

 [image: cover]

 OSGi in Depth

 Alexandre de Castro Alves

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Sebastian Stirling
Copyeditor: Linda Recktenwald
Poofreader: Andy Carroll
Typesetter: Marija Tudor
Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. OSGi as a new platform for application development

 Chapter 2. An OSGi framework primer

 Chapter 3. The auction application: an OSGi case study

 Chapter 4. In-depth look at bundles and services

 Chapter 5. Configuring OSGi applications

 Chapter 6. A world of events

 Chapter 7. The persistence bundle

 Chapter 8. Transactions and containers

 Chapter 9. Blending OSGi and Java EE using JNDI

 Chapter 10. Remote services and the cloud

 Chapter 11. Launching OSGi using start levels

 Chapter 12. Managing with JMX

 Chapter 13. Putting it all together by extending Blueprint

 Appendix A. OSGi manifest headers

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 Chapter 1. OSGi as a new platform for application development

 1.1. What are development platforms and application frameworks?

 1.1.1. Why use a development platform?

 1.1.2. Enterprise platforms

 1.2. The OSGi technology

 1.2.1. The problem domain

 1.2.2. The solution: a dynamic module system for Java

 1.2.3. The Enterprise OSGi

 1.3. Benefits of using the OSGi platform

 1.3.1. OSGi manages the complexity of large systems

 1.3.2. OSGi provides extensibility without eroding the system

 1.3.3. OSGi is lightweight and customizable

 1.3.4. OSGi allows for portability

 1.4. Building blocks: the essence of OSGi

 1.5. Players

 1.6. Are we starting from scratch?

 1.7. Summary

 Chapter 2. An OSGi framework primer

 2.1. Modules and information hiding

 2.1.1. Establishing a formal import/export contract

 2.1.2. Activating a bundle

 2.2. Running and testing OSGi

 2.2.1. Apache Felix, the open source OSGi framework

 2.2.2. Building OSGi bundles

 2.2.3. Installing bundles into Felix

 2.2.4. Starting the bundles in Felix

 2.2.5. Can we cheat using reflection?

 2.2.6. Eclipse Equinox

 2.3. Coping with changes to a module

 2.3.1. Changing a bundle’s interface

 2.3.2. Versioning bundles

 2.3.3. Changing a module’s implementation

 2.4. Services and loose coupling

 2.4.1. The Printer service

 2.4.2. Registering a service in the OSGi service registry

 2.4.3. Looking up a service from the OSGi service registry

 2.4.4. Running OSGi service-oriented applications

 2.5. The OSGi layered architecture

 2.6. Summary

 Chapter 3. The auction application: an OSGi case study

 3.1. Establishing the requirements for an auction system

 3.2. Modularization and extensibility as application requirements

 3.3. Defining the interfaces

 3.3.1. Using service properties

 3.3.2. Implementing the seller module

 3.3.3. Avoiding temporal cohesion between bundles

 3.3.4. The registry design pattern

 3.4. Defining the extension points

 3.4.1. Developing our first auction extension

 3.4.2. Whiteboard design pattern

 3.4.3. Keeping service properties immutable

 3.4.4. Developing the auditor extension

 3.5. Putting it all together

 3.5.1. Semantic versioning

 3.6. The OSGi HTTP service

 3.6.1. Developing an HTTP buyer

 3.6.2. Testing the auction application

 3.7. Improving the auction application to enterprise grade

 3.8. Summary

 Chapter 4. In-depth look at bundles and services

 4.1. Restricting a bundle’s export contract

 4.1.1. Keeping packages private

 4.1.2. Excluding classes from an exported package

 4.1.3. Avoiding split packages

 4.2. Expanding a bundle’s export contract

 4.2.1. Dynamic imports

 4.2.2. Optional packages

 4.2.3. Fragment bundles

 4.3. Packages as requirements and capabilities

 4.4. Avoiding the dreaded class-hell problem

 4.4.1. Don’t forget to import the package!

 4.4.2. Keeping class space consistency

 4.4.3. Package export race condition

 4.5. Understanding OSGi’s class loading

 4.6. Decoupling bundles using services

 4.6.1. Advanced service filtering

 4.6.2. Prioritizing services

 4.6.3. Uniquely identifying services

 4.6.4. Service factories

 4.7. Improve robustness by testing your applications

 4.7.1. Unit tests

 4.7.2. Integration tests

 4.8. Summary

 Chapter 5. Configuring OSGi applications

 5.1. The configuration problem

 5.1.1. The Notification Broker service

 5.1.2. Configuring the port of the notification broker

 5.2. The Configuration Admin service

 5.2.1. The target service

 5.2.2. The configuring bundle

 5.2.3. The Configuration Admin: a mediator of configuration

 5.2.4. Finding the Configuration service using bundle repositories

 5.2.5. Running the Configuration Admin service

 5.3. Configuring using complex data types

 5.4. Deleting configuration

 5.5. Configuring multiple services

 5.5.1. Configuring bundle for configuration factories

 5.5.2. Managed service factories

 5.6. When configuration update fails

 5.6.1. Log listener

 5.6.2. Application logging

 5.7. Management agents

 5.7.1. Validating configuration using a configuration model

 5.7.2. The metadata provider

 5.7.3. The metadata consumer

 5.7.4. Protecting against malicious configuring bundles

 5.7.5. Achieving atomicity across configuration updates

 5.8. Summary

 Chapter 6. A world of events

 6.1. The publish-subscribe model

 6.2. The Event Admin

 6.2.1. Topics

 6.2.2. Event object

 6.3. Advanced event handling

 6.3.1. Blocking dispatch and event-delivery guarantees

 6.3.2. Hierarchical topic names

 6.3.3. Event filtering

 6.3.4. Predefined event properties

 6.4. Event Admin shortcomings

 6.4.1. Losing events

 6.4.2. Feeble filtering

 6.4.3. Remote clients

 6.4.4. Determinism

 6.5. Decoupling using events

 6.6. OSGi framework events

 6.6.1. Accessing a bundle’s content

 6.6.2. The extender pattern

 6.6.3. Subscribing to OSGi events using the Event Admin

 6.7. Summary

 Chapter 7. The persistence bundle

 7.1. Bundle’s storage area

 7.2. Using JDBC

 7.2.1. Bootstrapping JDBC drivers

 7.2.2. Providing OSGi-aware JDBC drivers

 7.2.3. Consuming OSGi-aware JDBC drivers

 7.3. Object-relation mapping through JPA

 7.3.1. JPA annotations

 7.3.2. Distilling JPA

 7.4. Summary

 Chapter 8. Transactions and containers

 8.1. Undoing work

 8.2. Transactions

 8.2.1. Global transactions

 8.2.2. Transaction providers

 8.2.3. The two-phase commit protocol

 8.3. Containers

 8.3.1. Error handling

 8.3.2. User transactions

 8.4. Summary

 Chapter 9. Blending OSGi and Java EE using JNDI

 9.1. Sharing resources

 9.2. Understanding Java’s yellow pages

 9.2.1. Looking up objects

 9.2.2. Binding objects

 9.2.3. Naming federations

 9.3. Establishing the initial context

 9.3.1. Initial contexts in OSGi

 9.4. Handling object conversions

 9.4.1. Converting JNDI objects to be OSGi aware

 9.5. Exposing OSGi services in JNDI

 9.5.1. Registering URL context factories

 9.5.2. Registering URL context factories in OSGi

 9.6. Embedding OSGi

 9.6.1. Bridging JNDI

 9.7. Summary

 Chapter 10. Remote services and the cloud

 10.1. Remote invocation

 10.1.1. Exporting a remote service

