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A HISTORY OF SCIENCE Rediscovered


THE most important scientific achievement in Western history is commonly ascribed to Nicolaus Copernicus, who on his deathbed published Concerning the Revolutions of the Heavenly Spheres. Science historian Thomas Kuhn called the Polish-born astronomer’s accomplishment the “Copernican Revolution.” It represented a final break with the Middle Ages, a movement from religion to science, from dogma to enlightened secularism. What had Copernicus done to become the most important scientist of all time?

In school we learned that in the sixteenth century, Copernicus reformed the solar system, placing the sun, rather than the earth, at its center, correcting the work of the second-century Greek astronomer Ptolemy. By constructing his heliocentric system, Copernicus put up a fire wall between the West and East, between a scientific culture and those of magic and superstition.

Copernicus did more than switch the center of the solar system from the earth to the sun. The switch itself is important, but mathematically trivial. Other cultures had suggested it. Two hundred years before Pythagoras, philosophers in northern India had understood that gravitation held the solar system together, and that therefore the sun, the most massive object, had to be at its center. The ancient Greek astronomer Aristarchus of Samos had put forth a heliocentric system in the third century B.C.1 The Maya had posited a heliocentric solar system by A.D. 1000. Copernicus’s task was greater. He had to repair the flawed mathematics of the Ptolemaic system.

Ptolemy had problems far beyond the fact that he chose the wrong body as the pivot point. On that, he was adhering to Aristotelian beliefs. A workable theory of universal gravitation had yet to be discovered. Thus hampered, Ptolemy attempted to explain mathematically what he saw from his vantage in Alexandria: various heavenly bodies moving around the earth. This presented problems.

Mars, for instance, while traveling across our sky, has the habit, like other planets, of sometimes reversing its direction. What’s happening is simple: the earth outspeeds Mars as both planets orbit the sun, like one automobile passing another. How does one explain this in a geocentric universe? Ptolemy came up with the concept of epicycles, circles on top of circles. Visualize a Ferris wheel revolving around a hub. The passenger-carrying cars are also free to rotate around axles connected to the outer perimeter of the wheel. Imagine the cars constantly rotating 360 degrees as the Ferris wheel also revolves. Viewed from the hub, a point on the car would appear to move backward on occasion while also moving forward with the motion of the wheel.

Ptolemy set the upper planets in a series of spheres, the most important of which was the “deferent” sphere, which carried the epicycle. This sphere was not concentric with the center of the earth. It moved at a uniform speed, but that speed was not measured around its own center, nor around the center of the earth, but around a point that Ptolemy called the “center of the equalizer of motion,” later to be called the “equant.”2 This point was the same distance from the center of the deferent as the distance of the deferent’s center from the earth, but in the opposite direction. The result was a sphere that moved uniformly around an axis that passed not through its own center but, rather, through the equant.

The theory is confusing. No number of readings or constructions will help, because Ptolemy’s scheme is physically impossible. The flaw is called the equant problem, and it apparently eluded the Greeks. The equant problem didn’t fool the Arabs, and during the late Middle Ages Islamic astronomers created a number of theorems that corrected Ptolemy’s flaws.

Copernicus confronted the same equant problem. The birth of Isaac Newton was a century away, so Copernicus, like Ptolemy and the Arabs before him, had no gravitation to help him make sense of the situation. Thus, he did not immediately switch the solar system from geocentricity to heliocentricity. Instead, he first improved the Ptolemaic system, putting the view of the heavens from earth on a more solid mathematical basis. Only then did Copernicus transport the entire system from its earth-centered base to the sun. This was a simple operation, requiring Copernicus only to reverse the direction of the last vector connecting the earth to the sun. The rest of the math remained the same.

It was assumed that Copernicus was able to put together this new planetary system using available math, that the Copernican Revolution depended on a creative new application of classical Greek works such as Euclid’s Elements and Ptolemy’s Almagest. This belief began breaking down in the late 1950s when several scholars, including Otto Neugebauer, of Brown University; Edward Kennedy, of the American University of Beirut; Noel Swerdlow, of the University of Chicago; and George Saliba, of Columbia University, reexamined Copernicus’s mathematics.

They found that to revolutionize astronomy Copernicus needed two theorems not developed by the ancient Greeks. Neugebauer pondered this problem: did Copernicus construct these theorems himself or did he borrow them from some non-Greek culture? Meanwhile, Kennedy, working in Beirut, discovered astronomical papers written in Arabic and dated before A.D. 1350. The documents contained unfamiliar geometry. While visiting the United States, he showed them to Neugebauer.

Neugebauer recognized the documents’ significance immediately. They contained geometry identical to Copernicus’s model for lunar motion. Kennedy’s text was written by the Damascene astronomer Ibn al-Shatir, who died in 1375. His work contained, among other things, a theorem employed by Copernicus that was originally devised by another Islamic astronomer, Nasir al-Din al-Tusi, who lived some three hundred years before Copernicus.

The Tusi couple, as the theorem is now called, solves a centuries-old problem that plagued Ptolemy and the other ancient Greek astronomers: how circular motion can generate linear motion. Picture a large sphere with a sphere half its size inside it, the smaller sphere contacting the larger at just one point. If the large sphere rotates and the small sphere revolves in the opposite direction at twice that speed, the Tusi couple dictates that the original point of tangency will oscillate back and forth along the diameter of the larger sphere. By setting the celestial spheres properly, this theorem explained how the epicycle could move uniformly around the equant of the deferent, and still oscillate back and forth toward the center of the deferent. All this could now be done by positing spheres moving uniformly around axes that passed through their centers, thus avoiding the pitfalls of Ptolemy’s configurations. A rough analogy is a steam-engine piston, which moves back and forth as the wheel is turning.

A second theorem found in the Copernican system is the Urdi lemma, after the scientist Mu’ayyad al-Din al-’Urdi, who proposed it sometime before 1250. It simply states that if two lines of equal length emerge from a straight line at the same angles, either internally or externally, and are connected up top with another straight line, the two horizontal lines will be parallel. When the equal angles are external, all four lines form a parallelogram. Copernicus did not include a proof of the Urdi lemma in his work, most likely because the proof had already been published by Mu’ayyad al-Din al-’Urdi. Columbia’s George Saliba speculates that Copernicus didn’t credit him because Muslims were not popular in sixteenth-century Europe.

Both the Urdi lemma and the Tusi couple are, in the words of Saliba, “organically embedded within [Copernican] astronomy, so much so that it would be inconceivable to extract them and still leave the mathematical edifice of Copernican astronomy intact.”

Saliba emphasizes that plagiarism is not the issue here. Those who have been involved in a plagiarism case are probably familiar with the standard defense: independent execution.3 This is an especially powerful defense in the sciences, in which there are “right” and “wrong” solutions. If Copernicus’s theorem looks like al-Tusi’s, perhaps that’s because it’s the one correct answer to the problem.

Map publishers sometimes insert fictitious islands or other features into their maps to trap plagiarists. Did Copernicus borrow al-Tusi’s theorem without credit? There’s no smoking gun, but it is suspicious that Copernicus’s math contains arbitrary details that are identical to al-Tusi’s. Any geometric theorem has the various points labeled with letters or numbers, at the discretion of the originator. The order and choice of symbols is arbitrary. The German science historian Willy Hartner noted that the geometric points used by Copernicus were identical to al-Tusi’s original notation. That is, the point labeled with the symbol for alif by al-Tusi was marked A by Copernicus. The Arabic ba was marked B, and so on, each Copernican label the phonetic equivalent of the Arabic. Not just some of the labels were the same—almost all were identical.

There was one exception. The point designating the center of the smaller circle was marked as f by Copernicus. It was a z in Tusi’s diagram. In Arabic script, however, a z in that hand could be easily mistaken for an f.

Johannes Kepler, who stretched Copernicus’s circular planetary orbits into ellipses later in the century, wondered why Copernicus had not included a proof for his second “new” theorem, which was in fact the Urdi lemma. The obvious answer has eluded most historians because it is too damaging to our Western pride to accept: the new math in the Copernican Revolution arose first in Islamic, not European minds. From a scientific point of view, it’s not important whether Copernicus was a plagiarist. The evidence is circumstantial, and certainly he could have invented the theorems on his own. There is no doubt, however, that two Arab astronomers beat him to the punch.

Western science is our finest accomplishment. Does any other culture, past or present, boast a scientific edifice equal to that built by Galileo, Newton, Leibniz, Lavoisier, Dalton, Faraday, Planck, Rutherford, Einstein, Heisenberg, Pauli, Watson, and Crick? Is there anything in the non-Western past to compare to present-day molecular biology, particle physics, chemistry, geology, or technology? There’s little debate. The only question is where this science came from. Who contributed to it? The consensus is that science is almost entirely Western in origin. By Western we mean ancient and Hellenistic Greece, and Europe from the Renaissance to the present. Greece is traditionally considered European, as opposed to being part of Mediterranean culture, which would include its neighbors in Africa. For the purposes of this book, Western means Europe, Greece, and post-Columbian North America. Non-Western means, generally, everywhere else, including the Americas of the Amerindians before Columbus. Non-Western thus takes in considerable area, and the prevailing opinion is that modern science owes little to the peoples of these lands.

