

Get Programming with Go

 Nathan Youngman and Roger Peppé

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 The Go Gopher is © 2009 Renée French and used under Creative Commons Attributions 3.0 license.

 Original illustrations by Olga Shalakhina are © 2015 Olga Shalakhina and used by permission.

 Original illustrations by Erick Zelaya are © 2018 Erick Zelaya and used by permission.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 Acquisition editor: Michael Stephens
Development editors: Jenny Stout, Marina Michaels
Technical development editors: Matthew Merkes, Joel Kotarski
Review editor: Aleksandar Dragosavljević
Project editor: David Novak
Copyeditor: Corbin Collins
Proofreaders: Melody Dolab, Elizabeth Martin
Technical proofreader: Christopher Haupt
Typesetter: Dottie Marsico
Graphics: Olga Shalakhina, Erick Zelaya, April Milne
Cover designer: Monica Kamsvaag

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 ISBN 9781617293092

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the authors

 Unit 0. Getting started

 Lesson 1. Get ready, get set, Go

 Unit 1. Imperative programming

 Lesson 2. A glorified calculator

 Lesson 3. Loops and branches

 Lesson 4. Variable scope

 Lesson 5. Capstone: Ticket to Mars

 Unit 2. Types

 Lesson 6. Real numbers

 Lesson 7. Whole numbers

 Lesson 8. Big numbers

 Lesson 9. Multilingual text

 Lesson 10. Converting between types

 Lesson 11. Capstone: The Vigenère cipher

 Unit 3. Building blocks

 Lesson 12. Functions

 Lesson 13. Methods

 Lesson 14. First-class functions

 Lesson 15. Capstone: Temperature tables

 Unit 4. Collections

 Lesson 16. Arrayed in splendor

 Lesson 17. Slices: windows into arrays

 Lesson 18. A bigger slice

 Lesson 19. The ever-versatile map

 Lesson 20. Capstone: A slice of life

 Unit 5. State and behavior

 Lesson 21. A little structure

 Lesson 22. Go’s got no class

 Lesson 23. Composition and forwarding

 Lesson 24. Interfaces

 Lesson 25. Capstone: Martian animal sanctuary

 Unit 6. Down the gopher hole

 Lesson 26. A few pointers

 Lesson 27. Much ado about nil

 Lesson 28. To err is human

 Lesson 29. Capstone: Sudoku rules

 Unit 7. Concurrent programming

 Lesson 30. Goroutines and concurrency

 Lesson 31. Concurrent state

 Lesson 32. Capstone: Life on Mars

 Conclusion. Where to Go from here

 Appendix. Solutions

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the authors

 Unit 0. Getting started

 Lesson 1. Get ready, get set, Go

 1.1. What is Go?

 1.2. The Go Playground

 1.3. Packages and functions

 1.4. The one true brace style

 Summary

 Experiment: playground.go

 Unit 1. Imperative programming

 Lesson 2. A glorified calculator

 2.1. Performing calculations

 2.2. Formatted print

 2.3. Constants and variables

 2.4. Taking a shortcut

 2.4.1. Declare multiple variables at once

 2.4.2. Increment and assignment operators

 2.5. Think of a number

 Summary

 Experiment: malacandra.go

 Lesson 3. Loops and branches

 3.1. True or false

 3.2. Comparisons

 3.3. Branching with if

 3.4. Logical operators

 3.5. Branching with switch

 3.6. Repetition with loops

 Summary

 Experiment: guess.go

 Lesson 4. Variable scope

 4.1. Looking into scope

 4.2. Short declaration

 4.3. Narrow scope, wide scope

 Summary

 Experiment: random-dates.go

 Lesson 5. Capstone: Ticket to Mars

 Unit 2. Types

 Lesson 6. Real numbers

 6.1. Declaring floating-point variables

 6.1.1. Single precision floating-point numbers

 6.1.2. The zero value

 6.2. Displaying floating-point types

 6.3. Floating-point accuracy

 6.4. Comparing floating-point numbers

 Summary

 Experiment: piggy.go

 Lesson 7. Whole numbers

 7.1. Declaring integer variables

 7.1.1. Integer types for every occasion

 7.1.2. Knowing your type

 7.2. The uint8 type for 8-bit colors

