

 [image: cover]

Deep Learning with JavaScript: Neural networks in TensorFlow.js

 Shanqing Cai, Stanley Bileschi, Eric D. Nielsen with Francois Chollet

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity.

 For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 © 2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jenny Stout
Technical development editor: Marc-Phillipe Huget
Review editor: Ivan Martinovič
Project editor: Lori Weidert
Copy editor: Rebecca Deuel-Gallegos
Proofreader: Jason Everett
Technical proofreader: Karsten Strøbæck
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617296178

 Printed in the United States of America

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the cover illustration

 1. Motivation and basic concepts

 Chapter 1. Deep learning and JavaScript

 2. A gentle introduction to TensorFlow.js

 Chapter 2. Getting started: Simple linear regression in TensorFlow.js

 Chapter 3. Adding nonlinearity: Beyond weighted sums

 Chapter 4. Recognizing images and sounds using convnets

 Chapter 5. Transfer learning: Reusing pretrained neural networks

 3. Advanced deep learning with TensorFlow.js

 Chapter 6. Working with data

 Chapter 7. Visualizing data and models

 Chapter 8. Underfitting, overfitting, and the universal workflow of machine learning

 Chapter 9. Deep learning for sequences and text

 Chapter 10. Generative deep learning

 Chapter 11. Basics of deep reinforcement learning

 4. Summary and closing words

 Chapter 12. Testing, optimizing, and deploying models

 Chapter 13. Summary, conclusions, and beyond

 A. Installing tfjs-node-gpu and its dependencies

 B. A quick tutorial of tensors and operations in TensorFlow.js

 Glossary

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the cover illustration

 1. Motivation and basic concepts

 Chapter 1. Deep learning and JavaScript

 1.1. Artificial intelligence, machine learning, neural networks, and deep learning

 1.1.1. Artificial intelligence

 1.1.2. Machine learning: How it differs from traditional programming

 1.1.3. Neural networks and deep learning

 1.1.4. Why deep learning? Why now?

 1.2. Why combine JavaScript and machine learning?

 1.2.1. Deep learning with Node.js

 1.2.2. The JavaScript ecosystem

 1.3. Why TensorFlow.js?

 1.3.1. A brief history of TensorFlow, Keras, and TensorFlow.js

 1.3.2. Why TensorFlow.js: A brief comparison with similar libraries

 1.3.3. How is TensorFlow.js being used by the world?

 1.3.4. What this book will and will not teach you about TensorFlow.js

 Exercises

 Summary

 2. A gentle introduction to TensorFlow.js

 Chapter 2. Getting started: Simple linear regression in TensorFlow.js

 2.1. Example 1: Predicting the duration of a download using TensorFlow.js

 2.1.1. Project overview: Duration prediction

 2.1.2. A note on code listings and console interactions

 2.1.3. Creating and formatting the data

 2.1.4. Defining a simple model

 2.1.5. Fitting the model to the training data

 2.1.6. Using our trained model to make predictions

 2.1.7. Summary of our first example

 2.2. Inside Model.fit(): Dissecting gradient descent from example 1

 2.2.1. The intuitions behind gradient-descent optimization

 2.2.2. Backpropagation: Inside gradient descent

 2.3. Linear regression with multiple input features

 2.3.1. The Boston Housing Prices dataset

 2.3.2. Getting and running the Boston-housing project from GitHub

 2.3.3. Accessing the Boston-housing data

 2.3.4. Precisely defining the Boston-housing problem

 2.3.5. A slight diversion into data normalization

 2.3.6. Linear regression on the Boston-housing data

 2.4. How to interpret your model

 2.4.1. Extracting meaning from learned weights

 2.4.2. Extracting internal weights from the model

 2.4.3. Caveats on interpretability

 Exercises

 Summary

 Chapter 3. Adding nonlinearity: Beyond weighted sums

 3.1. Nonlinearity: What it is and what it is good for

 3.1.1. Building the intuition for nonlinearity in neural networks

 3.1.2. Hyperparameters and hyperparameter optimization

 3.2. Nonlinearity at output: Models for classification

 3.2.1. What is binary classification?

 3.2.2. Measuring the quality of binary classifiers: Precision, recall, accuracy, and ROC curves

 3.2.3. The ROC curve: Showing trade-offs in binary classification

 3.2.4. Binary cross entropy: The loss function for binary classification

 3.3. Multiclass classification

 3.3.1. One-hot encoding of categorical data

 3.3.2. Softmax activation

 3.3.3. Categorical cross entropy: The loss function for multiclass classification

 3.3.4. Confusion matrix: Fine-grained analysis of multiclass classification

 Exercises

 Summary

 Chapter 4. Recognizing images and sounds using convnets

 4.1. From vectors to tensors: Representing images

 4.1.1. The MNIST dataset

 4.2. Your first convnet

 4.2.1. conv2d layer

 4.2.2. maxPooling2d layer

 4.2.3. Repeating motifs of convolution and pooling

 4.2.4. Flatten and dense layers

 4.2.5. Training the convnet

 4.2.6. Using a convnet to make predictions

 4.3. Beyond browsers: Training models faster using Node.js

 4.3.1. Dependencies and imports for using tfjs-node

 4.3.2. Saving the model from Node.js and loading it in the browser

 4.4. Spoken-word recognition: Applying convnets on audio data

 4.4.1. Spectrograms: Representing sounds as images

 Exercises

 Summary

 Chapter 5. Transfer learning: Reusing pretrained neural networks

 5.1. Introduction to transfer learning: Reusing pretrained models

 5.1.1. Transfer learning based on compatible output shapes: Freezing layers

 5.1.2. Transfer learning on incompatible output shapes: Creating a new model using outputs from the base model

 5.1.3. Getting the most out of transfer learning through fine-tuning: An audio example

 5.2. Object detection through transfer learning on a convnet

 5.2.1. A simple object-detection problem based on synthesized scenes

 5.2.2. Deep dive into simple object detection

 Exercises

 Summary

 3. Advanced deep learning with TensorFlow.js

 Chapter 6. Working with data

 6.1. Using tf.data to manage data

 6.1.1. The tf.data.Dataset object

 6.1.2. Creating a tf.data.Dataset

 6.1.3. Accessing the data in your dataset

 6.1.4. Manipulating tfjs-data datasets

 6.2. Training models with model.fitDataset

 6.3. Common patterns for accessing data

 6.3.1. Working with CSV format data

 6.3.2. Accessing video data using tf.data.webcam()

 6.3.3. Accessing audio data using tf.data.microphone()

 6.4. Your data is likely flawed: Dealing with problems in your data

 6.4.1. Theory of data

 6.4.2. Detecting and cleaning problems with data

 6.5. Data augmentation

 Exercises

 Summary

 Chapter 7. Visualizing data and models

 7.1. Data visualization

 7.1.1. Visualizing data using tfjs-vis

 7.1.2. An integrative case study: Visualizing weather data with tfjs-vis

 7.2. Visualizing models after training

 7.2.1. Visualizing the internal activations of a convnet

 7.2.2. Visualizing what convolutional layers are sensitive to: Maximally activating images

 7.2.3. Visual interpretation of a convnet’s classification result

 Materials for further reading and exploration

 Exercises

 Summary

 Chapter 8. Underfitting, overfitting, and the universal workflow of machine learning

 8.1. Formulation of the temperature-prediction problem

 8.2. Underfitting, overfitting, and countermeasures

 8.2.1. Underfitting

 8.2.2. Overfitting

 8.2.3. Reducing overfitting with weight regularization and visualizing it working

 8.3. The universal workflow of machine learning

 Exercises

 Summary

 Chapter 9. Deep learning for sequences and text

 9.1. Second attempt at weather prediction: Introducing RNNs

 9.1.1. Why dense layers fail to model sequential order

 9.1.2. How RNNs model sequential order

 9.2. Building deep-learning models for text

 9.2.1. How text is represented in machine learning: One-hot and multi-hot encoding

 9.2.2. First attempt at the sentiment-analysis problem

 9.2.3. A more efficient representation of text: Word embeddings

 9.2.4. 1D convnets

 9.3. Sequence-to-sequence tasks with attention mechanism

 9.3.1. Formulation of the sequence-to-sequence task

 9.3.2. The encoder-decoder architecture and the attention mechanism

 9.3.3. Deep dive into the attention-based encoder-decoder model

 Materials for further reading

 Exercises

 Summary

 Chapter 10. Generative deep learning

 10.1. Generating text with LSTM

 10.1.1. Next-character predictor: A simple way to generate text

 10.1.2. The LSTM-text-generation example

 10.1.3. Temperature: Adjustable randomness in the generated text

 10.2. Variational autoencoders: Finding an efficient and structured vector representation of images

 10.2.1. Classical autoencoder and VAE: Basic ideas

 10.2.2. A detailed example of VAE: The Fashion-MNIST example

 10.3. Image generation with GANs

 10.3.1. The basic idea behind GANs

 10.3.2. The building blocks of ACGAN

 10.3.3. Diving deeper into the training of ACGAN

 10.3.4. Seeing the MNIST ACGAN training and generation

 Materials for further reading

 Exercises

 Summary

 Chapter 11. Basics of deep reinforcement learning

 11.1. The formulation of reinforcement-learning problems

 11.2. Policy networks and policy gradients: The cart-pole example

 11.2.1. Cart-pole as a reinforcement-learning problem

 11.2.2. Policy network

 11.2.3. Training the policy network: The REINFORCE algorithm

 11.3. Value networks and Q-learning: The snake game example

 11.3.1. Snake as a reinforcement-learning problem

 11.3.2. Markov decision process and Q-values

 11.3.3. Deep Q-network

 11.3.4. Training the deep Q-network

 Materials for further reading

 Exercises

 Summary

 4. Summary and closing words

 Chapter 12. Testing, optimizing, and deploying models

 12.1. Testing TensorFlow.js models

 12.1.1. Traditional unit testing

 12.1.2. Testing with golden values

 12.1.3. Considerations around continuous training

 12.2. Model optimization

 12.2.1. Model-size optimization through post-training weight quantization

 12.2.2. Inference-speed optimization using GraphModel conversion

 12.3. Deploying TensorFlow.js models on various platforms and environments

 12.3.1. Additional considerations when deploying to the web

 12.3.2. Deployment to cloud serving

 12.3.3. Deploying to a browser extension, like Chrome Extension

 12.3.4. Deploying TensorFlow.js models in JavaScript-based mobile applications

 12.3.5. Deploying TensorFlow.js models in JavaScript-based cross-platform desktop applications

 12.3.6. Deploying TensorFlow.js models on WeChat and other JavaScript-based mobile app plugin systems

 12.3.7. Deploying TensorFlow.js models on single-board computers

 12.3.8. Summary of deployments

 Materials for further reading

 Exercises

 Summary

 Chapter 13. Summary, conclusions, and beyond

 13.1. Key concepts in review

 13.1.1. Various approaches to AI

 13.1.2. What makes deep learning stand out among the subfields of machine learning

 13.1.3. How to think about deep learning at a high level

 13.1.4. Key enabling technologies of deep learning

 13.1.5. Applications and opportunities unlocked by deep learning in JavaScript

 13.2. Quick overview of the deep-learning workflow and algorithms in TensorFlow.js

 13.2.1. The universal workflow of supervised deep learning

 13.2.2. Reviewing model and layer types in TensorFlow.js: A quick reference

 13.2.3. Using pretrained models from TensorFlow.js

 13.2.4. The space of possibilities

 13.2.5. Limitations of deep learning

 13.3. Trends in deep learning

 13.4. Pointers for further exploration

 13.4.1. Practice real-world machine-learning problems on Kaggle

 13.4.2. Read about the latest developments on arXiv

 13.4.3. Explore the TensorFlow.js Ecosystem

 Final words

 A. Installing tfjs-node-gpu and its dependencies

 A.1. Installing tfjs-node-gpu on Linux

 A.2. Installing tfjs-node-gpu on Windows

 B. A quick tutorial of tensors and operations in TensorFlow.js

 B.1. Tensor creation and tensor axis conventions

 B.1.1. Scalar (rank-0 tensor)

 B.1.2. tensor1d (rank-1 tensor)

 B.1.3. tensor2d (rank-2 tensor)

 B.1.4. Rank-3 and higher-dimensional tensors

 B.1.5. The notion of data batches

 B.1.6. Real-world examples of tensors

 B.1.7. Creating tensors from tensor buffers

 B.1.8. Creating all-zero and all-one tensors

 B.1.9. Creating randomly valued tensors

 B.2. Basic tensor operations

 B.2.1. Unary operations

 B.2.2. Binary operations

 B.2.3. Concatenation and slicing of tensors

 B.3. Memory management in TensorFlow.js: tf.dispose() and tf.tidy()

 B.4. Calculating gradients

 Exercises

 Glossary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 When we started TensorFlow.js (TF.js), formerly called deeplearn.js, machine learning (ML) was done mostly in Python. As both
 JavaScript developers and ML practitioners on the Google Brain team, we quickly realized that there was an opportunity to
 bridge the two worlds. Today, TF.js has empowered a new set of developers from the extensive JavaScript community to build
 and deploy ML models and enabled new classes of on-device computation.