The short form of the hypothesis is this: science was born in ancient Greece around 600 B.C. and flourished for a few hundred years, until about 146 B.C., when the Greeks gave way to the Romans. At this time science stopped dead in its tracks, and it remained dormant until resurrected during the Renaissance in Europe around 1500. This is what’s known as the “Greek miracle.” The hypothesis assumes that the people who occupied India, Egypt, Mesopotamia, sub-Saharan Africa, China, the Americas, and elsewhere prior to 600 B.C. conducted no science. They discovered fire, then called it quits, waiting for Thales of Miletus, Pythagoras, Democritus, and Aristotle to invent science in the Aegean.

As amazing as the Greek miracle is the notion that for over fifteen hundred years, from the end of the Greek period to the time of Copernicus, no science was conducted. The same people who stood idly by while the Greeks invented science supposedly demonstrated no interest or skill in continuing the work of Archimedes, Euclid, or Apollonius.

The hypothesis that science sprang ab ovo on Greek soil, then disappeared until the Renaissance seems ridiculous when written out succinctly. It’s a relatively new theory, first fashioned in Germany about 150 years ago, and has become subtly embedded in our educational consciousness. The only concession made to non-European cultures is to Islam. The story goes that the Arabs kept Greek culture, and its science, alive through the Middle Ages. They acted as scribes, translators, and caretakers, with, apparently, no thought of creating their own science.

In fact, Islamic scholars admired and preserved Greek math and science, and served as the conduit for the science of many non-Western cultures, in addition to constructing their own impressive edifice. Western science is what it is because it successfully built upon the best ideas, data, and even equipment from other cultures. The Babylonians, for example, developed the Pythagorean theorem (the sum of the squares of the two perpendicular sides of a right triangle is equal to the square of the hypotenuse) at least fifteen hundred years before Pythagoras was born. The Chinese mathematician Liu Hui calculated a value for pi (3.1416) in 200 A.D. that remained the most accurate estimation for a thousand years. Our numerals 0 through 9 were invented in ancient India, the Gwalior numerals of A.D. 500 being almost indistinguishable from modern Western numerals. Algebra is an Arab word, meaning “compulsion,” as in compelling the unknown x to assume a numerical value. (One traditional translation, that algebra means “bone setting,” is colorful but incorrect.)4

The Chinese were observing, reporting, and dating eclipses between 1400 and 1200 B.C. The Venus Tablets of Ammizaduga record the positions of Venus in 1800 B.C. during the reign of the Babylonian king. Al-Mamum, an Arabian caliph, built an observatory so his astronomers could double-check most of the Greek astronomical parameters, thus giving us more accurate values for precession, inclination of the ecliptic, and the like. In 829 his quadrants and sextants were larger than those built by Tycho Brahe in Europe more than seven centuries later.

Twenty-four centuries before Isaac Newton, the Hindu Rig-Veda asserted that gravitation held the universe together, though the Hindu hypothesis was far less rigorous than Newton’s. The Sanskrit-speaking Aryans subscribed to the idea of a spherical earth in an era when the Greeks believed in a flat one. The Indians of the fifth century A.D.  somehow calculated the age of the earth as 4.3 billion years; scientists in nineteenth-century England were convinced it was 100 million years. (The modern estimate is 4.6 billion years.) Chinese scholars in the fourth century A.D.—like Arabs in the thirteenth century and the Papuans of New Guinea later on—routinely used fossils to study the history of the planet; yet at Oxford University in the seventeenth century some faculty members continued to teach that fossils were “false clues sown by the devil” to deceive man. Quantitative chemical analyses set down in the K’ao kung chi, an eleventh-century B.C. Chinese text, are never more than 5 percent off when compared to modern figures.

Mohist (Chinese) physicists in the third century B.C. stated, “The cessation of motion is due to the opposing force…. If there is no opposing force … the motion will never stop. This is as true as that an ox is not a horse.” It would be two thousand years before Newton would set down his first law of motion in more prosaic terms. The Shu-Ching (circa 2200 B.C.) stated that matter was composed of distinct separate elements seventeen centuries before Empedocles made the same observation, and hypothesized that sunbeams were made of particles long before Albert Einstein and Max Planck posited the ideas of photons and quanta. Big bang? The creation myths of Egypt, India, Mesopotamia, China, and Central America all begin with a “great cosmic copulation”—not quite the same as a big bang, but more poetic.

As for practical matters, Francis Bacon said that three inventions—gunpowder, the magnetic compass, and paper and printing—marked the beginning of the modern world. All three inventions came from China. The Incas of the Andes were the first to vulcanize rubber, and they discovered that quinine was an antidote for the malaria that spread among them. The Chinese made antibiotics from soybean curd twenty-five hundred years ago.

THE TEACHING OF multicultural science in the 1980s had hardly begun when it was met by a powerful backlash, much of it justified. I was part of the backlash, having accepted in the early 1990s an assignment to write an article about faulty multicultural science being taught in schools. While there was plenty to expose, the most egregious program was called the Portland African-American Baseline Essays, developed by the Multnomah County, Oregon, school board.

The scientific portion of the curriculum was a disaster. It cited “evidence of the use of gliders in ancient Egypt from 2500 B.C. to 1500 B.C.,” adding that the Egyptians used their early planes for “travel, expeditions, and recreation.” The Portland essays speculated that these gliders were made from papyrus and glue. The evidence cited for this ancient Egyptian air force was the discovery in 1898 of a birdlike object made of sycamore wood. It sat in a box of other birdlike objects in the Cairo Museums basement until 1969, when an archaeologist and his flight-engineer brother concluded that the object was a model glider with a distinctive resemblance to an American Hercules transport aircraft because of its “reverse dihedral wing.” The Portland essays insisted that this fourteen-centimeter-long object was a scale model of full-sized gliders that once filled the skies over the Great Pyramids, which, one can therefore assume, served as platforms for ancient air-traffic controllers.5

The Portland essays also claimed that the ancient Egyptians and Mesopotamians knew how to make batteries. Clay pots found in 1962 in Baghdad contained five-inch-long cylindrical sheet-copper cores with a lead-tin alloy at the bottom. Inside the copper tube was an iron or bronze rod thought to have been surrounded by a solution of sulfate, vinegar, acetic acid, or citric acid. A General Electric laboratory demonstrated that ten such batteries connected in series could produce up to two volts. Were these really batteries? It’s possible, though the Portland essays do not explain how it was known that acid was used in the pots. Nor do we know to what use the batteries were put.

The Portland essays also touted the Egyptians as masters of psi: precognition, psychokinesis, and remote viewing. The essays make a distinction between magic, which they disregard, and psi, or psychoenergetics, which they describe as being “science.” We will not take time here to discuss the Egyptians’ alleged accomplishments in psychoenergetics.6 One can only wonder why this ancient civilization, with airplanes and telekinesis at its disposal, bothered with swords and spears to fight its battles.

Some multiculturists claimed that eleventh-century Chinese warriors were armed with machine guns, and that the Incas frolicked above the Nasca plains in hot-air balloons. Certain Afrocentric scholars have made some dubious claims: that the Greek mathematician Euclid was black, for example, and that the Olmec heads, huge sculpted heads with Negroid features found in Mexico, are proof that Nubians visited the Americas.

In its issue of April 18, 1999, the New York Times Magazine chose the best inventions, stories, and ideas of the previous one thousand years. Richard Powers wrote that the most important scientific event of the last millennium occurred at its very beginning, around A.D. 1000, when the Arab scientist Alhazen solved a centuries-old problem: how does vision work? Alhazen, who was born as Abu Ali al-Hasan ibn al-Haytham in Basra, in what is now Iraq, dispatched the “ray theory,” which had been around since ancient Greece. This theory, espoused by Euclid, Ptolemy, and others, held that the eye sent out a ray to the object in order to “see” it. The ray theory seems ridiculous today because we know the speed of light and how far away the stars are. If our eyes had to send out rays, we’d be waiting years before we could see even the nearest stars.

In 1000, the ray theory seemed reasonable. Alhazen conducted a simple experiment: he and others looked into the sun; it hurt. Clearly, if there were rays, they were coming into the eye, not going out of it. He developed a comprehensive theory of vision that dominated optics in Europe until 1610, when Kepler improved upon it. Alhazen may not have been smarter than Euclid and Ptolemy, but he worked quite differently. The latter two followed a classic Greek method of announcing a set of axioms, then reasoning from them. Alhazen began with his observations of and experiments with light, then reasoned toward a theory.7 Ptolemy and Euclid also collected measurements and made observations, but the Greek ideal made the data subservient to the precept. Powers was reaching, perhaps, when he stated that Alhazen’s challenge of the old optical theory “has led to the certainties of electron microscopy, retinal surgery, and robotic vision,” but he was correct in stating that the “vesting of authority in experiment” and the “skeptical rejection of concept in favor of evidence” began not in Europe but in the Islamic world.8

For some, the failure to acknowledge the successes of non-Western cultures derives not just from ignorance but from a conspiracy. Martin Bernal, a professor of government studies at Cornell University, is the author of Black Athena, a series of books that challenges our Greek-rooted view of history. Bernal believes that the roots of Greek civilization are to be found in Egypt and, to a lesser extent, in the Levant—the Near East of the Phoenicians and the Canaanites. Using linguistic analysis, he determined that 20 to 25 percent of the Greek vocabulary derived from the Egyptian. The roots of European civilization are Afro-Asiatic. The Greeks knew this and wrote about it, telling of Egyptian colonies in Greece during the Bronze and even the Iron Ages. The great Greek wise men, including Pythagoras, Democritus, and even Plato, traveled to Egypt and brought back Egyptian ideas and knowledge. (We have Democritus’s own writings to acknowledge that his math skills were honed in the shadow of the pyramids.) The Greeks acknowledged their debt to Egypt. This “ancient model” held that the Greek culture had arisen as the result of colonization, in around 1500 B.C., by Egyptians and Phoenicians, and that the Greeks continued to borrow heavily from Near Eastern cultures. It was the conventional wisdom among Greeks in the classical and Hellenistic ages. This ancient model, writes Bernal, was also embraced by Europeans from the Renaissance through the nineteenth century. The Europeans, says Bernal, were enamored of Egypt.

