

 [image: manning]

 Snowflake Data Engineering

 Maja Ferle

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road

   PO Box 761

   Shelter Island, NY 11964

   Email: orders@manning.com

 ©2025 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The authors and publisher have made every effort to ensure that the information in this book was correct at press time. The authors and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Katie Sposato Johnson
 Technical editor: Daan Bakboord
 Review editor: Radmila Ercegovac
 Production editor: Kathy Rossland
 Copy editor: Kari Lucke
 Proofreader: Melody Dolab
 Technical proofreader: Rohan Pasalkar
 Typesetter: Dennis Dalinnik
 Cover designer: Marija Tudor

 ISBN: 9781633436855

 Printed in the United States of America

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Introducing data engineering with Snowflake

 1 Data engineering with Snowflake

 1.1 Snowflake for data engineering

 1.1.1 Snowflake architecture

 1.1.2 Snowflake features for data engineering

 1.2 Responsibilities of a Snowflake data engineer

 1.2.1 Extracting data from source systems

 1.2.2 Performing data transformations

 1.2.3 Presenting data to downstream consumers

 1.2.4 Applying underlying components

 1.3 Building data pipelines

 1.4 Data engineering with Snowflake applications

 2 Creating your first data pipeline

 2.1 Setting up your Snowflake account

 2.2 Staging a CSV file

 2.3 Loading data from a staged file into a target table

 2.3.1 Loading data from a staged file into a staging table

 2.3.2 Merging data from the staging table into the target table

 2.4 Transforming data with SQL commands

 2.5 Automating the process with tasks

 Part 2 Ingesting, transforming, and storing data

 3 Best practices for data staging

 3.1 Creating external stages

 3.1.1 Configuring a storage integration

 3.1.2 Creating an external stage using a storage integration

 3.1.3 Creating an external stage using credentials

 3.1.4 Loading data from staged files into a staging table

 3.1.5 Avoiding duplication when loading data from staged files

 3.1.6 Using a named file format

 3.2 Viewing stage metadata with directory tables

 3.3 Preparing data files for efficient ingestion

 3.3.1 File sizing recommendations

 3.3.2 Organizing data by path

 3.4 Building pipelines with external tables

 3.4.1 Querying data in external stages with external tables

 3.4.2 Using materialized views to improve query performance

 4 Transforming data

 4.1 Ingesting semistructured data from cloud storage

 4.1.1 Creating a storage integration

 4.1.2 Creating an external stage

 4.1.3 Examining the JSON structure

 4.1.4 Ingesting JSON data into a VARIANT data type

 4.2 Flattening semistructured data into relational tables

 4.3 Encapsulating transformations with stored procedures

 4.3.1 Creating a basic stored procedure

 4.3.2 Including a return value in a stored procedure

 4.3.3 Implementing exception handling in stored procedures

 4.4 Adding logging to stored procedures

 4.5 Building robust data pipelines

 5 Continuous data ingestion

 5.1 Comparing bulk and continuous data ingestion

 5.2 Preparing files in cloud storage

 5.2.1 Creating a storage integration

 5.2.2 Creating an external stage

 5.3 Configuring Snowpipe with cloud messaging

 5.3.1 Configuring event grid messages for blob storage events

 5.3.2 Creating a notification integration

 5.3.3 Creating a pipe object

 5.3.4 Ingesting data continuously

 5.3.5 Flattening the JSON structure to relational format

 5.4 Transforming data with dynamic tables

 6 Executing code natively with Snowpark

 6.1 Introducing Snowpark

 6.2 Creating a Snowpark procedure in a worksheet

 6.3 Using the SQL API from a local development environment

 6.3.1 Installing and configuring the local development environment

 6.3.2 Creating a Snowflake session

 6.3.3 Providing credentials in a configuration file

 6.3.4 Querying data and executing SQL commands

 6.4 Generating a date dimension in Snowpark Python

 6.5 Working with data frames

 6.6 Ingesting data from a CSV file into a Snowflake table

 6.7 Transforming data with data frames

 7 Augmenting data with outputs from large language models

 7.1 Configuring external network access

 7.2 Calling an API endpoint from a Snowpark function

 7.2.1 Constructing the UDF that retrieves customer reviews

 7.2.2 Interpreting the results from the UDF

 7.2.3 Storing the customer reviews in a table

 7.3 Deriving customer review sentiments

 7.4 Interpreting order emails using LLMs to save time

 7.4.1 Creating a stored procedure that interprets customer emails

 7.4.2 Constructing the prompt

 7.4.3 Saving the CSV result to a table

 7.4.4 Evaluating the output

 8 Optimizing query performance

 8.1 Getting data from the Snowflake Marketplace

 8.2 Performing analysis of geographical data

 8.2.1 Snowflake’s geography functions

 8.2.2 Copying data from the shared database

 8.2.3 Viewing query execution parameters using the query profile

 8.3 Understanding Snowflake micro-partitions

 8.3.1 A conceptual example of micro-partitions

 8.3.2 Micro-partition pruning

 8.4 Optimizing storage with clustering

 8.4.1 Viewing clustering information

 8.4.2 Adding clustering keys to a table

 8.4.3 Monitoring the clustering process

 8.4.4 Viewing improved query execution after clustering

 8.5 Improving query performance with search optimization

 8.5.1 Adding search optimization to a table

 8.5.2 Reviewing query performance after adding search optimization

 8.6 General tips for improving query performance

 8.6.1 Writing efficient SQL queries

 8.6.2 Identifying queries that are candidates for optimization

 9 Controlling costs

 9.1 Understanding Snowflake costs

 9.1.1 Total Snowflake cost

 9.1.2 Compute resources cost

 9.1.3 Virtual warehouse credits

 9.2 Sizing virtual warehouses

 9.2.1 Using persisted query results

 9.2.2 Comparing query statistics between differently sized warehouses

 9.2.3 Optimizing query performance to reduce spilling

 9.3 Optimizing performance with data caching

 9.3.1 Illustrating the metadata cache

 9.3.2 Utilizing the warehouse cache efficiently

 9.4 Reducing query queuing

 9.4.1 Examining queuing

 9.4.2 Limiting concurrently running queries

 9.5 Monitoring compute consumption

 10 Data governance and access control

 10.1 Role-based access control

 10.1.1 System-defined roles

 10.1.2 Custom roles

 10.1.3 Designing RBAC

 10.2 Securing data with row access policies

 10.3 Protecting sensitive data with masking policies

 Part 3 Building data pipelines

 11 Designing data pipelines

 11.1 Designing data pipelines

 11.1.1 Extracting data

 11.1.2 Comparing data pipeline patterns

 11.1.3 Choosing data transformation layers

 11.1.4 Organizing data warehouse layers

 11.1.5 Creating schemas with access control

 11.2 Building a sample data pipeline

 11.2.1 Implementing the extraction layer

 11.2.2 Implementing the staging layer

 11.2.3 Implementing the data warehouse layer

 11.2.4 Implementing the reporting layer

 12 Ingesting data incrementally

 12.1 Comparing data ingestion approaches

 12.1.1 Full ingestion

 12.1.2 Incremental ingestion

 12.2 Preserving history with slowly changing dimensions

 12.2.1 SCD type 2

 12.2.2 Append-only strategy

 12.2.3 Designing idempotent data pipelines

 12.3 Detecting changes with Snowflake streams

 12.3.1 Ingesting files from cloud storage incrementally

 12.3.2 Preserving history when ingesting data incrementally

 12.4 Maintaining data with dynamic tables

 12.4.1 Deciding when to use dynamic tables

 12.4.2 Querying historical data

 13 Orchestrating data pipelines

 13.1 Orchestrating with Snowflake tasks

 13.1.1 Creating a schema to store the orchestration objects

 13.1.2 Designing the orchestration tasks

 13.1.3 Creating tasks with dependencies

 13.2 Sending email notifications

 13.3 Orchestrating with task graphs

 13.3.1 Designing the task graph

 13.3.2 Creating the root task

 13.3.3 Creating the finalizer task

 13.3.4 Viewing the task graph

 13.4 Monitoring data pipeline execution