 10.1.2. Consuming a remote service

 10.2. Distribution providers

 10.2.1. Selecting the proper endpoint

 10.2.2. Negotiating policies

 10.2.3. Endpoint descriptions

 10.3. Dealing with the semantics of distributed systems

 10.4. Elasticity at the cloud

 10.4.1. Designing for the cloud

 10.4.2. Cloud computing

 10.4.3. OSGi as the cloud platform

 10.5. Summary

 Chapter 11. Launching OSGi using start levels

 11.1. Managing disorderly bundles

 11.2. Layered architecture to managing bundles

 11.2.1. Bootstrapping the OSGi framework

 11.2.2. The Start-Level service

 11.2.3. Safe-mode boot

 11.2.4. Shutting down the OSGi framework

 11.2.5. A transient start of a bundle

 11.2.6. A lazy start of a bundle

 11.3. Deploying applications

 11.3.1. Updating features

 11.3.2. Updating extensions

 11.3.3. Deploying file install using OBR

 11.3.4. The File Install service

 11.4. Simplifying launching of the framework

 11.5. Summary

 Chapter 12. Managing with JMX

 12.1. Java’s management API

 12.2. Managing bundles

 12.3. Managing services

 12.4. Managing import and export packages

 12.5. Managing an OSGi framework instance

 12.6. Management notifications

 12.7. Managing bundle configuration

 12.8. OSGi JMX patterns

 12.9. Summary

 Chapter 13. Putting it all together by extending Blueprint

 13.1. Application bundles and their containers

 13.1.1. Subscriber application bundle

 13.1.2. Implementing the SAB container

 13.2. Declarative assembly using Blueprint

 13.3. Extending Blueprint

 13.3.1. Extending Blueprint with namespaces

 13.3.2. Intercepting Blueprint

 13.4. Revisiting the auction application

 13.4.1. Using the Event Admin service

 13.4.2. Using JPA

 13.4.3. Using the Configuration Admin service and Blueprint

 13.5. Summary

 13.6. Epilogue

 Appendix A. OSGi manifest headers

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 After many years in ClassPath-land, the Java industry at large is finally starting to see the need for modularity in software
 development and deployment. There are many reasons for this. Maybe you just want to get out of the Jar Hell, where you’re not quite sure anymore where a particular class comes from in your deployment. Other use cases for modularity
 center around providing isolation in a multi-tenancy context.

 But there are more reasons. A modular approach makes developing software more scalable as modules tend to be highly focused
 with a clear demarcation of responsibility. A module’s internals are inaccessible to the outside, which means that a modular
 approach tends to lead to well-defined APIs that better allow for concurrent development. It enables structuring of development
 teams such that parallel development of modules, which together form the application, is achievable.

 The OSGi specifications provide a very mature, stable, and comprehensive modularity solution. The OSGi Core specification
 defines the OSGi framework, addressing modularity, lifecycle, services, and security aspects. Together these enable a dynamic
 system where bundles, the OSGi name for modules, are often remarkably reusable, properly encapsulated, and loosely coupled. The OSGi service registry
 enables an elegant plug-in model where consumers don’t need to be preconfigured with any expected service provider implementation.
 The OSGi service model allows for services to be changed dynamically at runtime without the need to modify their consumers.

 In this age of cloud computing, a system needs to be dynamically adaptable, highly manageable, and easily maintainable. OSGi
 technology facilitates all this alongside what is generally an extremely light infrastructure footprint. Runtime metadata
 and framework management is available through a standard API or via JMX, if enabled, and because bundles generally have clearly
 defined purposes, maintenance is easier and more localized—there’s no more big ball of mud that needs to be dealt with.

 OSGi is the only standards-based solution to modularity today, and given that it has been around since the late 1990s, it’s
 a well-matured and very stable technology. A number of highly popular open source projects provide OSGi framework implementations
 today, and a number of commercial implementations are also available. OSGi is being used in contexts from embedded, residential,
 and mobile devices to highly scalable and performant server systems. Additionally, it is the infrastructure behind many rich
 client applications, of which the Eclipse IDE is probably the most well-known.

 In this book, Alex Alves looks in detail at many of the OSGi Core concepts while also elaborating on a number of vital technologies
 from the OSGi Compendium and Enterprise specifications. As cochair of the Enterprise Expert Group, I’m particularly pleased
 to see a number of Enterprise OSGi technologies covered. You’ll find chapters about OSGi remote services (note a very interesting
 cloud computing section in this chapter), JDBC and JPA, transactions, JNDI integration, and JMX support, while the Configuration
 Admin and Event Admin services are also covered. Last but not least, you’ll find coverage of OSGi Blueprint, a specification
 inspired by the Spring Framework aimed at using and creating OSGi services in a simple and user-friendly way.

 This is a book that both covers the high-level big-picture architecture topics as well as the details involved in getting
 things working on a practical level. It will give you a deep understanding of OSGi and will provide you with the knowledge
 you need to utilize OSGi to the full.

 DAVID BOSSCHAERT
PRINCIPAL SOFTWARE ENGINEER, JBOSS BY RED HAT
OSGi ENTERPRISE EXPERT GROUP COCHAIR

Preface

 Ah, to build, to build! That is the noblest art of all the arts. Painting and sculpture are but images, are merely shadows
 cast by outward things on stone or canvas, having in themselves no separate existence. Architecture, existing in itself, and
 not in seeming a something it is not, surpasses them as substance shadow.

 Henry Wadsworth Longfellow (1807–1882)

 Technology does not drive change—it enables change.

 Unknown source

 I started working with OSGi in about 2006. This was back in the days of BEA and Web-Logic. Our goal was a very ambitious one:
 to create a new application server profiled for a particular vertical market—financial front offices.

 The journey has been a long one. But as they say, it is not just about reaching the destination, but rather about the journey.
 I’ve learned more than I expected along the way. I’ve learned how to better develop reusable software, how to architect service-oriented
 implementations, and how to conceptualize software that is both maintainable and extensible.

 The success of our project at BEA and now at Oracle is to a large extent a positive testimonial to the advantages of using
 OSGi. Relating my experience using OSGi and the advantages I’ve learned are the focus of this book.

Acknowledgments

 As it is the case with any large project, success is largely based upon the collective work of numerous people.

