

 [image:]

 Optimization Algorithms

 AI techniques for design, planning, and control problems

 Alaa Khamis

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	

 [image:]

 	

 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	

 Development editor:

 	

 Doug Rudder

 	

 Technical editor:

 	

 Frances Buontempo

 	

 Review editors:

 	

 Adriana Sabo and Dunja Nikitović

 	

 Production editor:

 	

 Andy Marinkovich

 	

 Copyeditor:

 	

 Andy Carroll

 	

 Proofreader:

 	

 Melody Dolab

 	

 Technical proofreader:

 	

 Bin Hu

 	

 Typesetter:

 	

 Bojan Stojanović

 	

 Cover designer:

 	

 Marija Tudor

 ISBN: 9781633438835

 dedication

 To my beautiful wife Nermein and my lovely children, Renad and Kareem. You are the joy of my life.

 contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Deterministic search algorithms

 1 Introduction to search and optimization

 1.1 Why care about search and optimization?

 1.2 Going from toy problems to the real world

 1.3 Basic ingredients of optimization problems

 Decision variables

 Objective functions

 Constraints

 1.4 Well-structured problems vs. ill-structured problems

 Well-structured problems

 Ill-structured problems

 WSP, but ISP in practice

 1.5 Search algorithms and the search dilemma

 2 A deeper look at search and optimization

 2.1 Classifying optimization problems

 Number and type of decision variables

 Landscape and number of objective functions

 Constraints

 Linearity of objective functions and constraints

 Expected quality and permissible time for the solution

 2.2 Classifying search and optimization algorithms

 2.3 Heuristics and metaheuristics

 2.4 Nature-inspired algorithms

 3 Blind search algorithms

 3.1 Introduction to graphs

 3.2 Graph search

 3.3 Graph traversal algorithms

 Breadth-first search

 Depth-first search

 3.4 Shortest path algorithms

 Dijkstra’s search

 Uniform-cost search (UCS)

 Bidirectional Dijkstra's search

 3.5 Applying blind search to the routing problem

 4 Informed search algorithms

 4.1 Introducing informed search

 4.2 Minimum spanning tree algorithms

 4.3 Shortest path algorithms

 Hill climbing algorithm

 Beam search algorithm

 A* search algorithm

 Hierarchical approaches

 4.4 Applying informed search to a routing problem

 Hill climbing for routing

 Beam search for routing

 A* for routing

 Contraction hierarchies for routing

 Part 2. Trajectory-based algorithms

 5 Simulated annealing

 5.1 Introducing trajectory-based optimization

 5.2 The simulated annealing algorithm

 Physical annealing

 SA pseudocode

 Acceptance probability

 The annealing process

 Adaptation in SA

 5.3 Function optimization

 5.4 Solving Sudoku

 5.5 Solving TSP

 5.6 Solving a delivery semi-truck routing problem

 6 Tabu search

 6.1 Local search

 6.2 Tabu search algorithm

 Memory structure

 Aspiration criteria

 Adaptation in TS

 6.3 Solving constraint satisfaction problems

 6.4 Solving continuous problems

 6.5 Solving TSP and routing problems

 6.6 Assembly line balancing problem

 Part 3. Evolutionary computing algorithms

 7 Genetic algorithms

 7.1 Population-based metaheuristic algorithms

 7.2 Introducing evolutionary computation

 A brief recap of biology fundamentals

 The theory of evolution

 Evolutionary computation

 7.3 Genetic algorithm building blocks

 Fitness function

 Representation schemes

 Selection operators

 Reproduction operators

 Survivor selection

 7.4 Implementing genetic algorithms in Python

 8 Genetic algorithm variants

 8.1 Gray-coded GA

 8.2 Real-valued GA

 Crossover methods

 Mutation methods

 8.3 Permutation-based GA

 Crossover methods

 Mutation methods

 8.4 Multi-objective optimization

 8.5 Adaptive GA

 8.6 Solving the traveling salesman problem

 8.7 PID tuning problem

 8.8 Political districting problem

 Part 4. Swarm intelligence algorithms

 9 Particle swarm optimization

 9.1 Introducing swarm intelligence

 9.2 Continuous PSO

 Motion equations

 Fitness update

 Initialization

 Neighborhoods

 9.3 Binary PSO

 9.4 Permutation-based PSO

 9.5 Adaptive PSO

 Inertia weight

 Cognitive and social components

 9.6 Solving the traveling salesman problem

 9.7 Neural network training using PSO

 10 Other swarm intelligence algorithms to explore

 10.1 Nature’s tiny problem-solvers

 10.2 ACO metaheuristics

 10.3 ACO variants

 Simple ACO

 Ant system

 Ant colony system

 Max-min ant system

 Solving open TSP with ACO

 10.4 From hive to optimization

 10.5 Exploring the artificial bee colony algorithm

 Part 5. Machine learning-based methods

 11 Supervised and unsupervised learning

 11.1 A day in the life of AI-empowered daily routines

 11.2 Demystifying machine learning

 11.3 Machine learning with graphs

 Graph embedding

 Attention mechanisms

 Pointer networks

 11.4 Self-organizing maps

 11.5 Machine learning for optimization problems

 11.6 Solving function optimization using supervised machine learning

 11.7 Solving TSP using supervised graph machine learning

 11.8 Solving TSP using unsupervised machine learning

 11.9 Finding a convex hull

 12 Reinforcement learning

 12.1 Demystifying reinforcement learning

 Markov decision process (MDP)

 From MDP to reinforcement learning

 Model-based versus model-free RL

 Actor-critic methods

 Proximal policy optimization

 Multi-armed bandit (MAB)

 12.2 Optimization with reinforcement learning

 12.3 Balancing CartPole using A2C and PPO

 12.4 Autonomous coordination in mobile networks using PPO

 12.5 Solving the truck selection problem using contextual bandits

 12.6 Journey’s end: A final reflection

 Appendix A. Search and optimization libraries in Python

 Appendix B. Benchmarks and datasets

 Appendix C. Exercises and solutions

 references

 index

 front matter

 preface

 Have you ever wondered how navigation apps like Google Maps and Apple Maps determine the fastest route from one place to another? Have you been curious about how ride-sharing companies like Uber, Lyft, or DiDi guide their drivers to the best spots to reduce your wait time and their travel distance, making things better for everyone? Or perhaps you’ve asked yourself how food delivery platforms like Uber Eats suggest food choices for you. Have you considered how last-mile delivery apps map out the fastest routes for parcel deliveries while minimizing empty return trips? Do you ever wonder how emergency responders are dispatched swiftly to incidents? Have you thought about the process behind selecting locations for electric vehicle charging stations? Or how to calculate the optimal price for a product, optimize investment portfolios, allocate resources, or schedule surgeries efficiently? This book dives into the world of artificial intelligence algorithms that tackle these real-world design, planning, and control problems. The book is written for practitioners interested in solving ill-structured search and optimization problems using modern derivative-free algorithms. This book will get you up to speed with the core concepts of search and optimization and endow you with the ability to deal with practical design, planning, and control problems.