 13.4.1 Adding logging functionality to tasks

 13.4.2 Summarizing logging information in an email notification

 13.5 Troubleshooting data pipeline failures

 14 Testing for data integrity and completeness

 14.1 Data testing methods

 14.1.1 Performing data testing as steps in the pipeline

 14.1.2 Performing data testing independently of the pipeline

 14.2 Incorporating data testing steps in the pipeline

 14.2.1 Constructing the partner data quality task

 14.2.2 Constructing the product data quality task

 14.2.3 Executing the pipeline with the data testing tasks

 14.3 Applying the Snowflake data metric functions

 14.3.1 System-defined data metric functions

 14.3.2 User-defined data metric functions

 14.3.3 Viewing data metric function details

 14.4 Alerting users when data metrics exceed thresholds

 14.5 Detecting data volume anomalies

 14.5.1 Generating random data

 14.5.2 Displaying data as a line chart in Snowsight

 14.5.3 Working with the anomaly detection model

 15 Data pipeline continuous integration

 15.1 Separating the data engineering environments

 15.2 Database change management

 15.2.1 Comparing the imperative and the declarative approach to DCM

 15.2.2 Organizing the code in the repository

 15.3 Configuring Snowflake to use Git

 15.3.1 Creating a Git repository stage

 15.3.2 Executing commands from a Git repository stage

 15.4 Using the Snowflake CLI command line interface

 15.4.1 Installing and configuring Snowflake CLI

 15.4.2 Executing scripts with Snowflake CLI

 15.4.3 Continuous integration with Snowflake CLI

 15.5 Connecting to Snowflake securely

 15.5.1 Configuring key-pair authentication

 15.6 Applying what we learned in real-world scenarios

 appendix A Configuring your Snowflake environment

 A.1 Signing up for a Snowflake free trial account

 A.2 Installing and configuring Snowflake CLI

 appendix B Snowflake objects used in the examples

 B.1 Ingesting and transforming data from CSV files (chapter 2)

 B.2 Ingesting data from a cloud storage provider (chapter 3)

 B.3 Ingesting and flattening semi-structured data (chapter 4)

 B.4 Continuous data ingestion and dynamic tables (chapter 5)

 B.5 Executing code natively with Snowpark (chapter 6)

 B.6 Calling API endpoints and LLM functions (chapter 7)

 B.7 Optimizing query performance and controlling cost (chapters 8 and 9)

 B.8 Data governance and access control (chapter 10)

 B.9 Designing data pipelines (chapter 11)

 B.10 Ingesting data incrementally (chapter 12)

 B.11 Orchestrating data pipelines (chapter 13)

 B.12 Testing for data integrity and completeness (chapter 14)

 B.13 Data pipeline continuous integration (chapter 15)

 index

 foreword

 Data engineering has witnessed a massive transformation with the advent of cloud data platforms. At the forefront of this transformation (no pun intended) is Snowflake. The ability to seamlessly scale, compute and store, share and collaborate on data, and run AI workloads all in one simple-to-use platform has made Snowflake the platform of choice for data engineers working at businesses seeking to unlock the true potential of their data.

 With the explosion of data and AI, data engineers have never been more critical. Yet data engineers must constantly improve their knowledge and skills to stay ahead. This book, Snowflake Data Engineering, serves as an indispensable guide for aspiring and seasoned data engineers alike, providing a comprehensive and practical exploration of the art and science of data engineering within the Snowflake ecosystem.

 Whether you are new to Snowflake or seeking to expand your data engineering expertise, this book will serve as your trusted companion on your journey to mastering the art of data engineering in the cloud. Maja’s done a fantastic job of writing this book, which is the perfect blend of technical explanations and practical examples. By the end of this book, you’ll be well-prepared to tackle the challenges of the ever-evolving data landscape and empower your organization to make informed decisions and achieve its strategic objectives.

 Enjoy!

 —Joe Reis

 Author, Data Engineer, “Recovering Data Scientist”

 preface

 After years of using on-premises data analytics technologies, I was intrigued when Snowflake emerged. The concept of a cloud-provisioned database platform without the hassles of physical installation, sizing, purchasing, and upfront costs was captivating.

 My first experience with a Snowflake project was a revelation. The ease with which I could set up the infrastructure without needing heavy initial investment and commitment was a game-changer. The pay-as-you-go model further added to the flexibility and cost-effectiveness of the platform.

 Over the years, Snowflake has evolved into a comprehensive platform that can handle a wide range of data-related tasks. It combines storage, elastic compute, built-in AI capabilities, native applications with Python and Streamlit, data sharing, and integration with third-party services and tools for data insights. With all these features hosted on a single platform, you can establish governance to manage security, compliance, privacy, and access to the data and applications.

 Writing a detailed book about all the features that Snowflake provides, complete with real-world examples and exercises, would be overwhelming for an author to write and for the reader to comprehend. Therefore, when I discussed the book’s content with the publisher, I asked myself: What would be the first step for someone starting to use Snowflake? Since Snowflake stores data at its core, the initial task would be to bring data into the platform to enable other functionalities. This process falls under data engineering, which involves building data pipelines that ingest data from the source, transform it as needed, and deliver it to downstream consumers for analytics.

 Snowflake is hosted in the cloud, so the data ingestion process differs from traditional on-premises databases. You can’t just install an ODBC driver and select the data as you would in an on-premises environment. Instead, you need to know how to retrieve data from cloud object storage, Snowflake data sharing, APIs, or third-party tools and connectors. I cover that in this book, along with detailed explanations and examples.

 acknowledgments

 This book would not have been possible without my acquisition editor, Jonathan Gennick. It is my second time working with him. I trust his judgment regarding decisions about what to include and exclude in the book, understanding the target audience, and constructing the table of contents.

 My development editor, Katie Sposato Johnson, was there every step of the way, providing meaningful feedback, suggestions, and encouragement. She had a keen eye for pointing out sections where I veered off course during the writing process and steered me back on track. Thank you, Katie, for always being there when I needed your input.

 Thanks to my technical editor, Daan Baakboord, who was meticulous in his technical review, checking and rerunning my code, and providing valuable feedback and suggestions for improvement during the writing process. Daan Bakboord is a Snowflake AI Data Cloud Consultant. He is one of the first Snowflake Data Superheroes in the world. Daan, it was wonderful having you on board!

 As I started writing this book, I relied on various sources such as books, blogs, training materials, and whitepapers. Some of the sources I used included Snowflake: The Definitive Guide by Joyce K. Avila and the “Snowflake for Data Engineering” training course by Tomáš Sobotík. I want to express my gratitude to Joyce and Tomáš for being two of my early reviewers. Their expertise and feedback on the initial chapters of my manuscript were invaluable and provided the encouragement I needed to continue. Additionally, I consulted Fundamentals of Data Engineering, which was coauthored by Joe Reis, and I’m thankful to Joe for agreeing to write the foreword.

 I am also grateful to my technical proofreader, Rohan Pasalkar, who was very helpful in reviewing the code for the exercises in the book.