 7.3. Integers wrap around

 7.3.1. Looking at the bits

 7.3.2. Avoid wrapping around time

 Summary

 Experiment: piggy.go

 Lesson 8. Big numbers

 8.1. Hitting the ceiling

 8.2. The big package

 8.3. Constants of unusual size

 Summary

 Experiment: canis.go

 Lesson 9. Multilingual text

 9.1. Declaring string variables

 9.1.1. Raw string literals

 9.2. Characters, code points, runes, and bytes

 9.3. Pulling the strings

 9.4. Manipulating characters with Caesar cipher

 9.4.1. A modern variant

 9.5. Decoding strings into runes

 Summary

 Experiment: caesar.go

 Experiment: international.go

 Lesson 10. Converting between types

 10.1. Types don’t mix

 10.2. Numeric type conversions

 10.3. Convert types with caution

 10.4. String conversions

 10.5. Converting Boolean values

 Summary

 Experiment: input.go

 Lesson 11. Capstone: The Vigenère cipher

 Experiment: decipher.go

 Experiment: cipher.go

 Unit 3. Building blocks

 Lesson 12. Functions

 12.1. Function declarations

 12.2. Writing a function

 Summary

 Experiment: functions.go

 Lesson 13. Methods

 13.1. Declaring new types

 13.2. Bring your own types

 13.3. Adding behavior to types with methods

 Summary

 Experiment: methods.go

 Lesson 14. First-class functions

 14.1. Assigning functions to variables

 14.2. Passing functions to other functions

 14.3. Declaring function types

 14.4. Closures and anonymous functions

 Summary

 Experiment: calibrate.go

 Lesson 15. Capstone: Temperature tables

 Unit 4. Collections

 Lesson 16. Arrayed in splendor

 16.1. Declaring arrays and accessing their elements

 16.2. Don’t go out of bounds

 16.3. Initialize arrays with composite literals

 16.4. Iterating through arrays

 16.5. Arrays are copied

 16.6. Arrays of arrays

 Summary

 Experiment: chess.go

 Lesson 17. Slices: windows into arrays

 17.1. Slicing an array

 17.1.1. Default indices for slicing

 17.2. Composite literals for slices

 17.3. The power of slices

 17.4. Slices with methods

 Summary

 Experiment: terraform.go

 Lesson 18. A bigger slice

 18.1. The append function

 18.2. Length and capacity

 18.3. Investigating the append function

 18.4. Three-index slicing

 18.5. Preallocate slices with make

 18.6. Declaring variadic functions

 Summary

 Experiment: capacity.go

 Lesson 19. The ever-versatile map

 19.1. Declaring a map

 19.2. Maps aren’t copied

 19.3. Preallocating maps with make

 19.4. Using maps to count things

 19.5. Grouping data with maps and slices

 19.6. Repurposing maps as sets

 Summary

 Experiment: words.go

 Lesson 20. Capstone: A slice of life

 20.1. A new universe

 20.1.1. Looking at the universe

 20.1.2. Seeding live cells

 20.2. Implementing the game rules

 20.2.1. Dead or alive?

 20.2.2. Counting neighbors

 20.2.3. The game logic

 20.3. Parallel universe

 Unit 5. State and behavior

 Lesson 21. A little structure

 21.1. Declaring a structure

 21.2. Reusing structures with types

 21.3. Initialize structures with composite literals

 21.4. Structures are copied

 21.5. A slice of structures

 21.6. Encoding structures to JSON

 21.7. Customizing JSON with struct tags

 Summary

 Experiment: landing.go

 Lesson 22. Go’s got no class

 22.1. Attaching methods to structures

 22.2. Constructor functions

 22.3. The class alternative

 Summary

 Experiment: landing.go

 Experiment: distance.go

 Lesson 23. Composition and forwarding

 23.1. Composing structures

 23.2. Forwarding methods

 23.3. Name collisions

 Summary

 Experiment: gps.go

 Lesson 24. Interfaces

 24.1. The interface type

 24.2. Discovering the interface

 24.3. Satisfying interfaces

 24.4. Summary

 Experiment: marshal.go

 Lesson 25. Capstone: Martian animal sanctuary

 Unit 6. Down the gopher hole

 Lesson 26. A few pointers