 This book has been written to take almost anyone with no prior knowledge of search and optimization, and with only an intermediate knowledge of Python and data structures, from never having solved search and optimization problems to being a well-rounded search and optimization practitioner able to select, implement, and adapt the right solver for the right problem. This book grew out of several courses related to search and optimization that I have taught at different universities and at industry training centers.

 The book will take you you on a comprehensive journey through a diverse landscape of search and optimization algorithms. It begins with a deep dive into deterministic search algorithms that rigorously explore problem spaces for optimal solutions, utilizing both blind and informed strategies. The journey then progresses to trajectory-based algorithms, where you’ll discover the effectiveness of simulated annealing and tabu search in overcoming local optima. As we advance, we’ll delve into the domain of evolutionary computing algorithms, observing the prowess of genetic algorithms in tackling complex continuous and discrete optimization problems. This fascinating journey continues with an intriguing look at swarm intelligence algorithms, including particle swarm optimization, ant colony optimization, and the artificial bee colony algorithm. The final leg of our journey introduces machine learning-based methods, utilizing unsupervised, supervised, and reinforcement learning to address complex combinatorial optimization problems.

 My 25 years working as an AI and robotics professor in academia and as a technical leader in industry have given me a wealth of experiences to share with you. Throughout this book, numerous examples and in-depth case studies are provided for both novices and experts. These examples and case studies are thoroughly explained and put into practice with cutting-edge Python libraries dedicated to search and optimization.

 I hope that this book, which traverses the vast landscape of optimization algorithms, serves as a valuable guide and resource in your journey. Whether you are a novice or an expert, the insights you’ll gain from this comprehensive exploration of various algorithms and their application to real-world problems can empower you to make impactful decisions and innovate in various domains. The field of optimization is continuously evolving, and with this book, you are equipped not just to keep pace with its advancements but also to contribute to shaping the future of this dynamic and critical discipline. Let the knowledge you gain here inspire you to tackle new challenges, forge new paths, and realize the immense potential that lies in optimization.

 acknowledgments

 The journey of writing a book is an endeavor that’s never solitary, and demands the involvement and encouragement of many individuals.

 I want to begin by expressing my deepest gratitude to my family, who stood by me with unwavering patience and encouragement throughout the lengthy process of writing this book. My beloved wife, Nermein, and my children, Renad and Kareem, have been my pillars of support. Your patience during the long hours I dedicated to this project and your constant encouragement were the driving force behind my determination to see it through. I am truly fortunate to have you in my life. Nermein, in particular, not only provided emotional support but also played a crucial role in editing the book’s graphics. Your collective strength and support fueled my determination and made this book possible.

 I am deeply grateful to Mike Stephens, the book’s acquisitions editor, whose belief in this book’s vision was a cornerstone in bringing it to life. The exceptional efforts of Doug Rudder and Patrick Barb, the developmental editors, have greatly enhanced the quality of this book.

 My thanks also extend to Frances Buontempo, the book’s technical editor, who worked diligently to provide feedback that greatly improved the technical quality of the book. Your insights were crucial in ensuring the accuracy and clarity of the content. And a big thank you as well to review editors Adriana Sabo and Dunja Nikitović and to all the reviewers who provided feedback—Alain Couniot, Anne Katrine Falk, Ayush Bihani, Chris Thomas, Christoffer Fink, Dirk Gomez, Dwipam Katariya, Janit Anjaria, Jeremy Chen, Jesús Antonino Juárez Guerrrero, Joseph Pachod, Kevin Cheung, Khai Win, Kim Gabrielsen, Laud Bentil, Maxim Volgin, Mikael Dautrey, Nick Vazquez, Onofrei George, Pablo Roccatagliata, Rani Sharim, Richard Vaughan, Ruben Gonzalez-Rubio, Sergio Govoni, Simon Tschöke, Thomas Jeffries, Vidhya Vinay, and Wei Luo. Your suggestions helped make this book what it is.

 Special thanks to Andy Carroll, the book’s copy editor, for his thorough review and invaluable edits, and to Andy Marinkovich, the production editor, for his dedication in moving the book through production. Thanks also to technical proofreader, Bin Hu, for his valuable contributions. Grateful appreciation also to proofreader, Melody Dolab, and typesetter, Bojan Stojanović, for their contributions to the book’s quality and presentation. And many thanks to the cover designer, Marija Tudor, for her stunning design.

 I extend my gratitude to the entire team at Manning for their professional guidance and assistance at every stage of putting this book together. Your commitment to excellence has made this endeavor all the more rewarding.

 I must also express my gratitude to my friends, colleagues, and students for their unwavering support throughout this journey. In particular, I want to thank Yinan Wang for his significant contributions to the first part of the book, Dr. Mostafa Hassan for his valuable input in the second part of the book, and my students Jonah Ruan, Peiqi Li, Ahmed Elgazwy, and Yilun Li for their contributions to some of the coding exercises.