 I want to thank the entire Manning Publications team for their fantastic work preparing the book. This includes the marketing, graphics, and production teams, some of whom I never met and whose names I don’t know. Thanks to all the reviewers who read my manuscript in various stages of completion and provided comments from the point of view of the target reader: Alain Couniot, Albert Nogués, Andriani Stylianou, Ankit Virmani, David Allen Blubaugh, David Krief, Doyle Turner, Emanuele Piccinelli, Eros Pedrini, Gabor Gollnhofer, Hilde Van Gysel, Jesús Antonino Juárez Guerrero, Jonathan Woodard, Krzysztof Kamyczek, Luke Kupka, Madiha Khalid, Nadir Doctor, Oliver Korten, Pavel Filatov, Peter G. Bishop, Rambabu Posa, Richard B. Ward, Sambasiva Andaluri, Satej Sahu, Sean Booker, Simone Sguazza, Shivani Mayekar, Sriram Macharla, Tobias Kaatz, and Ubaldo Pescatore. Their feedback also helped shape the book’s contents.

 I appreciate my employer, In516ht, for allowing me to work on exciting projects where I could develop my Snowflake data engineering skills.

 Finally, I thank Snowflake for providing us with an extraordinary cloud data platform.

 about this book

 Data engineering is the practice of building solutions that extract data from source systems, transform the data into useful information, and present the harmonized data to users for downstream consumption. Data engineers are responsible for building data pipelines that enable data analysts, data scientists, and other users to access the data they need to do their jobs. Providing high-quality data on time is essential for effective analytics, which is why data engineers play a critical role in the data analytics domain.

 This book teaches data engineering skills on the powerful Snowflake platform. It starts by guiding you in building your first simple data pipeline and then expands the pipeline with increasingly complex features, including performance optimization, data governance, security, orchestration, and augmenting your data with generative AI.

 After reading this book and completing the included exercises, you will be able to

 	 Ingest data into Snowflake from cloud object store providers, from the Snowflake Marketplace, or from API calls

 	 Transform structured and semistructured data within Snowflake using functions, stored procedures, and SQL

 	 Optimize performance and cost when ingesting data into Snowflake

 	 Design role-based access control and data governance features to secure your data against unauthorized use

 	 Orchestrate data pipelines with streams and tasks and monitor their execution

 	 Use Snowpark for development in programming languages such as Python

 	 Deploy Snowflake objects and code using continuous integration and continuous deployment principles

 	 Augment your data with generative AI

 Who should read this book

 This book is for readers who have some familiarity with Snowflake, such as navigating the Snowsight user interface and using worksheets to execute queries and commands. The readers should have a basic understanding of data warehousing and data ingestion techniques. Previous use of ETL or ELT technologies for data ingestion is beneficial but not required.

 Since Snowflake is a relational database, knowledge of SQL querying, including data definition language (DDL) and data manipulation language (DML) operations, is vital. Depending on the reader’s preference, if they plan to use Snowpark with Python, they must also know how to write Python code. If they plan to stage data for loading, they must know how to set up a cloud object store bucket/container and upload files with any of the supported providers (AWS S3, Azure blob storage, GCP Google Cloud Storage).

 How this book is organized: A road map

 This book has 15 chapters organized in three parts.

 Part 1 prepares you for your journey into Snowflake data engineering:

 	 Chapter 1 introduces Snowflake as a modern cloud data platform for various data-related tasks such as data storage, processing, application development, and analytics. Snowflake is a popular choice for solutions encompassing data warehousing, data lakes, data analytics, and data science.

 	 In chapter 2, you will begin your data engineering journey by creating your first data pipeline in Snowflake. This pipeline involves extracting data from a CSV file into Snowflake, transforming the raw data into the required data model for reporting, and automating the process.

 Part 2 expands your initial data pipeline and explores the more advanced aspects of Snowflake data engineering:

 	 In chapter 3, you’ll learn how to ingest data from a cloud storage provider and create external stages in Snowflake. The chapter explains and compares different approaches to ingesting files and offers tips on preparing data files in cloud storage for efficient ingestion.

 	 In chapter 4, you’ll ingest semistructured data in JSON format and flatten it into a relational structure. You will add exception handling and logging to the data pipeline to ensure its resilience against unintended errors.

 	 In chapter 5, you’ll build a new data pipeline that continuously ingests data from files as soon as they appear in the external cloud storage with minimum delay. The chapter introduces Snowflake features like Snowpipe for continuous data ingestion and dynamic tables for continuous data transformation.

 	 Chapter 6 covers Snowpark, which consists of libraries and code execution environments that allow Python and other programming languages to run natively in Snowflake.

 	 In chapter 7, you’ll immerse yourself in generative AI and large language models (LLMs). You will learn how to call external API endpoints from Snowflake and use Snowflake’s own Cortex LLM functions to enhance your data pipelines.

 	 In chapter 8, you will utilize Snowflake’s query profile tool to understand the mechanics of query execution and identify opportunities for optimizing query performance when dealing with large data volumes.

 	 Chapter 9 explores what contributes to Snowflake’s cost and how to monitor credit consumption. It explains Snowflake virtual warehouses and how they affect query performance.

 	 In chapter 10, you will learn Snowflake role-based access control and data governance features, such as row access policies and masking policies, that limit data access to authorized users.

 Part 3 consolidates all your knowledge gained so far and demonstrates how to build a comprehensive data pipeline that executes on schedule:

 	 Chapter 11 lays the groundwork for a comprehensive data pipeline by defining the data transformation layers, including extract, staging, data warehouse, and presentation.

 	 Chapter 12 introduces incremental data ingestion, which is faster than full ingestion, as it involves moving and storing less data, resulting in reduced storage and compute costs.

 	 Chapter 13 explains data pipeline orchestration as the process that involves scheduling, defining dependencies, error handling, and sending notifications to ensure efficient execution of data pipeline steps.

 	 In chapter 14, you will learn how to conduct data quality tests that validate data integrity and completeness and take remedial measures when test results don’t meet the data quality standards.

 	 Chapter 15 covers continuous integration, a software development practice in which data engineers frequently merge their code changes into the repository. After the merge, automated scripts execute the code, create database objects, perform integration tests, and carry out other necessary actions.

 Each of the chapters explains the topics and emphasizes the learning with code examples that you can execute. The chapters follow a logical sequence and often build on the previous chapters. It is recommended that you read the chapters in sequence.

 About the code

 Each of the chapters in the book, except chapter 1, include code examples that can be executed in a Snowflake account. Appendix A provides instructions for creating a free trial Snowflake account that you can use to execute the code.

 The source code is explained in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/snowflake-data-engineering. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/snowflake-data-engineering and from GitHub at https://github.com/mferle/snowflake-data-engineering.

 liveBook discussion forum

 Purchase of Snowflake Data Engineering includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/snowflake-data-engineering/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest her interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 Other online resources

 Snowflake is constantly evolving, and commands may have changed since this book was written. Each chapter directs the reader to the relevant sections of the official Snowflake documentation, which provides detailed and up-to-date information. The main Snowflake documentation page is available at https://docs.snowflake.com/.

 The Snowflake Community at https://community.snowflake.com/ is a hub where you can meet like-minded developers, ask questions, and share information related to your Snowflake journey.

 about the author

 Maja Ferle is a seasoned data architect with more than 30 years of experience in data analytics, data warehousing, business intelligence, data engineering, data modeling, and database administration. As a consultant, she has delivered data projects in diverse environments across the globe, always seeking to get her hands on the latest technologies and methodologies. Since embarking on the Snowflake Data Cloud, Maja has served as data architect and data engineer on several successful cloud migration projects. She holds the SnowPro Advanced Data Engineer and the SnowPro Advanced Data Analyst certifications. She is also a Snowflake Subject Matter Expert and a Snowflake Data Superhero.

 [image: figure]

 about the cover illustration

 The figure on the cover of Snowflake Data Engineering is “Sabioncelline,” or “Woman from Pelješac,” taken from Balthasar Hacquet’s L’Illyrie et la Dalmatie, published in 1815.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Introducing data engineering with Snowflake

 This part of the book will prepare you for your journey into Snowflake data engineering.