 26.1. The ampersand and the asterisk

 26.1.1. Pointer types

 26.2. Pointers are for pointing

 26.2.1. Pointing to structures

 26.2.2. Pointing to arrays

 26.3. Enabling mutation

 26.3.1. Pointers as parameters

 26.3.2. Pointer receivers

 26.3.3. Interior pointers

 26.3.4. Mutating arrays

 26.4. Pointers in disguise

 26.4.1. Maps are pointers

 26.4.2. Slices point at arrays

 26.5. Pointers and interfaces

 26.6. Use pointers wisely

 Summary

 Experiment: turtle.go

 Lesson 27. Much ado about nil

 27.1. Nil leads to panic

 27.2. Guarding your methods

 27.3. Nil function values

 27.4. Nil slices

 27.5. Nil maps

 27.6. Nil interfaces

 27.7. An alternative to nil

 Summary

 Experiment: knights.go

 Lesson 28. To err is human

 28.1. Handling errors

 28.2. Elegant error handling

 28.2.1. Writing a file

 28.2.2. The defer keyword

 28.2.3. Creative error handling

 28.3. New errors

 28.3.1. Which error is which

 28.3.2. Custom error types

 28.4. Don’t panic

 28.4.1. Exceptions in other languages

 28.4.2. How to panic

 28.4.3. Keep calm and carry on

 Summary

 Experiment: url.go

 Lesson 29. Capstone: Sudoku rules

 Unit 7. Concurrent programming

 Lesson 30. Goroutines and concurrency

 30.1. Starting a goroutine

 30.2. More than one goroutine

 30.3. Channels

 30.4. Channel surfing with select

 30.5. Blocking and deadlock

 30.6. A gopher assembly line

 Summary

 Experiment: remove-identical.go

 Experiment: split-words.go

 Lesson 31. Concurrent state

 31.1. Mutexes

 31.1.1. Mutex pitfalls

 31.2. Long-lived workers

 Summary

 Experiment: positionworker.go

 Experiment: rover.go

 Lesson 32. Capstone: Life on Mars

 32.1. A grid to rove on

 32.2. Reporting discoveries

 Conclusion. Where to Go from here

 Under the radar

 Beyond the playground

 And much more

 Appendix. Solutions

 Unit 0

 Lesson 1

 Unit 1

 Lesson 2

 Lesson 3

 Lesson 4

 Capstone 5

 Unit 2

 Lesson 6

 Lesson 7

 Lesson 8

 Lesson 9

 Lesson 10

 Capstone 11

 Unit 3

 Lesson 12

 Lesson 13

 Lesson 14

 Capstone 15

 Unit 4

 Lesson 16

 Lesson 17

 Lesson 18

 Lesson 19

 Capstone 20

 Unit 5

 Lesson 21

 Lesson 22

 Lesson 23

 Lesson 24

 Capstone 25

 Unit 6

 Lesson 26

 Lesson 27

 Lesson 28

 Capstone 29

 Unit 7

 Lesson 30

 Lesson 31

 Capstone 32

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Everything changes and nothing remains still.

 Heraclitus

 While traveling Europe in 2005, Nathan heard rumblings of a new web framework called Ruby on Rails. Returning to Alberta in
 time to celebrate Christmas, he found a copy of Agile Web Development with Rails (Pragmatic Bookshelf, 2005) at the computer bookstore downtown. Over the next two years, he transitioned his career from
 Cold-Fusion to Ruby.

 At university in York, England, Roger was introduced to the radical simplicity of Bell Labs Research UNIX and the Plan 9 OS
 produced by the same group, which included Go authors Rob Pike and Ken Thompson. Roger became a fan and later worked with
 the Inferno system, which used its own language, Limbo, a close ancestor of Go.

 In November 2009, Go was announced as an open source project. Roger immediately saw its potential and started using it, making
 contributions to its standard library and ecosystem. He remains delighted by Go’s success, now programs in Go full time, and
 runs a local Go meetup.

 Nathan watched Rob Pike’s tech talk announcing Go but didn’t give Go a serious look until 2011. When a coworker spoke highly
 of Go, Nathan decided to read through a rough cut of The Go Programming Language Phrasebook (Addison-Wesley Professional, 2012) over Christmas break. Over the next few years, he went from using Go on hobby projects
 and blogging about Go (nathany.com) to organizing a local Go meetup (edmontongo.org) and writing Go at work.