 To all those mentioned here, and to anyone else who contributed in any way, your involvement has been instrumental in bringing this book to fruition. Thank you for being a part of this remarkable journey.

 about this book

 Optimization Algorithms delves into the diverse world of optimization algorithms, offering an extensive exploration of deterministic graph search algorithms, trajectory-based algorithms, evolutionary computing algorithms, swarm intelligence algorithms, and machine learning-based methods. It is designed to cater to both novices and experts, featuring a wealth of examples and in-depth case studies that span a broad spectrum of design, planning, and control problems. These examples encompass a wide array of practical scenarios, including, but not limited to, routing problems, assembly line balancing, optimal pricing, composite laminate design, controller parameter tuning, political districting, product manufacturing planning, neural network training, facility allocation, doctor scheduling, supply/demand optimization, airline flight operations, electric motor control, and online advertising optimization. This book stands as a valuable resource for anyone looking to deepen their understanding and proficiency in the dynamic and ever-evolving field of optimization.

 Who should read this book?

 This book is tailored to meet the needs of a diverse range of readers, particularly working professionals who deal with optimization problems across various domains. It serves as an invaluable resource for practitioners seeking to deepen their understanding and skills in solving optimization problems. The content is also highly beneficial for continuing education and training centers, catering to general-interest readers and learners with a keen interest in optimization algorithms. Computer engineering/science and systems engineering students, along with researchers, will find this book a treasure trove of knowledge, enhancing their academic and practical understanding. Additionally, university professors can use this comprehensive guide in designing and enriching undergraduate and postgraduate courses on topics such as graph search, metaheuristic optimization, bio-inspired algorithms, cooperative and adaptive algorithms, and the application of machine learning in optimization. This book is a versatile and rich source of information, well-suited for anyone involved or interested in the dynamic field of optimization.

 How this book is organized: A roadmap

 The book is divided into five parts and 12 chapters with three appendices, 114 code listings, several projects, and more than 140 exercises and their solutions:

 	

 This book will guide you through the realms of optimization algorithms, beginning with deterministic graph search algorithms in part 1, where foundational concepts and techniques are covered.

 	

 Part 2 progresses into trajectory-based algorithms like simulated annealing and tabu search, applying them to diverse problems.

 	

 In part 3, the focus shifts to evolutionary computing algorithms, delving into genetic algorithms and their applications.

 	

 Part 4 explores swarm intelligence algorithms, including particle swarm optimization, ant colony optimization, and artificial bee colony algorithms, demonstrating their nature-inspired problem-solving capabilities.

 	

 Part 5 converges on machine learning-based methods, bridging machine learning and optimization to address complex problems using techniques like self-organizing maps, graph machine learning, and reinforcement learning.

 This book includes three appendices, serving as invaluable companions that offer practical insights and resources to enhance your understanding and proficiency in implementing optimization algorithms.

 Appendix A guides you in setting up the Python environment and introduces various state-of-the-art Python libraries such as mathematical programming solvers, graph and mapping libraries, and machine learning libraries.

 Appendix B provides a variety of relevant resources, including optimization test functions, combinatorial optimization benchmark datasets, geospatial datasets, and machine learning datasets.

 Finally, Appendix C presents a comprehensive set of exercises and solutions organized chapter-wise. These exercises encompass various styles, including multiple-choice questions (MCQs), matching exercises, word search, crossword puzzles, coding exercises, and problem-solving exercises. The purpose of these exercises is to actively reinforce and solidify your understanding of optimization concepts and algorithms explored throughout the book.

 These bonus appendices are available in the ePub and Kindle versions of this book, and you can read them online in liveBook available here: https://www.manning.com/books/optimization-algorithms..

 For readers looking to grasp the core concepts of search and optimization algorithms, I recommend starting with part 1, which lays the foundation. Afterward, you are free to explore the subsequent chapters in any order that aligns with your interests. Each chapter is crafted to stand on its own, providing flexibility in your learning journey.

 A crucial aspect of this learning process is actively engaging with the included code listings. By experimenting with and tuning the algorithm parameters, you’ll gain practical insights into, and a deeper understanding of, the subject matter. Additionally, I encourage you to attempt the exercises provided online in appendix C, as they are designed to reinforce your knowledge. If you encounter difficulties, the solutions are included, offering guidance to help you overcome any obstacles. This hands-on approach is essential for a thorough and rewarding learning experience.

 About the code

 This book is enriched with an extensive array of source code presented in numbered listings, numerous practical projects, and exercises (along with their solutions). It utilizes state-of-the-art Python libraries in the code listings to ensure a contemporary and effective learning experience. All of this code, which is implemented in the form of Python Jupyter notebooks—a web-based interactive computing platform—is readily available for download from the book’s GitHub repository: https://github.com/Optimization-Algorithms-Book/Code-Listings. This setup not only facilitates an interactive and engaging learning process but also allows you to directly experiment with and modify the code. Note that the book is structured with the assumption that you have Python 3.6 or a newer version installed on your system.

 You can also get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/optimization-algorithms. The complete code for the examples in the book is available for download from the Manning website at www.manning.com.

 liveBook discussion forum

 Purchase of Optimization Algorithms includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/optimization-algorithms/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

 about the author

 [image:]

 Dr. Alaa Khamis works as AI & Smart Mobility Technical Leader at General Motors Canada. He is also a Lecturer at the University of Toronto, an Adjunct Professor at Ontario Tech University and Nile University, and an Affiliate Member of the Center of Pattern Analysis and Machine Intelligence (CPAMI) at the University of Waterloo. He worked as an Autonomous Vehicles Professor at Zewail City of Science and Technology, Head of AI at Sypron Solutions, Associate Professor and Head of Engineering Science Department at Suez University, Associate Professor and Director of Robotics and Autonomous Systems (RAS) research group at German University in Cairo (GUC), Research Assistant Professor at the University of Waterloo, Canada, Visiting Professor at Universidad Carlos III de Madrid, Spain, and Université de Sherbrooke, Canada, Visiting Researcher at the University of Reading, UK, and Distinguished Scholar at the University of Applied Sciences Ravensburg-Weingarten, Germany. His research interests include smart mobility, autonomous and connected vehicles, cognitive IoT, algorithmic robotics, intelligent data processing and analysis, machine learning, and combinatorial optimization. He has published five books and more than 200 scientific papers in refereed journals and international conferences. He has also filed 64 US patents, defensive publications, and trade secrets. For more information, please visit www.alaakhamis.org.