 Chapter 1 will cover Snowflake as a modern cloud data platform for various data-related tasks, such as data storage, processing, application development, and analytics. Snowflake is a popular choice for solutions encompassing data warehousing, data lakes, data analytics, and data science.

 In chapter 2, you will begin your data engineering journey by creating your first data pipeline in Snowflake. This pipeline will involve extracting data from a CSV file into Snowflake, transforming the raw data into the required data model for reporting, and automating the process.

 By the end of this part of the book, you will have a solid understanding of the fundamental Snowflake features needed to extract and transform data from a file into Snowflake. This will serve as a foundation for the next part where you will enhance the pipeline with additional functionality.

1 Data engineering with Snowflake

 This chapter covers

 	Featuring Snowflake for data engineering

 	Examining the responsibilities of a Snowflake data engineer

 	Constructing data pipelines with Snowflake

 	Data engineering with Snowflake applications

 Organizations in just about every industry collect data, often in massive amounts. Data analysts, data scientists, and other business professionals use this data to gain insights that aid decision-making. Raw data is rarely suitable for consumption directly from the source. Consumers require data that is transformed according to business rules, reshaped to fit a particular business need, and optionally enriched with external data.

 Data engineering is the practice of building solutions that extract data from source systems, transform the data into useful information, and present the harmonized data to users for downstream consumption. The abbreviations ETL (extract, transform, load) or ELT (extract, load, transform) are also commonly used to denote these solutions.

 Data engineers are responsible for building data pipelines that enable data analysts, data scientists, and other users to access the data they need to do their jobs. Providing high-quality data on time is essential for effective analytics, so data engineers play a critical role in the data analytics domain.

1.1 Snowflake for data engineering

 Organizations usually extract data from source systems, store it in a data warehouse, and present it to users as dimensional data marts. Additional scenarios include building data lakes, data marts, or domain-oriented data products. In each scenario, data is extracted from source systems, ingested into a target storage platform, and transformed for use by downstream consumers.

 Snowflake is a modern cloud data platform for data storage, processing, application development, and analytics. It’s a popular choice for solutions encompassing data warehousing, data lakes, data analytics, or data science. The following sections explain the Snowflake capabilities that support data engineering in more detail.

 TIP  Snowflake is constantly evolving and adding new features. The most up-to-date information is available on Snowflake’s website at https://www.snowflake.com/.

1.1.1 Snowflake architecture

 Snowflake is a SaaS (software as a service) solution provisioned in the cloud. The currently supported cloud providers are Amazon Web Services, Microsoft Azure, and Google Cloud Platform. When users choose Snowflake as their cloud data platform, they don’t have to buy, install, configure, manage, or maintain hardware and software.

 In the Snowflake architecture, storage and compute are managed separately. Data is stored once and accessed by multiple workloads, such as data engineering pipelines, query engines, data science solutions, data sharing, or analytics.

 Snowflake stores data in cloud storage in a compressed columnar format. It manages the data storage organization, structure, compression, metadata, statistics, and security. The data objects are accessible to users through SQL queries.

 Users execute queries using virtual warehouses. Each virtual warehouse consumes its own compute resources without affecting other warehouses. The number of resources for each warehouse is configurable. Snowflake can also scale the resources up or down depending on desired performance and workload.

 Snowflake coordinates its different components through the cloud services layer. The services include authentication, access control, infrastructure management, query optimization, metadata management, and security. Figure 1.1 shows the three layers of the Snowflake architecture: database storage, query processing, and cloud services.

 [image: figure]

Figure 1.1 The three layers of the Snowflake architecture are database storage, query processing, and cloud services.

 Snowflake provides powerful storage features, such as zero-copy cloning and time travel. Zero-copy cloning makes copies of data without incurring additional storage costs. It allows data engineers to create new environments quickly. For example, they can clone a development environment into a test environment or clone a production environment into a development environment for new feature development.

 Time travel can protect data against unintentional errors or malicious acts. It allows users to access data at a point in time in the past and is an efficient way to keep data backups within a configurable time.

 Snowflake supports replicating databases between Snowflake accounts across regions and cloud platforms. This feature ensures the replicated data is in sync with the originating data. It also brings data closer to consumers in a chosen geographic region to reduce query latency and serves as a backup.

1.1.2 Snowflake features for data engineering

 Snowflake supports various features for data ingestion and transformation. These features are described in the following sections.

 Ingesting data from cloud storage providers

 Users can ingest data from files stored in the supported cloud storage providers: AWS S3 buckets, Azure blob storage containers, and GCP buckets. Files may be in structured or semistructured formats, such as CSV, JSON, XML, Parquet, and others. Snowflake also enables users to work with unstructured data files that contain images, video, or audio. Users can share file access URLs and load the URLs and file metadata into Snowflake tables.

 Snowpipe

 Snowpipe is a service that supports continuous data ingestion. This service ingests files from cloud storage into Snowflake tables as soon as new files become available in cloud storage. Continuous ingestion is made possible by integrating with the cloud provider notification service, which notifies Snowpipe that new files are available for ingestion.

 Snowflake tasks

 Snowflake supports creating tasks. A task executes SQL statements, stored procedures, or Snowflake scripting blocks according to a recurring schedule. Tasks can depend on other tasks, enabling the implementation of complex data processing pipelines.

 Snowpark

 Snowpark provides API libraries that allow data engineers to build data pipelines in one of the supported programming languages, including Python, Scala, or Java. The code written in these programming languages is executed natively in Snowflake. For example, data engineers can build data pipelines using a programming language, such as Python, and include open source libraries for additional functionality when required.

 Data governance features

 Data stored in Snowflake can contain sensitive information that can only be exposed to authorized users. In multitenant architectures, data from different organizations or business units is stored in a single database. Still, data access is restricted to users from the same organization. To serve these use cases, Snowflake provides data governance features such as masking policies and row-level access policies that prevent unauthorized users from accessing sensitive or confidential data.

 Snowflake Marketplace

 The Snowflake Marketplace is a platform where users can discover and access data sets published by other organizations. Users can choose relevant data sets and use them to enrich their data for further analyses. They can also publish their data sets to make them available to others. Data sets can be shared publicly or privately, allowing secure data sharing and collaboration within organizations or externally.

 Snowflake Partner Connect

 With its rich ecosystem of business partners, Snowflake seamlessly integrates with many popular third-party tools and services from many categories, such as business intelligence, data integration, machine learning, data science, security, data governance, and observability. Users employ these tools to ingest data in data engineering use cases, perform data analyses, build reports and dashboards, or work with machine learning and data science algorithms.

 With Snowflake, data engineers can choose from numerous features to build data pipelines according to their preferences, architectural direction, and business needs.

1.2 Responsibilities of a Snowflake data engineer

 Data engineers are responsible for designing, building, orchestrating, optimizing, monitoring, and maintaining pipelines that extract raw data from source systems and transform it into actionable information for downstream consumption. They ensure that data is readily available, secure, trustworthy, and accessible to consumers based on their requirements.

 Professionals with prior experience usually fulfill the data engineer role because it requires a broad range of responsibilities. Many data engineers have a software engineering or business intelligence analyst background and add more skills as needed. When working in a Snowflake environment, they gain knowledge and experience with Snowflake features.

 Knowledge of cloud computing is essential when using Snowflake. For example, data engineers frequently work with cloud object storage, and they understand how to connect to cloud environments securely. Many organizations are shifting toward the cloud and have their infrastructure hosted on cloud providers, meaning that data engineers are becoming comfortable navigating the cloud environment.

 Data engineers are familiar with Snowflake storage organization to write efficient SQL queries to retrieve and transform data. They understand how data is stored in Snowflake micro-partitions and how and when to apply clustering, search optimization, query acceleration, or other features to improve query performance.