For several centuries, Europe believed that Egypt was the cradle of civilization. This began to change in the eighteenth century when Christian apologists worried about Egyptian pantheism, and ideas of racial purity began taking hold among Locke, Hume, and other English thinkers. This led to the “Aryan model” in the first half of the nine-teenth century. This view denied the existence of Egyptian settlements. Later, as anti-Semitism grew during the late nineteenth century, proponents of the Aryan model also denied Phoenician cultural influences.

The Aryan model was refined throughout the years to establish ancient Greece as distinctly European. Accordingly, there had been an invasion from the north—unreported in ancient tradition—that had overwhelmed the local Aegean or pre-Hellenic culture. Thus, Greek civilization was now seen as the result of the mixture of the Indo-European-speaking Hellenes and their indigenous subjects. It is this Aryan model that most of us were taught during the twentieth century. Bernal advocates a return to a modified ancient model, which is supported by the historian Herodotus and other ancient Greeks.

IN ITS JANUARY 14, 2000, issue, on the occasion of the beginning of the third millennium, Science magazine, in conjunction with the American Association for the Advancement of Science (AAAS), published a time line, called “Pathways of Discovery,” that detailed ninety-six of the most important scientific achievements in recorded history. The Science time line included some sophisticated choices that many educators would have missed: William Ferrel’s 1856 work on ocean winds and currents, the 1838-39 cell theory of Matthias Schleiden and Theodor Schwann, and William Gilbert’s 1600 theory that the earth behaves like a huge magnet.

Of those ninety-six achievements, only two were attributed to non-white, non-Western scientists: the invention of zero in India in the early centuries of the common era and the astronomical observations of Maya and Hindus in A.D. 1000. Even these two accomplishments were muted by the editors of Science. The Indians were given credit only for creating the “symbol for zero,” rather than the concept itself. The Mayan and Hindu “skywatchers” (the word astronomer was not used) made their observations, according to the journal, for “agricultural and religious purposes” only.

Most interesting is the first entry in the time line: “Prior to 600 B.C., Prescientific Era.” Science proclaimed that during this time, before the sixth-century B.C. pre-Socratic philosophers, “Phenomena [were] explained within contexts of magic, religion, and experience.” Science thus ignored more than two millennia of history, during which time the Babylonians invented the abacus and algebra, the Sumerians recorded the phases of Venus, the Indians proposed an atomic theory, the Chinese invented quantitative chemical analysis, and the Egyptians built pyramids. In addition, Science gave Johannes Gutenberg credit for the printing press in 1454, though it was invented at least two centuries earlier by the Chinese and Koreans. An essential precursor to the printing press is paper, which was invented in China and did not reach Europe until the 1300s.9 Science cited Francis Bacon’s work as one of its ninety-six achievements, yet ignored his opinion that inventions from China created the modern world.

Pre-Columbian achievements in the New World have long eluded traditionalists. The Maya invented zero about the same time as the Indians, and practiced a math and astronomy far beyond that of medieval Europe. Native Americans built pyramids and other structures in the American Midwest larger than anything then in Europe.

MANY TRADITIONAL Western historians believe that little original science was conducted after the collapse of the Greek civilization; that the Arabs copied the work of Euclid, Ptolemy, Apollonius, et al.; and that eventually Europe recouped its scientific heritage from the Islamic world. During the Middle Ages, Arab scholars sought out Greek manuscripts and set up centers of learning and translation at Jund-i-Shapur in Persia and Baghdad in Iraq. Western historians don’t often like to admit that these same scholars also sought manuscripts from China and India, and created their own science.

Scholarship moved to Cairo and then to Córdoba and Toledo in Spain as the Muslim empire expanded into Europe. When the Christians recaptured Toledo in the twelfth century, European scholars descended upon the documents.10 They were interested in all Arabic documents— translations of Greek works but also original Arabic writings and Arabic translations of other cultures’ manuscripts. Much of the scientific knowledge of the ancient world—Greece as well as Babylonia, Egypt, India, and China—was funneled to the West through Spain. George Saliba has found that there was an intense traffic in Arabic manuscripts between Damascus and Padua during the early 1500s, and more and more scientific documents, written in Arabic, are being rediscovered in European libraries. Saliba has documented that many European scholars in the Renaissance were literate in Arabic. They read the Islamic papers and shared the information with their less literate colleagues.11

One example is Copernicus, who studied at Padua. Saliba points out that if Copernicus did borrow from Islamic astronomers—and the jury is still out—he had good reason not to acknowledge his intellectual debt. It would have been impolitic, says Saliba, to mention Islamic science when the Ottoman Empire was at the door of Europe. Another European scholar who studied at Padua was William Harvey, who established the geometry of the human circulatory system in 1629, another landmark in science according to the AAAS’s Science time line. A 1241 Arab document, notes Saliba, lays out the same geometry, including the crucial assertion that the blood must first travel through the lungs before passing through the heart, contrary to the opinion of the ancient Greek physician Galen and past medical scholarship.12

Historian Glen Bowersock of the Institute for Advanced Study writes that “the classical antecedents of western civilization have long served to justify the study of ancient Greece and Rome,” but he admits that “the porousness of Greek culture and the parallels to its achievements in other cultures have never been a secret…. The Greeks did not emerge, like Athena from the head of Zeus, fully equipped with their arsenal of culture…. An expression like ‘the Greek miracle’ was a catchy phrase for great drama, heroic statues and the Parthenon, but all this had its historical context. For the Greeks themselves, the context was Phoenicia and Egypt.”13

The AAAS and Science magazine, in their “Pathways of Discovery” time line, acknowledge that from the ninth to the fifteenth centuries, “The flow of science and technology is mostly into Europe from Islam and China” (italics theirs). Yet Science reports that the contributions of Islam and China are among those events that “represent the countless twists, turns, ironies, contradictions, tragedies, and other unkempt historical details that have synthesized into the far more complex and multitextured reality of the scientific adventure.” Other such events they list are Isaac Newton’s practice of alchemy, the false discovery of “N-rays,” and the failure of geologists to accept the theory of continental drift.

This shall be a book of “unkempt historical details”—a tale of the non-Western roots of science. I began to write with the purpose of showing that the pursuit of evidence of nonwhite science is a fruitless endeavor. I felt that it was only responsible, however, to attempt to find what meager legitimate non-European science might exist. Six years later, I was still finding examples of ancient and medieval non-Western science that equaled and often surpassed ancient Greek learning.

My embarrassment at having undertaken an assignment with the assumption that non-Europeans contributed little to science has been overtaken by the pleasure of discovering mountains of unappreciated human industry, four thousand years of scientific discoveries by peoples I had been taught to disregard.

There is no good definition of science. The AAAS, for example, does not have one. After many trials, the American Physical Society (for physicists) finally decided upon a definition. The APS found that if the definition was too broad, pseudosciences like astrology could sneak in; too tight, and things such as string theory, evolutionary biology, and even astronomy could be excluded.

For the purposes of this book, science is a logical and systematic study of nature and the physical world. It usually involves both experiment and theory. Those theories normally arise from or are verified by experiment. That’s a bit squishy, but most definitions of science are. I put “usually” in italics because if we absolutely require experiment, we might have to exclude astronomy, the oldest science, since one cannot re-create new stars or galaxies in the laboratory or reenact the formation of the solar system. Yet the observations in astronomy are often as good as experiment. Halley’s comet returns with stunning regularity; the sun comes up each morning.

The philosopher Karl Popper introduced the requisite of “falsification.” Science is falsifiable; religion is not. A scientific theory or law can never be proved absolutely, but it should be able to be falsified. For example, Newton said that force equals mass times acceleration (F = ma). We cannot prove that every object in every galaxy obeys this law or that all objects will always obey this law. We can prove it wrong, however, in an experiment. (And some of Newton’s concepts have been proved wrong, by Albert Einstein and by quantum physicists.) So scientists must come up only with theories that can be falsified, as Popper put it. They must be testable. There is no such requirement for religion.

All this said, there remain problems with such a definition. Astrology, for instance, is falsifiable. If your astrologer says you will meet a handsome stranger on Tuesday, you can test this. On the other hand, superstring theory, posited by some physicists as “the theory of everything,” would require a particle accelerator ten light-years in diameter to falsify it. Most of evolutionary biology cannot be verified experimentally either. One cannot reenact the evolution of a new species or re-create the dinosaurs beginning with a one-celled animal. If we follow the falsification rule too closely, we have to include astrology and exclude evolutionary biology, string theory, and maybe even astronomy.