 About the technical editor

 Frances Buontempo has many years of C++, Python, and machine learning experience. She has given talks on both and edits ACCU’s Overload magazine. She has written two books: Genetic Algorithms and Machine Learning for Programmers (Pragmatic Bookshelf, 2019) and Learn C++ by Example (Manning, 2024). Frances has also often helped as a Manning editor, helping others be clearer, and she believes she can explain complicated things clearly.

 about the cover illustration

 The figure on the cover of Optimization Algorithms is “Insulaire de Oonalaska,” or “Onalaska Islander,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1. Deterministic search algorithms

 Welcome to the first part of this book, where we’ll embark on an exploration of deterministic graph search algorithms. This part consists of four chapters.

 In chapter 1, you’ll learn the fundamental concepts of search and optimization and understand their real-world significance. You’ll discover how to define optimization problems, differentiate between well-structured and ill-structured problems, gain insight into the challenges of search algorithms, and understand the search dilemma.

 Chapter 2 dives deeper into the classification of optimization problems. You’ll learn how to categorize search and optimization algorithms based on different criteria. Additionally, you’ll learn about heuristics, metaheuristics, and heuristic search strategies, with a sneak peek at nature-inspired algorithms.

 In chapter 3, you’ll explore graph search techniques, uncover graph traversal methods, and discover how to use blind search algorithms to find the shortest path between two nodes in a graph, all while solving practical routing problems.

 In chapter 4, you’ll delve into the concept of informed search. You’ll learn how to solve the minimum spanning tree problem and find the shortest path using informed search algorithms, all while gaining practical problem-solving skills for real-world routing problems.

 When you’re finished with this part of the book, you’ll have a solid grasp of the fundamentals of optimization, deterministic graph search algorithms, and practical problem-solving skills that are applicable to real-world scenarios, setting the stage for the diverse optimization algorithms explored in the following parts of this book.

 1 Introduction to search and optimization

 This chapter covers

 	What are search and optimization?

 	Why care about search and optimization?

 	Going from “toy problems” to real-world solutions

 	Defining an optimization problem

 	Introducing well-structured problems and ill-structured problems

 	Search algorithms and the search dilemma

 Optimization is deeply embedded in nature and in the systems and technologies we build. Nature is a remarkable testament to the ubiquity and prevalence of optimization. Take, for instance, the foraging behaviors of social insects like ants and honeybees. They have developed their own unique optimization methods, from navigating the shortest path to an existing food source to discovering new food sources in an unknown external environment. Honeybee colonies focus their foraging efforts on only the most profitable patches. They cooperatively build their honeycombs with hexagonal structures for efficient use of space (the maximum number of cells that can be built in a given area), material efficiency (using less beeswax), structural strength, and the optimal angle to prevent honey from spilling out of the cells. Similarly, birds exhibit optimization behavior during their annual migrations. They undertake long voyages from their breeding grounds to their winter homes, and their migration routes have been optimized over generations to conserve energy. These routes account for factors such as prevailing wind patterns, food availability, and safety from predators. These examples underscore how nature intuitively applies optimization strategies for survival and growth, offering us lessons that can be translated into algorithmic problem-solving.

 Optimization is also a regular aspect of our daily lives, often so seamlessly integrated that we barely notice its constant influence. As human beings, we strive to optimize our everyday lives. Consider the simple act of planning your day. We instinctively order or group tasks or errands in a way that minimizes travel time or maximizes our free time. We navigate the challenge of grocery shopping within a budget, trying to get the most value out of every dollar spent. We create workout routines aiming for the maximum fitness benefits within our limited time. Even at home, we optimize our energy usage to keep our utility bills in check.

 Likewise, corporations maximize profits by increasing efficiency and eliminating waste. For example, logistics giants like FedEx, UPS, and Amazon spend millions of dollars each year researching new ways to trim the cost of delivering packages. Telecommunications agencies seek to determine the optimal placement of crucial infrastructure, like cellular towers, to service the maximum number of customers while investing in the minimum level of equipment. Similarly, transportation network companies like Uber, Lyft, and DiDi route drivers efficiently during passenger trips and direct drivers to ride-hailing hotspots during idle periods to minimize passenger wait time. As urbanization intensifies worldwide, local emergency services depend on efficient dispatching and routing platforms to select and route the appropriate vehicles, equipment, and personnel to respond to incidents across increasingly complex metropolitan road networks. Airlines need to solve several optimization problems, such as flight planning, fleet assignment, crew scheduling, aircraft routing, and aircraft maintenance planning. Healthcare systems also handle optimization problems such as hospital resource planning, emergency procedure management, patient admission scheduling, surgery scheduling, and pandemic containment. Industry 4.0, a major customer of optimization technology, deals with complex optimization problems such as smart scheduling and rescheduling, assembly line balancing, supply-chain optimization, and operational efficiency. Smart cities deal with large-scale optimization problems such as stationary asset optimal assignments, mobile asset deployment, energy optimization, water control, pollution reduction, waste management, and bushfire containment.

 These examples show how ubiquitous and important optimization is as a way to maximize operational efficiency in different domains. In this book, we’ll dive into the exciting world of optimization algorithms. We’ll unravel how these algorithms can be used to tackle complex continuous and discrete problems in different domains.

 1.1 Why care about search and optimization?

 Search is the systematic examination of states, starting from an initial state and ending (hopefully) at the goal state. Optimization techniques are in reality search methods, where the goal is to find an optimal or a near-optimal state within the feasible search space. This feasible search space is a subset of the optimization problem space where all the problem’s constraints are satisfied. It’s hard to come up with a single industry that doesn’t already use some form of search or optimization methods, software, or algorithms. It’s highly likely that in your workplace or industry, you deal with optimization daily, though you may not be aware of it. While search and optimization are ubiquitous in almost all industries, using complicated algorithms to optimize processes may not always be practical. For example, consider a small pizzeria that offers food delivery to its local customers. Let’s assume that the restaurant processes around ten deliveries on an average weeknight. While efficiency-improving strategies (such as avoiding left turns in right-driving countries or right turns in left-driving countries, avoiding major intersections, avoiding school zones during drop-off and pick-up times, avoiding bridges during lift times, and favoring downhill roads) may theoretically shorten delivery times and reduce costs, the scale of the problem is so tiny that implementing these kinds of changes may not lead to any noticeable effect.

