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HOW TO USE THIS BOOK



Barron’s Math 360: Geometry is designed for self-learners and for those looking for a comprehensive guide to everything geometry.


This book includes a number of helpful tools that will reinforce your knowledge of the topics as you learn. You’ll find:


What You Will Learn Each chapter begins with a list of the topics covered. This is a useful tool for categorizing the learning process and for devising a study plan.


Terms and Definitions Important terms are defined where necessary to help guide you through topics successfully.


Examples with Solutions Numerous examples for each topic are included throughout, along with answers to check your progress.


Review Exercises Each chapter closes with review questions that will help determine which topics you have a solid understanding of and which topics you need to revisit.


Online Practice Questions Access to 50 online multiple-choice questions designed to enhance your understanding and to test your knowledge. To access, see the card at the front of the book.


BARRON’S 360 STUDY TIPS


SET GOALS AND OBJECTIVES


As you use Barron’s Math 360: Geometry, it is a good idea to set personal goals to chart and direct your learning objectives. A goal is something that you wish to achieve over a period of time. Objectives are short-term targets that help you reach a particular goal. For example, suppose that your goal is to learn how to find the area of various geometric shapes. You can reach this goal by establishing short-term objectives—such as studying the formula for one shape at a time and practice it by plugging in different numbers—that will enable you to successfully reach your long-term goal of learning all of the formulas for each of the geometric shapes.


CUSTOMIZE YOUR STUDY


Barron’s Math 360: Geometry does not need to be studied in a linear fashion. If there is a particular topic that you want to study or reinforce, just turn to that page or chapter, and all the information along with the features mentioned above will be available to you. There are also some things you can do to optimize your study time and ensure you are retaining the important information you want to learn.


Before You Read


•Review: Review all chapter headings and subheadings and the information in the “What You Will Learn” section.


•Scan: Glance over any illustrations, tables, or graphs in the chapter you’ll be reading.


•Locate Terms and Definitions: Read any bold or italicized words, and study their definitions.


•Get Ahead of Yourself: Review the Practice Exercises at the end of the chapter, and keep them in mind as you study the chapter.


While You Read


•Predict: Try to predict the answers to the questions in the Practice Exercises. This will help flag important information to keep an eye out for as you read.


•Read Aloud: Hearing what is written on the page leads to better comprehension and retention of information.


•Visualize: Developing a picture in your mind of the information, concepts, or material presented makes it much easier to remember.


Highlighting and Note Taking


•Identify Important Facts: Don’t overhighlight. This will have the opposite effect and actually negatively impact your ability to retain the information you need to remember.


•Take Notes: Jot down key ideas and concepts you are having a hard time understanding.


•Draw It Out: Sketch out pictures, graphs, diagrams, or tables to help visualize what you’re reading. This is particularly helpful with complex topics.



After You Read the Chapter


•Talk It Out: Summarize what you have learned from the chapter aloud to a friend or a family member. Explain it as if they are learning it for the first time.


•Answer the Questions in the Practice Exercises: Did you need to look them up, or were you able to answer them from memory?


•Reinforce: If you found yourself having to look up the answers to the questions, go back and read those portions of the chapter again until you feel confident moving on to the next chapter.



Good luck!













1 BUILDING A GEOMETRY VOCABULARY






WHAT YOU WILL LEARN


Studying geometry is very different from studying elementary algebra. In geometry, we are concerned with developing a logical structure in which mathematical relationships are proved as well as applied. In this chapter you will learn:


•some basic terms and assumptions of geometry;


•the nature of geometric proofs;


•the type of mathematical reasoning that forms the basis of this course.




SECTIONS IN THIS CHAPTER


•The Building Blocks of Geometry


•Definitions and Postulates


•Inductive Versus Deductive Reasoning


•The IF … THEN … Sentence Structure






The Building Blocks of Geometry



Studying geometry is, in a sense, like building a house. Geometry uses logical reasoning as the cement and the following types of statements as the basic building blocks:


•UNDEFINED TERMS. Some terms are so fundamental that they cannot be defined using simpler terms. Point, line, and plane are undefined terms in geometry. Although these terms cannot be defined, they can be described.


•DEFINED TERMS. New terms can be defined using undefined as well as previously defined terms, thereby creating an expanding “dictionary” of terms that makes it easier to describe geometric figures and relationships.


•POSTULATES. Some beginning principles in geometry, called postulates, are so basic that they cannot be arrived at using simpler facts. A postulate is a statement that is accepted without proof. For instance, the observation “Exactly one line can be drawn through two points” is a postulate.


•THEOREMS. Unlike a postulate, a theorem is a generalization that can be proved to be true. “Prove” simply means presenting a valid argument that uses a set of known facts and logical reasoning to show that a statement is true. The familiar fact that “The sum of the measures of the three angles of a triangle is 180” is a theorem.