 TF.js would not exist in its form today without Shanqing, Stan, and Eric. Their contributions to TensorFlow Python, including
 the TensorFlow Debugger, eager execution, and build and test infrastructure, uniquely positioned them to tie the Python and
 JavaScript worlds together. Early on in the development, their team realized the need for a library on top of deeplearn.js
 that would provide high-level building blocks to develop ML models. Shanqing, Stan, and Eric, among others, built TF.js Layers,
 allowing conversion of Keras models to JavaScript, which dramatically increased the wealth of available models in the TF.js
 ecosystem. When TF.js Layers was ready, we released TF.js to the world.

 To investigate the motivations, hurdles, and desires of software developers, Carrie Cai and Philip Guo deployed a survey to
 the TF.js website. This book is in direct response to the study’s summary: “Our analysis found that developers’ desires for
 ML frameworks extended beyond simply wanting help with APIs: more fundamentally, they desired guidance on understanding and
 applying the conceptual underpinnings of ML itself.”[1]

 1

C. Cai and P. Guo, (2019) “Software Developers Learning Machine Learning: Motivations, Hurdles, and Desires,” IEEE Symposium on Visual Languages and Human-Centric Computing, 2019.

 Deep Learning with JavaScript contains a mix of deep learning theory as well as real-world examples in JavaScript with TF.js. It is a great resource for
 JavaScript developers with no ML experience or formal math background, as well as ML practitioners who would like to extend
 their work into the JavaScript ecosystem. This book follows the template of Deep Learning with Python, one of the most popular applied-ML texts, written by the Keras creator, François Chollet. Expanding on Chollet’s work, Deep Learning with JavaScript does an amazing job building on the unique things that JavaScript has to offer: interactivity, portability, and on-device
 computation. It covers core ML concepts, but does not shy away from state-of-the-art ML topics, such as text translation,
 generative models, and reinforcement learning. It even gives pragmatic advice on deploying ML models into real-world applications
 written by practitioners who have extensive experience deploying ML to the real world. The examples in this book are backed
 by interactive demos that demonstrate the unique advantages of the JavaScript ecosystem. All the code is open-sourced, so
 you can interact with it and fork it online.

 This book should serve as the authoritative source for readers who want to learn ML and use JavaScript as their main language.
 Sitting at the forefront of ML and JavaScript, we hope you find the concepts in this book useful and the journey in JavaScript
 ML a fruitful and exciting one.

 —NIKHIL THORAT AND DANIEL SMILKOV,
inventors of deeplearn.js
and technical leads of TensorFlow.js

Preface

 The most significant event in the recent history of technology is perhaps the explosion in the power of neural networks since
 2012. This was when the growth in labeled datasets, increases in computation power, and innovations in algorithms came together
 and reached a critical mass. Since then, deep neural networks have made previously unachievable tasks achievable and boosted
 the accuracies in other tasks, pushing them beyond academic research and into practical applications in domains such as speech
 recognition, image labeling, generative models, and recommendation systems, just to name a few.

 It was against this backdrop that our team at Google Brain started developing TensorFlow.js. When the project started, many
 regarded “deep learning in JavaScript” as a novelty, perhaps a gimmick, fun for certain use cases, but not to be pursued with
 seriousness. While Python already had several well-established and powerful frameworks for deep learning, the JavaScript machine-learning
 landscape remained splintered and incomplete. Of the handful of JavaScript libraries available back then, most only supported
 deploying models pretrained in other languages (usually in Python). For the few that supported building and training models
 from scratch, the scope of supported model types was limited. Considering JavaScript’s popular status and its ubiquity that
 straddles client and server sides, this was a strange situation.

 TensorFlow.js is the first full-fledged industry-quality library for doing neural networks in JavaScript. The range of capabilities
 it provides spans multiple dimensions. First, it supports a wide range of neural-networks layers, suitable for various data
 types ranging from numeric to text, from audio to images. Second, it provides APIs for loading pretrained models for inference,
 fine-tuning pretrained models, and building and training models from scratch. Third, it provides both a high-level, Keras-like
 API for practitioners who opt to use well-established layer types, and a low-level, TensorFlow-like API for those who wish
 to implement more novel algorithms. Finally, it is designed to be runnable in a wide selection of environments and hardware
 types, including the web browser, server side (Node.js), mobile (e.g., React Native and WeChat), and desktop (electron). Adding
 to the multidimensional capability of TensorFlow.js is its status as a first-class integrated part of the larger TensorFlow/Keras
 ecosystem, specifically its API consistency and two-way model-format compatibility with the Python libraries.

 The book you have in your hands will guide your grand tour through this multidimensional space of capabilities. We’ve chosen
 a path that primarily cuts through the first dimension (modeling tasks), enriched by excursions along the remaining dimensions.
 We start from the relatively simpler task of predicting numbers from numbers (regression) to the more complex ones such as
 predicting classes from images and sequences, ending our trip on the fascinating topics of using neural networks to generate
 new images and training agents to make decisions (reinforcement learning).

 We wrote the book not just as a recipe for how to write code in TensorFlow.js, but as an introductory course in the foundations
 of machine learning in the native language of JavaScript and web developers. The field of deep learning is a fast-evolving
 one. It is our belief that a firm understanding of machine learning is possible without formal mathematical treatment, and
 this understanding will enable you to keep yourself up-to-date in future evolution of the techniques.

 With this book you’ve made the first step in becoming a member of the growing community of JavaScript machine-learning practitioners,
 who’ve already brought about many impactful applications at the intersection between JavaScript and deep learning. It is our
 sincere hope that this book will kindle your own creativity and ingenuity in this space.

 SHANQING CAI, STAN BILESCHI, AND ERIC NIELSEN
September 2019
Cambridge, MA

Acknowledgments

 This book owes Deep Learning with Python by François Chollet for its overall structure. Despite the fact that the code was rewritten in a different language and much
 new content was added for the JavaScript ecosystem and to reflect new developments in the field, neither this book nor the
 entire high-level API of TensorFlow.js would have been a reality without pioneer work on Keras led by François.

 Our journey to the completion of this book and all the related code was made pleasant and fulfilling thanks to the incredible
 support from our colleagues on Google’s TensorFlow.js Team. The seminal and foundational work by Daniel Smilkov and Nikhil
 Thorat on the low-level WebGL kernels and backpropagation forms a rock-solid foundation for model building and training. The
 work by Nick Kreeger on the Node.js binding to TensorFlow’s C library is the main reason why we can run neural networks in
 the browser and Node.js with the same code. The TensorFlow.js data API by David Soergel and Kangyi Zhang makes chapter 6 of the book possible, while chapter 7 was enabled by the visualization work by Yannick Assogba. The performance optimization techniques described in chapter 11 wouldn’t be possible without Ping Yu’s work on op-level interface with TensorFlow. The speed of our examples wouldn’t be
 nearly as fast as it is today without the focused performance optimization work by Ann Yuan. The leadership of Sarah Sirajuddin,
 Sandeep Gupta, and Brijesh Krishnaswami is critical to the overall long-term success of the TensorFlow.js project.

 We would have fallen off the track without the support and encouragement of D. Sculley, who carefully reviewed all the chapters
 of the book. We’re also immensely grateful for all the encouragement we received from Fernanda Viegas, Martin Wattenberg,
 Hal Abelson, and many other colleagues of ours at Google. Our writing and content were greatly improved as a result of the
 detailed review by François Chollet, Nikhil Thorat, Daniel Smilkov, Jamie Smith, Brian K. Lee, and Augustus Odena, as well
 as by in-depth discussion with Suharsh Sivakumar.

 One of the unique pleasures of working on a project such as TensorFlow.js is the opportunity to work alongside and interact
 with the worldwide open-source software community. TensorFlow.js was fortunate to have a group of talented and driven contributors
 including Manraj Singh, Kai Sasaki, Josh Gartman, Sasha Illarionov, David Sanders, syt123450@, and many many others, whose
 tireless work on the library expanded its capability and improved its quality. Manraj Singh also contributed the phishing-detection
 example used in chapter 3 of the book.

 We are grateful to our editorial team at Manning Publications. The dedicated and tireless work by Brian Sawyer, Jennifer Stout,
 Rebecca Rinehart, and Mehmed Pasic, and many others made it possible for we authors to focus on writing the content. Marc-Philip
 Huget provided extensive and incisive technical review throughout the development process. Special thanks go to our reviewers,
 Alain Lompo, Andreas Refsgaard, Buu Nguyen, David DiMaria, Edin Kapic, Edwin Kwok, Eoghan O’Donnell, Evan Wallace, George
 thomas, Giuliano Bertoti, Jason Hales, Marcio Nicolau, Michael Wall, Paulo Nuin, Pietro Maffi, Polina Keselman, Prabhuti Prakash,
 Ryan Burrows, Satej Sahu, Suresh Rangarajulu, Ursin Stauss, and Vaijanath Rao, whose suggestions helped make this a better
 book.

 We thank our MEAP readers for catching and pointing out quite a few typographical and technical errors.

 Finally, none of this would be possible without the tremendous understanding and sacrifice on the part of our families. Shanqing
 Cai would like to express the deepest gratitude to his wife, Wei, as well as his parents and parents-in-law for their help
 and support during this book’s year-long writing process. Stan Bileschi would like to thank his mother and father, as well
 as his step-mother and step-father, for providing a foundation and direction to build a successful career in science and engineering.
 He would also like to thank his wife, Constance, for her love and support. Eric Nielsen would like to say to his friends and
 family, thank you.

About this Book

Who should read this book

 This book is written for programmers who have a working knowledge of JavaScript, from prior experience with either web frontend
 development or Node.js-based backend development, and wish to venture into the world of deep learning. It aims to satisfy
 the learning needs of the following two subgroups of readers:

 	JavaScript programmers who aspire to go from little-to-no experience with machine learning or its mathematical background,
 to a decent knowledge of how deep learning works and a practical understanding of the deep-learning workflow that is sufficient
 for solving common data-science problems such as classification and regression

 	Web or Node.js developers who are tasked with deploying pre-trained models in their web app or backend stack as new features

 For the first group of readers, this book develops the basic concepts of machine learning and deep learning in a ground-up
 fashion, using JavaScript code examples that are fun and ready for fiddling and hacking. We use diagrams, pseudo-code, and
 concrete examples in lieu of formal mathematics to help you form an intuitive, yet firm, grasp of the foundations of how deep
 learning works.

 For the second group of readers, we cover the key steps of converting existing models (e.g., from Python training libraries)
 into a web- and/or Node-compatible format suitable for deployment in the frontend or the Node stack. We emphasize practical
 aspects such as optimizing model size and performance, as well as considerations for various deployment environments ranging
 from a server to browser extensions and mobile apps.

 This book provides in-depth coverage of the TensorFlow.js API for ingesting and formatting data, for building and loading
 models, and for running inference, evaluation, and training for all readers.

 Finally, technically minded people who don’t code regularly in JavaScript or any other language will also find this book useful
 as an introductory text for both basic and advanced neural networks.

How this book is organized: A roadmap

 This book is organized into four parts. The first part, consisting of chapter 1 only, introduces you to the landscape of artificial intelligence, machine learning, and deep learning, and why it makes sense
 to practice deep learning in JavaScript.

 The second part forms a gentle introduction to the most foundational and frequently encountered concepts in deep learning.
 In particular:

 	
Chapters 2 and 3 are your gentle on-ramp to machine learning. Chapter 2 works through a simple problem of predicting a single number from another number by fitting a straight line (linear regression)
 and uses it to illustrate how backpropagation (the engine of deep learning) works. Chapter 3 builds on chapter 2 by introducing nonlinearity, multi-layered networks, and classification tasks. From this chapter you will gain an understanding
 of what nonlinearity is, how it works, and why it gives deep neural networks their expressive power.