 I would like to thank Manning for the opportunity—in particular Michael Stephens, my acquisitions editor, and the production
 team of Maureen Spencer, Karen Tegtmeyer, Mary Piergies, Linda Recktenwald, Andy Carroll, and my technical proofreader Ivan
 Kirkpatrick, who went over and beyond the call of duty in checking the code and providing many helpful suggestions for improving
 the manuscript. I would also like to express special thanks to my development editor Sebastian Stirling, for his excellent
 insight and feedback on my day-to-day work.

 I would like to thank the following reviewers for reading the manuscript at various stages during its development and for
 providing invaluable feedback: Norman Richards, Adam Taft, Mykel Alvis, Mike Keith, Chad Wilson, Peter Kriens, Richard S.
 Hall, Rick Wagner, Pratik Patel, Jeff Davis, Mirko Jahn, Sivakumar Thyagarajan, Dru Sellers, Frank Kieviet, Gabor Paller,
 Jeremy Flowers, Denys Kurylenko, Steve Gutz, Janardhanan Vembunarayana, and Benjamin Muschko.

 I would like to thank David Bosschaert of Red Hat for reviewing the final manuscript and writing an insightful foreword to
 my book.

 I would like to thank the Oracle CEP team, for giving me the experience needed to write this book.

 I would like to thank my father, Duarte, and my mother, Ana, for giving me the support I needed to continue my work regardless
 of all the other problems that life throws at you. Also, I would like to thank my brother, Rodrigo, for always being helpful,
 and my sister, Larissa, for being the enthusiastic and loving person she is.

 I would like to thank my sons, Gabriel and Lucas, for providing fun-filled book-writing breaks, and understanding when I was
 in the book-writing no-breaks mode (as they saw it).

 Finally, I would like to thank Juliana, my wife-to-be, for her unyielding support, her caring, and for her lifelong understanding.
 For you, it’s all worth it! Words put into a book last forever, and so will our love.

About this Book

 In this book, I show how the OSGi technology can be used to write better software, and in particular, how OSGi can be used
 to write better platforms for the development of better software.

 Most importantly, I focus on real problems and on how OSGi can be used to solve them. Instead of just explaining OSGi’s API
 for modularization, I first show you the problems that arise due to the lack of modularization. Instead of simply giving you
 OSGi’s transaction API, I show you why and when you need to use transactions, and what the implications are of using transactions
 in a modularized service-oriented fashion in OSGi. As you read this book, you’ll acquire in-depth knowledge of OSGi, and learn
 how to create containers that can manage transactions and persistence for applications!

 Several years ago, it was inconceivable for a developer to write their own enterprise-grade development container or platform.
 OSGi has drastically changed this; it allows you to create your own domain-specific platform. OSGi is to domain-specific platforms
 what yacc is to domain-specific languages (DSLs).

 Finally, in this book, I tackle some basic problems, but I don’t shy away from the complex ones. You’ll learn OSGi in depth. You won’t just be looking at OSGi’s API, but rather at the reason why the API is what it is, how you can best use it, and
 when not to use it. You’ll even learn about open OSGi issues and what can be expected to change.

 OSGi is an extraordinary technology. More than that, it’s a game changer in the way large software is developed. To fully
 understand the reason for this, you need to understand OSGi in depth.

Who should read this book?

 First and foremost, this book is aimed at developers, especially Java developers, who are interested in learning how to write
 better maintainable and extensible software.

 The book will be of particular interest to enterprise-level developers and architects who are learning better ways of putting
 their software together, reusing components from different vendors, and extending the usable life of their systems, while
 decreasing their costs. Enterprise developers and architects will learn how to seamlessly leverage enterprise services, such
 as persistence, transactions, and remote communication from different vendors.

 Finally, the book is aimed at experienced developers and architects who have either built or want to learn how to build their
 own development platforms and software frameworks.

 The book is not targeted to a particular OSGi implementation or vendor, but it does use Apache Felix and, to a lesser extent,
 Eclipse Equinox for the examples in the book.

 The book is based upon OSGi Service Platform 4.2 and some aspects of the recently published 4.3 version.

 Ultimately, I like to think this is a book for programmers and architects who wish to learn how to build better systems.

Roadmap

 The book can be divided into two main parts. Chapters 1 to 4 focus on the OSGi framework. Chapters 5 to 13 focus on OSGi services.

 Chapter 1 provides a high-level description of OSGi and a rationale for using it. It also highlights the state of the art in terms
 of players and vendors in the market.

 Chapter 2 provides a quick but complete primer on the OSGi framework.

 In chapter 3, you explore a case study for a real OSGi application. At the end of this chapter, several shortcomings are highlighted,
 such as the lack of persistence, which you’ll learn how to solve throughout the book.

 In chapter 4, you take an in-depth look at advanced features of the OSGi framework.

 In chapter 5, you learn how to configure OSGi applications.

 In chapter 6, you learn how to send and receive OSGi events.

 In chapter 7, you learn about persistence bundles.

 In chapter 8, you take your first steps toward learning how to write your own containers by developing a container-managed transaction
 bundle.

 In chapter 9, you learn how to use JNDI to integrate OSGi and JEE.

 In chapter 10, you learn about remote services and how OSGi can be used for cloud computing.

 In chapter 11, you learn how to use JMX to manage in-production OSGi applications.

 In chapter 12, you learn about start levels, and how to abstract OSGi from end users.

 Finally, in chapter 13, you take your second step towards learning how to write containers by extending the Blueprint service. Here you revisit
 the application from chapter 3, improving it by putting together everything you’ve learned in the book.

 For reference, appendix A describes all the OSGi manifest headers used in this book.

Code conventions and downloads

 All code in the book is presented in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. In some
 cases, numbered bullets link to explanations that follow the listing.

 You will find the full code for all the examples in the book available for download from the publisher’s website at www.manning.com/OSGinDepth.

Author Online

 The purchase of OSGi in Depth includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. You can access and subscribe to the forum at www.manning.com/OSGiinDepth. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It isn’t a commitment to any specific amount of participation on the part of the author,
 whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Cover Illustration

 On the cover of OSGi in Depth is “A man from Kastela,” a village in the Dalmatian region of Croatia. The illustration is taken from a reproduction of an
 album of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic
 Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in
 Split, itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement
 palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied
 by descriptions of the costumes and of everyday life.

 Kastela is comprised of a series of seven towns in central Dalmatia, located northwest of Split. Once an ancient Greek port,
 a stopover point for the Roman army, and a summer place for Croatian kings, Kastela today is a vibrant tourist resort, with
 long sandy beaches, beautiful terraces, tennis courts, and other sports venues, surrounded by the lush greenery of pine and
 tamaris trees. The figure on the cover wears a costume typical for this region of Croatia—blue woolen trousers and jacket,
 decorated with fancy embroidery, and a red pillbox cap called a crvenkapa.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Chapter 1. OSGi as a new platform for application development

	

 This chapter covers

	Underlying concepts of development platforms

 	OSGi technology, including the framework and the enterprise services

 	The benefits of using OSGi for the development of enterprise-grade applications

 	The relation of Enterprise OSGi to Java Standard Edition and Java Enterprise Edition

 	The current OSGi players in the market

	

We’ve all used development platforms in the past, such as Java Enterprise Edition (JEE), and even though there have been great
 advances in this industry, we’re still building large complex systems, which are hard to develop, maintain, and extend.