Geometry is an example of a postulational system in which a beginning set of assumptions and undefined terms is used as a starting point in developing new relationships that are expressed as theorems. These theorems, together with the postulates and defined and undefined terms, are used to prove other theorems. Here, “to prove” simply means to use a logical chain of reasoning to show how undefined terms, definitions, postulates, and previously established theorems lead to a new generalization.


UNDEFINED TERMS


Table 1.1 lists some undefined terms.


TABLE 1.1








	Undefined Term


	Description


	Notation







	Point


	A point indicates position; it has no length, width, or depth.


	
•  A


A point is named by a single capital letter.








	Line


	A line is a set of continuous points that extend indefinitely in either direction.


	
[image: images]


A line is identified by naming two or more points on the line and drawing a line over the letters: [image: images] or [image: images]


Alternatively, a line may be named by using a single lowercase letter: line ℓ.








	Plane


	A plane is a set of points that forms a flat surface that has no depth and that extends indefinitely in all directions.


	
[image: images]


A plane is usually represented as a closed four-sided figure and is named by placing a capital letter at one of the corners.











Figure 1.1 illustrates that lines may lie in different planes or in the same plane. Line ℓ and line AB both lie in plane Q. Line k and line AB lie in plane P. Lines ℓ and k are contained in different planes, while line AB (the intersection of the two planes) is common to both planes. To simplify our discussions, we will always assume that we are working with figures that lie in the same plane. This branch of geometry takes a “flat,” two-dimensional view of figures and is referred to as plane geometry. Solid geometry is concerned with figures and their spatial relationships as they actually exist in the world around us.


[image: images]


FIGURE 1.1


DEFINED TERMS


Table 1.2 lists some geometric terms and their definitions.


TABLE 1.2








	Term


	Definition


	Illustration







	1.Line segment


	A line segment is a part of a line consisting of two points, called endpoints, and the set of all points between them.


	
[image: images]


NOTATION: [image: images]


A line segment is named using the endpoints.








	2.Ray


	A ray is a part of a line consisting of a given point, called the endpoint, and the set of all points on one side of the endpoint.


	
[image: images]


NOTATION: [image: images]


A ray is always named by using two points, the first of which must be the endpoint. The arrow drawn above always points to the right.








	3.Opposite rays


	Opposite rays are rays that have the same endpoint and that form a line.


	
[image: images]


[image: images] and [image: images] are opposite rays.








	4.Angle


	An angle is the union of two rays having the same endpoint. The endpoint is called the vertex of the angle, and the rays are called the sides of the angle.


	
[image: images]


VERTEX: K


SIDES: [image: images] and [image: images]











NAMING ANGLES


An angle may be named in one of three ways:


1.Using three letters, the center letter corresponding to the vertex of the angle and the other letters representing points on the sides of the angle. For example, in Figure 1.2, the name of the angle whose vertex is T can be angle RTB ([image: images]RTB) or angle BTR ([image: images]BTR).


2.Placing a number at the vertex and in the interior of the angle. The angle may then be referred to by the number. For example, in Figure 1.3, the name of the angle whose vertex is T can be [image: images]1 or [image: images]RTB or [image: images]BTR.


[image: images]


FIGURE 1.2


[image: images]


FIGURE 1.3


3.Using a single letter that corresponds to the vertex, provided that this does not cause any confusion. There is no question which angle on the diagram corresponds to angle A in Figure 1.4, but which angle on the diagram is angle D? Actually three angles are formed at vertex D:


•Angle ADB


•Angle CDB


•Angle ADC


[image: images]


FIGURE 1.4


In order to uniquely identify the angle having D as its vertex, we must either name the angle using three letters or introduce a number into the diagram.


EXAMPLE 1.1


[image: images]


a.Name the accompanying line in four different ways.


b.Name three different line segments.


c.Name four different rays.


d.Name a pair of opposite rays.


SOLUTION


[image: images]


NOTE: The answers in a, b, and c can list points in the opposite order, such as [image: images], but in part d they may not, as a ray’s name must begin with the endpoint.


EXAMPLE 1.2


Use three letters to name each of the numbered angles in the accompanying diagram.


[image: images]


SOLUTION


[image: images]



Definitions and Postulates



DEFINITIONS


The purpose of a definition is to make the meaning of a term clear. A good definition must:


•Clearly identify the word (or expression) that is being defined.


•State the distinguishing characteristics of the term being defined, using only words that are commonly understood or that have been previously defined.


•Be expressed in a grammatically correct sentence.


As an example, consider the term collinear. In Figure 1.5, points A, B, and C are collinear. In Figure 1.6, points R, S, and T are not collinear.


[image: images]


FIGURE 1.5


[image: images]


FIGURE 1.6



[image: images] DEFINITIONS OF COLLINEAR AND NONCOLLINEAR POINTS


•Collinear points are points that lie on the same line.


•Noncollinear points are points that do not lie on the same line.