 	
Chapter 4 deals with image data and the neural-network architecture dedicated to solving image-related machine-learning problems: convolutional
 networks (convnets). We will also show you why convolution is a generic method that has uses beyond images by using audio
 inputs as an example.

 	
Chapter 5 continues the focus on convnets and image-like inputs, but shifts into the topic of transfer learning: how to train new models
 based on existing ones, instead of starting from scratch.

 Part 3 of the book systematically covers more advanced topics in deep learning for users who wish to build an understanding of more
 cutting-edge techniques, with a focus on specific challenging areas of ML systems, and the TensorFlow.js tools to work with
 them:

 	
Chapter 6 discusses techniques for dealing with data in the context of deep learning.

 	
Chapter 7 shows the techniques for visualizing data and the models that process them, an important and indispensable step for any deep-learning
 workflow.

 	
Chapter 8 focuses on the important topics of underfitting and overfitting in deep learning, and techniques for analyzing and mitigating
 them. Through this discussion, we condense what we’ve learned in this book so far into a recipe referred to as “the universal
 workflow of machine learning.” This chapter prepares you for the advanced neural-network architectures and problems in chapters 9–11.

 	
Chapter 9 is dedicated to deep neural networks that process sequential data and text inputs.

 	
Chapters 10 and 11 cover the advanced deep-learning areas of generative models (including generative adversarial networks) and reinforcement
 learning, respectively.

 In the fourth and final part of the book, we cover techniques for testing, optimizing and deploying models trained or converted
 with TensorFlow.js (chapter 12) and wrap up the whole book by recapitulating the most important concepts and workflows (chapter 13).

 Each chapter finishes with exercises to help you gauge your level of understanding and hone your deep-learning skills in TensorFlow.js
 in a hands-on fashion.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line
 of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts. The code for the examples in this book is
 available for download from GitHub at https://github.com/tensorflow/tfjs-examples.

liveBook discussion forum

 Purchase of Deep Learning with JavaScript includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/deep-learning-with-javascript/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the Authors

 SHANQING CAI, STANLEY BILESCHI, AND ERIC NIELSEN are software engineers on the Google Brain team. They were the primary developers of the high-level API of TensorFlow.js,
 including the examples, the documentation, and the related tooling. They have applied TensorFlow.js-based deep learning to
 real-world problems such as alternative communication for people with disabilities. They each have advanced degrees from MIT.

About the cover illustration

 The figure on the cover of Deep Learning with JavaScript is captioned “Finne Katschin,” or a girl from the Katschin tribe. The illustration is taken from a collection of dress costumes
 from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s
 collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from
 each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where
 they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to
 tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Grasset de Saint-Sauveur’s pictures.

Part 1. Motivation and basic concepts

 Part 1 consists of a single chapter that orients you to the basic concepts that will form the backdrop for the rest of the book.
 These include artificial intelligence, machine learning, and deep learning and the relations between them. Chapter 1 also addresses the value and potential of practicing deep learning in JavaScript.

Chapter 1. Deep learning and JavaScript

 This chapter covers

 	What deep learning is and how it is related to artificial intelligence (AI) and machine learning

 	What makes deep learning stand out among various machine-learning techniques, and the factors that led to the current “deep-learning
 revolution”

 	The reasons for doing deep learning in JavaScript using TensorFlow.js

 	The overall organization of this book

 All the buzz around artificial intelligence (AI) is happening for a good reason: the deep-learning revolution, as it is sometimes
 called, has indeed happened. Deep-learning revolution refers to the rapid progress made in the speed and techniques of deep neural networks that started around 2012 and is still
 ongoing. Since then, deep neural networks have been applied to an increasingly wide range of problems, enabling machines to
 solve previously unsolvable problems in some cases and dramatically improving solution accuracy in others (see table 1.1 for examples). To experts in AI, many of these breakthroughs in neural networks were stunning. To engineers who use neural networks, the opportunities this progress has created are galvanizing.

 Table 1.1. Examples of tasks in which accuracy improved significantly thanks to deep-learning techniques since the beginning of the deep-learning
 revolution around 2012. This list is by no means comprehensive. The pace of progress will undoubtedly continue in the coming
 months and years.

 	
 Machine-learning task

 	
 Representative deep-learning technology

 	
 Where we use TensorFlow.js to perform a similar task in this book

 	Categorizing the content of images
 	Deep convolutional neural networks (convnets) such as ResNet[a] and Inception[b] reduced the error rate in the ImageNet classification task from ~25% in 2011 to below 5% in 2017.[c]

 	Training convnets for MNIST (chapter 4); MobileNet inference and transfer learning (chapter 5)

 	Localizing objects and images
 	Variants of deep convnets[d] reduced localization error from 0.33 in 2012 to 0.06 in 2017.

 	YOLO in TensorFlow.js (section 5.2)

 	Translating one natural language to another
 	Google’s neural machine translation (GNMT) reduced translation error by ~60% compared to the best traditional machine-translation
 techniques.[e]

 	Long Short-Term Memory (LSTM)-based sequence-to-sequence models with attention mechanisms (chapter 9)

 	Recognizing large-vocabulary, continuous speech
 	An LSTM-based encoder-attention-decoder architecture achieves a lower word-error rate than the best non-deep-learning speech
 recognition system.[f]

 	Attention-based LSTM small-vocabulary continuous speech recognition (chapter 9)

 	Generating realistic-looking images
 	Generative adversarial networks (GANs) are now capable of generating realistic-looking images based on training data (see
 https://github.com/junyanz/CycleGAN).

 	Generating images using variational autoencoders (VAEs) and GANs (chapter 9)

 	Generating music
 	Recurrent neural networks (RNNs) and VAEs are helping create music scores and novel instrument sounds (see https://magenta.tensorflow.org/demos).

 	Training LSTMs to generate text (chapter 9)

 	Learning to play games
 	Deep learning combined with reinforcement learning (RL) lets machines learn to play simple Atari games using raw pixels as
 the only input.[g] Combining deep learning and Monte Carlo tree search, Alpha-Zero reached a super-human level of Go purely through self-play.[h]

 	Using RL to solve the cart-pole control problem and a snake video game (chapter 11)

 	Diagnosing diseases using medical images
 	Deep convnets were able to achieve specificity and sensitivity comparable to trained human ophthalmologists in diagnosing
 diabetic retinopathy based on images of patients’ retinas.[i]

 	Transfer learning using a pretrained MobileNet image model (chapter 5).

 a

Kaiming He et al., “Deep Residual Learning for Image Recognition,” Proc. IEEE Conference Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778, http://mng.bz/PO5P.

 b

Christian Szegedy et al., “Going Deeper with Convolutions,” Proc. IEEE Conference Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9, http://mng.bz/JzGv.

 c

Large Scale Visual Recognition Challenge 2017 (ILSVRC2017) results, http://image-net.org/challenges/LSVRC/2017/results.

 d

Yunpeng Chen et al., “Dual Path Networks,” https://arxiv.org/pdf/1707.01629.pdf.

 e

Yonghui Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” submitted
 26 Sept. 2016, https://arxiv.org/abs/1609.08144.

 f

Chung-Cheng Chiu et al., “State-of-the-Art Speech Recognition with Sequence-to-Sequence Models,” submitted 5 Dec. 2017, https://arxiv.org/abs/1712.01769.

 g

Volodymyr Mnih et al., “Playing Atari with Deep Reinforcement Learning,” NIPS Deep Learning Workshop 2013, https://arxiv.org/abs/1312.5602.

 h

David Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” submitted 5
 Dec. 2017, https://arxiv.org/abs/1712.01815.

 i

Varun Gulshan et al., “Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
 Fundus Photographs,” JAMA, vol. 316, no. 22, 2016, pp. 2402–2410, http://mng.bz/wlDQ.

 JavaScript is a language traditionally devoted to creating web browser UI and backend business logic (with Node.js). As someone
 who expresses ideas and creativity in JavaScript, you may feel a little left out by the deep-learning revolution, which seems
 to be the exclusive territory of languages such as Python, R, and C++. This book aims at bringing deep learning and JavaScript
 together through the JavaScript deep-learning library called TensorFlow.js. We do this so that JavaScript developers like
 you can learn how to write deep neural networks without learning a new language; more importantly, we believe deep learning
 and JavaScript belong together.

 The cross-pollination will create unique opportunities, ones unavailable in any other programming language. It goes both ways
 for JavaScript and deep learning. With JavaScript, deep-learning applications can run on more platforms, reach a wider audience,
 and become more visual and interactive. With deep learning, JavaScript developers can make their web apps more intelligent.
 We will describe how later in this chapter.

 Table 1.1 lists some of the most exciting achievements of deep learning that we’ve seen in this deep-learning revolution so far. In
 this book, we have selected a number of these applications and created examples of how to implement them in TensorFlow.js,
 either in their full glory or in reduced form. These examples will be covered in depth in the coming chapters. Therefore,
 you will not stop at marveling at the breakthroughs: you can learn about them, understand them, and implement them all in
 JavaScript.

 But before you dive into these exciting, hands-on deep-learning examples, we need to introduce the essential context around
 AI, deep learning, and neural networks.

1.1. Artificial intelligence, machine learning, neural networks, and deep learning

 Phrases like AI, machine learning, neural networks, and deep learning mean related but different things. To orient yourself in the dazzling world of AI, you need to understand what they refer
 to. Let’s define these terms and the relations among them.

 1.1.1. Artificial intelligence

 As the Venn diagram in figure 1.1 shows, AI is a broad field. A concise definition of the field would be as follows: the effort to automate intellectual tasks normally performed by humans. As such, AI encompasses machine learning, neural networks, and deep learning, but it also includes many approaches distinct
 from machine learning. Early chess programs, for instance, involved hard-coded rules crafted by programmers. Those didn’t
 qualify as machine learning because the machines were programmed explicitly to solve the problems instead of being allowed
 to discover strategies for solving the problems by learning from the data. For a long time, many experts believed that human-level AI could be achieved through handcrafting a sufficiently large set of explicit rules for manipulating knowledge
 and making decisions. This approach is known as symbolic AI, and it was the dominant paradigm in AI from the 1950s to the late 1980s.[1]

 1

An important type of symbolic AI is expert systems. See this Britannica article to learn about them: http://mng.bz/7zmy.

 Figure 1.1. Relations between AI, machine learning, neural networks, and deep learning. As this Venn diagram shows, machine learning is
 a subfield of AI. Some areas of AI use approaches different from machine learning, such as symbolic AI. Neural networks are
 a subfield of machine learning. There exist non-neural-network machine-learning techniques, such as decision trees. Deep learning
 is the science and art of creating and applying “deep” neural networks—neural networks with multiple “layers”— versus “shallow”
 neural networks—neural networks with fewer layers.

 [image:]

 1.1.2. Machine learning: How it differs from traditional programming

 Machine learning, as a subfield of AI distinct from symbolic AI, arises from a question: Could a computer go beyond what a
 programmer knows how to program it to perform, and learn on its own how to perform a specific task? As you can see, the approach
 of machine learning is fundamentally different from that of symbolic AI. Whereas symbolic AI relies on hard-coding knowledge
 and rules, machine learning seeks to avoid this hard-coding. So, if a machine isn’t explicitly instructed on how to perform
 a task, how would it learn how to do so? The answer is by learning from examples in the data.

 This opened the door to a new programming paradigm (figure 1.2). To give an example of the machine-learning paradigm, let’s suppose you are working on a web app that handles photos uploaded
 by users. A feature you want in the app is automatic classification of photos into ones that contain human faces and ones
 that don’t. The app will take different actions on face images and no-face images. To this end, you want to create a program
 to output a binary face/no-face answer given any input image (made of an array of pixels).

 Figure 1.2. Comparing the classical programming paradigm and the machine-learning paradigm

 [image:]

 We humans can perform this task in a split second: our brains’ genetic hardwiring and life experience give us the ability
 to do so. However, it is hard for any programmer, no matter how smart and experienced, to write an explicit set of rules in
 a programming language (the only practical way for humans to communicate with a computer) on how to accurately decide whether
 an image contains a human face. You can spend days poring over code that does arithmetic on the RGB (red-green-blue) values
 of pixels to detect elliptic contours that look like faces, eyes, and mouths, as well as devising heuristic rules on the geometric
 relations between the contours. But you will soon realize that such effort is laden with arbitrary choices of logic and parameters
 that are hard to justify. More importantly, it is hard to make it work well![2] Any heuristic you come up with is likely to fall short when facing the myriad variations that faces can present in real-life
 images, such as differences in the size, shape, and details of the face; facial expression; hairstyle; skin color; orientation;
 the presence or absence of partial obscuring; glasses; lighting conditions; objects in the background; and so on.