 OSGi provides a new development platform, based on modular decoupled components and a pluggable dynamic service model. In
 this book, you’ll learn that OSGi is the ideal platform for the development of full-fledged, enterprise-grade, maintainable
 applications. Furthermore, we’ll look in depth at how OSGi applications can use a plethora of carrier-grade infrastructure services, such as HTTP, configuration, deployment, event handling, transactions,
 persistence, RMI, naming and directory services, and management.

 We’ll start this chapter by exploring development platforms and the benefits of using such platforms to develop software.
 We’ll then discuss the requirements of a platform intended for the development of enterprise-grade applications. Next, we’ll
 focus on the OSGi technology, expanding into its core pieces, called the OSGi framework, and its enterprise services. Finally,
 you’ll learn why OSGi is a good fit as a development platform, particularly in light of existing solutions, such as JEE. Let’s
 start by examining the basics.

1.1. What are development platforms and application frameworks?

 In the context of software development, a development platform is a set of software libraries and tools that aid in the development of software components, and the corresponding runtime
 environment that can host these developed components, as shown in figure 1.1.

 Figure 1.1. A development platform consists of a software framework and its supporting runtime environment.

 [image:]

 The runtime environment may consist of the hardware, operating system (OS), and supporting runtime libraries. One example of a runtime environment
 is the Java Runtime Environment (JRE), which includes the Java virtual machine (JVM) that isolates the developer from the
 details of the underlying OS and hardware.

 Software frameworks are specialized types of a development platform’s libraries and tools. Wikipedia defines a software framework as an “abstraction
 providing generic functionality that can be selectively specialized to provide specific functionality.”

 Particularly interesting to us are application frameworks. An application framework is a type of software framework whose
 purpose is to provide a structure for the creation of software applications. Applications are programs that allow users to
 perform related tasks together. Examples of software applications are document editors and antivirus software.

 Putting it all together, a development platform allows a developer to create applications and to host these applications so
 that end users can use them. Throughout this book, it’s important to keep these two players in mind: the developer (you) and
 the end user, as illustrated in figure 1.2. Software development platforms are also called toolkits or SDKs (software development kits).

 Figure 1.2. A developer creates an application, which is used by a user, and develops to a framework.

 [image:]

 Historically, development platforms have always played an import role in software. The Java platform, also known as Java Standard
 Edition (JSE), is one example. In this case, the Java development kit (JDK) provides the software framework, and the Java
 Runtime Environment (JRE) provides the runtime environment. The OSGi Service Platform, which is the subject of this book,
 is another example of a development platform. The OSGi Service Platform uses the JRE as its runtime environment. In addition,
 it provides an application framework layered on top of the JDK. We’ll look into its details throughout this book, but first
 let’s see why it’s important to use a development platform to begin with.

 1.1.1. Why use a development platform?

 Consider the following definition of the word framework:

 “an essential supporting structure of a building, vehicle, or object”

 Why is the supporting structure of a vehicle important? It clearly sounds like it’s important, but let’s see if I can articulate
 why that’s the case. I can think of two main reasons:

	It guarantees that I’m sitting on top of something that’s solid—something that has been designed properly, implemented suitably,
 and tested thoroughly. A framework helps to decrease defects. This is a runtime characteristic.

 	It gives the manufacturer an opportunity to reuse the frame for different vehicles. A framework helps to improve productivity
 through reuse. This is a design-time characteristic.

It’s no different for development platforms. Development frameworks allow the creation of new applications in a form that’s
 both efficient and has a high degree of quality.

 1.1.2. Enterprise platforms

 Enterprise platforms are development platforms that support the creation of enterprise applications—applications that implement
 business processes, business logic, or business integration to an enterprise. Examples of enterprise applications are a loan-approval
 application, an order-processing application, a customer relationship management (CRM) application, and a travel management
 application.

 The following two aspects characterize enterprise platforms:

	Enterprise platforms provide a collection of infrastructure-level utilities and services common to many businesses and industries,
 such as management, directory service, monitoring, and distribution.

 	Enterprise platforms must scale, perform efficiently, and be robust and fault tolerant.

Following up on our previous example, Java also has an enterprise version, which is called Java Enterprise Edition (JEE).
 Other examples of enterprise platforms are Microsoft’s .NET Framework, SpringSource’s tc Server Development Edition, and to
 some extent, Google’s Web Toolkit. Recently, a new enterprise platform has been developed, the OSGi Service Platform Enterprise
 Specification.

 As you can see by the number of players, enterprise technology is quite mature, so why is there a need for a new platform,
 such as the one being provided by OSGi? We’ll address this question in section 1.3, but before we can do that, you need to understand OSGi a bit better.

1.2. The OSGi technology

 The Open Service Gateway initiative (OSGi) was formed in March 1999 by a consortium of leading technology companies with the
 mission to define a universal integration platform for the interoperability of applications and services.

 When I first read their mission, it gave me the impression of being both overly complex and somewhat outdated. Hadn’t people
 already created a universal platform for applications? As you’ll learn, no one has been able to do it successfully.

 1.2.1. The problem domain

 First, let’s investigate the underlying problem that these companies were facing. The initial members of the OSGi alliance
 were in a large part telecommunication equipment manufacturers and service providers. They were interested in deploying software
 applications on small-memory devices. For example, consider a mobile phone as the device and a location-tracking application
 and an advertisement application as the software applications being deployed to the mobile phone. The location-tracking application
 uses the mobile phone to verify the current location of the subscriber and informs the advertisement application of the location.
 The app then retrieves selected advertisements that are suitable to the current location of the subscriber, such as promotions
 from nearby restaurants, as shown in figure 1.3.

 Figure 1.3. A location-tracker application sends the current position to the advertisement application, which retrieves location-based
 promotions and displays them on the mobile device.

 [image:]

 This seemingly simple interaction caused the equipment and service providers several interesting problems. First, the devices
 tend to have different hardware and thus different programming APIs. Hence, each vendor had to program its applications to
 a specific device and then port to other devices. Second, not only do the various hardware devices use different programming
 APIs, but there’s also a large variation in their functions and capabilities. Some have more memory than others; some have
 a disk whereas others are completely diskless; some have GPS and some do not. Third, the lifetime of these devices is generally between one to two years, which means that new applications are likely to be created
 during this period, partly because of changing market demands. These new applications need to be dynamically deployed to the
 devices and join the existing collaborating applications that are currently running in the devices. And finally, because of
 the scarcity of the resources, these applications needed to closely cooperate with each other in a concise and, more important,
 lightweight manner.