 There’s no end to learning in the world of computer science, where the tools and techniques are continuously changing and
 improving. Whether you have a degree in computer science or are just starting out, teaching yourself new skills is important.
 We hope this book serves you well as you learn the Go programming language.

Acknowledgments

 What a privilege it has been to write this book and help you learn Go. Thank you for reading!

 These pages represent the efforts of many individuals, not merely the authors on the cover.

 First and foremost, we would like to thank our editors Jennifer Stout and Marina Michaels for providing valuable feedback
 and for continuing to push us little by little over the finish line. Also, thank you to Joel Kotarski and Matt Merkes for
 your spot-on technical editing, Christopher Haupt for technical proofing, and copyeditor Corbin Collins for improving our
 grammar and style. Our thanks go to Bert Bates and to series editors Dan Maharry and Elesha Hyde for the conversations and
 guidelines that helped shape Get Programming with Go.

 We would like to thank Olga Shalakhina and Erick Zelaya for the wonderful illustrations, Monica Kamsvaag for the cover design,
 April Milne for sprucing up our figures, and Renée French for giving Go the lighthearted mascot that we all love. A special
 thank you goes to Dan Allen for creating AsciiDoctor, the tool used to write this book, and for his ongoing support.

 This book wouldn’t be a reality without Marjan Bace, Matko Hrvatin, Mehmed Pasic, Rebecca Rinehart, Nicole Butterfield, Candace
 Gillhoolley, Ana Romac, Janet Vail, David Novak, Dottie Marsico, Melody Dolab, Elizabeth Martin, and the whole crew at Manning
 for getting Get Programming with Go into the hands of readers.

 Thanks also to Aleksandar Dragosavljević for getting this book to reviewers, and to all the reviewers for providing valuable
 feedback, including Brendan Ward, Charles Kevin, Doug Sparling, Esther Tsai, Gianluigi Spagnuolo, Jeff Smith, John Guthrie,
 Luca Campobasso, Luis Gutierrez, Mario Carrion, Mikaël Dautrey, Nat Luengnaruemitchai, Nathan Farr, Nicholas Boers, Nicholas
 Land, Nitin Gode, Orlando Sánchez, Philippe Charrière, Rob Weber, Robin Percy, Steven Parr, Stuart Woodward, Tom Goodheard,
 Ulises Flynn, and William E. Wheeler. We’d also like to thank all the early access readers who provided feedback through the
 forums.

 Finally, we would like to thank Michael Stephens for suggesting the crazy idea of writing a book, and the Go community for
 creating a language and ecosystem that we’re excited to write about!

Nathan Youngman

 Naturally, I need to thank my parents, without whom I wouldn’t be here today. Both of my parents encouraged me to pursue my
 interest in computer programming from an early age, providing books and courses and access to computers.

 In addition to the official reviewers, I would like to thank Matthias Stone for providing feedback on early drafts, and Terry
 Youngman for helping me brainstorm ideas. I also want to thank the Edmonton Go community for cheering me on, and my employer,
 Mark Madsen, for providing the flexibility to make this endeavor feasible.

 More than anyone else, I want to thank Roger Peppé for coming alongside me as coauthor. He shortened the long road ahead by
 writing unit 7, and gave the project a much needed bump in momentum.

Roger Peppé

 Most of all, I’d like to thank my wife, Carmen, for her forbearance and support as I worked on this book when we could have
 been out walking in the hills.

 Many thanks also to Nathan Youngman and Manning for their trust in taking me on as coauthor and for their patience during
 the final stages of this book.

About this book

Who should read this book

 Go is suitable for programmers with a wide range of skill levels—a necessity for any large project. Being a relatively small
 language, with minimal syntax and few conceptual hurdles, Go could be the next great language for beginners.

 Unfortunately, many resources for learning Go presume a working knowledge of the C programming language. Get Programming with Go exists to fill the gap for scripters, hobbyists, and newcomers looking for a direct path to Go. To make it easier to get
 started, every code listing and exercise in this book can run inside the Go Playground (play.golang.org), so there’s nothing to install!

 If you’ve ever used a scripting language like JavaScript, Lua, PHP, Perl, Python, or Ruby, you’re ready to learn Go. If you’ve
 used Scratch or Excel formulas, or written HTML, you’re not alone in choosing Go as your first “real” programming language
 (see the video “A Beginner’s Mind” featuring Audrey Lim at youtu.be/fZh8uCInEfw). Mastering Go will take patience and effort,
 but we hope Get Programming with Go is a helpful resource in your quest.