So let’s not take falsification too seriously. Otherwise we might have to exclude all science practiced by the ancient Greeks. The Greeks not only avoided experiments, they abhored them, trusting reason over empirical evidence.

We will confine ourselves to the hardest sciences here: physics, astronomy, cosmology, geology, chemistry, and technology. We shall include math also, as it is indispensable to science and inextricably entwined with it. We will leave the softer disciplines—anthropology, agronomy, psychology, medicine, and the like—for another time.

One thing we won’t consider is the pragmatism of the science or the motivation of the scientist. These have often been used to discredit non-Western science: yes, it’s good work, but it wasn’t “pure”; or, conversely, it wasn’t practical. As for motivation, many scientific discoveries were driven by religion: Arab mathematicians improved algebra, in part, to help facilitate Islamic inheritance laws, and Vedic Indians solved square roots to build sacrificial altars of the proper size. This was science in the service of religion, but science nonetheless.

Stigler’s law of eponymy, formulated by statistician Stephen Stigler, states that no scientific discovery is named after its original discoverer. Journalist Jim Holt points out that Stigler’s law itself is self-confirming, given that Stigler admits that it was discovered by someone else: Robert K. Merton, a sociologist of science.14

The most famous Stiglerism is the Pythagorean theorem, which holds that the sum of the squares of the perpendicular sides of a right triangle equals the square of the hypotenuse. Or, in math parlance, a2 + b2 = c2 where a and b are the sides and c is the hypotenuse. Jacob Bronowski writes:

To this day, the theorem of Pythagoras remains the most important single theorem in the whole of mathematics. That seems a bold and extraordinary thing to say, yet it is not extravagant; because what Pythagoras established is a fundamental characterisation of the space in which we move, and it is the first time that it is translated into numbers. And the exact fit of the numbers describes the exact laws that bind the universe. In fact, the numbers that compose right-angled triangles have been proposed as messages which we might send out to planets in other star systems as a test for the existence of rational life there.

The only problem is that Pythagoras is not the first mathematician to come up with the theorem. By Bronowski’s own admission, the Indians, Egyptians, and Babylonians used “Pythagorean triplets” in order to determine right angles when constructing buildings. A Pythagorean triplet is a set of three numbers that describes the sides of a right triangle. The most common triplet is 3: 4: 5 (32 + 42 = 52, or 9 + 16 = 25. Others you probably learned in high school include 5: 12: 13, 12 : 16: 20, and 8: 15: 17. Pythagoras invented his theorem around 550 B.C. The Babylonians, Bronowski concedes, had cataloged perhaps hundreds of triplets by 2000 B.C., long before Pythagoras. One of the triplets the Babylonians found is the enormous 3,367 : 3,456 : 4,825.

Nevertheless, Bronowski dismisses Babylonian triplets (as well as Egyptian and Indian triplets) as being merely “empirical.” That is, he believes that they somehow arrived at triplets (or triples) such as 3,367 : 3,456 : 4,825 by trial and error. Yet there is considerable evidence that the Babylonians used various algebraic techniques derived from a2 + b2 = c2 to generate Pythagorean triplets. “There’s no way even God could come up with all Pythagorean triples by trial and error,” says mathematician Robert Kaplan.

What Pythagoras arguably did that impressed Bronowski and others—and justifiably so—was to construct a geometric proof of the theorem. The concept of the proof as more important than the theorem itself was promulgated two centuries later by Euclid. Thus, non-Western mathematics has been viewed as second-rate because it is empirically based rather than proof based. Both methods are useful. The Euclidian geometry most of us learned is axiomatic. It begins with an axiom, a law assumed to be true, and deduces theorems by reasoning downward. It is deductive and assumptive. Centuries later, Alhazen in the East and, notably, Galileo in the West helped popularize an inductive, empirical method for science, much as the Babylonians, Egyptians, and Indians had used. One begins not with assumptions but with data and measurements, and then reasons upward to overarching truths.15 Most of what we call science today is empirical. When Isaac Newton collected data on the passage of comets, on the moons of Jupiter and Saturn, and on the tides in the estuary of the Thames River to construct his great syntheses in Principia, he was being empirical and inductive.

Math is slightly different, but many mathematicians see a need to include both proof based and empirically based work. A case in point in the present century is the great Indian mathematician Srinivasa Ramanujan, whose notebooks contain the germs of superstring theory and whose work has been used to evaluate pi to millions of digits past the decimal point. According to his wife, Ramanujan did his calculations on a handheld slate, then transferred the final results to his notebooks, erasing the slate; thus, we have few clues as to how he arrived at these equations, yet no one doubts that they are true.16

According to one historical account, Pythagoras brought back his eponymous theorem from his travels to the East and founded the tradition of proof because his less numerate countrymen refused to accept the theorem. Consider, too, the naming of Fermat’s last theorem, the work of the Frenchman Pierre de Fermat in the seventeenth century. The last theorem is a remote derivation from the Pythagorean theorem, but Fermat neglected to leave us a proof—at least not one we could find. Yet for more than three hundred years, Fermat’s last theorem has worked. A few years ago, Andrew Wile, of Princeton University, finally devised a proof. Still, we have yet to hear an outcry to change the name of Fermat’s last theorem to Wile’s first theorem. (It is an in-joke among mathematicians that the correct name is Fermat’s last conjecture, a conjecture being an unproved theorem.)

In 1915, about the time, according to Otto Neugebauer, that the Germans were rewriting their encyclopedias to edit out the Phoenicians from Greek history, the English science historian G. R. Kaye admonished “western investigators in the history of knowledge” to look for “traces of Greek influence” because the “achievements of the Greeks” form “the most wonderful chapters in the history of civilisation.” 17 Our pop science historians—Bronowski, Daniel Boorstin, Carl Sagan, et al.—have certainly been faithful to that directive. Western historians have also criticized past non-Western scientists, such as the Maya and Egyptians, for their strange religious beliefs, implying that acute religiosity disqualifies the work of a scientist. Then again, when Pythagoras finally proved “his” theorem, he offered a hundred oxen to the Muses in thanks.18

Science is science. It can be practical or impractical. The Danish physicist Niels Bohr owned a cabin retreat, to which he invited his scientist friends for long intense discussions about the meaning of quantum physics. Over the door of the cabin was hung a horseshoe on a nail. His guests often viewed this with a roll of the eyes. Finally, one screwed up the courage to say, “Come on now, Niels. You don’t believe in this nonsense, do you?”

According to legend, Bohr replied, “That’s the beauty of it. It works whether I believe in it or not.” For our purposes, science embraces those facts about the physical world that work … whether we believe in them or not.
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MATHEMATICS The Language of Science


THE Mark’s Meadow School is a public elementary school in Amherst, Massachusetts, in the western region of the state. Located across North Pleasant Street from the University of Massachusetts (UMass), it has served as a laboratory for the university’s school of education. Education majors can sit in a darkened, elevated corridor and secretly observe the students through two-way mirrors in the ceiling while eavesdropping through the use of a hidden sound system. In the future, they may want to listen more carefully during math lessons.

Recently I took a group of Mark’s Meadow fourth graders to the local mall, where we stopped to eat at a Taco Bell. The kids read the menu and started laughing. The joke was this: there were three sizes of drinks—small, medium, and large; twelve ounces, sixteen ounces, and twenty ounces—and three prices, $1.19, $1.49, and $1.79. The kids were laughing at the sign beneath the prices: UNLIMITED REFILLS!

Then a group of college students wearing UMass sweatshirts joined the line. They studied the sign. “Hey, let’s get the large drinks,” said one.

“Yeah,” said another. “Then we’ll really clean up on the unlimited refills.”

What the fourth graders understood that the college kids did not is the concept known as “infinite sets.” In the above case, one infinite set is equal to another. Take a ruler and cut it into infinitesimally small segmerits from the 1-inch line to the 2-inch line. There would be an infinite number of slices. Do the same with the ruler from the 2-inch line to the 12-inch line. Will there be ten times as many slices? No. If we’re dealing with rational numbers, infinity is infinity. The same principle operates with our soft drinks: twelve, sixteen, and twenty times infinity all equal infinity. (In other cases, however, infinite sets are not equal.)1

The concept of infinite sets of rational numbers was grasped by Jaina (Indian) thinkers in the sixth century B.C. and by Alhazen in the tenth century A.D. It entered Europe nearly a thousand years later, when the nineteenth-century German mathematician Georg Cantor refined and categorized infinite sets. Here in the twenty-first century, the idea has crossed the Atlantic to the Mark’s Meadow School. It has yet to make the giant leap across North Pleasant Street to the University of Massachusetts.

UMass students shouldn’t feel too bad; Galileo was stumped by the problem in the 1600s. He envisioned a row of all integers, starting at 1 and going off to infinity. Then he envisioned the squares of those same integers, starting at 12 and going off to infinity. He realized that if he placed the squares side by side with the set of all integers (12 next to 1, 22 next to 2, 32 next to 3, and so on), he would have enough squares to pair with all the numbers in the integers column. How is this possible? Galileo decided to put the problem aside and return to something easier—astronomy.