 This is no simple matter after all. Is there an existing universal platform that could help us, or does one need to be created?

 Again, let’s go through the problems.

Problem: Coping with Diverse Programming APIs

 The first problem is portability. We need a single programming platform that abstracts the application from the underlying
 operating system and the hardware. In other words, we need a virtual machine. Does anything come to your mind? Yes, of course.
 Let’s use Java to solve our first problem.

Problem: Varying Device Capability

 The second problem is subtler. Let’s consider a specific case. The advertisement application can retrieve the available promotions
 from different sources. If the device has ample bandwidth, the data source could be remote. If the device doesn’t have enough
 bandwidth but has a disk, then the promotions could be retrieved in the background and cached in the local disk as the subscriber
 enters a location, as shown in figure 1.4.

 Figure 1.4. An advertisement application may retrieve promotions either from the network or from a local disk, depending on the available
 bandwidth.

 [image:]

 There’s a clear service contract between the advertisement application and the data source, but the implementation of this
 contract will vary depending on the device. This universal platform must make it easy for applications to decouple service
 contracts from the service implementation. The Standard Edition of Java (JSE) doesn’t have a service registry or a service
 management framework that could help us with this. Hence, this facility either needs to be implemented from scratch, or we
 could try to borrow something from the Enterprise Edition (JEE) of Java. Let’s hold on to this thought and tackle it after
 going through the other problems.

Problem: Supporting Dynamic Changes

 The third problem can be summarized by the following requirement: the platform must allow the dynamic deployment and undeployment
 of applications in a secure form. Does JSE have support for this? Not really. You could try to solve this with the Java class
 loaders, but it wouldn’t be easy, and there’s no simple way of unloading classes after they’ve been loaded, not to mention
 that there’s no concept of an application deployment unit. The closest concept to an application deployment unit is the idea
 of JARs (Java Archives), but JARs by themselves don’t provide all the metadata that’s needed, such as a unique naming schema
 for the applications.

 As with the previous problem, we can implement our own solution for dynamic deployment of applications or try to leverage
 something from JEE. For example, web servers do have the concept of web applications, which are defined as part of a WAR (Web
 Archive) deployment unit file.

Problem: Providing a Lightweight System

 This brings us to the last problem. Whatever solution we pick, it must be lightweight. Yes, we could try to leverage a directory
 service such as JNDI from JEE or leverage the architecture from web servers, but these solutions would fail to consider the
 size and memory constraints enforced by the devices onto the platform, making it less suitable for embedded solutions and
 not a viable option.

 1.2.2. The solution: a dynamic module system for Java

 Java addresses some of the problems we’ve discussed, such as portability, but not all of them. For instance, it lacks proper
 support for dynamic service management.

 Enter the OSGi Service Platform. In its most succinct definition, the OSGi Service Platform, or OSGi platform for short, is
 a dynamic module system for Java. In OSGi terminology, a Java module is called a bundle.

 The OSGi Service Platform is composed of two main components, the OSGi framework and the OSGi services, as shown in figure 1.5.

 Figure 1.5. The OSGi Service Platform comprises the OSGi framework and the OSGI services.

 [image:]

The OSGi Framework

 The OSGi framework provides its users with all the pieces that we discussed in the previous section:

	A portable and secure execution environment based on Java

 	A service management system, which can be used to register and share services across bundles and decouple service providers
 from service consumers

 	A dynamic module system, which can be used to dynamically install and uninstall Java modules, which OSGi calls bundles

 	A lightweight and scalable solution

The OSGi framework is the core structure of the OSGi Service Platform. It can be seen as a backplane that hosts bundles, possibly
 containing services. If you consider that a bundle can be an application, then the definition of the OSGi framework is in
 accordance with our definition of application frameworks. That is to say, the OSGi framework is an example of an application
 framework.

 Right now, we’ll leave the definition of the OSGi framework somewhat loose. Let’s not worry about what exactly bundles and
 services are. We’ll discuss the framework, its concepts, and its APIs in detail in the next chapters.

The OSGi Services

 Alongside the OSGI framework, the OSGI Service Platform includes several general-purpose services. You can think of these
 services as native applications of the OSGi Service Platform.

 Some of these services are horizontal functions that are mostly always needed, such as a logging service and a configuration
 service.

 Some are protocol related, such as an HTTP service, which could be used by a web-based application.

 And finally, some services are intrinsically tied to the framework, which won’t work without them. Examples of these are the
 bundle wiring, which manages the dynamic module system itself, and the start-level service, which manages the bootstrap process
 of the framework.

 The focus of the initial releases of the OSGi Service Platform had been on the OSGi framework, but gradually we see the OSGi
 services playing a more prominent role. This trend toward other components, such as services, built on top of the core OSGi
 framework is a reflection of the increasing popularity of the technology.

 1.2.3. The Enterprise OSGi

 As can be deduced from its history, OSGi was initially employed in the embedded market. But with its growing popularity and
 maturity, OSGi is moving to the enterprise market. To address this requirement, the OSGi Enterprise Expert Group (EEG) created
 the OSGi Service Platform Enterprise Specification (Enterprise OSGi).

 This specification combines OSGi services that can selectively be used to provide enterprise functionality. These services
 can be grouped into enterprise features. Examples of enterprise features, as shown in figure 1.6, are the following:

	
Management and configuration —This group includes the Configuration Admin service as well as the JMX Management Model service and the Metatype service.

 	
Distribution —This feature allows the communication of end points between remote instances of OSGi framework instances. Some of the services
 in this group are the Remote Service and the SCA Configuration Type.

 	
Data access —This feature includes support for JDBC, JPA, and JTA and allows the manipulation of persisted objects.

Figure 1.6. Enterprise OSGi consists of the OSGi framework and several OSGi services; together they provide enterprise features.

 [image:]

 Before getting into the details of the OSGi technology itself, you should understand the high-level benefits of using OSGi
 as your development platform. We address this topic in the next section.

1.3. Benefits of using the OSGi platform

 Why is the OSGi technology a good development platform for Java applications? Even further to the point, why or when is it
 better than the existing platforms on the market? To answer this question, we need to consider the problems we face when we
 develop full-fledged carrier-grade applications today.

 For simplification, we can categorize these problems into two groups: problems intrinsic to the development of complex applications
 and problems related to existing development platforms. The problems intrinsic to applications include the following:

	As applications become larger and more complex, they become harder to maintain, sometimes exponentially so!

 	Applications are difficult to extend without causing their erosion.

The problems related to existing platforms include these:

	Existing platforms are large, heavyweight systems and thus are complex to learn and use.

 	There’s a lack of portability among software vendors, making it difficult to reuse or share vendor components, even at the
 API level.

We’ll explore each of these problems individually in the next sections. If the OSGi technology is able to help us address
 the problems of both of these categories, then not only is it suitable for the development of applications, but it’s also
 a better tool for doing so.