 In larger-scale problems, such as fleet assignment and dispatching, multicriteria stochastic vehicle routing, resource allocation, and crew scheduling, applying search and optimization techniques to a problem must be a qualified decision. Some firms or companies may not benefit from excessive process changes due to a lack of expertise or resources to implement those changes. There may also be concerns about a potential lack of follow-through from stakeholders. Implementing these changes could also cost more than the savings obtained through the optimization process. Later in this book, we will see how these costs can be accounted for when developing search and optimization algorithms.

 This book will take most anyone from never having solved search and optimization problems to being a well-rounded search and optimization practitioner, able to select, implement, and adapt the right solver for the right problem. It doesn’t assume any prior knowledge of search and optimization and only an intermediate knowledge of data structures and Python. For managers or professionals involved in high-level technological decisions at their workplace, these skills can be critical in understanding software-based approaches, their opportunities, and their limitations when discussing process improvement. In contrast, IT professionals will find these skills directly applicable when considering options for developing or selecting new software suites and technologies for in-house use. The following section describes the methodology we will follow throughout this book.

 1.2 Going from toy problems to the real world

 When discussing algorithms, many books and references present them as formal definitions and then apply them to so-called “toy problems.” These trivial problems are helpful because they often deal with smaller datasets and search spaces while being solvable by hand iteration. This book follows a similar approach but takes it one step further by presenting real-world data implementations. Whenever possible, resources such as datasets and values are used to illustrate the direct applicability and practical drawbacks of the algorithms discussed. Initially, the scaled-down toy problems will help you appreciate the step-by-step operations involved in the various algorithms. Later, the Python implementations will teach you how to use multiple datasets and Python libraries to address the increased complexity and scope of real-world problems.

 As illustrated in figure 1.1, the source of inspiration for each search or optimization algorithm is identified, and then the algorithm pseudocode, algorithm parameters, and heuristics/solution strategies used are presented. The algorithm’s pros and cons and adaptation methods are then described. This book contains many examples that will allow you to carry out iterations by hand on a scaled-down version of the problem and fully understand how each algorithm works. It also includes many programming exercises in a special problem-solution-discussion format so you can see how a scaled-up version of the problem previously solved by hand can be solved using Python. Through programming, you can optimally tune the algorithm and study its performance and scalability.

 [image:]

 Figure 1.1 The book’s methodology—each algorithm will be introduced following a pattern that goes from explanation to application.

 Throughout this book, several classic and real-world optimization problems will be considered to show you how to use the search and optimization algorithms discussed in the book. Figure 1.2 shows examples of these optimization/search problems.

 [image:]

 Figure 1.2 Examples of classic and real-world optimization problems

 Real-world design problems, or strategic functions, can be used in situations when time is not as important as the quality of the solution and users are willing to wait (sometimes even a few days) to get optimal solutions. Planning problems, or tactical functions, need to be solved in a time span from a few seconds to a few minutes. Control problems, or operational functions, need to be solved repetitively and quickly, in a time span from a few milliseconds to a few seconds. To find a solution in such a short period of time, optimality is usually traded in for speed gains. In the next chapter, we’ll discuss these problem types more thoroughly.

 I highly recommend that you first perform the hand iterations for the examples following each algorithm and then try to recreate the Python implementations yourself. Feel free to play around with the parameters and problem scale in the code; one of the advantages of running optimization algorithms through software is the ability to tune for optimality.

 1.3 Basic ingredients of optimization problems

 Optimization refers to the practice of finding the “best” solutions to a given problem, where “best” usually means satisfactory or acceptable, possibly subject to a given set of constraints. The solutions can be classified into feasible, optimal, and near-optimal solutions:

 	

 Feasible solutions are solutions that satisfy all the given constraints.

 	

 Optimal solutions are both feasible and provide the best objective function value.

 	

 Near-optimal solutions are feasible solutions that provide a superior objective function value but are not necessarily the best.

 Assuming we have a minimization problem, where the goal is to find the values of a decision variable that minimize a certain objective function, a search space may combine multiple global minima, strong local minima, and weak local minima, as illustrated in figure 1.3:

 	

 A global optimum (or a global minimum in the case of minimization problems) is the best of a set of candidate solutions (i.e., the lowest point of the entire feasible search space). Mathematically, if ƒ(x) is the objective function, a point x* is the global minimum if, for all x in the domain of ƒ, ƒ(x*) ≤ ƒ(x).

 	

 A strong local minimum is a point where the function’s value is less than (or equal to) the values of the function in a neighborhood around that point but is higher than the global minimum. Mathematically, a point x* is a strong local minimum if there is a neighborhood N of x* such that ƒ(x*) < ƒ(x) for all x in N with x ≠ x*.

 	

 A weak local minimum is a point where the function’s value is less than or equal to the function’s values at neighboring points, but there are sequences of points converging to this point for which the function’s values strictly decrease. Mathematically, a point x* is a weak local minimum if there is a neighborhood N of x* such that ƒ(x*) ≤ ƒ(x) for all x in N.

 [image:]

 Figure 1.3 Feasible solutions fall within the constraints of the problem. A feasible search space may display a combination of global, strong local, and weak local minima.

 These optimum seeking methods, also known as optimization techniques, are generally studied as a part of operations research (OR). OR, also referred to as decision or management science, is a field that originated at the beginning of World War II due to the urgent need to assign scarce resources in military operations. It is a branch of mathematics that applies advanced scientific analytical methods to decision-making and management problems to find the best or optimal solutions.

 Optimization problems can generally be stated as follows. Find X which optimizes ƒ, subject to a possible set of equality and inequality constraints:

 	

 gi(X) = 0, i = 1, 2, ..., m

 hj(X) ≤ 0, j = 1, 2, ..., p

 	

 1.1

 where

 	

 X = (x1, x2,…, xn)T is the vector representing the decision variables

 	

 ƒ(X) = (ƒ1(X), ƒ2(X),…, ƒM(X)) is the vector of objectives to be optimized

 	

 gi(X) is a set of equality constraints

 	

 hj(X) is a set of inequality constraints

 The following subsections describe three main components of optimization problems: decision variables, objective functions, and constraints.