Notice that a definition begins by identifying the term being defined. The definition of collinear points uses only geometric terms (points and line) that have been previously discussed. Contrast this definition with the following one:


An apothem is a line segment drawn from the center of a regular polygon perpendicular to a side of the polygon.


Is this a good definition? No, it is not clear what an apothem is since several terms, including regular polygon and perpendicular, which have not been explained, are used in the definition.


Much of geometry involves building on previously discussed ideas. For example, we can use our current knowledge of geometric terms to arrive at a definition of a triangle. How would you draw a triangle? If you start with three noncollinear points (Figure 1.7a) and connect them with line segments (Figure 1.7b), a triangle is formed.


[image: images]


FIGURE 1.7



[image: images] DEFINITION OF TRIANGLE


A triangle is a figure formed by connecting three noncollinear points with three different line segments, each of which has two of these points as endpoints.


Notice that the definition uses the term noncollinear, which has been defined. Is it necessary to include that the three noncollinear points are connected by line segments? Yes; observe (in Figure 1.8) that it is possible to join three noncollinear points without using line segments.


[image: images]


FIGURE 1.8


A good definition must be reversible as shown in the following table.






	Definition


	Reverse of the Definition







	Collinear points are points that lie on the same line.


	Points that lie on the same line are collinear points.







	A right angle is an angle whose measure is 90 degrees.


	An angle whose measure is 90 degrees is a right angle.







	A line segment is a set of points.


	A set of points is a line segment.








The first two definitions are reversible since the reverse of the definition is a true statement. The reverse of the third “definition” is false since the points may be scattered as in Figure 1.9.


[image: images]


FIGURE 1.9


[image: images] The Reversibility Test


The reverse of a definition must be true. If the reverse of a statement that is being offered as a definition is false, then the statement is not a good definition.


The reverse of a definition will prove useful in our later work when attempting to establish geometric properties of lines, segments, angles, and figures. For example, a midpoint of a segment may be defined as a point that divides a segment into two segments of equal length. In Figure 1.10, how can we prove that point M is the midpoint of [image: images]? We must apply the reverse of the definition of a midpoint: a point that divides a segment into two segments of equal length is the midpoint of the segment. In other words, we must first show that AM = MB. Once this is accomplished, we are entitled to conclude that point M is the midpoint of [image: images].


[image: images]


FIGURE 1.10


As another illustration, we may define an even integer as an integer that leaves a remainder of 0 when divided by 2. How can we prove that a particular integer is an even number? Simple—we use the reverse of the definition to show that, when the integer is divided by 2, the remainder is 0. If this is true, then the integer must be an even number.


INITIAL POSTULATES


In building a geometric system, not everything can be proved since there must be some basic assumptions, called postulates (or axioms), that are needed as a beginning. Here are our first two postulates.




POSTULATE 1.1


Two points determine a line.


[image: images]







POSTULATE 1.2


Three noncollinear points determine a plane.





Postulate 1.1 implies that through two points exactly one line may be drawn, while Postulate 1.2 asserts that a plane is defined when a third point not on this line is given.


[image: images]


Inductive Versus Deductive Reasoning


Consider the result of accumulating consecutive odd integers beginning with 1.






	String of Odd Integers


	Sum







	1 + 3


	4







	1 + 3 + 5


	9







	1 + 3 + 5 + 7


	16







	1 + 3 + 5 + 7 + 9


	25








Do you notice a pattern? It appears that the sum of consecutive odd integers, beginning with 1, will always be a perfect square. (A perfect square is a number that can be expressed as the product of two identical numbers.) If, on the basis of this evidence, we now conclude that this relationship will always be true, regardless of how many terms are added, we have engaged in inductive reasoning. Inductive reasoning involves examining a few examples, observing a pattern, and then assuming that the pattern will never end. Inductive reasoning is not a valid method of proof, although it often suggests statements that can be proved by other methods.


Deductive reasoning may be considered to be the opposite of inductive reasoning. Rather than begin with a few specific instances as is common with inductive processes, deductive reasoning uses accepted facts (i.e., undefined terms, defined terms, postulates, and previously established theorems) to reason in a step-by-step fashion until a desired conclusion is reached.


EXAMPLE 1.3


Assume the following two postulates are true. (1) All last names that have seven letters with no vowels are the names of Martians. (2) All Martians are 3 feet tall. Prove that Mr. Xhzftlr is 3 feet tall.


SOLUTION


Observe that Mr. Xhzftlr’s name has no vowels and is seven letters long.


(His name was given.)


Therefore, Mr. Xhzftlr is a Martian.


(All last names that have seven letters with no vowels are the names of Martians.)


Therefore, Mr. Xhzftlr is 3 feet tall.


(All Martians are 3 feet tall.)


Notice that each statement has a corresponding justification.