 1.3.1. OSGi manages the complexity of large systems

 As developers, we’ve one time or another all faced the problem of complexity. Things are good when we’re working by ourselves,
 on a separate, isolated piece of code. But as the team grows, from one person to ten, and the code grows from a few thousand
 lines to several hundred thousand, so does the complexity of working with the code and the team, and the bad news is that
 the increase isn’t linear.

 I’m positive all of the following will sound familiar:

	A simple change to the implementation of one component causes breakages throughout the application, at apparently dissociated
 locations.

 	No one on the development team knows with certainty whether an interface can be changed without breaking existing clients.

 	There are several closely related versions of the same utility functions in the application’s source code.

How is the problem of managing large systems related to enterprise applications? Enterprise applications are by their very
 nature complex systems because of the following two factors:

	Business processes and business logic are inherently complex.

 	
Enterprise applications need to deal with complex issues such as resilience, management, and distribution.

How can OSGi help you manage the complexity of large systems? OSGi decreases complexity by allowing you to efficiently modularize
 your code and thus deal with smaller problems one at a time. By designing your code as independent modules that interact collectively
 to achieve the application’s goal, rather than as a single monolithic structure, you’re able to apply the millennia-old strategy
 of divide and conquer to your solutions.

 Remember that the OSGi framework allows you to define Java modules, or bundles. These bundles have formal versioned interfaces,
 which must be explicitly referenced by any consuming client. In fact, by defining formal contracts between producers and consumers
 of code, you’re able to decrease the likelihood of experiencing the three problems raised in the preceding paragraphs.

 For example, let’s look at the first problem again in detail. Consider bundle B, which contains three packages: p, q, and r. Packages p and q contain only implementation classes and don’t need to be public, whereas r contains public user interfaces, as shown in figure 1.7. There’s a bug in class C of package p (p.C) that needs to be fixed. If you were using the OSGi framework, you could have specified that the packages p and q of bundle B are not public. This means that the only code that has visibility to these packages would be within the bundle itself, which
 would allow you to restrict testing to the bundle and to any consumers of the public package r when p.C is changed. By modularizing your code, you have better control over it and know what the impact will be when something changes.

 Figure 1.7. Bundle B with private packages p and q and public package r, which is being used by a consumer

 [image:]

 In this particular case, could you have achieved the same results by meticulously coding and making sure that all Java classes
 are final, using the least open accessibility modifier (for example, private members), and so on? Perhaps, but would it be
 efficient or even possible to do these tasks on a large scale, involving several people and thousands of lines of code? Most
 certainly, it would not.

 Furthermore, keep in mind that in OSGi the contract between producers and consumers is specified declaratively, that is, not
 in Java. This gives you enormous potential for tooling. For example, you could find out the transitive closure of all classes
 that should be tested when a class is changed.

 Nevertheless, as brilliantly stated by Fred Brooks in 1986, there are no silver bullets. It’s still the developer’s responsibility
 to design adequately. For example, there’d be no point in using the OSGi framework to achieve modularization and then make
 everything public. We’ll address modularity in the following chapters, so don’t worry if the details aren’t clear yet. The
 main point to understand is that the OSGi framework improves modularity, which in turn decreases the complexity of managing
 large projects and increases reuse.

 1.3.2. OSGi provides extensibility without eroding the system

 Successful applications commonly need to be extended throughout their lifecycle; this is largely driven by changes to business
 requirements in today’s fast-paced markets.

 The problem with extensions is that they open up your system. Extensions are like public APIs, but they’re more problematic
 because people have greater flexibility with extensions than with public APIs. You’ll find that people sometimes do the unexpected
 with extensions.

 Extending a system slowly helps erode it.

 This is similar to software maintenance. As software ages, fixing bugs becomes harder and harder. Every code change takes
 longer to make and has a greater potential of causing other problems in the software. The reason for this erosion is that
 both when adding extensions and fixing bugs you’re incorporating new code that wasn’t made by the original authors of the
 software.

 How can you restrain the erosion? You have to bind and control the new code. How can OSGi help you with binding and controlling
 extensions? As you’ve seen, OSGi defines the concepts of services, service consumers, and service providers.

 A service consists of an interface and an implementation. The service consumer only sees and uses the service interfaces,
 whereas the service provider supplies the service implementations and doesn’t interact directly with the consumers.

 Generally, extensions of an application framework play the role of service providers, and the actual framework plays the role
 of the service consumer, as shown in figure 1.8. The service interface defines the contract of the extension; in other words, it’s the extension point.

 Figure 1.8. Extensions provide services through extension points. The framework consumes the services.

 [image:]

 In this case the extension hooks into the lifecycle of the framework, and the framework calls back into the extension when
 appropriate. One example is an extension that wants to be notified when events of a certain type are received by the framework.

 Sometimes extensions also act as the service consumers. The framework still defines the service interface, but it also provides
 the service implementation, which is then used by extensions.

 Regardless of the approach, by keeping the extensions decoupled from the framework as separate service providers or consumers
 and by having a formal extension contract, you’re able to isolate the extension code and thus decrease the overall erosion
 of the system.

 Furthermore, OSGi allows you to dynamically manage the service providers. For example, OSGi supports the shutdown of a service
 provider that might be misbehaving without impacting the rest of the system.

 1.3.3. OSGi is lightweight and customizable

 As you’ve seen, the applications you develop can become quite complex. This complexity has historically also been reflected
 in the development platforms. To support the complexity of full-fledged applications, the development platforms comprise collections
 of features, APIs, and tools and therefore have become heavyweight and complex themselves. They try to be a one-size-fits-all
 solution to all the requirements of all businesses.

 For example, a loan-approval application may need to interact with a credit-checking system using web services, whereas an
 order-processing application interacts with its partner using some messaging middleware, such as JMS. Regardless of these
 different requirements, the existing development platforms include both web services and JMS technologies for both applications’
 runtimes. Even though the order-processing application uses only JMS, its runtime also ends up paying the price of a web services
 stack.

 This may seem inconsequential initially, but consider that there are dozens of different enterprise technologies, as you’ve
 seen in the OSGi services section, and thus a simple hello world application may end up having a runtime that takes megabytes
 of memory and seconds to minutes to start. No matter what, this complexity leaks out to us developers in different forms.
 Our iterative development lifecycle becomes slow, we must learn more APIs than we need to use, the programming model becomes
 complex, and so on. We can all relate to how complicated it is to deploy the simplest of applications to any enterprise platform
 today.

 The OSGi platform addresses this by providing a bare-bones framework, the OSGi framework, to which services can be added a
 la carte. For example, if you need a web services stack, you can install it; otherwise, it’s not present. The OSGi platform
 can be customized to be as lightweight or as complex as needed. Furthermore, this flexibility shows in different ways; for
 example, being able to install features dynamically means that the lifecycle of new features provided by software vendors
 can be shortened. You don’t need to wait a year or two for the next version of your application servers; instead, you can
 download and install new enterprise features by themselves as soon as they become available.