 They also know how to utilize Snowflake virtual warehouses cost-effectively and understand how their solutions affect compute consumption. Virtual warehouses can also help to improve query performance because they maintain a data cache that other queries executed in the same warehouse reuse.

 When building solutions in enterprise environments, data engineers apply software engineering principles, such as coding best practices, automated testing, code versioning, continuous integration, and continuous deployment where applicable. If they use Snowpark, they also know a programming language, like Python.

 Knowing how to connect to Snowflake securely is crucial to avoid security breaches or unintentionally exposing sensitive data to unauthorized users. Detailed knowledge of the various methods of connecting to Snowflake is essential for all data engineers.

 Figure 1.2 illustrates the overall data engineering components for building data engineering pipelines within the Snowflake data cloud platform. Not all components are relevant to every project. Depending on the type of solution that they are building, data engineers only use those components that are relevant and required in the current environment. The main components of data engineering are

 	 Extracting data from source systems and ingesting it into Snowflake

 	 Performing data transformations that are relevant to the solution

 	 Presenting data to downstream consumers for analytics, reporting, data science, or any other use case

 In addition to the main components, data engineers also incorporate underlying components when building data engineering pipelines. The underlying components include

 	 Security

 	 Data modeling

 	 Data governance

 	 Software engineering

 	 Orchestration

 	 DataOps

 Each of these components is explained in more detail in the following sections (see figure 1.2).

 [image: figure]

Figure 1.2 Data engineering components with Snowflake include extracting data from source systems, ingesting the data into Snowflake, performing transformations, and presenting the data to downstream consumers, incorporating underlying components and best practices related to security, data modeling, data governance, orchestration, software engineering, and DataOps.

1.2.1 Extracting data from source systems

 The first step in the data engineering pipeline is extracting data from source systems. Data engineers gain a basic understanding of the business meaning of the data and how it is used in downstream solutions. Often, more than one source system provides data for the solution, and data engineers build pipelines that seamlessly ingest the data into a single platform with a unified model for the consumers.

 Data engineers familiarize themselves with the technology used in the source systems—for example, whether the data sets exist as tables in databases or files in cloud storage, are derived as the output of API calls from applications, originate as streaming data from IOT devices, or anything else. They identify the best way to access data and prepare it for ingesting into Snowflake. In addition to external data sources, data may be available in the form of Snowflake secure data sharing or the Snowflake Marketplace.

 Incremental data ingestion

 Data pipelines usually extract data from source systems incrementally by ingesting only new and changed data. Data engineers work together with the owners of the source systems to determine the best approach to detecting changes. They filter on timestamps or use database change tracking mechanisms or other methods. When extracting data from legacy source systems whose owners are unavailable, the data engineers sometimes figure out the best approach to detecting changes using their judgment and expertise.

 When working with systems that don’t support easy identification of data changes, data engineers can use Snowflake streams. A stream tracks data manipulation operations, such as inserts, updates, or deletes on the underlying data between two points in time.

 Using tools vs. custom coding

 When starting a new data engineering project, data engineers collaborate with solution architects and other invested parties to decide on the best tools and technologies for data extraction from source systems into Snowflake. These may be open source or commercial tools or custom-written code using open source or proprietary libraries and technologies.

 When custom coding, data engineers understand the source data formats and know the commands and options suitable for ingesting the data into Snowflake. They also know the underlying Snowflake commands and options when using third-party data extraction tools. All tools use these commands under the hood, and data engineers should be able to troubleshoot any problems.

1.2.2 Performing data transformations

 Data ingested from source systems is transformed from its raw format into useful, actionable information according to user requirements. Data engineers usually receive the transformation rules from data analysts, system architects, or sometimes the users. In smaller data engineering teams, the data engineers may work with business users to define the data transformation rules.

 Tools for data transformation

 The tools that data engineers use for data transformation vary. Such tools can perform transformations using SQL queries, stored procedures, or functions. Some tools for extracting data from source systems also support data transformations and can be used for this purpose.

 Data engineers can also write code in Snowpark, which enables them to write the transformations in one of the supported programming languages, including Python, Java, or Scala. They can also use popular open source libraries for data transformation.

 Data validation

 In addition to data transformation, data engineers add data validation steps into the data pipelines so that downstream consumers can be confident that their data is reliable and consistent. Data pipelines often include technical data validation rules, such as checking for primary key or foreign key violations, because Snowflake doesn’t enforce primary or foreign key constraints in standard tables. The consumers can define additional data validation rules. Data that doesn’t adhere to these rules can be flagged or excluded from downstream analyses.

1.2.3 Presenting data to downstream consumers

 Once data has been ingested from the source systems and appropriately transformed, it is presented to the consumers in a shape and form that is appropriate for the tools and solutions used downstream. Data engineers cater to the business needs of the consumers by delivering data according to expected timeliness and performance.

 Data engineers build the appropriate user interfaces where needed, such as APIs if applicable, or present the data in the data model suitable for the tool used for analysis. They also provide metadata to allow better data discoverability—for example, by exposing table and column comments in the database and any other relevant metrics, such as the last time the data was refreshed, the number of ingested records, the data quality metrics if used, and more.

 Snowflake SQL queries don’t require tuning like in many traditional databases, where database administrators spend significant time tuning queries and applying techniques to improve performance. In Snowflake, most queries execute efficiently without additional tuning efforts. However, there are still occasions where Snowflake administrators and data engineers can improve query performance for queries that have high complexity, use substantial data volumes, or consume too many resources. In this case, data engineers can improve performance by implementing Snowflake features such as clustering, search optimization, materialized views, or dynamic tables.

1.2.4 Applying underlying components

 While data engineering, on a high level, involves extracting data from source systems, ingesting it into Snowflake, and transforming it for downstream consumption, there are additional components that data engineers apply as needed.

 Security

 Whether hosted in the cloud or on-premises, IT solutions can be subject to cybersecurity threats and vulnerabilities. Because Snowflake is hosted in the cloud, additional precautions are necessary to prevent unauthorized access. Snowflake administrators usually secure access by various means, such as restricting IP addresses from which users can access Snowflake or requiring strong authentication methods, like multifactor authentication.

 While building pipelines, data engineers inevitably connect to Snowflake at some point. Any credentials used for connecting to Snowflake are stored securely in the cloud provider secrets or locally in a secure location that is never exposed to other users or committed to a repository where others could see it. Data engineers must act responsibly to ensure that Snowflake access credentials are not intentionally or accidentally shared with anyone.

 Users should have the minimum privileges necessary to complete a task. Even when data engineers are granted the more powerful Snowflake administration roles to perform specific tasks, they should not use these roles by default. Instead, they should use their designated development roles and only consciously switch to the more powerful administration roles when required to complete a specific administration task.

 Data engineers understand the principles of Snowflake role-based access control and use the proper roles when creating objects in Snowflake. While they may not necessarily be responsible for setting up role-based access control, they are aware of how it has been designed so that they can use it correctly.

 Data governance

 Most organizations have data governance rules that restrict unauthorized users from accessing confidential or sensitive data. Sometimes, especially in highly secure and regulated environments, data engineers are not given access to the actual production data but work with sample data, data where sensitive information has been masked, or subsets of data where sensitive information has been removed.

 Data engineers work with data architects and domain owners to understand the data governance requirements. They adhere to these requirements when building data pipelines. For example, they might store sensitive attributes in separate tables with a more restrictive access policy.

 Data modeling

 Depending on the size of the organization where data engineers work, they may or may not perform data modeling. Large organizations often have dedicated data modeling experts or teams responsible for creating data models. In smaller organizations, data engineers may perform data modeling as part of their job.

 Regardless of who creates the data model, a data engineer understands data modeling concepts to correctly load data into the target data models. For example, data models may require that data pipelines generate surrogate keys during data ingestion.