How this book is organized: A roadmap

 Get Programming with Go gradually explains the concepts needed to use Go effectively and provides a plethora of exercises to hone your skills. This
 is a beginner’s guide to Go, intended to be read from cover to cover, with each lesson building on the last. It isn’t a complete
 specification (golang.org/ref/spec) of every language feature, but it covers most of the language and touches on advanced topics like object-oriented design
 and concurrency.

 Whether you go on to write massively concurrent web services or small scripts and simple tools, this book will help you establish a solid foundation.

 [image:]

 	
Unit 1 brings together variables, loops, and branches to build tiny apps, from greetings to rocket launches.

 	
Unit 2 explores types for both text and numbers. Decode secret messages with ROT13, investigate the destruction of the Arianne 5 rocket, and use
 big numbers to calculate how long light takes to reach Andromeda.

 	
Unit 3 uses functions and methods to build a fictional weather station on Mars with sensor readouts and temperature conversions.

 	
Unit 4 demonstrates how to use arrays and maps while terraforming the solar system, tallying up temperatures, and simulating Conway’s Game of Life.

 	
Unit 5 introduces concepts from object-oriented languages in a distinctly non-object-oriented language. Use structures and methods to navigate the surface of Mars, satisfy interfaces to improve output, and embed structures in one another to create even bigger structures!

 	
Unit 6 digs into the nitty-gritty. Here, you use pointers to enable mutation, overcome the knights who say nil, and learn how to handle errors without panicking.

 	
Unit 7 introduces Go’s concurrency primitives, enabling communication between thousands of running tasks while constructing assembly lines in a gopher factory.

 	The appendix provides our solutions for the exercises, but coming up with your own solutions is what makes programming fun!

About the code

 All code is in a fixed-width font to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts.

 You can download the source code for all listings from the Manning website (www.manning.com/books/get-programming-with-go). The download also includes solutions for all the exercises in this book. If you prefer to browse the source code online,
 you can find it in the GitHub repository at github.com/nathany/get-programming-with-go.

 Although you could copy and paste code from GitHub, we encourage you to type in the examples yourself. You’ll get more out
 of the book by typing the examples, fixing typos, and experimenting with the code.

Book forum

 The purchase of Get Programming with Go includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, share your solutions to exercises, and receive help from the authors and from other users. To access the forum
 and subscribe to it, point your web browser to forums.manning.com/forums/get-programming-with-go. You can learn more about Manning’s forums and the rules of conduct at forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 [image:]

 NATHAN YOUNGMAN is a self-taught web developer and lifelong learner. He serves as organizer for the Edmonton Go meetup, mentor with Canada
 Learning Code, and paparazzi of VIP gopher plushies.

 [image:]

 ROGER PEPPÉ is a Go contributor, maintains a number of open source Go projects, runs the Newcastle upon Tyne Go meetup, and currently
 works on Go cloud infrastructure software.

Unit 0. Getting started

 Traditionally, the first step to learning a new programming language is to set up the tools and environment to run a simple
 “Hello, world” application. With the Go Playground, this age-old endeavor is reduced to a single click.

 With that out of the way, you can begin learning the syntax and concepts needed to write and modify a simple program.

Lesson 1. Get ready, get set, Go

 After reading lesson 1, you’ll be able to

 	Know what sets Go apart

 	Visit the Go Playground

 	Print text to the screen

 	Experiment with text in any natural language

 Go is the contemporary programming language of cloud computing. Amazon, Apple, Canonical, Chevron, Disney, Facebook, General Electric, Google, Heroku, Microsoft, Twitch, Verizon, and Walmart
 are among the companies adopting Go for serious projects (see thenewstack.io/who-is-the-go-developer/ and golang.org/wiki/GoUsers). Much of the infrastructure underlying the web is shifting to Go, driven by companies like CloudFlare, Cockroach Labs, DigitalOcean,
 Docker, InfluxData, Iron.io, Let’s Encrypt, Light Code Labs, Red Hat CoreOS, SendGrid, and organizations like the Cloud Native
 Computing Foundation.