IMAGINE YOURSELF as a German merchant living in the fifteenth century. You want your son to learn enough math for a career in commerce. A professor you know suggests a good German university where your son will be taught addition and subtraction. But, you ask, what about multiplication and division? The professor explains that study of such “advanced” mathematics is not available locally; your son must travel to Italy, the only European country in which such operations can be learned.

“Reckoning schools,” in which arithmetical operations using Indo-Arabic numerals were taught, had begun to spring up in Italy.2 However, what your son would most likely find at his Italian university would be a sort of multiplication that hardly resembles what we call multiplication today. In medieval Europe, multiplication was simply a succession of doublings. For example, we multiply 9 times 11 in a simple operation, like so:
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But in Italy in the Middle Ages, a mathematician would commonly envision the multiplication of a number by 9 as eight doublings and a single. Let’s multiply 11 by 9, medieval style:
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The medieval scholar looks at the numbers in the right-hand column to find a combination of multiples that add up to the desired multiplier, in this case 1X and 8X to equal 9. Then the mathematician adds the two products, 11 and 88, to get the answer, 99.

Now try something a bit more complicated, 46 × 13. Today we do it like this:
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The medieval European mathematician might do it like this:
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Again, he finds the combination of doublings that add up to 13, the ones indicated above, 1X, 4X, and 8X. Then he adds up the three resultant sums to solve the problem: 46 + 184 + 368 = 598. Remember, all this must be done with roman numerals. (Keep the above technique in mind. We will encounter it again.) Similarly, division was a tedious process of “halving” the divisor until one arrived at the divider, or close to it.3

Meanwhile, in India about a thousand years earlier, mathematicians were doing multiplication and division the “modern” way, as well as algebra and even a crude form of calculus.

Now, imagine yourself again in fifteenth-century Italy. You are, let’s say, a bookseller. You need to keep track of sales and inventory You need to pay your suppliers, total your sales, calculate your overhead, determine your profit or loss. How would you do this? Certainly not with roman numerals; even the simplest arithmetic using roman (or Greek) numerals was beyond all but advanced scholars. Furthermore, there is no roman numeral for zero; in fact, there is no concept of zero, of nothingness, in European math of this era. How do you get your accounts to balance?

Like other merchants, you keep a secret set of books, in the gobar, or Gwalior, numerals, the so-called Hindu-Arabic numerals, which date from approximately first- to eighth-century A.D. India. They look something like this: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. You would keep these books secret because in 1348 the ecclesiastical authorities of the University of Padua prohibited the use of “ciphers” in the price lists of books, ruling that prices must be stated in “plain” letters. A century earlier, a Florentine edict had forbidden bankers to use the “infidel” symbols.4

Numbers were dangerous; at least these Indian numbers were. They were contraband. The zero was the most unholy: a symbol for nothingness, a Hindu concept, influenced by Buddhism and transplanted to Christian Europe. It became a secret sign, a signal between fellow travelers. Sunyata was a well-established Buddhist practice of emptying the mind of all impressions, dating as far back as about 300 B.C.5 The Sanskrit term for zero was sunya, meaning “empty” or “blank.” Flashing a zero to another merchant let him know that you were a user of Hindu-Arabic numerals. In many principalities, Arabic numerals were banned from official documents; in others, the numbers were prohibited altogether. Math was sometimes exported to the West by “bootleggers” in Hindu-Arabic numerals. There is plentiful evidence of such illicit number use in thirteenth-century archives in Italy, where merchants used Gwalior numbers as a secret code.6

Imagine yourself an out-of-work mathematician in Italy in the late Middle Ages. How could you support yourself? Assuming you could do multiplication and long division, there was an obvious answer: you could become an itinerant math performer. Traveling from town to town, you would set up in the village square and perform “magic” tricks for the public. Multiplying 27 by 14 was considered as entertaining in that era as sword swallowing or juggling, and fewer people could do it. The public would toss coins in your cup. You would count your take at the end of each performance—secretly using Hindu-Arabic numerals, of course.7 Or you could find employment in one of Italy’s new reckoning schools.

THERE IS NO good definition of mathematics. We will not improve upon that situation here. As laymen, we know that math involves numbers, symbols, and logic and includes things such as arithmetic, algebra, geometry, trigonometry, and calculus. Professionals don’t do much better in defining it.

University of Manchester (England) mathematician George Gheverghese Joseph calls math “a worldwide language with a particular kind of logical structure.” He goes on to say that it “contains a body of knowledge relating to number and space, and prescribes a set of methods for reaching conclusions about the physical world.”8 Physicists might take issue with the last statement, arguing that journals of theoretical physics are filled with lovely math that says little about the physical world.

Harvard University’s Barry Mazur, despite being a mathematician for more than forty years, declined to give a definition. Mathematician Robert Kaplan calls math “an activity about activity.” Pressed further, Kaplan came up with a tantalizing morsel. “Math,” he said, “describes what generalizes.” For example, the commandment “Thou shalt not kill” is not a generalization. It allows killing in self-defense or during wartime. Math deals with generalizations, universal truths such as the Pythagorean theorem.

People sometimes try to fool us. Economists and psychologists, for example, fill their papers with curves, numbers, and equations. It looks like math, but it usually isn’t. For example, economists use an equation called “the utility function” to explain why people buy home insurance even though the insurance companies are virtually guaranteed to profit. The function is expressed in curves and numbers. It doesn’t always work; it predicts, for example, that people won’t gamble or play lotteries.9 Economists blame the breakdown of the utility function on people’s foolishness. Math describes what can be generalized, not human behavior.

The ancient Egyptians had no word for mathematics. Our primary source for Egyptian math is a school textbook called the Ahmes (or Rhind) Papyrus. (Non-Western scholars prefer to call the papyrus Ahmes, after the scribe who composed it; Western scholars prefer Rhind, after the British collector who acquired it.)10 Its title is The Right Method for Entering into Things, for Knowing Everything That Is, Every Obscurity … Every Secret. It’s as good a definition as any.

Math describes the fall of rocks and the orbits of planets, and it is a common conceit among scientists to say that “math is the language of nature.” This is unlikely. “I don’t think nature speaks,” says Mazur. “We speak.”

The greatest of all the English experimenters, the nineteenth-century physicist Michael Faraday, spoke no math. Faraday learned science as a bookbinder by reading the books he bound, and despite being a high school dropout, he went on to invent the dynamo (electrical generator), which led to the electrification of the industrial world. Faraday wrote out all the results of his experiments in plain English. Yet he never claimed that “nature speaks English.”

Though math may not be the language of nature, it is certainly the language of science. It’s what most scientists speak. James Clerk Maxwell, of Maxwell’s equations fame, made his mark by translating Faraday’s work into math, a far more useful language for physicists. This is why we begin with math.

There are modern sciences that don’t lend themselves to math. Biology, for example, deals with large systems of interactive cells that defy a numerical approach. Evolutionary biologist Paul Ewald, of Amherst College, says that numbers, while useful, ultimately cannot be used to explain evolution. There are no biological equivalents of Maxwell’s equations that explain the platypus or the giraffe.

Let us accept for our purposes that mathematics is an essential foundation for science. We are forced to accept this idea because it is a long-cherished Western notion. If we are to say that non-European cultures had science long before the Europeans exported it to them, we must prove they had math. Even in America, sciences whose principles cannot be reduced to mathematical formulas have often been dismissed as “soft sciences.” These include anthropology, medical science, certainly psychology, and, until this century, biology and chemistry. Chemistry first made the “hard” club in the 1920s, when the useful but mysterious order of the periodic chart of the elements was finally explained by quantum physics and the Pauli exclusion principle; biology became rigorous (or “hard”) with the deciphering of the DNA molecule and the advent of molecular biology and its rigorous mathematical codes.

We might expect to find non-Western cultures to be mathematically weak throughout history. Yet nowhere is non-Western science stronger than in math. The mathematical foundation of Western science is an intellectual gift from the Indians, Egyptians, Chinese, Arabs, Babylonians, and others. The Maya, too, developed powerful mathematics, their priests judged as much for their ability to calculate as to pray. In their civilization, numeracy was next to godliness.

George Gheverghese Joseph, who was born in India but teaches in the United Kingdom, cites this line from the Vedanga jyotisa, the oldest (500 B.C.) extant Indian astronomical text: “Like the crest of a peacock, like the gem on the head of a snake, so is mathematics at the head of all knowledge.” Few modern Western scientists would disagree with that sentiment.

The traditional Western story is that math was created by the ancient Greeks around 600 B.C. and elaborated by Greco-Roman culture until A.D. 400, at which time the discipline fell dormant for a thousand years, only to be revived in post-Renaissance Europe. There is ample evidence, however, that nonwhite, non-Western cultures made significant contributions to European mathematics—or, at the very least, developed mathematical techniques that predated Western discoveries. For example:

• The Indians developed the use of zero and negative numbers per haps a thousand years before these concepts were accepted in Europe. The Maya invented their own zero—in fact, a whole slew of them—at about the same time as the Indians.