 Some examples of the standard data models in data warehousing and analytics solutions include

 	 Relational data models for enterprise data warehouses

 	 Ensemble data models such as data vault or anchor modeling that are particularly useful as enterprise data warehouses when ingesting data from many sources

 	 Dimensional data models for data marts and reporting tools

 Some data models allow common and repeatable data loading patterns that automate the data ingestion. Data engineers implement such loading patterns, which helps them build more standardized and efficient data pipelines.

 Orchestration

 Most data pipelines run on a schedule agreed upon with the owners of the source systems and the downstream consumers. Depending on the users’ needs, pipelines can be scheduled in batches or micro-batches, such as daily, hourly, or every few minutes.

 When the system contains multiple pipelines, data engineers design dependencies between pipelines and their components. They can use third-party data orchestration tools, operating system commands, or Snowflake tasks to schedule pipelines in an organized manner.

 Snowflake tasks support creating a directed acyclic graph (DAG), which contains a series of tasks with their dependencies. Each DAG originates from a single root task, and the dependent tasks execute in the same direction without loops. Figure 1.3 shows an example of a DAG of Snowflake tasks.

 [image: figure]

Figure 1.3 A DAG of tasks. The DAG consists of a root task and dependent tasks that start executing when their predecessor completes.

 Data engineers monitor scheduled pipelines to ensure they execute without errors and load data as expected. When designing data pipelines, they incorporate logging mechanisms that allow efficient troubleshooting in case of errors. They also design data pipelines that enable restarting from the beginning or starting from the point of failure when execution fails.

 Software engineering

 Software engineering represents a large chunk of data engineers’ work. They build, test, and maintain data engineering pipelines, which are often large systems composed of programming code. Even if most of the code consists of SQL queries instead of traditional programming language coding constructs, software engineering principles like naming conventions, code modularization, code readability, versioning, and system maintainability still apply.

 Data engineers also build well-performing, robust, and reliable systems. For example, suppose a data pipeline is accidentally triggered twice. In that case, it shouldn’t result in duplicated data, or the pipeline shouldn’t execute when the previous instance of the same pipeline is still in progress.

 An essential part of data engineering is understanding and utilizing the various environments in the software engineering lifecycle. Organizations typically use a development environment where all the developers work on their code. They then deploy the code to a test environment where it is tested to ensure that the completed pipelines are working as expected. Some large organizations may also have environments for user acceptance testing. Once the code has been tested and approved, it is deployed to the production environment.

 DataOps

 DataOps is a general term derived from agile software engineering that applies to the data lifecycle, which includes extraction, ingestion, transformation, and presentation. It combines processes and technologies that improve quality and enable continuous development and integration of data engineering pipelines.

 Like DevOps in software engineering, DataOps ensures continuous delivery of working software by using tools or technologies that enable team collaboration. For example, data engineering teams use code repositories like Git with CI/CD integration. They can also automate testing of the data pipeline code and data validation. Even in small organizations with only one data engineer, DataOps practices help to organize and structure the work better and ensure consistent and continuous deployment to production.

1.3 Building data pipelines

 A data pipeline is a set of data-processing components that moves data from the source to the destination. Depending on the requirements, the pipeline may also perform data transformation. Each data pipeline is different. For example, the data engineer ingests files from cloud object storage into Snowflake and presents the data from the files to the downstream consumers for reporting.

 Figure 1.4 illustrates this example pipeline. Files from the cloud object storage are made available to Snowflake via an external stage and ingested into a staging table. The pipeline then loads the data into the target table, performs any necessary transformations, and loads the data into the transformed table. Finally, it exposes the data to downstream consumers for further reporting, querying, or analysis.

 [image: figure]

Figure 1.4 Data pipeline that extracts a data file from a cloud storage provider, ingests the data into a Snowflake table, and transforms the data for reporting

 The example in figure 1.4 is one of the most common data engineering pipelines in Snowflake. It uses an external stage that points to the cloud object storage location. It then uses the COPY command to ingest data from the cloud storage into a Snowflake staging table. This data is then loaded into the target table by appending it using the INSERT command or merging it using the MERGE command. The target table is usually designed before the data engineer builds the data pipeline as part of the transformation layer data model.

 Any required transformations are performed using SQL statements or stored procedures, and the transformed data is stored in the transformed table. Finally, data is presented in a format that is suitable for reporting. Instead of building data transformation steps in data pipelines, data engineers can create SQL views to transform data because views are easy to maintain and don’t require data reloading. However, views may not provide the performance needed by data consumers. In such situations, the data engineer decides on the best approach to improve performance, often by materializing the data.

 Many types of data pipelines with various components are used in real-life scenarios. They are described in more detail in subsequent chapters.

1.4 Data engineering with Snowflake applications

 The most common data engineering with Snowflake applications are data lakes, data warehousing, data marts, data mesh, business intelligence, data science, and data augmentation using large language models.

 Data lake

 A data lake is a repository that stores large amounts of structured, semistructured, or unstructured data. Snowflake supports storing data in various table types, including standard tables, external tables, hybrid tables, and more. Many concurrent workloads can access the data without resource contention. Users can query the relational or semistructured data in a data lake with SQL or other languages supported in the Snowpark development environment.

 Data warehouse

 A data warehouse is an enterprise repository of data collected from one or more source systems or external sources such as the Snowflake Marketplace. The primary purpose of the data warehouse is to provide harmonized historical data for creating reports, dashboards, and data analyses for business users. It allows business users to derive insights from this data, which are the basis for making business decisions.

 Data mart

 Data marts store data for a single business unit, such as marketing or finance. The business units can access data in data marts quickly and easily, rather than searching for the information in the data warehouse. Because building a data warehouse can consume significant resources and take a long time to complete, organizations sometimes opt to build only data marts without a data warehouse.

 Data mesh

 Data mesh is a more recently introduced approach to data analytics, where—instead of a monolithic data warehouse—individual domain teams build their data products. These often resemble data marts. With better tools and easier-to-use platforms and technologies, business users can do their data preparation and exploration. For example, they profile the data quality in their business units. They can also perform simple transformations. Thus, some data engineering activities shift from data engineers to business users.

 However, even when data engineering activities are transferred to business users, the need for qualified data engineers will continue. Many technical components of the data engineering pipelines require solid software engineering knowledge, which business users might not have, as they have a different focus. Data engineers still play a significant role in a data mesh approach, but the role may move from the IT function to the relevant business function.

 Snowflake can host data products, and Snowflake data sharing can expose data products across the organization.

 Business intelligence

 Business intelligence is the process of analyzing data and deriving actionable information for decision-making. Business intelligence solutions usually get their data from enterprise data warehouses, data marts, data products, or a combination of these.

 Data science

 Data science is a broad topic that covers applications such as advanced analytics, AI, and machine learning. Generally, data science aims to uncover actionable insights from data sources used for decision-making and strategic planning in organizations. Snowpark enables data scientists to build their models using a programming language of their choice, especially Python, as it has a rich selection of machine learning libraries. For example, data scientists can build, train, and deploy machine learning models within the Snowpark environment with popular libraries like scikit-learn, TensorFlow, or PyTorch. With the introduction of Snowflake Cortex, some machine learning functionalities, such as time-series forecasting, anomaly detection, or classification, can be accessed from Snowflake SQL commands.

 Data augmentation using large language models

 Generative artificial intelligence (GenAI) is artificial intelligence that generates text, images, programming code, or other output formats. Large language models (LLMs) are a subset of GenAI that create text content. Many business applications, such as text classification, document analysis, sentiment classification, and language translation, rely on LLMs. Outputs from LLMs can augment data in various Snowflake solutions.