 2

In fact, such approaches have indeed been attempted before and did not work very well. This survey paper provides good examples
 of handcrafting rules for face detection before the advent of deep learning: Erik Hjelmås and Boon Kee Low, “Face Detection:
 A Survey,” Computer Vision and Image Understanding, Sept. 2001, pp. 236–274, http://mng.bz/m4d2.

 In the machine-learning paradigm, you recognize that handcrafting a set of rules for such a task is futile. Instead, you find
 a set of images, some with faces in them and some without. Then you enter the desired (that is, correct) face or no-face answer
 for each one. These answers are referred to as labels. This is a much more tractable (in fact, trivial) task. It may take some time to label all the images if there are a lot
 of them, but the labeling task can be divided among several humans and can proceed in parallel. Once you have the images labeled,
 you apply machine learning and let machines discover the set of rules on their own. If you use the correct machine-learning
 techniques, you will arrive at a trained set of rules capable of performing the face/no-face task with an accuracy > 99%—far
 better than anything you can hope to achieve with handcrafted rules.

 From the previous example, we can see that machine learning is the process of automating the discovery of rules for solving
 complex problems. This automation is beneficial for problems like face detection, in which humans know the rules intuitively
 and can easily label the data. For other problems, the rules are not known intuitively. For example, consider the problem
 of predicting whether a user will click an ad displayed on a web page, given the page’s and the ad’s contents and other information,
 such as time and location. No human has a good sense about how to make accurate predictions for such problems in general.
 Even if one does, the pattern will probably change with time and with the appearance of new content and new ads. But the labeled
 training data is available from the ad service’s history: it is available from the ad servers’ logs. The availability of the
 data and labels alone makes machine learning a good fit for problems like this.

 In figure 1.3, we take a closer look at the steps involved in machine learning. There are two important phases. The first is the training phase. This phase takes the data and answers, together referred to as the training data. Each pair of input data and the desired answer is called an example. With the help of the examples, the training process produces the automatically discovered rules. Although the rules are discovered automatically, they are not discovered entirely from scratch. In other words, machine-learning
 algorithms are not creative in coming up with rules. In particular, a human engineer provides a blueprint for the rules at
 the outset of training. The blueprint is encapsulated in a model, which forms a hypothesis space for the rules the machine may possibly learn. Without this hypothesis space, there is a completely unconstrained and infinite
 space of possible rules to search in, which is not conducive to finding good rules in a limited amount of time. We will describe in great detail the kinds of models available and how to choose the best
 ones based on the problem at hand. For now, it suffices to say that in the context of deep learning, models vary in terms
 of how many layers the neural network consists of, what types of layers they are, and how they are wired together.

 Figure 1.3. A more detailed view of the machine-learning paradigm than that in figure 1.2. The workflow of machine learning consists of two phases: training and inference. Training is the process of the machine
 automatically discovering the rules that convert the data into answers. The learned rules, encapsulated in a trained “model,”
 are the fruit of the training phase and form the basis of the inference phase. Inference means using the model to obtain answers
 for new data.

 [image:]

 With the training data and the model architecture, the training process produces the learned rules, encapsulated in a trained
 model. This process takes the blueprint and alters (or tunes) it in ways that nudge the model’s output closer and closer to
 the desired output. The training phase can take anywhere from milliseconds to days, depending on the amount of training data,
 the complexity of the model architecture, and how fast the hardware is. This style of machine learning—namely, using labeled
 examples to progressively reduce the error in a model’s outputs—is known as supervised learning.[3] Most of the deep-learning algorithms we cover in this book are supervised learning. Once we have the trained model, we are
 ready to apply the learned rules on new data—data that the training process has never seen. This is the second phase, or inference phase. The inference phase is less computationally intensive than the training phase because 1) inference usually happens on one
 input (for instance, one image) at a time, whereas training involves going through all the training data; and 2) during inference,
 the model does not need to be altered.

 3

Another style of machine learning is unsupervised learning, in which unlabeled data is used. Examples of unsupervised learning are clustering (discovering distinct subsets of examples
 in a dataset) and anomaly detection (determining if a given example is sufficiently different from the examples in the training
 set).

Learning representations of data

 Machine learning is about learning from data. But what exactly is learned? The answer: a way to effectively transform the data or, in other words, to change the old representations
 of the data into a new one that gets us closer to solving the problem at hand.

 Before we go any further, what is a representation? At its core, it is a way to look at the data. The same data can be looked
 at in different ways, leading to different representations. For example, a color image can have an RGB or HSV (hue-saturation-value)
 encoding. Here, the words encoding and representation mean essentially the same thing and can be used interchangeably. When encoded in these two different formats, the numerical
 values that represent the pixels are completely different, even though they are for the same image. Different representations
 are useful for solving different problems. For example, to find all the red parts of an image, the RGB representation is more
 useful; but to find color-saturated parts of the same image, the HSV representation is more useful. This is essentially what
 machine learning is all about: finding an appropriate transformation that turns the old representation of the input data into
 a new one—one that is amenable to solving the specific task at hand, such as detecting the location of cars in an image or
 deciding whether an image contains a cat and a dog.

 To give a visual example, we have a collection of white points and several black points in a plane (figure 1.4). Let’s say we want to develop an algorithm that can take the 2D (x, y) coordinates of a point and predict whether that point
 is black or white. In this case,

 	The input data is the two-dimensional Cartesian coordinates (x and y) of a point.

 	The output is the predicted color of the point (whether it’s black or white).

 Figure 1.4. A toy example of the representation transformations that machine learning is about. Panel A: the original representation of
 a dataset consisting of black and white points in a plane. Panels B and C: two successive transformation steps turn the original
 representation into one that is more amenable to the color-classification task.

 [image:]

 The data shows a pattern in panel A of figure 1.4. How would the machine decide the color of a point given the x- and y-coordinates? It cannot simply compare x with a number,
 because the range of the x-coordinates of the white points overlaps with the range of the x-coordinates of the black ones!
 Similarly, the algorithm cannot rely on the y-coordinate. Therefore, we can see that the original representation of the points
 is not a good one for the black-white classification task.

 What we need is a new representation that separates the two colors in a more straightforward way. Here, we transform the original
 Cartesian x-y representation into a polar-coordinate-system representation. In other words, we represent a point by 1) its
 angle—the angle formed by the x-axis and the line that connects the origin with the point (see the example in panel A of figure 1.4) and 2) its radius—its distance from the origin. After this transformation, we arrive at a new representation of the same
 set of data, as panel B of figure 1.4 shows. This representation is more amenable to our task, in that the angle values of the black and white points are now completely
 nonoverlapping. However, this new representation is still not an ideal one in that the black-white color classification cannot
 be made into a simple comparison with a threshold value (like zero).

 Luckily, we can apply a second transformation to get us there. This transformation is based on the simple formula

 (absolute value of angle) - 135 degrees

 The resulting representation, as shown in panel C, is one-dimensional. Compared to the representation in panel B, it throws
 away the irrelevant information about the distance of the points to the origin. But it is a perfect representation in that
 it allows a completely straightforward decision process:

 if the value < 0, the point is classified as white;
 else, the point is classified as black

 In this example, we manually defined a two-step transform of the data representation. But if instead we tried automated searching
 for different possible coordinate transforms using feedback about the percentage of points classified correctly, then we would
 be doing machine learning. The number of transformation steps involved in solving real machine-learning problems is usually
 much greater than two, especially in deep learning, where it can reach hundreds. Also, the kind of representation transformations
 seen in real machine learning can be much more complex compared to those seen in this simple example. Ongoing research in
 deep learning keeps discovering more sophisticated and powerful transformations. But the example in figure 1.4 captures the essence of searching for better representations. This applies to all machine-learning algorithms, including neural networks, decision trees, kernel methods, and so forth.

 1.1.3. Neural networks and deep learning

 Neural networks are a subfield of machine learning, one in which the transformation of the data representation is done by
 a system with an architecture loosely inspired by how neurons are connected in human and animal brains. How are neurons connected
 to each other in brains? It varies among species and brain regions. But a frequently encountered theme of neuronal connection
 is the layer organization. Many parts of the mammalian brain are organized in a layered fashion. Examples include the retina,
 the cerebral cortex, and the cerebellar cortex.

 At least on a superficial level, this pattern is somewhat similar to the general organization of artificial neural networks (simply called neural networks in the world of computing, where there is little risk of confusion), in which the data is processed in multiple separable
 stages, aptly named layers. These layers are usually stacked on top of each other, with connections only between adjacent ones. Figure 1.5 shows a simple (artificial) neural network with four layers. The input data (an image, in this case) feeds into the first
 layer (on the left side of the figure), then flows sequentially from one layer to the next. Each layer applies a new transformation
 on the representation of the data. As the data flows through the layers, the representation becomes increasingly different
 from the original and gets closer and closer to the goal of the neural network—namely, applying a correct label to the input
 image. The last layer (on the right side of the figure) emits the neural network’s final output, which is the result of the
 image-classification task.

 Figure 1.5. The schematic diagram of a neural network, organized in layers. This neural network classifies images of hand-written digits.
 In between the layers, you can see the intermediate representation of the original data. Reproduced with permission from François
 Chollet, Deep Learning with Python, Manning Publications, 2017.

 [image:]

 A layer of neural networks is similar to a mathematical function in that it is a mapping from an input value to an output
 value. However, neural network layers are different from pure mathematical functions in that they are generally stateful. In other words, they hold internal memory. A layer’s memory is captured in its weights. What are weights? They are simply a set of numerical values that belong to the layer and govern the details of how each
 input representation is transformed by the layer into an output representation. For example, the frequently used dense layer transforms its input data by multiplying it with a matrix and adding a vector to the result of the matrix multiplication.
 The matrix and the vector are the dense layer’s weights. When a neural network is trained through exposure to training data,
 the weights get altered systematically in a way that minimizes a certain value called the loss function, which we will cover in detail using concrete examples in chapters 2 and 3.

 Although neural networks are inspired by the brain, we should be careful not to overly humanize them. The purpose of neural
 networks is not to study or mimic how the brain works. That is the realm of neuroscience, a separate academic discipline. Neural networks
 are about enabling machines to perform interesting practical tasks by learning from data. The fact that some neural networks
 show resemblance to some parts of the biological brain, both in structure and in function,[4] is indeed remarkable. But whether this is a coincidence is beyond the scope of this book. In any case, the resemblance should
 not be overread. Importantly, there is no evidence that the brain learns through any form of gradient descent, the primary
 way in which neural networks are trained (covered in the next chapter). Many important techniques in neural networks that
 helped usher in the deep-learning revolution were invented and adopted not because they were backed by neuroscience, but instead
 because they helped neural networks solve practical learning tasks better and faster.

 4

For a compelling example of similarity in functions, see the inputs that maximally activate various layers of a convolutional
 neural network (see chapter 4), which closely resemble the neuronal receptive fields of various parts of the human visual system.

 Now that you know what neural networks are, we can tell you what deep learning is. Deep learning is the study and application of deep neural networks, which are, quite simply, neural networks with many layers (typically, from a dozen to hundreds of layers). Here, the word deep refers to the idea of a large number of successive layers of representations. The number of layers that form a model of the
 data is called the model’s depth. Other appropriate names for the field could have been “layered representation learning” or “hierarchical representation
 learning.” Modern deep learning often involves tens or hundreds of successive layers of representations—and they are all learned
 automatically from exposure to training data. Meanwhile, other approaches to machine learning tend to focus on learning only one or two layers of representations of the data; hence, they
 are sometimes called shallow learning.

 It is a misconception that the “deep” in deep learning is about any kind of deep understanding of data—that is, “deep” in
 the sense of understanding the meaning behind sentences like “freedom is not free” or savoring the contradictions and self-references
 in M.C. Escher’s drawings. That kind of “deep” remains an elusive goal for AI researchers.[5] In the future, deep learning may bring us closer to this sort of depth, but that will certainly be harder to quantify and
 achieve than adding layers to neural networks.