The IF … THEN … Sentence Structure


Consider the statement, “If I graduate from high school with an average greater than 90, then my parents will buy me a car.” Will the student receive a car as a graduation present? The statement in the “If” clause identifies the condition that must be met in order for the student to get the car as a present, while the statement in the “then” clause gives the consequence.


Theorems in geometry are usually expressed as conditional statements in “If… then …” form.


•After a theorem is proved, the “then” clause represents the fact that you are allowed to apply whenever the condition in the “if” clause is true. A theorem given in a later chapter is “If a figure is a rectangle, then its diagonals have the same length.” After this theorem has been proved, you can use the fact that its diagonals have the same length whenever that property of rectangles is needed.


•Before a proposed theorem is proved, the “if” clause contains what we know and the “then” clause identifies what we need to prove. A theorem that will be proved in a later chapter is


[image: images]


Here is one possible format that can be used when organizing a proof:


[image: images]


Once this proof is complete, the theorem is taken as fact and can then be used to prove other theorems.


Summary


•Geometry is a postulational system built upon undefined terms, defined terms, and postulates, which are used to build and prove theorems through a logical chain of reasoning, either inductive or deductive.


•Undefined terms are point, line, and plane.


•Defined terms in this chapter are line segment, ray, opposite rays, angle, collinear points, and noncollinear points.


•Using correct techniques in naming terms is essential for appropriate mathematical communication.



Review Exercises



1.For the accompanying diagram:


a.Name four rays, each of which has point B as an endpoint.


b.Name line ℓ in four different ways.


c.Name line m in four different ways.


d.Name four angles that have the same vertex.


e.Name two pairs of opposite rays.


[image: images]


Use the following diagram for Exercises 2 and 3.


[image: images]


2.Name the vertex of each angle:


a.1


b.3


c.5.


3.Use three letters to name each angle:


a.2


b.4


c.6.


For Exercises 4 to 11, use the following diagram.


[image: images]


4.Name four collinear points.


5.If point N is the midpoint of [image: images], name two segments that have the same length.


6.Name the different triangles that appear in the diagram.


7.Name each angle that has point R as its vertex.


8.Name an angle that is not an angle of a triangle.


9.Name two pairs of opposite rays.


10.Name a segment that is a side of two different triangles.


11.To prove R is the midpoint of [image: images], which two segments must be demonstrated to have the same length?


12.Write the reverse of each of the following definitions:


a.An acute angle is an angle whose measure is less than 90.


b.An equilateral triangle is a triangle having three sides equal in length.


c.A bisector of an angle is the ray (or segment) that divides the angle into two congruent angles.


13.Identify each of the following as an example of inductive or deductive reasoning.


a.The sum of 1 and 3 is an even number; the sum of 3 and 5 is an even number; the sum of 5 and 7 is an even number; the sum of 7 and 31 is an even number; the sum of 19 and 29 is an even number. Conclusion: The sum of any two odd numbers is an even number.


b.All students in Mr. Euclid’s geometry class are 15 years old. John is a member of Mr. Euclid’s geometry class. Conclusion: John is 15 years old.


c.It has rained on Monday, Tuesday, Wednesday, Thursday, and Friday. Conclusion: It will rain on Saturday.


d.The sum of the measures of a pair of complementary angles is 90. Angle A and angle B are complementary. The measure of angle A is 50. Conclusion: The measure of angle B is 40.


14.A median of a triangle is a segment drawn from a vertex of the triangle to the midpoint of the opposite side of the triangle. Draw several large right (90°) triangles. See the diagram. For each triangle, locate the midpoint of the hypotenuse (the side opposite the 90° angle). Draw the median to the hypotenuse. Using a ruler, compare the lengths of the median and the hypotenuse in each triangle drawn. Use inductive reasoning to draw an appropriate conclusion. Note in the diagram that M is the midpoint of AB if [image: images] and [image: images] measure the same length.


[image: images]


15.Draw several large triangles (not necessarily right triangles). In each triangle locate the midpoint of each side. Draw the three medians of each triangle. Use inductive reasoning to draw a conclusion related to where the medians intersect.


[image: images]


16.Use deductive reasoning to arrive at a conclusion based on the assumptions given.






	a.ASSUMPTIONS


	1.All Martians have green eyes.







	 


	2.Henry is a Martian.







	b.ASSUMPTIONS


	1.The sum of the measures of the angles of a triangle is 180.







	 


	2.In a particular triangle, the sum of the measures of two angles is 100.








17.A prime number is any whole number that is divisible only by itself and 1. For example, 7, 11, and 13 are prime numbers. Evaluate the formula n2 + n + 17 using all integer values of n from 0 to 9, inclusive. Do you notice a pattern?


a.Using inductive reasoning, draw a conclusion.


b.Is your conclusion true for all values of n? Test n = 16.