 Developers can access third-party LLM functionality from Snowpark by calling the related API and storing the result in Snowflake tables for further analysis. With the introduction of Snowflake Cortex, selected LLM functionality, like sentiment scoring, prompt completion, text summarization and translation, extracting an answer from unstructured text, or vector embedding, can be accessed from Snowflake SQL commands.

 Summary

 	 Snowflake is a modern cloud data platform well suited for data-intensive solutions such as data lakes, data warehouses, data marts, data mesh, business intelligence, data science, and data augmentation using LLMs.

 	 Snowflake data engineers are responsible for designing, building, orchestrating, optimizing, monitoring, and maintaining pipelines that take raw data from source systems and transform it into usable information for downstream consumption.

 	 The first step in the data engineering pipeline is extracting data from source systems. Data engineers gain access to the source systems and ingest data into Snowflake by custom coding Snowflake commands or using a tool.

 	 Data ingested from source systems into Snowflake is transformed from its raw state into a shape and format suitable for downstream consumers.

 	 Data transformations can be performed via tools, SQL statements, or stored procedures or coded in Snowpark using one of the supported programming languages.

 	 Data for downstream consumers is presented in a shape that makes it readily accessible and efficient to use with third-party reporting tools or other solutions, such as machine learning models in Snowpark.

 	 A data pipeline is a set of data-processing steps that moves data from source to destination and performs transformations as needed.

 	 When building data pipelines for Snowflake, data engineers apply underlying components, such as security, data governance, data modeling, orchestration, software engineering, and DataOps.

 	 The most common data engineering with Snowflake applications are data lakes, data warehouses, data marts, data mesh, business intelligence, data science, and data augmentation using LLMs.

2 Creating your first data pipeline

 This chapter covers

 	Staging a file for ingesting into Snowflake

 	Loading data from a staged file into a staging table

 	Merging data from a staging table into the target table

 	Transforming data with SQL

 	Automating the pipeline with a task

 In this chapter, you will learn how to build your first data pipeline in Snowflake. We will ingest data from a CSV file into Snowflake, transform the data from its raw form into a target data model required for reporting, and automate the pipeline. This chapter does not include underlying data pipeline components introduced in chapter 1, such as security, data governance, software engineering, or DataOps, because we want to keep it simple initially. These topics are described in more detail in subsequent chapters. To get started with data engineering, we will create a simple data pipeline that will illustrate the core Snowflake functionality required to ingest data from a file into Snowflake and transform the data.

 By the end of this chapter, we will build and automate a data pipeline that ingests and transforms CSV files on schedule. We will learn how to stage a file using a Snowflake internal stage. We will execute the Snowflake COPY command to load data from the internal Snowflake stage to a staging table. Next, we will merge data from the staging table into the target table. Then we will transform the data into an appropriate format for the downstream consumers using SQL statements. Finally, we will create a task that automates the pipeline execution process every day. A data pipeline using these steps is shown in figure 2.1.

 [image: figure]

Figure 2.1 Data pipeline that takes CSV files from a Snowflake internal stage, loads the data into a staging table, merges the data from the staging table into the target table, and transforms the data for downstream consumption

 Throughout this chapter, we will work with an example to illustrate building the pipeline. We will consider a fictional bakery that makes bread and pastries. The bakery delivers these baked goods to small businesses such as grocery stores, coffee shops, and restaurants in the neighborhood. Since the bakery has no online ordering system, customers order baked goods via email. A bakery employee reads the emails and collects all customer orders into a CSV file saved on the local file system.

 The bakery manager summarizes the orders in the CSV file at the end of each working day to determine how much of each baked good the bakery must produce in the coming days. This information is required so the bakery knows how much raw materials to purchase and how many employees are needed to work on a given day to meet the demand.

 The bakery wants to automate the data management process by ingesting the data from the CSV file into Snowflake at the end of each day and performing the summarization steps. This chapter walks you through the process of building a data pipeline that supports the bakery’s scenario.

 Referring to the Snowflake documentation

 Throughout this book, we work with examples and execute Snowflake commands as needed to illustrate examples that describe the various data engineering tasks. We don’t describe each Snowflake command in detail or provide all possible options and variations of each command. We highlight the syntax and options relevant to the example and give information about executing the most frequently used command options and parameters. Details about all commands are available in the Snowflake documentation at https://docs.snowflake.com/.

 Links to specific sections in the documentation are provided where needed.

2.1 Setting up your Snowflake account

 To follow along with the example in this chapter, as well as examples in subsequent chapters, you will need access to a Snowflake account. If you already have access to a Snowflake account where you can work through the examples, then feel free to use it. Ensure you have sufficient privileges to create a database and add additional objects to it.

 If you don’t already have access to a Snowflake account, you can create a free trial Snowflake account at https://signup.snowflake.com/. Appendix A provides more information about creating a free trial Snowflake account and the options available.

 NOTE  All code and sample data files for this chapter are available in the accompanying GitHub repository in the Chapter_02 folder at https://mng.bz/dZn1.

 The first step in the Snowflake account is to create a database, a schema, and a virtual warehouse that we will use to build the pipeline. For now, we will create objects using the SYSADMIN role, which is one of the built-in administrative roles in Snowflake. Usually, data engineers use custom roles in the Snowflake account, as we will discuss in later chapters. We will use the built-in roles for now since custom roles don’t exist in the free trial Snowflake account.

 TIP  Even if you are using a Snowflake free trial account where you have the ACCOUNTADMIN role, remember that this is the most powerful role in Snowflake and should be used for administration tasks only. Never create objects using the ACCOUNTADMIN role; instead, choose a role with fewer privileges that will allow you to perform the required tasks.

 To create the required database, schema, and virtual warehouse, we will open a new worksheet in the Snowflake web interface, also known as Snowsight, and execute the commands.

 TIP  If you are not familiar with the Snowsight user interface, please refer to the Snowflake documentation at https://mng.bz/r1zj.

 We will use the SYSADMIN role to create a database named BAKERY_DB, a schema named ORDERS, and an extra-small virtual warehouse named BAKERY_WH:

 use role SYSADMIN;

create database BAKERY_DB;

create schema ORDERS;

create warehouse BAKERY_WH with warehouse_size = 'XSMALL';

 Using the Snowsight user interface vs. executing commands

 Many Snowflake objects, such as databases, schemas, virtual warehouses, and so on, can be created in Snowflake either by executing commands or by using the Snowsight user interface. Throughout this book, we will favor executing commands over the user interface. Data engineering pipelines are typically scheduled to run with minimal user intervention, which means that we must use commands that can be automated rather than clicking through the user interface.

2.2 Staging a CSV file

 To start building the data pipeline required by the bakery, we must have a CSV file ready with data to ingest. The bakery has been collecting orders daily and saving them to CSV files. For example, the orders the bakery collected on July 7 are all stored in a CSV file named Orders_2023-07-07.csv. The first few rows of data in this file are shown in table 2.1.

Table 2.1 Orders collected by the bakery on a single day

 	

 Customer

 	

 Order date

 	

 Delivery date

 	

 Baked good type

 	

 Quantity

 	 Coffee Pocket

 	 2023-07-07

 	 2023-07-10

 	 Baguette

 	 6

 	 Coffee Pocket

 	 2023-07-07

 	 2023-07-10

 	 Bagel

 	 12

 	 Coffee Pocket

 	 2023-07-07

 	 2023-07-10

 	 English muffin

 	 16

 	 Coffee Pocket

 	 2023-07-07

 	 2023-07-10

 	 Croissant

 	 18

 	 Lily's Coffee

 	 2023-07-07

 	 2023-07-10

 	 Bagel

 	 20

 	 Lily's Coffee

 	 2023-07-07

 	 2023-07-10

 	 White loaf

 	 4

 	 Lily's Coffee

 	 2023-07-07

 	 2023-07-10

 	 Croissant

 	 20

 	 Crave Coffee

 	 2023-07-07

 	 2023-07-10

 	 Croissant

 	 50

 	 Best Burgers

 	 2023-07-07

 	 2023-07-10

 	 Hamburger bun

 	 75

 	 ...