 5

Douglas Hofstadter, “The Shallowness of Google Translate,” The Atlantic, 30 Jan. 2018, http://mng.bz/5AE1.

 	

 Not just neural networks: Other popular machine-learning techniques

 We went directly from the “machine learning” circle of the Venn diagram in figure 1.1 to the “neural network” circle inside. However, it is worthwhile for us to briefly visit the machine-learning techniques
 that are not neural networks, not only because doing so will give us a better historical context but also because you may
 run into some of the techniques in existing code.

 The Naive Bayes classifier is one of the earliest forms of machine learning. Put simply, Bayes’ theorem is about how to estimate the probability of
 an event given 1) the a priori belief of how likely the event is and 2) the observed facts (called features) relating to the event. This theorem can be used to classify observed data points into one of many known categories by choosing
 the category with the highest probability (likelihood) given the observed facts. Naive Bayes is based on the assumption that
 the observed facts are mutually independent (a strong and naive assumption, hence the name).

 Logistic regression (or logreg) is also a classification technique. Thanks to its simple and versatile nature, it is still popular and often the first thing
 a data scientist will try in order to get a feel for the classification task at hand.

 Kernel methods, of which support vector machines (SVMs) are the best-known examples, tackle binary (that is, two-class) classification problems
 by mapping the original data into spaces of higher dimensionality and finding a transformation that maximizes a distance (called
 a margin) between two classes of examples.

 Decision trees are flowchart-like structures that let you classify input data points or predict output values given inputs. At each step
 of the flowchart, you answer a simple yes/no question, such as, “Is feature X greater than a certain threshold?” Depending
 on whether the answer is yes or no, you advance to one of two possible next questions, which is just another yes/no question,
 and so forth. Once you reach the end of the flowchart, you will get the final answer. As such, decision trees are easy for
 humans to visualize and iterpret.

 Random forests and gradient-boosted machines increase the accuracy of decision trees by forming an ensemble of a large number
 of specialized, individual decision trees. Ensembling, also known as ensemble learning, is the technique of training a collection (that is, an ensemble) of individual machine-learning models and using an aggregate
 of their outputs during inference. Today, gradient boosting may be one of the best algorithms, if not the best, for dealing
 with nonperceptual data (for example, credit card fraud detection). Alongside deep learning, it is one of the most commonly
 used techniques in data science competitions, such as those on Kaggle.

 	

The rise, fall, and rise of neural networks, and the reasons behind them

 The core ideas of neural networks were formed as early as the 1950s. The key techniques for training neural networks, including
 backpropagation, were invented in the 1980s. However, for a long period of time between the 1980s and the 2010s, neural networks
 were almost completely shunned by the research community, partly because of the popularity of competing methods such as SVMs
 and partly because of the lack of an ability to train deep (many-layered) neural networks. But around 2010, a number of people
 still working on neural networks started to make important breakthroughs: the groups of Geoffrey Hinton at the University
 of Toronto, Yoshua Bengio at the University of Montreal, and Yann LeCun at New York University, as well as researchers at
 the Dalle Molle Institute for Artificial Intelligence Research (IDSIA) in Switzerland. These groups achieved important milestones,
 including the first practical implementations of deep neural networks on graphics processing units (GPUs) and driving the
 error rate from about 25% down to less than 5% in the ImageNet computer vision challenge.

 Since 2012, deep convolutional neural networks (convnets) have become the go-to algorithm for all computer-vision tasks; more generally, they work on all perceptual tasks.
 Examples of non-computer-vision perceptual tasks include speech recognition. At major computer vision conferences in 2015
 and 2016, it was nearly impossible to find presentations that didn’t involve convnets in some form. At the same time, deep
 learning has also found applications in many other types of problems, such as natural language processing. It has completely
 replaced SVMs and decision trees in a wide range of applications. For instance, for several years, the European Organization
 for Nuclear Research, CERN, used decision-tree-based methods to analyze particle data from the ATLAS detector at the Large
 Hadron Collider; but CERN eventually switched to deep neural networks due to their higher performance and ease of training
 on large datasets.

 So, what makes deep learning stand out from the range of available machine-learning algorithms? (See info box 1.1 for a list of some popular machine-learning techniques that are not deep neural networks.) The primary reason deep learning
 took off so quickly is that it offered better performance on many problems. But that’s not the only reason. Deep learning
 also makes problem-solving much easier because it automates what used to be the most crucial and difficult step in a machine-learning workflow: feature engineering.

 Previous machine-learning techniques—shallow learning—only involved transforming the input data into one or two successive
 representation spaces, usually via simple transformations such as high-dimensional nonlinear projections (kernel methods)
 or decision trees. But the refined representations required by complex problems generally can’t be attained by such techniques.
 As such, human engineers had to go to great lengths to make the initial input data more amenable to processing by these methods:
 they had to manually engineer good layers of representations for their data. This is called feature engineering. Deep learning, on the other hand, automates this step: with deep learning, you learn all features in one pass rather than
 having to engineer them yourself. This has greatly simplified machine-learning workflows, often replacing sophisticated multistage
 pipelines with a single, simple, end-to-end deep-learning model. Through automating feature engineering, deep learning makes
 machine learning less labor-intensive and more robust—two birds with one stone.

 These are the two essential characteristics of how deep learning learns from data: the incremental, layer-by-layer way in
 which increasingly complex representations are developed; and the fact that these intermediate incremental representations
 are learned jointly, each layer being updated to follow both the representational needs of the layer above and the needs of
 the layer below. Together, these two properties have made deep learning vastly more successful than previous approaches to
 machine learning.

 1.1.4. Why deep learning? Why now?

 If basic ideas and core techniques for neural networks already existed as early as the 1980s, why did the deep-learning revolution
 start to happen only after 2012? What changed in the two decades in between? In general, three technical forces drive advances
 in machine learning:

 	Hardware

 	Datasets and benchmarks

 	Algorithmic advances

 Let’s visit these factors one by one.

Hardware

 Deep learning is an engineering science guided by experimental findings rather than by theory. Algorithmic advances become
 possible only when appropriate hardware are available to try new ideas (or to scale up old ideas, as is often the case). Typical
 deep-learning models used in computer vision or speech recognition require orders of magnitude more computational power than
 what your laptop can deliver.

 Throughout the 2000s, companies like NVIDIA and AMD invested billions of dollars in developing fast, massively parallel chips
 (GPUs) to power the graphics of increasingly photorealistic video games—cheap, single-purpose supercomputers designed to render complex 3D scenes on your screen in real time. This investment came to benefit the scientific community
 when, in 2007, NVIDIA launched CUDA (short for Compute Unified Device Architecture), a general-purpose programming interface
 for its line of GPUs. A small number of GPUs started replacing massive clusters of CPUs in various highly parallelizable applications,
 beginning with physics modeling. Deep neural networks, consisting mostly of many matrix multiplications and additions, are
 also highly parallelizable.

 Around 2011, some researchers began to write CUDA implementations of neural nets—Dan Ciresan and Alex Krizhevsky were among
 the first. Today, high-end GPUs can deliver hundreds of times more parallel computation power when training deep neural networks
 than what a typical CPU is capable of. Without the sheer computational power of modern GPUs, it would be impossible to train
 many state-of-the-art deep neural networks.

Data and benchmarks

 If hardware and algorithms are the steam engine of the deep-learning revolution, then data is its coal: the raw material that
 powers our intelligent machines, without which nothing would be possible. When it comes to data, in addition to the exponential
 progress in storage hardware over the past 20 years (following Moore’s law), the game changer has been the rise of the internet,
 which has made it feasible to collect and distribute very large datasets for machine learning. Today, large companies work
 with image datasets, video datasets, and natural language datasets that couldn’t have been collected without the internet.
 User-generated image tags on Flickr, for instance, have been a treasure trove of data for computer vision. So are YouTube
 videos. And Wikipedia is a key dataset for natural language processing.

 If there’s one dataset that has been a catalyst for the rise of deep learning, it’s ImageNet, which consists of 1.4 million
 images that have been hand annotated with 1,000 image categories. What makes ImageNet special isn’t just its large size; it
 is also the yearly competition associated with it. As ImageNet and Kaggle have been demonstrating since 2010, public competitions
 are an excellent way to motivate researchers and engineers to push the envelope. Having common benchmarks that researchers
 compete to beat has greatly helped the recent rise of deep learning.

Algorithmic advances

 In addition to hardware and data, until the late 2000s, we were missing a reliable way to train very deep neural networks.
 As a result, neural networks were still fairly shallow, using only one or two layers of representations; thus, they couldn’t
 shine against more refined shallow methods such as SVMs and random forests. The key issue was that of gradient propagation
 through deep stacks of layers. The feedback signal used to train neural networks would fade away as the number of layers increased.

 This changed around 2009 to 2010 with the advent of several simple but important algorithmic improvements that allowed for
 better gradient propagation:

 	Better activation functions for neural network layers (such as the rectified linear unit, or relu)

 	
Better weight-initialization schemes (for example, Glorot initialization)

 	Better optimization schemes (for example, RMSProp and ADAM optimizers)

 Only when these improvements began to allow for training models with 10 or more layers did deep learning start to shine. Finally,
 in 2014, 2015, and 2016, even more advanced ways to help gradient propagation were discovered, such as batch normalization,
 residual connections, and depthwise separable convolutions. Today we can train from scratch models that are thousands of layers
 deep.

1.2. Why combine JavaScript and machine learning?

 Machine learning, like other branches of AI and data science, is usually done with traditionally backend-focused languages,
 such as Python and R, running on servers or workstations outside the web browser.[6] This status quo is not surprising. The training of deep neural networks often requires the kind of multicore and GPU-accelerated
 computation not directly available in a browser tab; the enormous amount of data that it sometimes takes to train such models
 is most conveniently ingested in the backend: for example, from a native file system of virtually unlimited size. Until recently,
 many regarded “deep learning in JavaScript” as a novelty. In this section, we will present reasons why, for many kinds of
 applications, performing deep learning in the browser environment with JavaScript is a wise choice, and explain how combining
 the power of deep learning and the web browser creates unique opportunities, especially with the help of TensorFlow.js.

 6

Srishti Deoras, “Top 10 Programming Languages for Data Scientists to Learn in 2018,” Analytics India Magazine, 25 Jan. 2018, http://mng.bz/6wrD.

 First, once a machine-learning model is trained, it must be deployed somewhere in order to make predictions on real data (such
 as classifying images and text, detecting events in audio or video streams, and so on). Without deployment, training a model
 is just a waste of compute power. It is often desirable or imperative that the “somewhere” is a web frontend. Readers of this
 book are likely to appreciate the overall importance of the web browser. On desktops and laptops, the web browser is the dominant
 means through which users access content and services on the internet. It is how desktop and laptop users spend most of their
 time using those devices, exceeding the second place by a large margin. It is how users get vast amounts of their daily work
 done, stay connected, and entertain themselves. The wide range of applications that run in the web browser provide rich opportunities
 for applying client-side machine learning. For the mobile frontend, the web browser trails behind native mobile apps in terms
 of user engagement and time spent. But mobile browsers are nonetheless a force to be reckoned with because of their broader
 reach, instant access, and faster development cycles.[7] In fact, because of their flexibility and ease of use, many mobile apps, such as Twitter and Facebook, drop into a JavaScript-enabled
 web view for certain types of content.

 7

Rishabh Borde, “Internet Time Spend in Mobile Apps, 2017–19: It’s 8x than Mobile Web,” DazeInfo, 12 Apr. 2017, http://mng.bz/omDr.

 Due to this broad reach, the web browser is a logical choice for deploying deep-learning models, as long as the kinds of data
 the models expect are available in the browser. But what kinds of data are available in the browser? The answer is, many!
 Take, for example, the most popular applications of deep learning: classifying and detecting objects in images and videos,
 transcribing speech, translating languages, and analyzing text content. Web browsers are equipped with arguably the most comprehensive
 technologies and APIs for presenting (and, with user permission, for capturing) textual, image, audio, and video data. As
 a result, powerful machine-learning models can be directly used in the browser, for example, with TensorFlow.js and straightforward
 conversion processes. In the later chapters of this book, we will cover many concrete examples of deploying deep-learning
 models in the browser. For example, once you have captured images from a webcam, you can use TensorFlow.js to run MobileNet
 to label objects, run YOLO2 to put bounding boxes around detected objects, run Lipnet to do lipreading, or run a CNN-LSTM
 network to apply captions to images.