2 MEASURE AND CONGRUENCE






WHAT YOU WILL LEARN


This chapter focuses on measures of segments and angles. In this chapter you will learn:


•definitions and terms related to segments and angles that have the same measures;


•the properties of equality that are useful in working with the lengths of line segments and the degree measures of angles;


•the way to draw conclusions using the properties of equality and congruence;


•the format of a formal two-column geometric proof.




SECTIONS IN THIS CHAPTER


•Measurements of Segments and Angles


•Betweenness of Points and Rays


•Congruence


•Basic Constructions


•Midpoint and Bisector


•Diagrams and Drawing Conclusions


•Properties of Equality and Congruence


•Additional Properties of Equality


•The Two-Column Proof Format






Measurements of Segments and Angles



We often describe the size of something by comparing it to another thing we are already familiar with. “She is as thin as a rail” creates the image of an underweight person, but it is not very exact. In geometry we must be precise. How could we determine the exact weight of a person? We might use a measurement instrument that is specifically designed for this purpose—the scale. To determine the length of a segment or the measure of an angle, we also use special measurement instruments—the ruler for measuring the length of a segment and the protractor for measuring an angle.


The units of measurement that we choose to express the length of a segment are not important, although they should be convenient. It would not be wise, for example, to try to measure and express the length of a postage stamp in terms of kilometers or miles. In Figure 2.1, the length or measure of line segment AB is 2 inches. We abbreviate this by writing [image: images], read as “The measure of line segment AB is 2.” Alternatively, we could write AB = 2, read as “The distance between points A and B is 2.” It is customary to use the expressions [image: images] and AB (no bar over the letters A and B) interchangeably and to interpret each as the length of line segment [image: images]. Caution: It is incorrect to write [image: images], which implies that the infinite set of points that make up segment [image: images] is equal to 2.


[image: images]


FIGURE 2.1


To measure an angle we use a protractor (see Figure 2.2), where the customary unit of measure is the degree. In our example, the measure of angle ABC is 60 degrees. We abbreviate this by writing m[image: images]ABC = 60, read as “The measure of angle ABC is 60.” It is customary to omit the degree symbol (°). Thus, we never write m[image: images]ABC = 60° or m[image: images]ABC = 60 (omitting the “m”).


[image: images]


FIGURE 2.2


In this course, however, we will assume that the measure of an angle corresponds to some number on the protractor that is greater than 0 and less than or equal to 180.


CLASSIFYING ANGLES


Angles may be classified by comparing their measures to a 90° angle. An L-shaped angle is called a right angle and its measure is exactly equal to 90°. An angle whose measure is less than 90° (but greater than 0°) is called an acute angle. An angle whose measure is greater than 90° (but less than 180°) is called an obtuse angle. An angle that is exactly 180° is called a straight angle. See Figure 2.3.


[image: images]


FIGURE 2.3


NOTE: It is customary to denote a right angle by marking a “box” in the corner of the angle as shown above.



Betweenness of Points and Rays



Paul is standing on a line for theater tickets; he is standing between his friends Allan and Barbara. We represent this situation geometrically in Figure 2.4. We would like to be able to define this notion formally. The phrasing of the definition should eliminate the possibility that Paul may be standing “off” the ticket line or both Allan and Barbara are in front of Paul, or behind him, on the ticket line. (See Figure 2.5.)


[image: images]


FIGURE 2.4


[image: images]


FIGURE 2.5



[image: images] DEFINITION OF BETWEENNESS


Point P is between points A and B if both of the following conditions are met:





1.Points A, P, and B are three different collinear points.


2.AB = AP + PB.


Condition 1 of the definition of betweenness eliminates Figure 2.5a as a possibility, while condition 2 eliminates the possibility of Figure 2.5b.


EXAMPLE 2.1


Point Q is between points W and H.


If WQ = 2 and QH = 7, find WH.


[image: images]


SOLUTION


WH = 2 + 7 = 9.


EXAMPLE 2.2


RT = 2, RS = 3, and ST = 1, and points R, S, and T are collinear. Which of the points is between the other two?


[image: images]


SOLUTION


Point T is between points R and S.


The analogous situation with angles occurs when a ray, say [image: images], lies in the interior of an angle, say [image: images]AOB, between its sides. The sum of the measures of the component angles of [image: images]AOB must equal the measure of the original angle. See Figure 2.6.


NOTE: If m[image: images]AOP = 40 and m[image: images]POB = 10, then m[image: images]AOB = 50. This somewhat obvious relationship is given a special name: the Angle Addition Postulate.


[image: images]


FIGURE 2.6




POSTULATE


ANGLE ADDITION POSTULATE


If ray [image: images] lies in the interior of angle AOB, then


[image: images]





The Angle Addition Postulate may be expressed in two equivalent forms:


[image: images]


and


[image: images]


EXAMPLE 2.3


[image: images] lies in the interior of [image: images]ABC.


If m[image: images]ABG = 25 and m[image: images]CBG = 35, find m[image: images]ABC.