• Clay tablets dated a thousand year’s11 before the Greek civilization reveal traces of a sophisticated algebra among the Sumerians. Papyri of the eighteenth century B.C. and earlier show that the Egyptians used simple equations to deal with problems in distribution of food and other supplies.12

• In the third millennium B.C. the Babylonians developed a place-value system.13 (In our base 10 system, 348, for example, stands for 8 ones, 4 tens, and 3 hundreds.) The Babylonian sexagesimal (base 60) number system may at first appear cumbersome, but Copernicus used sexagesimal fractions to construct his model of the solar system, and we still use the system for keeping time and measuring angles (60 minutes per hour, each minute divided into 60 seconds).

• The priestly scribes of Egypt knew the formula for calculating the volume of a cylinder—and thus recognized the existence of the mysterious factor π (pi) long before the Greeks—in fact, long before there were literate Greeks.14 The Egyptians also developed the concept of the lowest common denominator, as well as a fraction table that modern scholars estimate required twenty-eight thousand tedious calculations to compile.15

• In 2000 B.C., the priestly astronomers of Mesopotamia, in the area now known as Iraq, kept extensive tables of squares. We know this from the clay tablets of cuneiform script found in temple libraries.16 Remember that Europeans in the fourteenth century did not even keep times tables.

• Gottfried Leibniz, the coinventor of the calculus, claimed to have discovered the secret of deciphering the diagrams of the ancient Chinese sage Fu Hsi. Leibniz maintained that Fu Hsi’s diagrams corresponded to his own modern binary mode of arithmetic.17

• The Indians invented a nascent form of calculus centuries before Leibniz invented calculus in Europe.18

• The Arabs coined the term algebra and invented decimal fractions:25 for¼, etc.19

• Aristotle credited the Egyptians with developing math before his countrymen, in a somewhat backhanded manner: “The mathematical sciences originated in the neighborhood of Egypt because there the priestly class was allowed leisure.”20

Despite this, America’s most prominent modern historian of mathematics, Morris Kline, wrote, “Compared with the achievements of their immediate successors, the Greeks, the mathematics of the Egyptians and Babylonians is the scrawling of children just learning how to write as opposed to great literature.”21 In his classic work Mathematics:A Cultural Approach, Kline acknowledges that the Babylonians and Egyptians pioneered mathematics long before the Greeks, but he dismisses them as pragmatists.22 “The Egyptians and Babylonians did reach the stage of working with pure numbers dissociated from physical objects. But like young children of our civilization, they hardly recognized that they were dealing with abstract entities.” The Greeks, he said, were the first to recognize numbers as “ideas” and emphasized that this is how they must be regarded.23

The rules keep changing. When we discuss ancient Indian physics, in chapter 5, Western physicists will insist that it is meaningless because it was abstract, with no empirical backup. In the case of math, Kline seems to be saying the opposite, that the Babylonians and Egyptians were unsophisticated because they used their math. Because these civilizations saw math as “merely a tool in commerce, agriculture, engineering,” says Kline, hardly any progress was made in the subject in a period of more than four thousand years.24 As for the math required to build the pyramids, Kline writes, “A cabinetmaker need not be a mathematician.”25

Another common charge is that non-Western mathematicians did not employ the ancient Greek custom of constructing proofs for their work. For example, Pythagoras gets credit for the Pythagorean theorem, say Western scholars, even though the Babylonians had the concept centuries earlier. This is because he, or his followers, constructed the first proof for this overarching principle, while the Babylonians did not. Critics find the Greek-style proof so important that its nonexistence in non-European cultures, they contest, discredits thousands of years of mathematics. The controversy over proof is a thorny one. Some mathematicians claim that non-Western peoples did have proofs, while others doubt that one can really “prove” any concept for eternity and throughout the entire universe. For a brief debate on the topic, see note.26

Skepticism is appropriate to all research, but the researcher in non-Western mathematics must often face a high hurdle. Ayele Bekerie, of Cornell University, who has studied ancient Ethiopian number systems, describes how Western scholars once refused to accept that this African civilization had developed its own numerals. Ethiopian numbers resemble, not surprisingly, the more ancient Egyptian numbers and, to a lesser extent, ancient Greek numbers—again not surprisingly, because of Ethiopia’s geographical proximity to Egypt, and because Egypt influenced Greek mathematics. The controversy involves letters written by Ethiopians to Greeks. These letters contain both Ethiopian and Greek numbers. One explanation is that the letters were written in both languages so the Greeks could understand. Western skeptics maintained that Africans were not capable of such sophistication, that these letters had actually been written by Greeks, who thus introduced the Ethiopians to a crude alphabet and number system that they now claim as their own. Of course, this makes little sense, since the letters were found in Greece. If the Greeks had written to the Ethiopians, the letters should have been found in Ethiopia. The dispute, according to Bekerie, was finally solved by chemists. The ink on the pre-Christian era parchment in question was of an unusual hue. Chemical analysis showed that the ink had been made from berries indigenous to Ethiopia.27

Our Western mathematical heritage and pride are critically dependent on the triumphs of ancient Greece. These accomplishments have been so greatly exaggerated that it often becomes difficult to sort out how much of modern math is derived from the Greeks and how much is from the Babylonians, Egyptians, Indians, Chinese, Arabs, and so on. The math of the Greeks was wonderfully imaginative, and a great debt is owed to them. But if our math today were based entirely on Pythagoras, Euclid, Democritus, Archimedes, et al., it would be a highly deficient discipline.

BEFORE WE GET into the mathematical history of ancient non-Western peoples, let us first briefly discuss how the math we study arrived in Western classrooms of the twentieth century. The different paths described by scholars are often in violent disagreement. We shall pass no judgment here on the correct solution.

The “traditional” Western view—and I put “traditional” in quotes here because this tradition is hardly a century old—is best summed up by two respected mathematical historians, Rouse Ball and Morris Kline. In 1908 Ball wrote, “The history of mathemmatics cannot with certainty be traced back to any school or period before that of the Ionian Greeks.”28 In 1952, Kline wrote, “[Mathematics] finally secured a new grip on life in the highly congenial soil of Greece and waxed strongly for a short period…. With the decline of Greek civilization the plant remained dormant for a thousand years … [until] the plant was transported to Europe proper and once more embedded in fertile soil.”29 Fleshed out, this is often interpreted to mean that there have been three stages in the history of mathematics:


	Circa 600 B.C. the ancient Greeks invent math, which thrives for a thousand years until approximately 400 A.D., at which time it disappears from the face of the earth.

	A dark age of mathematics ensues, lasting over a thousand years. Some scholars concede that the Arabs kept Greek math alive during the Middle Ages.

	Greek math is rediscovered in sixteenth-century Europe, and mathematics flowers again from then until the present.



This view is controversial. Our modern numerals—0 though 9—were developed in India during stage 2, the so-called dark age of mathematics. Mathematics existed long before the Greeks constructed their first right angle. We can perhaps excuse Rouse Ball, writing in 1908, for being unaware of the Greeks’ mathematical predecessors. On the other hand, George Gheverghese Joseph points out that Ball should have been aware of the early Indian mathematics contained in the Sulbasutras (The Rules of the Cord). Written somewhere between 800 and 500 B.C., the Sulbasutras demonstrate, among other things, that the Indians of this period had their own version of the Pythagorean theorem as well as a procedure for obtaining the square root of 2 correct to five decimal places. The Sulbasutras reveal a rich geometric knowledge that preceded the Greeks.30

Kline’s statement, says Joseph, is more problematic, ignoring a rich body of non-European mathematics that had been unearthed by the mid-twentieth century, including math from Mesopotamia, Egypt, China, India, the Arab world, and pre-Columbian America.31 There is the problem, too, that the Greeks themselves—Democritus, Aristotle, Herodotus—lavished praise upon the Egyptians, crediting them as their mathematical gurus (though not in those words). The fact is that many people were counting before the Greeks.

Mathematics: The Language of Science
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The classic math trajectory gives no credit to non-Western civilizations for the development of mathematics. (As per Joseph.)
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Recently, a modified Eurocentric trajectory has been taught. It acknowledges non-Western mathematics, but paints it as subservient to European math. It also is oversimplified. (As per Joseph.)

IT IS IMPOSSIBLE to think of a culture that didn’t have some form of counting, that is, a method of matching a collection of objects with a set of numbers, markers, or other tallying symbols, whether written or in the form of beads, knots, or notches on wood, stone, or bone. Counting is math, and not everyone can do it, but every culture has contained at least some individuals who could.

This is a safe assumption, given that the mathematician Tobias Dantzig demonstrates that animals possess a “number sense” even if they cannot technically be called “counters” (they don’t have numbers or tally sticks). Dantzig cites the case of the “counting crow” in his 1930 book Number :The Language of Science.

A squire, writes Dantzig, wanted to shoot a crow that had made its nest inside his watchtower. When he entered the tower and approached the crow, the bird knew what was coming and left the nest. It would watch from a distant tree until the man had left the tower, and only then return to its nest. So the squire used a trick. He and a friend would enter the tower, where they would be hidden from the crow, but only one would exit, the idea being that the crow would be fooled and return to the nest, to be shot by the remaining hunter. The bird would have nothing of it, remaining in the tree. So the squire repeated the experiment on successive days, using two, three, then four men, all without success. Finally, five men entered the tower, and four exited while one remained. “Here the crow lost count,” writes Dantzig. “Unable to distinguish between four and five, it promptly returned to the nest.”

On the surface, this famous tale would seem to indicate that crows can “count” only to four. We cannot question the crow to find out what prompted it to return to the nest prematurely, but it would seem obvious that a crow’s number sense is inferior to that of humans.