 1.3.4. OSGi allows for portability

 Java Enterprise Edition and some of the other enterprise platforms are standardized. This means that in theory you should
 be able to move a JEE application from one JEE application server to another, albeit hinging on the fact that you must use
 only standard APIs and no vendor extensions. This capability of being able to host an application on a different vendor’s
 application server is called application portability.

 Yet, there’s another level of portability, not always mentioned, which is that of vendors’ features themselves. For example,
 wouldn’t it be nice to be able to use a vendor’s JMS implementation with another vendor’s web services stack in a single container?
 Why would you want to do this? Among other reasons, here are the three main ones:

	
It allows you to pick and choose the best-of-breed implementations of different features across all vendors. For example,
 one vendor might be known for its messaging implementation, whereas another might have more experience with persistence service.

 	It allows you to make use of new features that may be available only from certain vendors.

 	Being able to move a particular feature to a different container means that you can use vendor extensions and still achieve
 application portability, because you can migrate the container’s features alongside the application.

So, whereas most enterprise platforms try to standardize their entire APIs as a single unit, OSGi standardizes the APIs piecemeal,
 in modules, allowing the vendors to provide smaller pieces and the developers to select and reuse the pieces they find to
 be better.

 OSGi also has another major advantage over other standards such as the JEE specification: simplicity. As you’ll see, you can
 create an OSGi-compliant Java module by adding a few lines to a Java’s MANIFEST.MF file. Conversely, a JEE-compliant module
 needs several JEE configuration files, annotations, and Java classes that implement technology-specific Java interfaces. Simplicity
 plays well with standardization. Vendors are more apt to invest in standardization if the cost isn’t prohibitive. Take a look
 at the Apache Software Foundation projects at http://www.apache.org/. You’ll notice that several projects, such as Derby, have already been made into OSGi modules. Would this have happened if
 the process of making a library into an OSGi module was costly? I doubt it.

 So far we’ve looked at four benefits of using OSGi. In the next section, we’ll sum these up in one practical example.

1.4. Building blocks: the essence of OSGi

 Let’s reconsider the location-specific advertisement application of section 1.2.1. There are several features or services you could add to it:

	You could persist the selections of the promotions preferred by the mobile client, which later could be used for data mining.

 	You could inform the correspondent of the promotion (for example, the store) that the mobile client has received the promotion
 and spent more than some considerable amount of time looking at it, perhaps through the use of an event-dispatching service.

 	You could provide a mechanism that allows configuring of the application.

Figure 1.9 depicts the advertisement application and the services it uses.

 Figure 1.9. Application makes use of enterprise-based building blocks

 [image:]

 Put simply, the most important thing to learn in this chapter is that the OSGi platform provides you with the means to quickly,
 efficiently, and easily build applications just by putting together building blocks. OSGi allows you to use and integrate building blocks that are being provided by different vendors, unknown to them. As you’ll
 see, you can even replace a building block dynamically, if a newer, better version is available from the same vendor or from a
 different vendor.

 In this book, you’ll learn how to use OSGi to create modular enterprise-grade applications by reusing infrastructure-based
 building blocks. You’ll also learn how to perform the role of a building block vendor, providing your own reusable infrastructure
 services.

 Collectively, all of these benefits have triggered the dissemination of public libraries of features—repositories of OSGi
 modules. We’ll go through a list of such repositories in the next section.

1.5. Players

 A multitude of vendors have implemented some aspect of the OSGi Service Platform, be it just the framework or selected services.
 This is no doubt a testament to OSGi’s simplicity and its modularization.

 Some of the most commonly used implementations of OSGi frameworks are these:

	Eclipse Equinox: http://www.eclipse.org/equinox/

 	Apache Felix: http://felix.apache.org/site/index.html

 	Knopflerfish: http://www.knopflerfish.org/

Most of these framework vendors also publish a public repository of services. For example, the following URLs point to these
 different vendors’ repositories:

	Felix Repository: http://felix.apache.org/obr/releases.xml

 	Knopflerfish Repository: http://www.knopflerfish.org/repo/repository.xml

In addition, several new projects have been created to tackle the implementation of the Enterprise OSGi. The goal is to allow
 developers to build enterprise applications using standard Enterprise OSGi services and the framework implementation of their
 choosing. Following are two projects that are working on implementing the Enterprise OSGi:

	Eclipse Gemini: http://www.eclipse.org/proposals/gemini/

 	Apache Aries: http://incubator.apache.org/aries/

Finally, diverse development platforms, which have distinct goals, are using OSGi internally to implement their solutions.
 Some of these completely hide OSGi, whereas some do actually expose OSGi in some form or other. For example, a common exposure
 is to treat the OSGi module as the deployment unit of their platforms. Regardless, here are some examples of development platforms
 that are OSGi based:

	IBM WebSphere Application Server

 	Oracle (formerly Sun) GlassFish Application Server

 	Eclipse Virgo (SpringSource dm Server)

 	JBoss Application Server

 	Apache Camel

 	Apache Sling

 	Apache ServiceMix

 	Apache Karaf

This is a reasonable number, especially if you consider that OSGi is still an emerging technology. Furthermore, because you
 can mix and match the components from different vendors, the overall gains are even larger! For example, you can use the Felix
 OSGi framework with the Eclipse service implementations and perhaps implement a few services of your own along the way.

 By now, you’re probably convinced and excited to use OSGi, but does this mean you need to start from scratch? We’ll tackle
 this issue in the next section.

1.6. Are we starting from scratch?

 If you’re going to develop to the OSGi platform, does it mean that you need to drop your existing development platforms, such
 as JEE, and learn a new technology from scratch yet again? Or, even more important, can you leverage code from any of your
 existing enterprise applications?

 Fortunately, the OSGi platform builds heavily upon JEE. As you’ll see, there’ll be several cases where we use, in some form
 or other, existing specifications defined by JEE, just in a slightly more modularized and isolated manner. This means that
 you’re able to use the skill sets you learned in the past.

 In addition, because existing JEE applications have been coded to APIs that also exist in the OSGi platform, you can move
 over some of the code from JEE containers to OSGi containers; however, this isn’t always possible, and even when it is possible,
 some rewriting may be needed.

 Finally, the reverse is also true; you should be able to migrate OSGi applications to JEE in some form. Furthermore, there’s
 an even more appealing option in this case, where OSGi applications can be hosted in existing JEE application servers. This
 is done by hosting the full OSGi framework on top of JEE, and it’s possible because OSGi is, after all, lightweight and modular.

 As you’ll see, the benefits of using OSGi are numerous, but in the end it all hinges on the fact that OSGi allows you to modularize
 both the static as well as the dynamic structure of a program in a productive and efficient form. You may point out that the concept of modularization has been used
 in software engineering for decades, so why is this any different now? The difference is that OSGi allows you to apply modularization
 in a systematic form to software systems at their very foundation, which was never attempted before.