[image: images]


SOLUTION


[image: images]


EXAMPLE 2.4


[image: images] lies in the interior of [image: images]JKL.


If m[image: images]JKM = 20 and m[image: images]LKJ = 50, find m[image: images]MKL.


[image: images]


SOLUTION


[image: images]


EXAMPLE 2.5


In the accompanying figure, the Angle Addition Postulate is contradicted; the measure of the largest angle is not equal to the sum of the measures of the two smaller angles. Explain.


[image: images]


SOLUTION


[image: images] is not in the interior of angle ABC, thus violating the assumption (hypothesis) of the Angle Addition Postulate.


Congruence


If the windshield of a car shatters or a computer disk drive is not working, we usually do not buy a new car or computer. Instead, we replace the broken parts. How do we know that the replacement parts will exactly fit where the old parts were removed? The new parts will fit because they have been designed to be interchangeable; they have been manufactured to have exactly the same size and shape. Figures that have the same size and shape are said to be congruent. The symbol for congruent is ≅.


Figures may agree in one or more dimensions, yet not be congruent. Diagrams ABCD and JKLM (Figure 2.7) each have four sides that are identical in length, but the figures are not congruent since their corresponding angles are not identical in measure.


[image: images]


FIGURE 2.7


A line segment has a single dimension—its length. Two segments are congruent, therefore, if they have the same length. If line segments [image: images] and [image: images] have the same length, then they are congruent. We show that these segments are congruent by using the notation [image: images]. Similarly, if two angles have the same measure, then they are congruent. If angle X has the same measure as angle Y, we write [image: images]X ≅ [image: images]Y. See Figure 2.8.


[image: images]


FIGURE 2.8


Congruence is one of the fundamental concepts of geometry. The problem of establishing that two triangles are congruent will be considered in Chapters 5, 6, and 7.



[image: images] DEFINITION OF CONGRUENT SEGMENTS OR ANGLES


Segments (or angles) are congruent if they have the same measure.


The notation [image: images] is read as “Line segment AB is congruent to line segment RS.”


Basic Constructions


Geometric constructions, unlike drawings, are made only with a straightedge (for example, an unmarked ruler) and compass. The point at which the pivot point of the compass is placed is sometimes referred to as the center, while the fixed compass setting that is used is called the radius length.


COPYING SEGMENTS AND ANGLES


Given a line segment or angle, it is possible to construct another line segment or angle that is congruent to the original segment or angle without using a ruler or protractor.


CONSTRUCTION 1 Given line segment [image: images], construct a congruent segment.





STEP 1:Using a compass, measure [image: images] by placing the compass point on A and the pencil point on B.


[image: images]


STEP 2:Draw any line, and choose any convenient point on it. Label the line as ℓ and the point as C.


STEP 3:Using the same compass setting, place the compass point on C and draw an arc that intersects line ℓ. Label the point of intersection as D.


[image: images]


Conclusion: [image: images].


CONSTRUCTION 2 Given ∠ABC, construct a congruent angle.


STEP 1:Using any convenient compass setting, place the compass point on B and draw an arc intersecting [image: images] at X and [image: images] at Y.


STEP 2:Draw any line and choose any point on it. Label the line as ℓ and the point as S.


[image: images]


STEP 3:Using the same compass setting, place the compass point at S and draw arc WT, intersecting line ℓ at T.


STEP 4:Adjust the compass setting to measure the line segment determined by points X and Y by placing the compass point at X and the pencil at Y.


STEP 5:Using the same compass setting, place the compass point at T and construct an arc intersecting arc WT at point R.


[image: images]


STEP 6:Using a straightedge, draw [image: images].


Conclusion: ∠ABC ≅ ∠RST.


Why it works:


•The arcs are constructed in such a way that [image: images], and [image: images].


EXAMPLE 2.6


Given [image: images] as shown, construct an equilateral triangle with side length AB (an equilateral triangle is one in which all sides are congruent).


[image: images]


SOLUTION


Place the compass point on A and mark an arc using the length of [image: images] as the radius. Repeat from point B. Label the point of intersection C and draw in sides AC and CB using a straightedge.


[image: images]


EXAMPLE 2.7


Given the 3 lengths shown, construct a triangle.


[image: images]


SOLUTION


STEP 1:Create a segment that appears longer than the longest segment.


STEP 2:Copy the longest segment onto the segment from Step 1.


STEP 3:Using another given segment as the radius, place the compass on one end of the first constructed segment and make an arc extending above it.


STEP 4:Using the last given segment as the radius, place the compass on the other end of the first constructed segment and make an arc that intersects with the arc from Step 3.


STEP 5:Join the ends of the first segment to the point of intersection to create the triangle as shown.