Dantzig points out that it is very difficult to test a human’s number sense because our species has relied for so long on counting that it has become “an integral part of our mental equipment.”32 Humans are always consciously or unconsciously aiding their innate number sense with artifices such as counting, mental grouping, and symmetric pattern reading. Psychologists have, with great difficulty, devised tests that eliminate such artifices. They have come to the conclusion that our direct visual number sense is … four. We do no better than the crow.

The magician Harry Houdini knew this about humans, at least intuitively. One of his tricks was called “Walking Through Walls.” Houdini explains to the audience that he will walk through a brick wall. He says there is no trapdoor in the stage, and to demonstrate that, he unrolls a wide carpet from the rear of the stage to the front. This will block any trapdoor. To safeguard the stage further, a long, heavy steel beam is placed atop the carpet, again from the rear to the front, pointing toward the audience. Bricklayers appear, and they build a brick wall on the beam. The audience is facing the end of the wall. Houdini announces that he will walk through the wall, left to right. Curtained screens are placed on either side of the wall. Houdini disappears behind the left curtain and, at a signal, magically rematerializes on the right side, exiting through the right curtain to the applause of the audience. Clearly, he didn’t go over or under the wall. The trick: he walked around the wall, in full view of the audience.

The trick works because the many bricklayers, ten or more, all wear identical overalls as they scurry about the stage. When Houdini disappears behind the first screen, he dons one of the outfits hidden there, making him look like a bricklayer. Houdini simply walks around the wall in plain sight and joins those bricklayers who are moving the second screen into place. He goes behind the screen, strips back to his original clothes, and walks through the curtain. No one notices the extra bricklayer.

Houdini realized the limitations of the human number sense. He could fool the audience with ten people. If an audience member had bothered to count the bricklayers, the trick would have failed. But who’s counting? He needed more than double the human number of four, however, because of what Dantzig calls “symmetric pattern recognition.” If there were only eight bricklayers, for example, with at some point four on a side, the asymmetry of five and four could be noticed when Houdini joined the workers.33

The Great Houdini inadvertently made a significant contribution to science, proving that humans don’t have any greater innate sense of numbers than crows do. Numbers, tally sticks, and other artifices are required. Let me add that some interesting research conducted since Dantzig’s era has shown that some animals may be sophisticated counters as well. We’ll get to that shortly.

The German mathematician Karl Menninger had a liberal definition of counting. He points to the Wedda, a tribe living on the island of Ceylon. If a Wedda wishes to count coconuts, he assembles a pile of sticks and matches up the sticks with the coconuts. The Wedda have no words for numbers. “Does that mean he is unable to count?” asks Menninger. “Not at all. He translates the pile of coconuts he has laid out into the auxiliary quantity of sticks.” He can tell if anyone has stolen one of the coconuts by arranging the nuts and sticks in a one-to-one order. But how can he describe the total number of coconuts? He points to the pile of sticks, explains Menninger, and says, “That many!”34

In any case, counting—whether with numbers, sticks, or some other device—extends innate number sense far beyond its modest limits, propelling humans above other species. Other scholars believe we may not be the only species that counts. The Clark’s nutcracker, for instance, a large bird that lives high in the mountains where food is sparse during the winter, hides thousands of seeds in good weather, digging them up months later. In a lab at Northern Arizona University, the birds retrieved seeds from a large sandbox with an accuracy rate of 90 percent. Experts in animal intelligence believe the nutcracker uses a kind of nearest-neighbor system, choosing a focal point for the first cache, then hiding successive seeds in a geometric pattern that it somehow memorizes.35 If a Clark’s nutcracker is comparing set one (the seeds) to set two (the pattern), one could consider the bird to be counting.

THERE IS SOME debate over whether counting, or even calculating, qualifies as math, but George Joseph says that mathematics arose initially from a need to count and record numbers: “As far as we know, there has never been a society without some form of counting or tallying, i.e. matching a collection of objects with some easily handled set of markers, whether it be stones, knots, or inscriptions such as notches on wood or bone.”36

The Ishango Bone is evidence—controversial evidence—of one of the first counting societies, about twenty thousand years ago. Ishango is an area around Lake Edward, in the mountains of central equatorial Africa on the border between Uganda and Zaire. Ishango is sparsely populated today, but twenty thousand years ago a small community fished the lake and gathered food and farmed by its shores. The Ishango society lasted only a few hundred years before being buried by a volcanic eruption.

The Ishango Bone itself is a dark brown object, like a bone tool handle. It features a sharp piece of quartz at one end, which may have been used for engraving, tattooing, or perhaps writing. More interesting are three columns of notches. They are asymmetrically grouped, which makes Joseph and others believe that they are functional rather than decorative. The groups of notches line up like this:

Row 1: 9, 19, 21, 11

Row 2: 19, 17, 13, 11

Row 3: 7, 5, 5, 10, 8, 4, 6, 3

Tally sticks predate the Ishango Bone. Notches on sticks or bones (or knots on strings or cuts on stones) have been found worldwide. These are records of counts, perhaps kills by hunters. A thirty-seven-thousand-year-old baboon fibula with twenty-nine notches was found in Swaziland. A thirty-two thousand-year-old wolf shinbone, marked with fifty-seven notches—the first fifty-five grouped in fives—was found in Czechoslovakia. These tally sticks are similar to calendar sticks still used today in Namibia to record time. The grouping—the Romans did something similar—may have been the first step toward constructing a numbering system.

J. de Heinzelin, the archaeologist who unearthed the bone, speculated that the Ishango not only had a number system but that this system, through the transmission of harpoon heads and other tools, spread north to Egypt and led to Egyptian mathematics. Joseph comments, “A single bone may well collapse under the heavy weight of conjectures piled upon it.” One has to accept the skepticism of Joseph and others, given the ambiguity of the evidence, though Joseph points out that the builders of Stonehenge have been credited by scholars with monumental mathematical skills on the basis of a few large rocks.37

There are other examples of unwritten mathematics, such as Incan quipus, knotted strings used for recording numbers in a decimal base system, and the cowrie shells of the Yoruba of southwestern Nigeria. But let us go directly to the first culture to make strides in written mathematics.

Egypt

Like the civilization itself, the history of Egyptian math is a long one, beginning somewhere around 3200 B.C., when a system of writing was invented, and stretching to 332 B.C., when Alexander the Great conquered and Hellenized Egypt. Our sources are meager, since papyrus deteriorates under humid conditions. The only readable documents have been found in cemeteries and temples in the desert fringe along the Nile valley. Few papyri have been recovered from major towns or cities in fertile areas around the Nile or in the delta. Most date from the Middle Kingdom period, between 2000 and 1700 B.C. In total, there are but five papyri, a pair of wooden exercise tablets, and a stone flake.38 Yet we find a rich mathematical tradition. Who knows what was being done with numbers in the major cities?

The Egyptians used three different number systems: the hieroglyphic and hieratic systems early in the civilization’s history, and the demotic toward the end, during the Greek and Roman periods. The hieroglyphic numbers were, obviously, pictorial, each character readily recognizable as a common object, from ropes to man to the sun. All numbers could be stated using combinations of only eight figures, representing powers of ten from 1 to 107:
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The first three symbols, for 1, 10, and 10 2, were variations of rope: a short length of rope, rope in a U shape, and a coil of rope, respectively. Perhaps the rope imagery was inspired by the harpedonaptai, the “rope stretchers,” or surveyors, who regularly surveyed the lands of the Nile River valley. One thousand (103) looked like a lotus; 10,000 (104), a crooked finger; 100,000 (105), a tadpole; 1,000,000 (106) a man with upraised arms; 10,000,000 (107), a sun, perhaps Ra, the sun god.

The Egyptians wrote any number they pleased by grouping the above symbols together. For example, 1,321 would be written:
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As the Egyptians had no zero or placeholder, the hieroglyphs could be arranged in any sequence. Separate symbols for each power of ten made any system of place notation redundant. Generally, the hieroglyphs were placed left to right in ascending order of magnitude, as above—in other words, opposite to the way we write numbers today. Addition was the process of adding up the various symbols, then replacing those symbols of which there were more than ten with the next largest symbol. For example, 547 + 624 = 1,171 would be written as:
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Which in turn would be reorganized to:
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Subtraction is the reverse process, but in this case, a large hieroglyph must often be replaced with ten smaller ones wherever necessary. Take 32 - 5:
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To explain multiplication in the ancient Egyptian world requires us to do some actual math. It’s not as hard as it looks, and we won’t spend much time on it. I think you’ll be pleased with yourself if you give it a try, perhaps even feel a kinship with the ancient world.