1.7. Summary

 Development platforms consist of an application framework and a supporting runtime environment. The Java platform, with the
 JDK and JRE, is one example of a development platform. Enterprise platforms, such as Java Enterprise Edition (JEE), add enterprise
 features to the platform.

 The OSGi Service Platform provides a dynamic Java module system for Java. It allows Java code to be modularized and to be
 managed as services. The OSGi Service Platform consists of the OSGi framework and the OSGi services. The OSGi Service Platform
 Enterprise Specification (Enterprise OSGi) was created to support enterprise use cases. It defines a collection of OSGi services
 that can be used together for enterprise features.

 OSGi provides the means to achieve modularization, which helps decrease and manage the complexity of large systems. OSGi provides
 a native extensibility mechanism through the use of services. Finally, a consortium of several large companies is driving
 the OSGi specifications, hence aiding with its adoption as a standard.

 In the next chapter, we’ll drill down into the OSGi framework in detail. In chapter 3, we’ll employ what you’ve learned so far to build your first OSGi-powered application. But this application will lack several
 useful features, such as persistence. Following up on this, we’ll take an in-depth look into how we can use configuration,
 event handling, persistence, RMI, transactions, naming and directory services, and management to develop full-fledged carrier-grade
 OSGi solutions.

 Finally, you must keep in mind that the main purpose of OSGi is to provide you with an efficient framework for creating and
 integrating software building blocks.

Chapter 2. An OSGi framework primer

	

 This chapter covers

	Creating and sharing OSGi bundles

 	Importing and exporting bundle packages

 	Running bundles in an OSGi framework

 	Defining and retrieving OSGi services

 	Understanding the OSGi service registry

	

In this chapter you’ll expand your knowledge of the OSGi framework. I’ll describe two of the most important concepts related
 to OSGi: bundles and services. Bundles and services are the cornerstone of OSGi, and we’ll keep revisiting these two concepts
 throughout this book.

 We’ll also cover the OSGi service registry and several less common, albeit still essential, APIs of the framework, such as
 the event listener interfaces.

 As tradition dictates, to learn the basics, we’ll use an OSGi-powered hello world application. This will allow us to demonstrate
 the OSGi concepts in the scope of a single simplistic application. It’ll also allow us to compare the OSGi technology to other
 programming environments that, without doubt, are part of your background. Let’s start by creating a simple OSGi module.

2.1. Modules and information hiding

 The unit of modularization in OSGi is called a bundle. Bundles allow us to enforce the principles of information hiding. As
 was brilliantly stated by D. Parnas as early as 1972, information hiding helps us achieve the following benefits:

	Changeability

 	Comprehensibility

 	Independent development

Through the use of bundles, and by applying the principles of information hiding, we’re better able to cope with the complexity
 of large systems.

 This all seems complicated and abstract, but a bundle is easily defined in OSGi by adhering to the following two simple steps:

	Package the module as a JAR file.

 	Include a manifest file with the mandatory manifest header Bundle-SymbolicName. This header provides an identifier for the bundle.

As defined by Java’s manifest format specification, a JAR manifest file exists within the JAR file with the name of META-INF/MANIFEST.MF.

 Here’s a sample manifest file:

 Manifest-Version: 1.0
Bundle-SymbolicName: helloworld

 The Bundle-SymbolicName header specifies a name of helloworld for this bundle. Strictly speaking, that’s all you need to create a bundle. But as a best practice, you should also specify
 the version of the OSGi specification being used. The manifest header Bundle-ManifestVersion, which defaults to 1, is used for this purpose. In this book, we use OSGi Platform Version 4.2, which maps to

 Bundle-ManifestVersion: 2

 In summary, a bundle encapsulates a collection of Java classes that are highly cohesive. This means we’re achieving information
 hiding by using the technique of encapsulation.

 The next step is to create some useful piece of code in the bundle that can be reused. Let’s code a simple Printer class that outputs to standard out, à la hello world.

 package manning.osgi.helloworld;
public class Printer {
 public void print(String message) {
 System.out.println(message);
 }
}

 Don’t worry about the triviality of the code being used; our goal for the time being is to implement a hello world application
 using OSGi.

 Let’s share this code with other Java clients. Create a PrinterClient class that imports the Printer class and invokes it:

 package manning.osgi.helloworld.client;
import manning.osgi.helloworld.Printer;
public class PrinterClient {
 public void printMyMessage() {
 new Printer().print("Hello World");
 }
}

 Figure 2.1 demonstrates this interaction.

 Figure 2.1. The PrinterClient class invokes the method print in the Printer class.

 [image:]

	

Note

 This book attempts to be goal oriented. Rather than presenting the technology for the technology’s sake, the discussion of
 a topic is driven by first introducing a problem to be solved. I hope this makes the book more enjoyable to read and more
 useful.

	

We’ve created the simplest possible bundle. Can OSGi help us improve anything in this simple interaction between the Printer and the PrinterClient classes? Yes. After all, we haven’t achieved any form of information hiding so far. Consider the case where you want to prohibit
 the usage of PrinterClient by any other class. Applications can reuse the Printer class, but the client application code can’t be reused. Another way of looking at this is that you’d like to “hide” the PrinterClient module. This is a reasonable requirement; you wouldn’t want someone else printing your unique “Hello World” message, would
 you? How do you go about fulfilling this requirement in OSGi?

 2.1.1. Establishing a formal import/export contract

 First, you should keep the Printer and the PrinterClient classes in separate bundles. This is just good engineering, because it’s likely that these classes are provided by different
 developers and should be decoupled.

 Next, you’d like a mechanism whereby you can formally specify the dependencies between bundles. Using this mechanism, you
 can grant permission for bundles to use the Printer class and conversely restrict bundles from using the PrinterClient class, as illustrated in figure 2.2.

 Figure 2.2. Other classes are restricted from invoking the printMyMessage method in the PrinterClient class.

 [image:]

 In OSGi, you accomplish this by having the provider bundle export the Java packages that are meant to be shared, and then
 have the consumer bundle import the Java packages that it needs.

 To export Java packages, a bundle uses the manifest header Export-Package:

 Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: helloworld
Export-Package: manning.osgi.helloworld

 In this case, the bundle helloworld is exporting all of its public classes located in the package manning.osgi.helloworld.

 To import a Java package, a bundle uses the manifest header Import-Package:

 Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: manning.osgi.client
Import-Package: manning.osgi.helloworld

 The bundle helloworld.client is importing all public classes in the package manning.osgi.helloworld.

 As should be clear, we have two bundles, helloworld and helloworld.client

OEBPS/01fig04_alt.jpg

OEBPS/01fig05_alt.jpg

OEBPS/01fig02_alt.jpg

OEBPS/01fig03_alt.jpg

OEBPS/manning.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/01fig06_alt.jpg

OEBPS/01fig08.jpg

OEBPS/01fig07.jpg

OEBPS/cover.jpg

OEBPS/02fig01.jpg

OEBPS/01fig09.jpg

OEBPS/02fig02_alt.jpg