 Once you have captured audio from the microphone using the browser’s WebAudio API, TensorFlow.js can run models to perform
 real-time spoken-word recognition. There are exciting applications with textual data as well, such as assigning sentiment
 scores to user text like movie reviews (chapter 9). Beyond these data modalities, the modern web browser can access a range of sensors on mobile devices. For example, HTML5
 provides API access to geolocation (latitude and longitude), motion (device orientation and acceleration), and ambient light
 (see http://mobilehtml5.org). Combined with deep learning and other data modalities, data from such sensors opens doors to many exciting new applications.

 Browser-based application of deep learning comes with five additional benefits: reduced server cost, lowered inference latency,
 data privacy, instant GPU acceleration, and instant access:

 	
Server cost is often an important consideration when designing and scaling web services. The computation required to run deep-learning
 models in a timely manner is often significant, necessitating the use of GPU acceleration. If models are not deployed to the
 client side, they need to be deployed on GPU-backed machines, such as virtual machines with CUDA GPUs from Google Cloud or
 Amazon Web Services. Such cloud GPU machines are often costly. Even the most basic GPU machines presently cost in the neighborhood
 of $0.5–1 per hour (see https://www.ec2instances.info and https://cloud.google.com/gpu). With increasing traffic, the cost of running a fleet of cloud GPU machines gets higher, not to mention the challenge of
 scalability and the added complexity of your server stack. All these concerns can be eliminated by deploying the model to
 the client. The overhead of client-side downloading of the model (which is often several megabytes or more) can be alleviated
 by the browser’s caching and local storage capabilities (chapter 2).

 	
Lowered inference latency—For certain types of applications, the requirement for latency is so stringent that the deep-learning models must be run
 on the client side. Any applications that involve real-time audio, image, and video data fall into this category. Consider what will happen
 if image frames need to be transferred to the server for inference. Suppose images are captured from a webcam at a modest
 size of 400 × 400 pixels with three color channels (RGB) and an 8-bit depth per color channel at a rate of 10 frames per second.
 Even with JPEG compression, each image has a size of about 150 Kb. On a typical mobile network with an approximately 300-Kbps
 upload bandwidth, it can take more than 500 milliseconds to upload each image, leading to a latency that is noticeable and
 perhaps unacceptable for certain applications (for example, games). This calculation doesn’t take into account the fluctuation
 in (and possible loss of) network connectivity, the additional time it takes to download the inference results, and the vast
 amount of mobile data usage, each of which can be a showstopper.
 Client-side inference addresses these potential latency and connectivity concerns by keeping the data and the computation
 on the device. It is impossible to run real-time machine-learning applications such as labeling objects and detecting poses
 in webcam images without the model running purely on the client. Even for applications without latency requirements, the reduction
 in model inference latency can lead to greater responsiveness and hence an improved user experience.

 	
Data privacy—Another benefit of leaving the training and inference data on the client is the protection of users’ privacy. The topic of
 data privacy is becoming increasingly important today. For certain types of applications, data privacy is an absolute requirement.
 Applications related to health and medical data are a prominent example. Consider a “skin disease diagnosis aid” that collects
 images of a patient’s skin from their webcam and uses deep learning to generate possible diagnoses of the skin condition.
 Health information privacy regulations in many countries will not allow the images to be transferred to a centralized server
 for inference. By running the model inference in the browser, no data needs to ever leave the user’s phone or be stored anywhere,
 ensuring the privacy of the user’s health data.
 Consider another browser-based application that uses deep learning to provide users with suggestions on how to improve the
 text they write in the application. Some users may use this application to write sensitive content such as legal documents
 and will not be comfortable with the data being transferred to a remote server via the public internet. Running the model
 purely in client-side browser JavaScript is an effective way to address this concern.

 	
Instant WebGL acceleration—In addition to the availability of data, another prerequisite for running machine-learning models in the web browser is sufficient
 compute power through GPU acceleration. As mentioned earlier, many state-of-the-art deep-learning models are so computationally
 intensive that acceleration through parallel computation on the GPU is a must (unless you are willing to let users wait for
 minutes for a single inference result, which rarely happens in real applications). Fortunately, modern web browsers come equipped with the WebGL API, which, even though it was originally
 designed for accelerated rendering of 2D and 3D graphics, can be ingeniously leveraged for the kind of parallel computation
 required for accelerating neural networks. The authors of TensorFlow.js painstakingly wrapped WebGL-based acceleration of
 the deep-learning components in the library, so the acceleration is available to you through a single line of JavaScript import.
 WebGL-based acceleration of neural networks may not be perfectly on par with native, tailored GPU acceleration such as NVIDIA’s
 CUDA and CuDNN (used by Python deep-learning libraries such as TensorFlow and PyTorch), but it still leads to orders of magnitude
 speedup of neural networks and enables real-time inference such as what PoseNet extraction of a human-body pose offers.
 If performing inference on pretrained models is expensive, performing training or transfer learning on such models is even
 more so. Training and transfer learning enable exciting applications such as personalization of deep-learning models, frontend
 visualization of deep learning, and federated learning (training the same model on many devices, then aggregating the results
 of the training to obtain a good model). The WebGL acceleration of TensorFlow.js makes it possible to train or fine-tune neural
 networks with sufficient speed, purely inside the web browser.

 	
Instant access—Generally speaking, applications that run in the browser have the natural advantage of “zero install:” all it takes to access
 the app is typing a URL or clicking a link. This forgoes any potentially tedious and error-prone installation steps, along
 with possibly risky access control when installing new software. In the context of deep learning in the browser, the WebGL-based
 neural network acceleration that TensorFlow.js provides does not require special kinds of graphics cards or installation of
 drivers for such cards, which is often a nontrivial process. Most reasonably up-to-date desktop, laptop, and mobile devices
 come with graphics cards available to the browser and WebGL. Such devices, as long as they have a TensorFlow.js-compatible
 web browser installed (a low bar), are automatically ready to run WebGL-accelerated neural networks. This is an especially
 attractive feature in places where ease of access is vital—for example, the education of deep learning.

 	

 Accelerating computation using GPU and WebGL

 It takes a massive number of math operations to train machine-learning models and use them for inference. For example, the
 widely used “dense” neural network layers involve multiplying a large matrix with a vector and adding the result to another
 vector. A typical operation of this sort involves thousands or millions of floating-point operations. An important fact about
 such operations is that they are often parallelizable. For instance, adding two vectors can be divided into many smaller operations, such as adding two individual numbers. These
 smaller operations do not depend on each other. For example, you don’t need to know the sum of the two elements of the two
 vectors at index 0 to compute the sum of the two elements at index 1. As a result, the smaller operations can be performed
 at the same time, instead of one at a time, no matter how large the vectors are. Serial computation, such as a naive CPU implementation
 of vector addition, is known as Single Instruction Single Data (SISD). Parallel computation on the GPU is known as Single
 Instruction Multiple Data (SIMD). It typically takes the CPU less time to compute each individual addition than a GPU takes.
 But the total cost over this large amount of data leads the GPU’s SIMD to outperform the CPU’s SISD. A deep neural network
 can contain millions of parameters. For a given input, it might take billions of element-by-element math operations to run
 (if not more). The massively parallel computation that GPUs are capable of really shines at this scale.

 Task: Add two vectors, element by element:

 [image:]

 Computation on a CPU

 [image:]

 Computation on a GPU

 [image:]

 How WebGL acceleration leverages a GPU’s parallel computation capability to achieve faster vector operation than a CPU

 To be precise, modern CPUs are capable of certain levels of SIMD instructions, too. However, a GPU comes with a much greater
 number of processing units (on the order of hundreds or thousands) and can execute instructions on many slices of the input
 data at the same time. Vector addition is a relatively simple SIMD task in that each step of computation looks at only a single index, and the results at different indices are independent of each other. Other
 SIMD tasks seen in machine learning are more complex. For example, in matrix multiplication, each step of computation uses
 data from multiple indices, and there are dependencies between the indices. But the basic idea of acceleration through parallelization
 remains the same.

 It is interesting to note that GPUs were not originally designed for accelerating neural networks. This can be seen in the
 name: graphics processing unit. The primary purpose of GPUs is processing 2D and 3D graphics. In many graphical applications, such as 3D gaming, it is critical
 that the processing be done in as little time as possible so that the images on the screen can be updated at a sufficiently
 high frame rate for smooth gaming experiences. This was the original motivation when the creators of the GPU exploited SIMD
 parallelization. But, as a pleasant surprise, the kind of parallel computing GPUs are capable of also suits the needs of machine
 learning.

 The WebGL library TensorFlow.js uses for GPU acceleration was originally designed for tasks such as rendering textures (surface
 patterns) on 3D objects in the web browser. But textures are just arrays of numbers! Hence, we can pretend that the numbers
 are neural network weights or activations and repurpose WebGL’s SIMD texture operations to run neural networks. This is exactly
 how TensorFlow.js accelerates neural networks in the browser.

 	

 In addition to the advantages we have described, web-based machine-learning applications enjoy the same benefits as generic
 web applications that do not involve machine learning:

 	Unlike native app development, the JavaScript application you write with TensorFlow.js will work on many families of devices,
 ranging from Mac, Windows, and Linux desktops to Android and iOS devices.

 	With its optimized 2D and 3D graphical capabilities, the web browser is the richest and most mature environment for data visualization
 and interactivity. In places where people would like to present the behavior and internals of neural networks to humans, it
 is hard to think of any environment that beats the browser. Take TensorFlow Playground, for example (https://playground.tensorflow.org). It is a highly popular web app in which you can interactively solve classification problems with neural networks. You can
 tune the structure and hyperparameters of the neural network and observe how its hidden layers and outputs change as a result
 (see figure 1.6). If you have not played with it before, we highly recommend you give it a try. Many have expressed the view that this is
 among the most instructive and delightful educational materials they’ve seen on the topic of neural networks. TensorFlow Playground
 is, in fact, an important forebearer of TensorFlow.js. As an offspring of the Playground, TensorFlow.js is powered by a far
 wider range of deep-learning capabilities and far more optimized performance. In addition, it is equipped with a dedicated
 component for visualization of deep-learning models (covered in chapter 7 in detail). No matter whether you want to build basic educational applications along the lines of TensorFlow Playground or present
 your cutting-edge deep-learning research in a visually appealing and intuitive fashion, TensorFlow.js will help you go a long
 way toward your goals (see examples such as real-time tSNE embedding visualization[8]).

 8

See Nicola Pezzotti, “Realtime tSNE Visualizations with TensorFlow.js,” googblogs, http://mng.bz/nvDg.

 Figure 1.6. A screenshot of TensorFlow Playground (https://playground.tensorflow.org), a popular browser-based UI for teaching how neural networks work from Daniel Smilkov and his colleagues at Google. TensorFlow
 Playground was also an important precursor of the later TensorFlow.js project.

 [image:]

 1.2.1. Deep learning with Node.js

 For security and performance reasons, the web browser is designed to be a resource-constrained environment in terms of limited
 memory and storage quota. This means that the browser is not an ideal environment for training large machine-learning models
 with large amounts of data, despite the fact that it is ideal for many types of inference, small-scale training, and transfer-learning
 tasks, which require fewer resources. However, Node.js alters the equation entirely. Node.js enables JavaScript to be run
 outside the web browser, thus granting it access to all the native resources, such as RAM and the file system. TensorFlow.js
 comes with a Node.js version, called tfjs-node. It binds directly to the native TensorFlow libraries compiled from C++ and CUDA code, and so enables users to use the same
 parallelized CPU and GPU operation kernels as used under the hood by TensorFlow (in Python). As can be shown empirically,
 the speed of model training in tfjs-node is on par with the speed of Keras in Python. So, tfjs-node is an appropriate environment for training large machine-learning models with large amounts of data. In this book, you will see
 examples in which we use tfjs-node to train the kind of large models that are beyond the browser’s capability (for example,
 the word recognizer in chapter 5 and the text-sentiment analyzer in chapter 9).

 But what are the possible reasons to choose Node.js over the more established Python environment for training machine-learning
 models? The answers are 1) performance and 2) compatibility with existing stack and developer skill sets. First, in terms
 of performance, the state-of-the-art JavaScript interpreters, such as the V8 engine Node.js uses, perform just-in-time (JIT)
 compilation of JavaScript code, leading to superior performance over Python. As a result, it is often faster to train models
 in tfjs-node than in Keras (Python), as long as the model is small enough for the language interpreter performance to be the
 determining factor.