First of all, the Egyptians had no times tables. We memorize the tables in third grade and we’re set for life. Multiplication in the ancient Egyptian world was similar to a method used in the late Middle Ages in Europe, where multiplication was simply a series of doublings, as demonstrated at the beginning of the chapter. Let’s take the same problem, 13 × 46, which the Egyptian mathematician would break down into a series of integral powers of 2, or doublings.
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Again, he finds the combination of doublings that add up to 13, the ones checked above, IX, 4X, and 8X. Then he adds up the three resultant sums to solve the problem: 46 + 184 + 368 = 598. Of course, it’s a bit more difficult here as he’s working with hieroglyphics rather than our Indian numerals. The Egyptian would double like so (note: the 0 power of any number is 1, and the 1st power of any number is the number itself, so 20 = 1 and 21 = 2):

46 × 1 (20) would be written:
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46 × 2(21) would be:
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46 × 4 (22) would be:
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And so on. You get the idea. It was relatively easy to do the doublings. Each step simply required writing two sets of the hieroglyphs from the step above. Admittedly, this is a cumbersome process as the numbers get larger and one has to constantly reduce the hieroglyphic terms. The Egyptian method of multiplication works because of a basic principle of mathematics: every integer can be expressed as the sum of selected integral powers of 2. No matter what number the multiplier, one can assemble it by picking and choosing from a list of powers of 2.

Trust me on this. Or try it, but set aside plenty of time. The above rule is well known today. The question is, Were the ancient Egyptians aware of the rule? It’s at the heart of their math, but Western mathematicians are skeptical that non-Europeans living five thousand years ago came to this conclusion. The integral-powers rule also lies at the heart of the multiplication method below, a relatively modern variation of the Egyptian method. Let’s do an easy problem, 180 × 20 (which obviously equals 3,600), to show how it works. One puts the 180 in the left column, the 20 in the right. Then one successively doubles the right column, while halving the left. (When halving a figure into a noninteger—say 11 into 5.5—one rounds off to the lower number, in this case 5.) Like so:
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Today, we can do the above problem in our heads: 180 × 20 = 3,600. Ancient Egyptians and medieval Europeans couldn’t, so the above represents a shortcut from the classic Egyptian method. After doubling the right column above, and halving the left, go down the left column and choose all the odd numbers, then add together the corresponding sums on the right. Thus 180 × 20 = 80 + 320 + 640 + 2,560 = 3,600. Why does this work? The odd numbers on the left correspond to those powers of 2 that the multiplicand (180) comprises. Note:
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The powers of 2 equal 180: 4 + 16 + 32 + 128 = 180. I’ve taken an easy problem here, 180 × 20, so that you could do it, using modern methods, in your head. The technique works for any multiplication problem. Try some.

George Gheverghese Joseph says the above modern variation of the original Egyptian method is still popular among rural communities in Russia, Ethiopia, and the Near East, where multiplication tables have yet to catch on. It is sometimes referred to as the “Russian peasant method.” When I first came across the technique, it hit me the way the the madeleine hit Proust.

My father, a high school dropout, used to teach me odd methods of arithmetic, including the Russian peasant method, though he never called it that. A first-generation American, he had picked up a variety of exotic calculating techniques from his father, who had been a farmer in Sicily. My father was a fruit peddler, delivering produce to small stores and restaurants. He refused to use an adding machine. His bills contained strange numerical scribbles, not unlike the calculations above. His accountant feared the day that an IRS auditor would glower over such nonsense, despite the fact that the totals were always correct.

How did a fruit peddler working in a small Minnesota town in the twentieth century come to be using mathematical techniques pioneered by ancient Egyptians? A possibility—and I just throw this out—concerns the Greek mathematician Pythagoras, who was educated in numbers in Egypt and emigrated in the sixth century B.C. to Italy, where he founded the Pythagorean school of math. Could he have spread ancient Egyptian techniques throughout Italy and Sicily, where it was passed down by peasants for millennia? It doesn’t matter, really. What’s interesting is that here in the twenty-first century, people around the world still count like an Egyptian.

WE CAN’T BEGIN to enumerate all the mathematical accomplishments of the ancient Egyptians. We’ll examine just one more for the time being. The Ahmes Papyrus, a leather manuscript discovered in 1927, revealed that the Egyptians were the first culture to master fractions.39 In 1927, Egyptologists, waiting with great expectations for the first translations of the papyrus, were disappointed when they learned that the manuscript contained only twenty-six rudimentary mathematical identities, such as 1/10 + 1/40 = ⅛. The first translator quipped that if the Ahmes had any value it would be in providing insight into leather-making techniques of the era. In the West in the twentieth century, fractions are taken for granted. The Ahmes Papyrus, however, reveals that the Egyptians were the only ancient culture to operate with unit fractions. The Egyptians did not use money. They bartered, and fractions helped them exchange goods, divide food and land, and calculate the percentages of foods in recipes.

The Egyptians loved tables (the lack of a times table remains curious) and kept copious numbers of them to speed up calculations. The papyrus presents several problems, one of which challenges the reader to divide 9 loaves of bread among 10 men. (Beer and bread were common standards of exchange.) Our modern approach is straightforward—each man gets 9/10 of a loaf—but gives us no satisfactory method for actually dividing the physical loaves. Today we would cut a tenth off each loaf. Nine men would get a 9/10th loaf. The tenth man would get nine heels. Mathematically fair, but hardly equitable unless one is partial to crust.

The ancient Egyptian would instead go to a unit fraction table and find that 9/10 = ⅔ + ⅕ + 1/30. He would then cut the nine loaves into various segments representing thirds, fifths, and thirtieths.
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Seven men would each receive three pieces of bread: a ⅔, ⅕, and 1/30 segment of a loaf. The other three men would get four pieces: two ⅓s, a ⅕, and a 1/30. The Egyptian method requires a lot of cutting but divides the bread according to form as well as substance.

Let us stop breaking bread for the moment and press on to examine the influence of the Egyptians, the first known culture to promulgate a full-blown written mathematics.

THE MAIN COMPLAINT against the Egyptians is that their contributions were trivial. What did the Egyptians do wrong? According to Morris Kline, the math popularizer Lancelot Hogben, and others, the Egyptians and Babylonians depended on empirical evidence, on experimenting with numbers and forms. The Greeks found their answers through logic.40

Where does one begin to dissect this argument? Kline’s attack on empiricism—that is, relying on evidence rather than logic—is an ancient Greek point of view. Around 400 B.C. the great mathematician Democritus of Abdera set forth the proposition that the mind is superior to the senses. Through logic we tap into “trueborn” knowledge, said Democritus, whereas empirical evidence is “bastard” knowledge, colored by the unreliable senses.41 What tastes sweet to A may taste sour to B. A homely child appears beautiful to his mother. How can we trust information gleaned via taste, sight, hearing, touch, and smell?

It was a point of view that was being abandoned, even in the West, by the time of the Renaissance. When Galileo dropped two unequal weights from the Leaning Tower of Pisa in 1589, he was demonstrating not only that acceleration is independent of mass (the heavier object hit the ground a bit earlier but not significantly so), but that it is necessary to experiment to ascertain the truth. The “trueborn” knowledge that heavier objects fall faster, as Aristotle insisted, must defer to the “bastard” knowledge that they do not. We shall see in a later chapter that even Democritus would succumb to bastard knowledge, his greatest achievement the result of smell, not logic.

The Greek historian Herodotus refers to geometry as the “gift of the Nile.” Because the annual overflow of the Nile River wiped out the boundaries of farmers’ lands, the Egyptians developed geometry to redetermine plot lines. (It is a colorful reference, but only partially valid; the Egyptians were practicing geometry long before the 1400 B.C. date cited by Herodotus.) The logic of Herodotus and Kline is somewhat flawed. Because there is a use for an invention doesn’t necessarily imply a causal relationship.

Kline, denigrating the Egyptians for their pragmatism, credits them for applying math to astronomy, calendar reckoning, and navigation. Motions of heavenly bodies, he says, give us our fundamental standard of time, and their positions at given times enable ships to determine their locations and caravans to find their bearings in deserts. The Egyptians needed to predict the flooding of the Nile so that farmers could move their belongings and cattle. The Egyptian calendar was eventually adapted by the Romans, and passed on to Europe (our present calendar is essentially the Julian calendar, commissioned by Julius Caesar).

Mesopotamia

Math in Egypt and Mesopotamia spans roughly the same time period. The various Mesopotamian civilizations stretched from 3500 B.C., when the Sumerians established the first city-states, to 539 B.C., when the area was conquered by the Persians.

A string of different peoples populated the land between the Tigris and the Euphrates. The Sumerians were first, building Ur, perhaps the best-known city of antiquity, on the banks of the Euphrates. Biblical references to Sumer abound. The Epic of Gilgamesh was written here, and ziggurats were erected. The Sumerians gave way to the Akkadians, from the surrounding desert, who in turn were squelched by the First Babylonian Empire in around 1900 B.C., which was then overrun by the Assyrians in 885 B.C., who were conquered by the Chaldeans, thus initiating the Second Babylonian Empire in 612 B.C., which gave way to the Persian invasion in 539 B.C. Interspersed were Hittites and Hurrians and other interlopers. For convenience, when speaking of mathematics, the period is known generically as the Babylonian era. When it can be pinpointed to the earliest period, we use the term Sumerian.

Fortunately, our records of Babylonia are indelible. The Babylonians wrote on tablets formed from clay from the banks of the Tigris or the Euphrates. Scribes made wedgelike impressions with a reed. These tablets, dried in the sun or baked in kilns, are still readable, unlike many of the Egyptian papyri.42 There are plenty of errors. The scribes had to write fast, before the clay dried. Half a million tablets have been found, but fewer than five hundred contain math. Though the cuneiform script of the Sumerians was decoded about 150 years ago, the math tablets have been studied only since the 1930s.





















