 1.3.1 Decision variables

 Decision variables represent a set of unknowns or variables that affect the objective function’s value. These are the variables that define the possible solutions to an optimization problem. If X represents the unknowns, also referred to as the independent variables, then f(X) quantifies the quality of the candidate solution or feasible solution.

 For example, assume that an event organizer is planning a conference on search and optimization algorithms. The organizer plans to pay a for fixed costs (the venue rental, security, and guest speaking fees) and b for variable costs (pamphlets, lanyards, ID badges, and a catered lunch), which depend on the number of participants. Based on past conferences, the organizer predicts that demand for tickets will be as follows:

 	

 Q = 5000 – 20x

 	

 1.2

 where x is the ticket price and Q is the expected number of tickets to be sold. Thus, the company expects the following scenarios:

 	

 If the company charges nothing (x = 0), they will give away 5,000 tickets for free.

 	

 If the ticket price is x = $250, the company will get no attendees, and the expected number of tickets will be 0.

 	

 If the ticket price is x < $250, the company will sell some number of tickets 0 ≤ Q ≤ 5,000.

 The profit f(x) that the event organizer can expect to earn can be calculated as follows:

 	

 Profit = Revenue – Costs

 	

 1.3

 where Revenue = Qx and Costs = a + Qb. Altogether, the profit (or objective) function looks like this:

 	

 ƒ(x) = Revenue – Costs = Qx – (a + Qb) = –20x2 + (5000 + 20b)x – 5000b – a

 	

 1.4

 In this problem, the predefined parameters include fixed costs, a, and variable costs, b. There is a single decision variable, x, which is the price of the ticket where xLB ≤ x ≤ xUB. The ticket price’s lower bound xLB and upper bound xUB are considered boundary constraints. Solving this optimization problem focuses on finding the best value of x that maximizes the profit ƒ(x).

 1.3.2 Objective functions

 An objective function ƒ(x), also known as the criterion, merit function, utility function, cost function, stands for the quantity to be optimized. Without a loss of generality, optimization can be interpreted as the minimization of a value, since the maximization of a primal function ƒ(x) can be just the minimization of a dual problem generated after applying mathematical operations on ƒ(x). This means that if the primal function is a minimization problem, then the dual problem is a maximization problem (and vice versa). According to this duality aspect of optimization problems, a solution x*, which is the minimum for the primal minimization problem, is also, at the same time, the maximum for the dual maximization problem, as illustrated in figure 1.4.

 Moreover, simple mathematical operations like addition, subtraction, multiplication, and division do not change the value of the optimal point. For example, multiplying or dividing ƒ(x) by a positive constant or adding or subtracting a positive constant to or from ƒ(x) does not change the optimal value of the decision variable, as illustrated in figure 1.4.

 [image:]

 Figure 1.4 Duality principle and mathematical operations on an optimization problem

 In the earlier ticket pricing problem, assume that a = 50,000, b = 60, xLB = 0, and xUB = 250. Using these values, we have a profit function: ƒ(x) = –20x2 + 6,200x – 350,000. Following a derivative-based approach, we can simply derive the function to find its maximum: df/dx = –40x + 6,200 = 0 or 40x = 6,200. Thus, the optimal ticket price is $155, which yields a net profit of $130,500, as shown in figure 1.5.

 [image:]

 Figure 1.5 Ticket pricing problem—the optimal pricing that maximizes profit is $155 per ticket.

 In the ticket pricing problem, we have a single objective function to be optimized, which is the profit. In this case, the problem is called a mono-objective optimization problem. An optimization problem involving multiple objective functions is known as a multi-objective optimization problem. For example, assume that we want to design an electric vehicle (EV). This design problem’s objective functions can be minimizing acceleration time and maximizing Environmental Protection Agency (EPA) driving range. The acceleration time is the time in seconds the EV takes to accelerate from 0 to 60 mph. The EPA driving range is the approximate number of miles that a vehicle can travel in combined city and highway driving (using a mix of 55% highway and 45% city driving) before needing to be recharged, according to the EPA’s testing methodology. Decision variables can include the size of the wheels, the power of the electric motor, and the battery’s capacity. A bigger battery is needed to extend the driving range of the EV, which adds extra weight, and therefore the acceleration time increases. In this example, the two objectives are in conflict, as we need to minimize acceleration time and maximize the EPA range, as shown in figure 1.6.

 [image:]

 Figure 1.6 Electric vehicle design problem for maximizing EPA range and minimizing acceleration time

 This multi-objective optimization problem can be handled using a preference-based multi-objective optimization procedure or by using a Pareto optimization approach. In the former approach, the duality principle is applied first to transform all the conflicting objectives for maximization (e.g., maximizing the EPA range and the inverse of the acceleration time) or for minimization (e.g., minimizing the acceleration time and the inverse of the EPA range). Then we combine these multiple objectives into an overall objective function by using a relative preference vector or a weighting scheme to scalarize the multiple objectives. For example, you may give more weight to EPA range over acceleration time. However, finding this preference vector or the weights is subjective, and sometimes it’s not straightforward. The Pareto optimization approach relies on finding multiple trade-off optimal solutions and choosing one using higher-level information. This procedure tries to find the best trade-off by reducing the number of alternatives to an optimal set of nondominated solutions known as the Pareto frontier, which can be used to take strategic decisions in multi-objective space. Multi-objective optimization is discussed in chapter 8.

 Constraint-satisfaction problems (CSPs) do not define an explicit objective function. Instead, the goal is to find a solution that satisfies a given set of constraints. The n-queen problem is an example of a CSP. In this problem, the aim is to put n queens on an n x n board with no two queens on the same row, column, or diagonal. The 4 x 4 queen CSP problem has two optimal solutions. Neither of these two optimal solutions is inherently or objectively better than the other. The only requirement of the problem is to satisfy the given constraints.

 1.3.3 Constraints

 Constrained optimization problems have a set of equality and/or inequality constraints gi(X), lj(X) that restrict the values assigned to the decision variables. In addition, most problems have a set of boundary constraints, which define the domain of values for each variable. Furthermore, constraints can be hard (must be satisfied) or soft (desirable to satisfy). Consider the following examples from a school timetabling problem:

 	

 Not having multiple lectures in the same room at the same time is a hard constraint.