 Second, Node.js is a very popular environment for building server-side applications. If your backend is already written in
 Node.js, and you would like to add machine learning to your stack, using tfjs-node is usually a better choice than using Python.
 By keeping code in a single language, you can directly reuse large portions of your code base, including those bits for loading
 and formatting the data. This will help you set up the model-training pipeline faster. By not adding a new language to your
 stack, you also keep its complexity and maintenance costs down, possibly saving the time and cost of hiring a Python programmer.

 Finally, the machine-learning code written in TensorFlow.js will work in both the browser environment and Node.js, with the
 possible exception of data-related code that relies on browser-only or Node-only APIs. Most of the code examples you will
 encounter in this book will work in both environments. We have made efforts to separate the environment-independent, machine-learning-centric
 part of the code from the environment-specific data-ingestion and UI code. The added benefit is that you get the ability to
 do deep learning on both the server and client sides by learning only one library.

 1.2.2. The JavaScript ecosystem

 When assessing the suitability of JavaScript for a certain type of application such as deep learning, we should not ignore
 the factor that JavaScript is a language with an exceptionally strong ecosystem. For years, JavaScript has been consistently
 ranked number one among a few dozen programming languages in terms of repository count and pull activities on GitHub (see
 http://githut.info). On npm, the de facto public repository of JavaScript packages, there are more than 600,000 packages as of July 2018. This
 more than quadruples the number of packages in PyPI, the de facto public repository of Python packages (www.modulecounts.com). Despite the fact that Python and R have a better-established community for machine learning and data science, the JavaScript
 community is building up support for machine-learning-related data pipelines as well.

 Want to ingest data from cloud storage and databases? Both Google Cloud and Amazon Web Services provide Node.js APIs. Most
 popular database systems today, such as MongoDB and RethinkDB, have first-class support for Node.js drivers. Want to wrangle
 data in JavaScript? We recommend the book Data Wrangling with JavaScript by Ashley Davis (Manning Publications, 2018, www.manning.com/books/data-wrangling-with-javascript). Want to visualize your data? There are mature and powerful libraries such as d3.js, vega.js, and plotly.js that outshine
 Python visualization libraries in many regards. Once you have your input data ready, TensorFlow.js, the main topic of this
 book, will take it from there and help you create, train, and execute your deep-learning models, as well as save, load, and
 visualize them.

 Finally, the JavaScript ecosystem is still constantly evolving in exciting ways. Its reach is being extended from its traditional
 strongholds—namely, the web browser and Node.js backend environments—to new territories such as desktop applications (for
 example, Electron) and native mobile applications (for instance, React Native and Ionic). It is often easier to write UIs
 and apps for such frameworks than to use myriad platform-specific app creation tools. JavaScript is a language that has the
 potential to bring the power of deep learning to all major platforms. We summarize the main benefits of combining JavaScript
 and deep learning in table 1.2.

 Table 1.2. A brief summary of the benefits of doing deep learning in JavaScript

 	
 Consideration

 	
 Examples

 	Reasons related to the client side
 	

 	Reduced inference and training latency due to the locality of data

 	Ability to run models when the client is offline

 	Privacy protection (data never leaves the browser)

 	Reduced server cost

 	Simplified deployment stack

 	Reasons related to the web browser
 	

 	Availability of multiple modalities of data (HTML5 video, audio, and sensor APIs) for inference and training

 	The zero-install user experience

 	The zero-install access to parallel computation via the WebGL API on a wide range of GPUs

 	Cross-platform support

 	Ideal environment for visualization and interactivity

 	Inherently interconnected environment opens direct access to various sources of machine-learning data and resources

 	Reasons related to JavaScript
 	

 	JavaScript is the most popular open source programming language by many measures, so there is an abundance of JavaScript talent
 and enthusiasm.

 	JavaScript has a vibrant ecosystem and wide applications at both client and server sides.

 	Node.js allows applications to run on the server side without the resource constraints of the browser.

 	The V8 engine makes JavaScript code run fast.

1.3. Why TensorFlow.js?

 To do deep learning in JavaScript, you need to select a library. TensorFlow.js is our choice for this book. In this section,
 we will describe what TensorFlow.js is and the reasons we selected it.

 1.3.1. A brief history of TensorFlow, Keras, and TensorFlow.js

 TensorFlow.js is a library that enables you to do deep learning in JavaScript. As its name suggests, TensorFlow.js is designed
 to be consistent and compatible with TensorFlow, the Python framework for deep learning. To understand TensorFlow.js, we need
 to briefly examine the history of TensorFlow.

 TensorFlow was made open source in November 2015 by a team of engineers working on deep learning at Google. The authors of
 this book are members of this team. Since its open source debut, TensorFlow has gained immense popularity. It is now being
 used for a wide range of industrial applications and research projects both at Google and in the larger technical community.
 The name “TensorFlow” was coined to reflect what happens inside a typical program written with the framework: data representations
 called tensors flow through layers and other data-processing nodes, allowing inference and training to happen on machine-learning models.

 First off, what is a tensor? It is just a computer scientist’s way of saying “multidimensional array” concisely. In neural
 networks and deep learning, every piece of data and every computation result is represented as a tensor. For example, a grayscale
 image can be represented as a 2D array of numbers—a 2D tensor; a color image is usually represented as a 3D tensor, with the
 extra dimension being the color channels. Sounds, videos, text, and any other types of data can all be represented as tensors.
 Each tensor has two basic properties: the data type (such as float32 or int32) and the shape. Shape describes the size of
 the tensor along all its dimensions. For instance, a 2D tensor may have the shape [128, 256], and a 3D tensor may have the shape [10, 20, 128]. Once data is turned into a tensor of a given data type and shape, it can be fed into any type of layer that accepts that
 data type and shape, regardless of the data’s original meaning. Therefore, the tensor is the lingua franca of deep-learning
 models.

 But why tensors? In the previous section, we learned that the bulk of the computations involved in running a deep neural network
 are performed as massively parallelized operations, commonly on GPUs, which require performing the same computation on multiple
 pieces of data. Tensors are containers that organize our data into structures that can be processed efficiently in parallel.
 When we add tensor A with shape [128, 128] to tensor B with shape [128, 128], it is very clear that there are 128 * 128 independent additions that need to take place.

 How about the “flow” part? Imagine a tensor as a kind of fluid that carries data. In TensorFlow, it flows through a graph—a data structure consisting of interconnected mathematical operations (called nodes). As figure 1.7 shows, the node can be successive layers in a neural network. Each node takes tensors as inputs and produces tensors as outputs.
 The “tensor fluid” gets transformed into different shapes and different values as it “flows” through the TensorFlow graph. This corresponds to the transformation of representations: that
 is, the crux of what neural networks do, as we have described in previous sections. Using TensorFlow, machine-learning engineers
 can write all kinds of neural networks, ranging from shallow ones to very deep ones, from convnets for computer vision to
 recurrent neural networks (RNNs) for sequence tasks. The graph data structure can be serialized and deployed to run many types
 of devices, from mainframes to mobile phones.

 Figure 1.7. Tensors “flow” through a number of layers, a common scenario in TensorFlow and TensorFlow.js.

 [image:]

 At its core, TensorFlow was designed to be very general and flexible: the operations can be any well-defined mathematical
 functions, not just layers of neural networks. For example, they can be low-level mathematical operations such as adding and
 multiplying two tensors—the kind of operations that happen inside a neural network layer. This gives deep-learning engineers and researchers great power to define arbitrary and novel operations
 for deep learning. However, for a large fraction of deep-learning practitioners, manipulating such low-level machinery is
 more trouble than it’s worth. It leads to bloated and more error-prone code and longer development cycles. Most deep-learning
 engineers use a handful of fixed layer types (for instance, convolution, pooling, or dense, as you will learn in detail in
 later chapters). Rarely do they need to create new layer types. This is where the LEGO analogy is appropriate. With LEGOs,
 there are only a small number of block types. LEGO builders don’t need to think about what it takes to make a LEGO block.
 This is different from a toy like, say, Play-Doh, which is analogous to TensorFlow’s low-level API. Yet the ability to connect
 LEGO blocks leads to a combinatorially large number of possibilities and virtually infinite power. It is possible to build a toy house with either LEGOs or Play-Doh, but unless you have very special requirements
 for the house’s size, shape, texture, or material, it is much easier and faster to build it with LEGOs. For most of us, the
 LEGO house we build will stand more stably and look nicer than the Play-Doh house we’d make.

 In the world of TensorFlow, the LEGO equivalent is the high-level API called Keras.[9] Keras provides a set of the most frequently used types of neural network layers, each with configurable parameters. It also
 allows users to connect the layers together to form neural networks. Furthermore, Keras also comes with APIs for

 9

In fact, since the introduction of TensorFlow, a number of high-level APIs have emerged, some created by Google engineers
 and others by the open source community. Among the most popular ones are Keras, tf.Estimator, tf.contrib.slim, and TensorLayers.
 For the readers of this book, the most relevant high-level API to TensorFlow.js is Keras by far, because the high-level API
 of TensorFlow.js is modeled after Keras and because TensorFlow.js provides two-way compatibility in model saving and loading
 with Keras.

 	Specifying how the neural network will be trained (loss functions, metrics, and optimizers)

 	Feeding data to train or evaluate the neural network or use the model for inference

 	Monitoring the ongoing training process (callbacks)

 	Saving and loading models

 	Printing or plotting the architecture of models

 With Keras, users can perform the full deep-learning workflow with very few lines of code. With the flexibility of the low-level
 API and the usability of the high-level API, TensorFlow and Keras form an ecosystem that leads the field of deep-learning
 frameworks in terms of industrial and academic adoption (see the tweet at http://mng.bz/vlDJ). As a part of the ongoing deep-learning revolution, their role in making deep learning accessible to a wider audience should
 not be underestimated. Before frameworks such as TensorFlow and Keras, only those with CUDA programming skills and extensive
 experience in writing neural networks in C++ were able to do practical deep learning. With TensorFlow and Keras, it takes
 much less skill and effort to create GPU-accelerated deep neural networks. But there was one problem: it was not possible
 to run TensorFlow or Keras models in JavaScript or directly in the web browser. To serve trained deep-learning models in the
 browser, we had to do it via HTTP requests to a backend server. This is where TensorFlow.js comes into the picture. TensorFlow.js
 was an effort started by Nikhil Thorat and Daniel Smilkov, two experts in deep-learning-related data visualization and human-computer
 interaction[10] at Google. As we have mentioned, the highly popular TensorFlow Playground demo of a deep neural network planted the initial
 seed of the TensorFlow.js project. In September 2017, a library called deeplearn.js was released that has a low-level API
 analogous to the TensorFlow low-level API. Deeplearn.js championed WebGL-accelerated neural network operations, making it possible to run real neural networks with low inference latencies in the web browser.

 10

As an interesting historical note, these authors also played key roles in creating TensorBoard, the popular visualization
 tool for TensorFlow models.

 Following the initial success of deeplearn.js, more members of the Google Brain team joined the project, and it was renamed
 TensorFlow.js. The JavaScript API underwent significant revamping, boosting API compatibility with TensorFlow. In addition,
 a Keras-like high-level API was built on top of the low-level core, making it much easier for users to define, train, and
 run deep-learning models in the JavaScript library. Today, what we said earlier about the power and usability of Keras is
 all true for TensorFlow.js as well. To further enhance interoperability, converters were built so that TensorFlow.js can import
 models saved from TensorFlow and Keras and export models to them. Since its debut at the worldwide TensorFlow Developer Summit
 and Google I/O in the spring of 2018 (see www.youtube.com/watch?v=YB-kfeNIPCE and www.youtube.com/watch?v=OmofOvMApTU), TensorFlow.js has quickly become a highly popular JavaScript deep-learning library, with currently the highest number of
 stars and forks among similar libraries on GitHub.