 Go excels in the data center, but its adoption extends beyond the workplace. Ron Evans and Adrian Zankich created Gobot (gobot.io),
 a library to control robots and hardware. Alan Shreve created the development tool ngrok (ngrok.com) as a project to learn
 Go, and has since turned it into a full-time business.

 The community of people who have adopted Go call themselves gophers, in honor of Go’s lighthearted mascot (figure 1.1). Programming is challenging, but with Go and this book, we hope you discover the joy of coding.

 Figure 1.1. Go gopher mascot designed by Renée French

 [image:]

 In this lesson, you’ll experiment with a Go program in your web browser.

 	

 Consider this

 If you tell a digital assistant, “Call me a cab,” does it dial a taxi company? Or does it assume you changed your name to
 a cab? Natural languages like English are full of ambiguity.

 Clarity is paramount in programming languages. If the language’s grammar or syntax allows for ambiguity, the computer may
 not do what you say. That rather defeats the point of writing a program.

 Go isn’t a perfect language, but it strives for clarity more so than any other language we’ve used. As you go through this
 lesson, there will be some abbreviations to learn and jargon to overcome. Not everything will be clear at first glance, but
 take the time to appreciate how Go works to reduce ambiguity.

 	

1.1. What is Go?

 Go is a compiled programming language. Before you run a program, Go uses a compiler to translate your code into the 1s and 0s that machines speak. It compiles all your code into a single executable for you to run or distribute. During this process, the Go compiler can catch typos and mistakes.

 Not all programming languages employ this approach. Python, Ruby, and several other popular languages use an interpreter to translate one statement at a time as a program is running. That means bugs may be lurking down paths you haven’t tested.

 On the other hand, interpreters make the process of writing code fast and interactive, with languages that are dynamic, carefree,
 and fun. Compiled languages have a reputation for being static, inflexible robots that programmers are forced to appease,
 and compilers are derided for being slow. But does it need to be this way?

 We wanted a language with the safety and performance of statically compiled languages such as C++ and Java, but the lightness
 and fun of dynamically typed interpreted languages such as Python.

 Rob Pike, Geek of the Week (see mng.bz/jr8y)

 Go is crafted with a great deal of consideration for the experience of writing software. Large programs compile in seconds with a single command. The language omits features that lead to ambiguity,
 encouraging code that is predictable and easily understood. And Go provides a lightweight alternative to the rigid structure
 imposed by classical languages like Java.

 Java omits many rarely used, poorly understood, confusing features of C++ that in our experience bring more grief than benefit.

 James Gosling, Java: an Overview

 Each new programming language refines ideas of the past. In Go, using memory efficiently is easier and less error-prone than
 earlier languages, and Go takes advantage of every core on multicore machines. Success stories often cite improved efficiency
 as a reason for switching to Go. Iron.io was able to replace 30 servers running Ruby with 2 servers using Go (see mng.bz/Wevx and mng.bz/8yo2). Bitly has “seen consistent, measurable performance gains” when rewriting Python apps in Go, and subsequently replaced its
 C apps with a Go successor (see mng.bz/EnYl).

 Go provides the enjoyment and ease of interpreted languages, with a step up in efficiency and reliability. As a small language,
 with only a few simple concepts, Go is relatively quick to learn. These three tenets form the motto for Go:

 Go is an open source programming language that enables the production of simple, efficient, and reliable software at scale.

 Go Brand Book

 	

 Tip

 When searching the internet for topics related to Go, use the keyword golang, which stands for Go language. The -lang suffix
 can be applied to other programming languages as well: Ruby, Rust, and so on.

 	

 	

 Quick check 1.1

 Q1:

What are two benefits of the Go compiler?

 	

 	

 QC 1.1 answer

 1:

Large programs compile in seconds, and the Go compiler can catch typos and mistakes before running a program.

 	

1.2. The Go Playground

 The quickest way to get started with Go is to navigate to play.golang.org. At the Go Playground (figure 1.2) you can edit, run, and experiment with Go without needing to install anything. When you click the Run button, the playground
 will compile and execute your code on Google servers and display the result.

 Figure 1.2. The Go Playground

 [image:]

 If you click the Share button, you’ll receive a link to come back to the code you wrote. You can share the link with friends
 or bookmark it to save your work.

 	

 Note

 You can use the Go Playground for every code listing and exercise in this book. Or, if you’re already familiar with a text
 editor and the command line, you can download and install Go on your computer from golang.org/dl/.