 	

 Not having a teacher give multiple lectures at the same time is also a hard constraint.

 	

 Guaranteeing a minimum of three teaching days for every teacher may be a soft constraint.

 	

 Locating back-to-back lectures in nearby rooms may be a soft constraint.

 	

 Avoiding scheduling very early or very late lectures may also be a soft constraint.

 As another example of hard and soft constraints, navigation apps such as Google Maps, Apple Maps, Waze, or HERE WeGo may allow users to set preferences for routing:

 	

 Avoiding ferries, toll roads, and highways would be hard constraints.

 	

 Avoiding busy intersections, highways during rush hour, or school zones during drop-off and pick-up times might be soft constraints.

 Soft constraints can be modeled by incorporating a reward/penalty function as part of the objective function. The function can reward solutions that satisfy the soft constraints and penalize those that do not.

 As an example, assume that there are 10 parcels to be loaded in the cargo bike in figure 1.7.

 [image:]

 Figure 1.7 The cargo bike loading problem is an example of a problem with a soft constraint. While the weight of the packages can exceed the bike’s capacity, a penalty will be applied when the bike is overweight.

 Each parcel has its own weight, profit, and efficiency value (profit per kg). The goal is to select the parcels to be loaded in such a way that the profit function ƒ1 is maximized and the weight function ƒ2 is minimized. This is a classic example of a combinatorial problem:

 	

 [image:]

 	

 1.5

 where n is the total number of packages and Ei is the efficiency of package i

 	

 [image:]

 	

 1.6

 where wi is the weight of package i and C is the maximum capacity of the bike. A penalty of 50 is added if and only if the total weight of the added parcels exceeds the maximum capacity.

 Soft constraints can also be used to make the search algorithm more adaptive. For example, the severity of the penalty can be dynamically changed as the algorithm progresses, imposing less strict penalties at first to encourage exploration, but imposing more severe penalties near the end to generate a result largely bound by the constraint.

 1.4 Well-structured problems vs. ill-structured problems

 We can classify optimization problems based on their structure and the procedure that exists (or doesn’t exist) for solving them. The following subsections introduce well-structured and ill-structured problems.

 1.4.1 Well-structured problems

 In “The Structure of Ill Structured Problems,” Herbert Simon outlines six key characteristics of well-structured problems (WSPs) [1]. These include the presence of a clear criterion for testing proposed solutions, the existence of a problem space capable of representing the initial problem state and potential solutions, and the representation of attainable and considerable state changes within the problem space. Moreover, any knowledge acquired by the problem solver can be represented within these spaces, and if the problem involves interacting with the external world, the state changes reflect the laws governing the real world. Simon emphasizes that these conditions hold strongly, implying that the processes require feasible computation and that information necessary for problem-solving is effectively available without excessive search efforts.

 Assume that we are planning a robotic pick-and-place task in an inspection system. In this scenario, the robot waits until receiving a signal from a presence sensor, which indicates the existence of a defective workpiece over the conveyer belt. The robot stops the conveyer belt, picks up the defective piece, and deposits it in a waste box. Then the robot reactivates the movement of the conveyer belt. After this operation, the robot returns to its initial position and the cycle repeats. As illustrated in figure 1.8, this problem has the following well-structured components:

 	

 Feasible states—The position and speed of the robot arm and its orientation and status (open or closed and orientation) of its end-effector (gripper)

 	

 Operator (successor)—Robot arm motion control command to move from one point to another following a certain singularity-free trajectory (positions or joint angles in space and motion speed) and end-effector control (orientation and open or closed)

 	

 Goal—Pick and place a defective workpiece regardless of its orientation

 	

 Solution/path—Optimal sequence through state space for the fastest pick-and-place operation

 	

 Stopping criteria—Defective workpiece is picked from the conveyer belt and placed in the waste box, and the robot returns to its home position

 	

 Evaluation criteria—Pick-and-place duration and/or the success rate of the pick-and-place process

 [image:]

 Figure 1.8 A WPS features a defined problem space, operators for allowable moves, clear evaluation criteria, and computational tractability.

 As you can see, the work environment is highly structured, static, and fully observable. The problem can be mathematically modeled, and an optimal pick-and-place plan can be generated and executed with a high level of certainty. This pick-and-place problem can be considered a WSP.

 1.4.2 Ill-structured problems

 Ill-structured problems (ISPs) are complex discrete or continuous problems without algorithmic solutions or general problem solvers. ISPs are characterized by one or more of these characteristics:

 	

 A problem space with different views of the problems, unclear goals, multimodality, and a dynamic nature

 	

 A lack of exact mathematical models or a lack of well-proven algorithmic solutions

 	

 Solutions that are contradictory, consequences that are difficult to predict, and risk that is difficult or impossible to calculate, resulting in a lack of clear evaluation criteria

 	

 Considerable data imperfection in terms of uncertainty, partial observability, vagueness, incomplete information, ambiguity, or unpredictability that makes monitoring the execution of the solutions difficult and sometimes impossible

 	

 Computational intractability

 Assume that we need to find the optimal dispatching of four elevators to serve users between 10 floors, as illustrated in figure 1.9. This is a classic example of a problem too large to solve using traditional means.

 [image:]

 Figure 1.9 Elevator dispatching problem—with four elevator cars and 10 floors, this problem has ~1021 possible states.

 The following objective functions can be considered in this optimal dispatching problem:

 	

 Minimizing the average waiting time—how long the user waits before getting on an elevator

 	

 Minimizing the average system time—how long the user waits before being dropped off at the destination floor

 	

 Minimizing the percentage of users whose waiting time exceeds 60 seconds

 	

 Ensuring fairness in serving all the users of the elevators

 This optimal dispatching problem is an example of an ISP, as the problem space has a dynamic nature and partial observability; it is impossible to predict the user calls and destinations. Defining an optimum is almost impossible, as it can immediately change after a decision has been made based on the known situation (such as if a new request comes in for a move in the opposite direction). Moreover, the search space is huge due to the extremely high number of possible states, taking into consideration different elevator positions, elevator buttons, and hall call buttons:

 	

 Elevator position—Each elevator can be on one of 10 floors. Therefore, for each elevator, there are 10 different possible states. Since there are four elevators, the number of combinations for elevator positions is 104.