 Figure 1.8 presents an overview of the TensorFlow.js architecture. The lowest level is responsible for parallel computing for fast mathematical
 operations. Although this layer is not visible to most users, it is critical that it have high performance so that model training
 and inference in higher levels of the API can be as fast as possible. In the browser, it leverages WebGL to achieve GPU acceleration
 (see info box 1.2). In Node.js, direct binding to the multicore CPU parallelization and CUDA GPU acceleration are both available. These are
 the same math backends used by TensorFlow and Keras in Python. Built on top of the lowest math level is the Ops API, which has good parity with the low-level API of TensorFlow and supports loading SavedModels from TensorFlow. On the highest
 level is the Keras-like Layers API. The Layers API is the right API choice for most programmers using TensorFlow.js and will be the main focus of this book.
 The Layers API also supports two-way model importing/exporting with Keras.

 Figure 1.8. The architecture of TensorFlow.js at a glance. Its relationship to Python TensorFlow and Keras is also shown.

 [image:]

 1.3.2. Why TensorFlow.js: A brief comparison with similar libraries

 TensorFlow.js is not the only JavaScript library for deep learning; neither was it the first one to appear (for example, brain.js
 and ConvNetJS have a much longer history). So, why does TensorFlow.js stand out among similar libraries? The first reason
 is its comprehensiveness—TensorFlow.js is the only currently available library that supports all key parts of the production
 deep-learning workflow:

 	Supports both inference and training

 	Supports web browsers and Node.js

 	Leverages GPU acceleration (WebGL in browsers and CUDA kernels in Node.js)

 	Supports definition of neural network model architectures in JavaScript

 	Supports serialization and deserialization of models

 	Supports conversions to and from Python deep-learning frameworks

 	Compatible in API with Python deep-learning frameworks

 	Equipped with built-in support for data ingestion and with an API for visualization

 The second reason is the ecosystem. Most JavaScript deep-learning libraries define their own unique API, whereas TensorFlow.js
 is tightly integrated with TensorFlow and Keras. You have a trained model from Python TensorFlow or Keras and want to use
 it in the browser? No problem. You have created a TensorFlow.js model in the browser and want to take it into Keras for access
 to faster accelerators such as Google TPUs? That works, too! Tight integration with non-JavaScript frameworks not only boosts
 interoperability but also makes it easier for developers to migrate between the worlds of programming languages and infrastructure
 stacks. For example, once you have mastered TensorFlow.js from reading this book, it will be smooth sailing if you want to
 start using Keras in Python. The reverse journey is as easy: someone with good knowledge of Keras should be able to learn
 TensorFlow.js quickly (assuming sufficient JavaScript skills). Last but not least, the popularity of TensorFlow.js and the
 strength of its community should not be overlooked. The developers of TensorFlow.js are committed to long-term maintenance
 and support of the library. From GitHub star and fork counts to number of external contributors, from the liveliness of the
 discussion to the number of questions and answers on Stack Overflow, TensorFlow.js is shadowed by none of the competing libraries.

 1.3.3. How is TensorFlow.js being used by the world?

 There is no more convincing testimony to the power and popularity of a library than the way in which it is used in real-world
 applications. A few noteworthy applications of TensorFlow.js include the following:

 	Google’s Project Magenta uses TensorFlow.js to run RNNs and other kinds of deep neural networks to generate musical scores
 and novel instrument sounds in the browser (https://magenta.tensorflow.org/demos/).

 	
Dan Shiffman and his colleagues at New York University built ML5.js, an easy-to-use, higher-level API for various out-of-the-box
 deep-learning models for the browser, such as object detection and image style transfer (https://ml5js.org).

 	Abhishek Singh, an open source developer, created a browser-based interface that translates American Sign Language into speech
 to help people who can’t speak or hear use smart speakers such as Amazon Echo.[11]
 11

Abhishek Singh, “Getting Alexa to Respond to Sign Language Using Your Webcam and TensorFlow.js,” Medium, 8 Aug. 2018, http://mng.bz/4eEa.

 	Canvas Friends is a game-like web app based on TensorFlow.js that helps users improve their drawing and artistic skills (www.y8.com/games/canvas_friends).

 	MetaCar, a self-driving car simulator that runs in the browser, uses TensorFlow.js to implement reinforcement learning algorithms
 that are critical to its simulations (www.metacar-project.com).

 	Clinic doctor, a Node.js-based application that monitors the performance of server-side programs, implemented a Hidden Markov
 Model with TensorFlow.js and is using it to detect spikes in CPU usage.[12]
 12

Andreas Madsen, “Clinic.js Doctor Just Got More Advanced with TensorFlow.js,” Clinic.js blog, 22 Aug. 2018, http://mng.bz/Q06w.

 	See TensorFlow.js’s gallery of other outstanding applications built by the open source community at https://github.com/tensorflow/tfjs/blob/master/GALLERY.md.

 1.3.4. What this book will and will not teach you about TensorFlow.js

 Through studying the materials in this book, you should be able to build applications like the following using TensorFlow.js:

 	A website that classifies images uploaded by a user

 	Deep neural networks that ingest image and audio data from browser-attached sensors and perform real-time machine-learning
 tasks, such as recognition and transfer learning, on them

 	Client-side natural language AI such as a comment-sentiment classifier to assist with comment moderation

 	A Node.js (backend) machine-learning model trainer that uses gigabyte-scale data and GPU acceleration

 	A TensorFlow.js-powered reinforcement learner that can solve small-scale control and game problems

 	A dashboard to illustrate the internals of trained models and the results of machine-learning experiments

 Importantly, not only will you know how to build and run such applications, but you will also understand how they work. For
 instance, you will have practical knowledge of the strategies and constraints involved in creating deep-learning models for
 various types of problems, as well as the steps and gotchas in training and deploying such models.

 Machine learning is a wide field; TensorFlow.js is a versatile library. Therefore, some applications are entirely doable with
 existing TensorFlow.js technology but are beyond what is covered in the book. Examples are:

 	High-performance, distributed training of deep neural networks that involve a huge amount of data (on the order of terabytes)
 in the Node.js environment

 	Non-neural-network techniques, such as SVMs, decision trees, and random forests

 	Advanced deep-learning applications such as text-summarization engines that reduce large documents into a few representative
 sentences, image-to-text engines that generate text summary from input images, and generative image models that enhance the
 resolution of input images

 This book will, however, give you foundational knowledge of deep learning with which you will be prepared to learn about the
 code and articles related to those advanced applications.

 Like any other technology, TensorFlow.js has its limits. Some tasks are beyond what it can do. Even though these limits are
 likely to be pushed in the future, it is good to be aware of where the boundaries are at the time of writing:

 	Running deep-learning models with memory requirements that exceed the RAM and WebGL limits in a browser tab. For in-browser
 inference, this typically means a model with a total weight size above ~100 MB. For training, more memory and compute power
 is required, so it is possible that even smaller models will be too slow to train in a browser tab. Model training also typically
 involves larger amounts of data than inference, which is another limiting factor that should be taken into account when assessing
 the feasibility of in-browser training.

 	Creating a high-end reinforcement learner, such as the kind that can defeat human players at the game of Go.

 	Training deep-learning models with a distributed (multimachine) setup using Node.js.

Exercises

 	Whether you are a frontend JavaScript developer or a Node.js developer, based on what you learned in this chapter, brainstorm
 a few possible cases in which you can apply machine learning to the system you are working on to make it more intelligent.
 For inspiration, refer to tables 1.1 and 1.2, as well as section 1.3.3. Some further examples include the following:

 	A fashion website that sells accessories such as sunglasses captures images of users’ faces using the webcam and detects facial
 landmark points using a deep neural network running on TensorFlow.js. The detected landmarks are then used to synthesize an
 image of the sunglasses overlaid on the user’s face to simulate a try-on experience in the web page. The experience is realistic because the simulated try-on can run with low
 latency and at a high frame rate thanks to client-side inference. The user’s data privacy is respected because the captured
 facial image never leaves the browser.

 	A mobile sports app written in React Native (a cross-platform JavaScript library for creating native mobile apps) tracks users’
 exercise. Using the HTML5 API, the app accesses real-time data from the phone’s gyroscope and accelerometer. The data is run
 through a TensorFlow.js-powered model that automatically detects the user’s current activity type (for example, resting versus
 walking versus jogging versus sprinting).

 	A browser extension automatically detects whether the person using the device is a child or an adult (by using images captured
 from the webcam at a frame rate of once per 5 seconds and a computer-vision model powered by TensorFlow.js) and uses the information
 to block or grant access to certain websites accordingly.

 	A browser-based programming environment uses a recurrent neural network implemented with TensorFlow.js to detect typos in
 code comments.

 	A Node.js-based server-side application that coordinates a cargo logistics service uses real-time signals such as carrier
 status, cargo type and quantity, date/time, and traffic information to predict the estimated time of arrival (ETA) for each
 transaction. The training and inference pipelines are all written in Node.js, using TensorFlow.js, simplifying the server
 stack.

Summary

 	AI is the study of automating cognitive tasks. Machine learning is a subfield of AI in which rules for performing a task such
 as image classification are discovered automatically by learning from examples in the training data.

 	A central problem in machine learning is how to transform the original representation of data into a representation more amenable
 to solving the task.

 	Neural networks are an approach in machine learning wherein the transformation of data representation is performed by successive
 steps (or layers) of mathematical operations. The field of deep learning concerns deep neural networks— neural networks with
 many layers.

 	Thanks to enhancements in hardware, increased availability of labeled data, and advances in algorithms, the field of deep
 learning has made astonishing progress since the early 2010s, solving previously unsolvable problems and creating exciting
 new opportunities.

 	JavaScript and the web browser are a suitable environment for deploying and training deep neural networks.

 	TensorFlow.js, the focus of this book, is a comprehensive, versatile, and powerful open source library for deep learning in
 JavaScript.

Part 2. A gentle introduction to TensorFlow.js

 Having covered the foundations, in this part of the book we dive into machine learning in a hands-on fashion, armed with TensorFlow.js.
 We start in chapter 2 with a simple machine-learning task—regression (predicting a single number)—and work toward more sophisticated tasks such
 as binary and multiclass classification in chapters 3 and 4. In lockstep with task types, you’ll also see a gentle progression from simple data (flat arrays of numbers) to more complex
 ones (images and sounds). The mathematical underpinning of methods such as backpropagation will be introduced alongside concrete
 problems and the code that solves them. We eschew formal math in favor of more intuitive explanations, diagrams, and pseudo-code.
 Chapter 5 discusses transfer learning, an efficient reuse of pretrained neural networks to adapt to new data, and presents an approach
 especially suited to the deep-learning browser environment.

Chapter 2. Getting started: Simple linear regression in TensorFlow.js

 This chapter covers

 	A minimal example of a neural network for the simple machine-learning task of linear regression

 	Tensors and tensor operations

 	Basic neural network optimization

 Nobody likes to wait, and it’s especially annoying to wait when we don’t know how long we’ll have to wait for. Any user experience
 designer will tell you that if you can’t hide the delay, then the next best thing is to give the user a reliable estimate
 of the wait time. Estimating expected delays is a prediction problem, and the TensorFlow.js library can be used to build an
 accurate download-time prediction, sensitive to the context and user, enabling us to build clear, reliable experiences that
 respect the user’s time and attention.

 In this chapter, using a simple download-time prediction problem as our motivating example, we will introduce the main components
 of a complete machine-learning model. We will cover tensors, modeling, and optimization from a practical point of view so that you can build intuitions about what they are, how they work, and how to use them appropriately.

 A complete understanding of the internals of deep learning—the type a dedicated researcher would build over years of study—requires
 familiarity with many mathematical subjects. For the deep-learning practitioner, however, expertise with linear algebra, differential
 calculus, and the statistics of high-dimensional spaces is helpful but not necessary, even to build complex, high-performance
 systems. Our goal in this chapter, and throughout this book, is to introduce technical topics as necessary—using code, rather
 than mathematical notation, when possible. We aim to convey an intuitive understanding of the machinery and its purpose without
 requiring domain expertise.

OEBPS/01fig03_alt.jpg

OEBPS/01fig04_alt.jpg

OEBPS/01fig01_alt.jpg

OEBPS/01fig02_alt.jpg

OEBPS/pub.jpg

OEBPS/arrow.jpg

OEBPS/logo.jpg

OEBPS/common1.jpg

OEBPS/01fig05_alt.jpg

OEBPS/f0022_02_alt.jpg

OEBPS/f0022_01_alt.jpg

OEBPS/cover.jpg

OEBPS/01fig06_alt.jpg

OEBPS/f0022_03.jpg

OEBPS/01fig08_alt.jpg

OEBPS/01fig07_alt.jpg