 	 ...

 	 ...

 	 ...

 	 ...

 The CSV file is stored on the bakery’s local file system. To ingest the data from this file into Snowflake, we will upload the file into a Snowflake stage. A stage is a Snowflake object that points to the location of data files in cloud storage. Snowflake supports two types of stages:

 	 External stage —Data is stored in any of the supported cloud storage providers, including Amazon S3, Google Cloud Storage, or Microsoft Azure.

 	 Internal stage —Data is stored in the cloud storage provider that hosts the Snowflake account.

 External stages require connectivity to the cloud storage provider and are discussed in more detail in the following chapter. We will use a Snowflake internal stage to keep our first data pipeline simple. We can stage data files in different types of internal stages:

 	 User stages that are allocated to each Snowflake user

 	 Table stages that are allocated to each table created in Snowflake

 	 Named internal stages

 A Snowflake named internal stage is a database object created in a schema. It is more flexible than user stages or table stages because it can stage files managed by multiple users and loaded into multiple tables.

 Let’s create the Snowflake named stage to build the pipeline. In the same worksheet as previously, using the BAKERY_DB database and the ORDERS schema, we will execute the following command:

 use database BAKERY_DB;

use schema ORDERS;

create stage ORDERS_STAGE;

 We can view the contents of the stage by using the LIST command:

 list @ORDERS_STAGE;

 Because we just created the stage, it is empty, and the LIST command returns a message that says, “Query produced no results.”

 We can now upload the CSV file into the stage we just created. We will perform this step using the Snowsight user interface. To upload this file into the Snowflake internal stage, we will navigate to the main menu in Snowsight, expand the Data option, and click Databases. A second navigation pane appears where we can navigate from the BAKERY_DB database to the ORDERS schema, where we can expand the Stages folder and choose the ORDERS_STAGE internal stage. We will see a screen like in figure 2.2.

 [image: figure]

Figure 2.2 Stage details in the Snowsight user interface after expanding the Stages folder in the ORDERS schema in the BAKERY_DB database

 After we click ORDERS_STAGE in the navigation pane, we will see its properties in the main window. Here, we can click the +Files button to upload a file to the stage. In the window that appears, we can upload the Orders_2023-07-07.csv file.

 Let’s view the contents of the stage again with the same LIST command as earlier:

 list @ORDERS_STAGE;

 Now the stage should contain the CSV file we just uploaded. The output of the LIST command is shown in table 2.2.

Table 2.2 Output of the LIST command showing the CSV file that resides in the internal stage

 	

 Name

 	

 Size

 	

 MD5

 	

 Last_modified

 	 orders_stage/ Orders_2023-07-07.csv

 	 3376

 	 0fe929d77d8d60772d42dcf7482bb5bc

 	 Fri, 7 Jul 2023 17:02:48

 Loading files into Snowflake stages via the Snowflake CLI

 An alternative method exists to upload files from a local file system into a Snowflake stage. We could have used the Snowflake command line interface to upload the file, but this would require installing and configuring the Snowflake CLI, adding complexity. This method could be challenging for a bakery employee, for whom the Snowsight user interface would be much easier to use.

2.3 Loading data from a staged file into a target table

 Now that the CSV file is in the Snowflake internal stage, we can continue with the steps to load the data from the file into a staging table. But first, let’s view the data to check that it is available and in the expected format. We will use an SQL command to view the data because we will need the same command later to load it.

 The simplest way to view data in a stage is to use the SELECT command on the entire stage. One point to remember is that when selecting data from a stage, we don’t use the SELECT * syntax to denote all columns, like in SQL queries, because Snowflake doesn’t know the schema of the data files in the stage. Instead, we use the $ notation to refer to columns in the file, for example, $1 for the first column, $2 for the second column, and so on.

 With semistructured formats, such as Parquet or JSON, Snowflake considers each record as one column. However, when data is in the CSV format, the default field delimiter is the comma, and the default record delimiter is the new line character. Because we are using the same delimiters in our CSV file, Snowflake already recognizes the columns by default. To select everything from the internal stage, knowing that the uploaded CSV file contains five columns, we can execute the following command:

 select $1, $2, $3, $4, $5 from @ORDERS_STAGE;

 The output of this command shows the orders collected by the bakery, as in table 2.3 (only the first few rows are shown for illustration).

Table 2.3 The output of the command that selects data from the ORDERS_STAGE internal stage

 	

 $1

 	

 $2

 	

 $3

 	

 $4

 	

 $5

 	 Customer

 	 Order date

 	 Delivery date

 	 Baked good type

 	 Quantity

 	 Coffee Pocket

 	 2023-07-07

 	 2023-07-10

 	 Baguette

 	 6

 	 Coffee Pocket

 	 2023-07-07

 	 2023-07-10

 	 Bagel

 	 12

 	 Coffee Pocket

 	 2023-07-07

 	 2023-07-10

 	 English muffin

 	 16

 As shown in table 2.3, Snowflake doesn’t differentiate between the header column containing the column names and the data content. When loading data from the staged file into a table, we must indicate to Snowflake that we should exclude the header row with the column names. For this purpose, we will include a file format when we load the data.

 Snowflake supports structured (CSV, tab-separated values, and similar) and semistructured (JSON, Avro, ORC, Parquet, and XML) file formats. Together with the file format, we can provide options that specify the data type in the file and other properties that further describe the data format. We can define a file format as a stand-alone named database object in Snowflake, as explained in more detail in chapter 3. To keep it simple, we will provide the file format using individual format options specified in the command that loads, unloads, or views data in staged files.

OEBPS/Images/cover.jpg
Maja ferle

Toreward by Joe Reis

/'I MANNING

OEBPS/Images/1-4.png
Cloud

storage Snowflake Reporting
Extraction layer Transformation Presentation layer
layer
P -
I
File [~ External stage |
1 |
l COPY INTO
r—| Dashboards and
reports

OEBPS/Images/2-1.png
Local file system Snowflake

Extraction layer Transformation

layer

Presentation layer

\
I

1 Internal stage :
L J

COPY
INTO

Staging table

TRANSFORMATION

Target table Travzfglgmed

OEBPS/Images/2-2.png
Q search
© BAKERY_DB/ORDERS/O... -

~ B BAKERY_DB

> B INFORMATION_SCHEMA 3 Internal Stage () SYSADMIN (© 2 minutes ago

v 2 ORDERS

StageFiles Stage Details
v Stages

#5 ORDERS_STAGE

> 2 PUBLIC
> @ SNOWFLAKE Details
> B SNOWFLAKE_SAMPLE_DATA)
Encryption
Client-side

Directory Table
Disabled

Storage Integration

Internal

OEBPS/Images/Maja_Ferle_photo.png

OEBPS/Images/manning_m.jpg

OEBPS/Images/Manning_M_small.png

OEBPS/Images/1-1.png
Authentication and access control
Cloud
Services | |nfrastructure Query Metadata Securit
management | | optimization | | management Y

v % R %

processing

Virtual Virtual Virtual
warehouse warehouse warehouse

Database — — —]
storage — -— —
g -— - -

OEBPS/Images/1-2.png
Source
systems

Databases

Files

Streaming (I0T)

APIs

Snowflake data
sharing

Snowflake
Marketplace

Snowflake

Extraction layer

Transformation
layer

Presentation layer

Consumers

Querying

Reports

Dashboards

Machine learning

Snowflake data
sharing

Snowflake
Marketplace

OEBPS/Images/1-3.png
Task B

Root task
(scheduled)

Task E

Task C

Task D