[image: images]



Midpoint and Bisector



Consider Figures 2.9 and 2.10. In Figure 2.9, AM = MB = 3. Since point M divides [image: images] into two congruent segments [image: images], M is said to be the midpoint of [image: images]. Observe that the measure of each of the congruent segments is one-half the measure of the original segment, [image: images]. In Figure 2.10, [image: images] intersects AB at point M, the midpoint of [image: images]. [image: images] is said to bisect AB; a line, ray, or segment that bisects a segment is called a bisector.


[image: images]


FIGURE 2.9


[image: images]


FIGURE 2.10


Since an infinite number of lines, rays, or segments may be drawn through the midpoint of a segment, a line segment possesses an infinite number of bisectors. The terms midpoint and segment bisector may be formally defined as follows.



[image: images] DEFINITION OF MIDPOINT


Point M is the midpoint of [image: images] if


1. M is between A and B  and  2. AM = MB.


If M is the midpoint of [image: images], then M bisects [image: images] and the following relationships involving the lengths of the segments thus formed are true:


[image: images]



[image: images] DEFINITION OF A SEGMENT BISECTOR


A bisector of a line segment AB is any line, ray, or segment that passes through the midpoint of [image: images]. Thus, a segment bisector divides a segment into two congruent segments.


EXAMPLE 2.8


[image: images] bisects [image: images] at point P.


a.If EF = 12, find PF.


b.If EP = 4, find EF.


c.If EP = 4x − 3 and PF = 2x + 15, find EF.


[image: images]


SOLUTION


[image: images]


Similarly, any ray that lies in the interior of an angle in such a way that it divides the original angle into two congruent angles is the bisector of the angle.



[image: images] DEFINITION OF ANGLE BISECTOR


[image: images] is the bisector of [image: images]ABC if M lies in the interior of [image: images]ABC and [image: images]ABM ≅ [image: images]CBM. Thus, an angle bisector divides an angle into two congruent angles.


[image: images]


The measure of each of the angles formed by the bisector is one-half the measure of the original angles:


[image: images]


CONSTRUCTION 3 Given an angle, construct the bisector of the angle.


STEP 1:Designate the angle as ∠ABC. Using B as a center, construct an arc, using any convenient radius length, that intersects [image: images] at point P and [image: images] at point Q.


STEP 2:Using points P and Q as centers and the same radius length, draw a pair of arcs that intersect. Label the point at which the arcs intersect as D.


[image: images]


STEP 3:Draw [image: images].


Conclusion: [image: images] is the bisector of ∠ABC.



Diagrams and Drawing Conclusions



Which line segment is longer, [image: images] or [image: images]?


[image: images]



[image: images] WARNING!


Actually, both have the same length, although [image: images] may give the illusion of being longer than [image: images]. When given a geometric diagram, we must exercise extreme caution in drawing conclusions based on the diagram—pictures can be deceiving! In general, we may assume only collinearity and betweenness of points. We may not make any assumptions regarding the measures of segments or angles unless they are given to us. In Figure 2.11a, although segments [image: images] and [image: images] appear to be equal in length, we may not conclude that AD = DC. The only assumption that we are entitled to make is that point D lies between points A and C. If, however, we are told that AD = DC, then we write this given information next to the figure. (See Figure 2.11b.)


[image: images]


FIGURE 2.11


To indicate the equal segments on the diagram, draw a single vertical bar through each segment as in Figure 2.12. An angle may be assumed from the diagram to be a right angle only if the angle contains the “corner” marking ([image: images]).


[image: images]


FIGURE 2.12


Properties of Equality and Congruence


John is taller than Kevin and Kevin is taller than Louis. How do the heights of John and Louis compare? We can analyze the situation with the aid of a simple diagram. (See Figure 2.13.) This leads us to conclude that John must be taller than Louis.


[image: images]


FIGURE 2.13



[image: images] THIS IS THE KEY TO THE METHOD!


Using the mathematical symbol for “greater than,” >, we can represent the height relationships by the following series of inequality statements:


[image: images]


Without directly comparing John with Louis, we have used a transitive property to conclude that John’s height is greater than Louis’s height. The “greater than” relation is an example of a relation that possesses the transitive property. Is friendship a transitive relation? If Alice is Barbara’s friend and Barbara is Carol’s friend, does that mean that Alice and Carol must also be friends? Obviously, no. Some relations possess the transitive property, while others do not.


The equality (=) and congruence (≅) relations possess the transitive property. For example, if angle A is congruent to angle B and angle B is congruent to angle C, then angle A must be congruent to angle C. (See Figure 2.14.) Another way of looking at this interrelationship among angles A, B, and C is that angles A and C are each congruent to angle B and must, therefore, be congruent to each other.


[image: images]


FIGURE 2.14


The equality and congruence relations also enjoy some additional properties. These are summarized in Table 2.1.


TABLE 2.1








	Property


	Equality Example


	Congruence Example







	Reflexive
The identical expression may be written on either side of the = or ≅ symbol. Any quantity is equal (congruent) to itself.


	
1.9 = 9.


2.AB = AB.