 	

 	

 Quick check 1.2

 Q1:

What does the Run button do in The Go Playground?

 	

 	

 QC 1.2 answer

 1:

The Run button will compile and then execute your code on Google servers.

 	

1.3. Packages and functions

 When you visit the Go Playground, you’ll see the following code, which is as good a starting point as any.

 Listing 1.1. Hello, playground: playground.go

 package main 1

import (
 "fmt" 2
)

func main() { 3
 fmt.Println("Hello, playground") 4
}

 	1 Declares the package this code belongs to

 	2 Makes the fmt (format) package available for use

 	3 Declares a function named main

 	4 Prints Hello, playground to the screen

 Though short, the preceding listing introduces three keywords: package, import, and func. Each keyword is reserved for a special purpose.

 The package keyword declares the package this code belongs to, in this case a package named main. All code in Go is organized into packages. Go provides a standard library comprised of packages for math, compression, cryptography, manipulating images, and more.
 Each package corresponds to a single idea.

 The next line uses the import keyword to specify packages this code will use. Packages contain any number of functions. For example, the math package provides functions like Sin, Cos, Tan, and Sqrt (square root). The fmt package used here provides functions for formatted input and output. Displaying text to the screen is a frequent operation, so this package name is abbreviated fmt. Gophers pronounce fmt as “FŌŌMT!,” as though it were written in the large explosive letters of a comic book.

 The func keyword declares a function, in this case a function named main. The body of each function is enclosed in curly braces {}, which is how Go knows where each function begins and ends.

 The main identifier is special. When you run a program written in Go, execution begins at the main function in the main package. Without main, the Go compiler will report an error, because it doesn’t know where the program should start.

 [image:]

 To print a line of text, you can use the Println function (ln is an abbreviation for line). Println is prefixed with fmt followed by a dot because it is provided by the fmt package. Every time you use a function from an imported package, the function is prefixed with the package name and a dot.
 When you read code written in Go, the package each function came from is immediately clear.

 Run the program in the Go Playground to see the text Hello, playground. The text enclosed in quotes is echoed to the screen. In English, a missing comma can change the meaning of a sentence. Punctuation
 is important in programming languages too. Go relies on quotes, parentheses, and braces to understand the code you write.

 	

 Quick check 1.3

 1

Where does a Go program start?

 2

What does the fmt package provide?

 	

 	

 QC 1.3 answer

 1

A program starts at the main function in the main package.

 2

The fmt package provides functions for formatted input and output.

 	

1.4. The one true brace style

 Go is picky about the placement of curly braces {}. In listing 1.1, the opening brace { is on the same line as the func keyword, whereas the closing brace } is on its own line. This is the one true brace style—there is no other way. See mng.bz/NdE2.

 To understand why Go became so strict, you need to travel back in time to the birth of Go. In those early days, code was littered
 with semicolons. Everywhere. There was no escaping them; semicolons followed every single statement like a lost puppy. For
 example:

 fmt.Println("Hello, fire hydrant");

 In December of 2009, a group of ninja gophers expelled semicolons from the language. Well, not exactly. Actually, the Go compiler
 inserts those adorable semicolons on your behalf, and it works perfectly. Yes, perfectly, but in exchange you must follow
 the one true brace style.

 [image:]

 If you put an opening brace on a separate line from the func keyword, the Go compiler will report a syntax error:

 func main() 1
{ 2
}

 	1 missing function body

 	2 syntax error:unexpected semicolon or newline before {

 The compiler isn’t upset with you. A semicolon was inserted in the wrong place and it got a little confused.

 	

 Tip

 As you work through this book, it’s a good idea to type the code listings yourself. You may see a syntax error if you mistype
 something, and that’s okay. Being able to read, understand, and correct errors is an important skill, and perseverance is
 a valuable trait.

 	

 	

 Quick check 1.4

 Q1:

Where must opening braces { be placed to avoid syntax errors?

 	

 	

 QC 1.4 answer

 1:

An opening brace must be on the same line as func, rather than on an separate line. This is the one true brace style.

 	

Summary

 	With the Go Playground you can start using Go without installing anything.

 	Every Go program is made up of functions contained in packages.

 	To print text on the screen, use the fmt package provided by the standard library.

