model, you can run the
 algorithm, and all the inference is taken care of.

1.4. Summary

 	
Making judgment calls requires knowledge + logic.

 	In probabilistic reasoning, a probabilistic model expresses the knowledge, and an inference algorithm encodes the logic.

 	Probabilistic reasoning can be used to predict future events, infer causes of past events, and learn from past events to improve
 predictions.

 	Probabilistic programming is probabilistic reasoning, where the probabilistic model is expressed using a programming language.

 	A probabilistic programming system uses a Turing-complete programming language to represent models and provides inference
 algorithms to use the models.

 	Figaro is a probabilistic programming system implemented in Scala that provides functional and object-oriented programming
 styles.

1.5. Exercises

 Solutions to selected exercises are available online at www.manning.com/books/practical-probabilistic-programming.

 1. Imagine that you want to use a probabilistic reasoning system to reason about the outcome of poker hands.

 	What kind of general knowledge could you encode in your model?

 	Describe how you might use the system to predict the future. What’s the evidence? What’s the query?

 	Describe how you might use the system to infer past causes of current observations. What’s the evidence? What’s the query?

 	Describe how the inferred past causes can help you with your future predictions.

 2.

In the Hello World example, change the probability that today’s weather is sunny according to the following table. How do
 the outputs of the program change? Why do you think they change this way?

 	Today’s weather

 	Sunny
 	0.9

 	Not sunny
 	0.1

 3. Modify the Hello World example to add a new greeting: “Hi, galaxy!” Give this greeting some probability when the weather
 is sunny, making sure to reduce the probability of the other greetings so the total probability is 1. Also, modify the program
 so that all the queries print the probability of “Hi, galaxy!” instead of “Hello, world!” Try to do this for both the Java
 and Figaro versions of the Hello World program. Compare the process for the two languages.

Chapter 2. A quick Figaro tutorial

 This chapter covers

 	Creating models, asserting evidence, running inference, and answering queries

 	Understanding the basic building blocks of models

 	Building complex models out of these building blocks

 Now that you’ve seen what probabilistic programming is all about, you’re ready to get up to speed in Figaro so that you can
 write your own simple programs and answer queries with them. My goal in this chapter is to introduce you to the most important
 concepts in Figaro as quickly as possible. Future chapters provide detailed explanations of what the models mean and how they
 should be understood. So let’s go.

2.1. Introducing Figaro

 To start, let’s take a high-level look at Figaro. Figaro, introduced in chapter 1, is a probabilistic reasoning system. Before you look at its components, let’s review the components of a probabilistic reasoning
 system in general so you can see how Figaro compares. Figure 2.1 reproduces the gist of the probabilistic reasoning system in chapter 1. As a reminder, general knowledge about a situation is encoded in the probabilistic model, while evidence provides specific
 information about a particular situation. An inference algorithm uses the model and the evidence to answer queries about your
 situation.

 Figure 2.1. Review of probabilistic reasoning essentials

 [image:]

 Now let’s look at Figaro. Figure 2.2 shows the key concepts of Figaro. As you can see, the figure has the same components as figure 2.1. You express your general knowledge in the Figaro model. You provide specific knowledge about a situation in the form of evidence. Queries tell the system what you’re interested in finding out. A Figaro inference algorithm takes the evidence and uses the model to provide answers to the queries.

 Figure 2.2. The key concepts of Figaro and how they fit together

 [image:]

 Now let’s look at each of these pieces in turn. The majority of Figaro’s interface provides ways to specify Figaro models.
 A Figaro model consists of a set of data structures called elements. Each element represents a variable in your situation that can take on one of a set of values. The element encodes information
 that defines the probabilities of different values. You’ll see the basic definition of elements in the context of the Hello
 World example in section 2.2.1.

 There are two main kinds of element: atomic and compound. You can think of Figaro as providing a construction kit for building
 models. Atomic elements are the basic building blocks. Atomic elements represent basic probabilistic variables that don’t depend on any other elements.
 Section 2.3 discusses atomic elements and presents a variety of examples. Compound elements are the connectors. They depend on one or more elements to build up more-complex elements. You’ll learn about compound elements
 in section 2.4. Although Figaro provides a variety of compound elements, two are particularly important. These are called Apply and Chain, and you’ll learn how to use them in section 2.5.

 Next, you come to the evidence. Figaro provides a rich mechanism for specifying evidence. Most of the time, you’ll use the
 simplest form of evidence, which is an observation. An observation specifies that an element is known to have a specific value. You’ll learn how to specify observations in
 section 2.2.3. Sometimes you need a more general way to specify evidence. Figaro provides conditions and constraints for this purpose. Conditions and constraints and their uses are described in section 2.6.

 Queries in Figaro are specified by saying which target elements you’re interested in and what you want to know about them. You use an inference algorithm to find out information about your
 target elements, given the evidence. Typically, you need to instantiate an algorithm, run it, and clean up afterward. I’ve provided simple methods that perform all these steps for you by using default settings. After you run the
 algorithm, you can get answers to your queries. Most often, these answers take the form of probabilities of values of the target elements. Sometimes, instead of probabilities, they tell you the most likely values of each target element. For each target element, the answer tells you which value has the highest probability. You’ll see
 how to specify queries, run algorithms, and get answers in section 2.2.2.

2.2. Creating models and running inference: Hello World revisited

 Now that you’ve seen an overview of Figaro concepts, let’s see how they all fit together. You’ll take another look at the
 Hello World example from chapter 1, and specifically at how all the concepts from figure 2.2 show up in this example. You’ll look at how to build a model out of atomic and compound elements, observe evidence, ask queries,
 run an inference algorithm, and get answers.

 You can run the code in this chapter in two ways. One is to use the Scala console, entering statements line by line and getting
 immediate responses. To do this, navigate to the book’s project root directory PracticalProbProg/examples and type sbt console. You’ll be greeted with a Scala prompt. Then you can enter each line of code as it appears and see the response.

 The second way is the usual way: write a program with a main method that contains the code you want to execute. In this chapter, I don’t provide the boilerplate for turning your code
 into a program you can run. I provide only the code that’s relevant to Figaro. I’ll make sure to indicate what you need to
 import and where to import it from.

 2.2.1. Building your first model

 To start, you’ll build the simplest possible Figaro model. This model consists of a single atomic element. Before you can
 build a model, you have to import the necessary Figaro constructs:

 import com.cra.figaro.language._

 This imports all the classes in the com.cra.figaro.language package, which contains the most basic Figaro constructs. One of the classes is called Flip. You can build a simple model using Flip:

 val sunnyToday = Flip(0.2)

 Figure 2.3 explains this line of code. It’s important to be clear about which parts are Scala and which parts are Figaro. In this line
 of code, you’ve created a Scala variable named sunnyToday and assigned it the value Flip(0.2). The Scala value Flip(0.2) is a Figaro element that represents a random process that results in a value of true with probability 0.2 and false with probability 0.8. An element is a data structure representing a process that randomly produces a value. A random process can result in any number of outcomes. Each possible
 outcome is known as a value of the process. So Flip(0.2) is an element whose possible values are the Booleans true and false. To summarize, you have a Scala variable with a Scala value. That Scala value is a Figaro element, and it has any number
 of possible values representing different outcomes of the process.

 Figure 2.3. The relationship between Scala variables and values, and Figaro elements and possible values

 [image:]

 In Scala, a type can be parameterized by another type that describes its contents. You might be familiar with this concept
 from Java generics, where you can have, for example, a list of integers or a list of strings. All Figaro elements are instances
 of the Element