	[image: images]ABC ≅ [image: images]ABC.







	Symmetric
The positions of the expressions on either side of the = or ≅ symbol may be reversed. Quantities may be “flip-flopped” on either side of an = or ≅ sign.


	
1.If 4 = x, then x = 4.


2.If AB = CD, then CD = AB.



	
If [image: images]ABC ≅ [image: images]XYZ,


then [image: images]XYZ ≅ [image: images]ABC.








	Transitive
If two quantities are equal (congruent) to the same quantity, then they are equal (congruent) to each other.


	
If AB = CD


and CD = PQ,


then AB = PQ.



	
If [image: images]X ≅ [image: images]Y


and [image: images]Y ≅ [image: images]Z,


then [image: images]X ≅ [image: images]Z.











Another useful property of the equality relation is the substitution property. If AB = 2 + 3, then an equivalent number may be substituted in place of the numerical expression on the right side of the equation. We may substitute 5 for 2 + 3, and write AB = 5. Here is a geometric illustration of this often-used property:


[image: images]


In each of the following examples, identify the property used to draw the conclusion as either the transitive or substitution property.


EXAMPLE 2.9


[image: images]


SOLUTION


Since both angles 1 and 3 are congruent to the same angle, angle 2, they must be congruent to each other. This is the transitive property of congruence. Since we may only substitute equals in equations, we do not have a substitution property of congruence.


EXAMPLE 2.10


[image: images]


SOLUTION


This is the substitution property. In the last equation stated in the Given, the measures of angles 4 and 5 are replaced by their equals, the measures of angles 1 and 3, respectively.


EXAMPLE 2.11


[image: images]


SOLUTION


Since RS and TW are both equal to the same quantity, SM, they must be equal to each other. This is the transitive property.


or


In Equation (1), SM may be replaced by its equal, TW. We are using the information in Equation (2) to make a substitution in Equation (1). Hence, the conclusion can be justified also by using the substitution property.


EXAMPLE 2.12


[image: images]


SOLUTION


AC = CD, since point C is the midpoint of [image: images].


We now have the set of relationships:





[image: images]


[image: images]





Since CD and CE are both equal to the same quantity (AC), they must be equal to each other. Hence, CD = CE by the transitive property of equality.


or


We may replace AC by CE in Equation (1), also reaching the desired conclusion.


Examples 2.11 and 2.12 illustrate that the transitive and substitution properties of equality, in certain situations, may be used interchangeably. In each of these examples, two equations state that two quantities are each equal to the same quantity, thus leading to either the substitution or transitive property of equality.



Additional Properties of Equality



Several properties of equality encountered in elementary algebra prove useful when working with measures of segments and angles. Table 2.2 reviews these properties in their algebraic context.


TABLE 2.2








	Property


	Algebraic Example


	Formal Statement







	
Addition (+)


The same (or =) quantities may be added to both sides of an equation.



	
Solve for x:


[image: images]



	
 If equals are added to equals, their sums are equal.


or


If a = b, then a + c = b + c.








	
Subtraction (−)


The same (or =) quantities may be subtracted from both sides of an equation.



	
Solve for n:


[image: images]



	
If equals are subtracted from equals, their differences are equal.


or


If a = b, then a − c = b − c.








	
Multiplication (×)


The same quantity may be used to multiply both sides of an equation.



	
Solve for y:


[image: images]



	
If equals are multiplied by equals, their products are equal.


or


If a = b, then ac = bc.











These equality properties may be summarized as follows: “Whatever you do to one side of an equation, do the same thing to the other side.” The addition, subtraction, and multiplication properties may be applied also to geometric situations. The following examples illustrate how these properties of equality can be used to draw conclusions about the measures of segments and angles. In each of the first four examples, the numerical value in the conclusion is based on the measurements given in the accompanying diagram on the following page.





•USING THE ADDITION PROPERTY


[image: images]


•USING THE SUBTRACTION PROPERTY


[image: images]


•USING THE MULTIPLICATION PROPERTY


[image: images]


This chain of reasoning, in which the multiplying factor is [image: images], is used so often that we give it a special name, “halves of equals are equal.”



The Two-Column Proof Format



In the previous examples, stating the property involved and explaining the reasoning that justifies each conclusion forms a mathematical argument or “proof” in which the “conclusion” represents what you were required to prove.



[image: images] THIS IS THE KEY TO THE METHOD!


A proof in geometry usually includes these four elements:


[image: images]


When doing a proof, it is important to draw a diagram or mark a given diagram with information and conclusions drawn from the given information so you can plan out your line of reasoning.


Greek mathematicians wrote proofs in paragraph form. Most beginning geometry students, however, find it helpful to organize and record their thinking using a table-like format, as shown in Table 2.3 and further illustrated in Example 2.13. The left column explains your reasoning as a set of numbered statements. The right column gives the corresponding reasons. This format is sometimes referred to as a “two-column proof.”
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