 	

 Elevator buttons—Each elevator has 10 buttons that can be either on (pressed) or off (not pressed). Therefore, for one elevator, there are 210 different possible states. Since there are four elevators, the number of combinations for elevator buttons is 240.

 	

 Hall call buttons—There are 18 hall call buttons (up and down buttons at each floor, except the first and the last floor) that can be either on or off. Therefore, the number of combinations for hall call buttons is 218.

 Assuming that every combination of button presses is valid (i.e., ignoring the physical or logical limitations of an elevator system, such as not allowing both the up and down hall call buttons on the same floor to be pressed at the same time), the total number of states can be calculated as follows: number of possible states = 104 (elevator positions) * 240 (elevator buttons) * 218 (hall call buttons) = 2.88 x 1021 different states. The total number of states is more than the number of stars in the universe!

 1.4.3 WSP, but ISP in practice

 The traveling salesman problem (TSP) is an example of a problem that may be well-structured in principle, but in practice becomes ill-structured. This is because of the impractical amount of computational power required to solve the problem in real time.

 Assume that a traveling salesman is assigned to make sales calls to a list of n cities. The salesman would like to visit all these cities in the minimum amount of time, as salespeople are generally paid by commission rather than hourly. Furthermore, the tour of the cities may be asymmetric; the time it takes to go from city A to city B may not be the same as the reverse due to infrastructure, traffic patterns, and one-way streets. For example, with 13 cities to visit, the problem may initially seem trivial. However, upon closer examination, the search space for this TSP results in 13! = 6,227,020,800 different possible routes to be examined in the case of using naive algorithms! Fortunately, dynamic programming algorithms enable reduced complexity, as we will see in the next chapter.

 This book largely focuses on ISPs, and on WSPs that are ISPs in practice, for a few reasons:

 	

 WSPs tend to have well-known solving algorithms that often provide trivial, step-by-step procedures. As such, very efficient and well-known solutions often exist for these kinds of problems. Moreover, several WSPs can be solved using derivative-based generic solvers.

 	

 The amount of computational power needed to solve WSPs is often negligible, or very manageable at worst. Especially with the continued improvement of consumer-grade computers, not to mention the vast resources available through cloud computing and distributed processing, we often do not have to settle for near-optimal WSP solutions resulting from computational bottlenecks.

 	

 Most problems in the real world are ISPs, as the problem scope, state, and environment are dynamic and sometimes partially observable with certain degrees of uncertainties. Solutions or algorithms for ISPs, therefore, have much more applicability to real-world scenarios, and there is a greater incentive to find solutions to these problems.

 Most of the algorithms explored in this book are derivative-free and stochastic; they use randomness in their parameters and decision processes. These algorithms are often well suited to solving ISPs, as the randomness of their initial states and operators allows the algorithms to escape local minima and find optimal or near-optimal solutions. In contrast, deterministic algorithms use well-defined and procedural paths to reach solutions and generally are not well suited for ISPs, as they either cannot work in unknown search spaces or are unable to return solutions in a reasonable amount of time. Moreover, most of the algorithms covered in this book are black-box solvers that deal with the optimization problem as a black box. This black box provides, for certain decision variable values, the corresponding values of the objective functions and constraint functions. Importantly, this approach eliminates the need to consider various properties of the objective and constraint functions, such as nonlinearity, differentiability, nonconvexity, monotonicity, discontinuities, or even stochastic noise.

 1.5 Search algorithms and the search dilemma

 The goal of any optimization method is to assign values to decision variables so that the objective function is optimized. To achieve this, optimization algorithms search the solution space for candidate solutions. Constraints are simply limitations on specific regions in the search space. Thus, all optimization techniques are, in reality, just search methods, where the goal is to find feasible solutions to satisfy constraints and maximize (or minimize) the objective functions. We’ll define “search” as the systematic examination of feasible states, starting from the initial state, and ending (hopefully) at the goal state. However, while we explore the feasible search space, we may find a few reasonably good neighboring solutions, and the question is whether we should exploit this region or keep exploring, looking for better solutions in other regions of the feasible search space.

 Exploration (or diversification) is the process of investigating new regions in the feasible search space with the hope of finding other promising solutions. On the other hand, exploitation (or intensification) is the process of directing the search agent to focus on an attractive region of the search space where good solutions have already been found.

 This exploration–exploitation dilemma is one of the most important problems in search and optimization, and in life as well. We apply exploration–exploitation tactics in our lives. When we move to a new city, we start by exploring different stores and restaurants and then focus on shortlisted options around us. During a midlife crisis, some middle-aged individuals feel bored in their daily routine and lifestyle without satisfactory accomplishments, and they tend to take explorative actions. The US immigration system tries to avoid exploiting specific segments of applicants (e.g., family, skilled workers, refugees, and asylees) and enables more diversity through a computer-generated lottery. In social insects like honeybees, foraging for food sources is performed by two different worker groups, foragers and scouts (5–25% of the foragers). Forager bees focus on a specific food source while scouts are novelty seekers who keep scouting around for rich nectar. In search and optimization, the exploration–exploitation dilemma represents the trade-off between exploring new unvisited states or solutions in the search space and exploiting the elite solutions found in a certain neighborhood in the search space (figure 1.10).

 [image:]

 Figure 1.10 Search dilemma—there is always a trade-off between branching out to new areas of the search space or focusing on an area with known good or elite solutions.

 Local search algorithms are exploitative algorithms that can be easily trapped in local optima if the search landscape is multimodal. On the other extreme, random search algorithms keep exploring the search space with a high chance of reaching global optima at the cost of an impractical search time. Generally speaking, explorative algorithms can find global optima at the cost of processing time, while exploitative algorithms risk getting stuck at local minima.

 Summary

 	

 Optimization is ubiquitous and pervasive in numerous areas of life, industry, and research.

 	

 Decision variables, objective functions, and constraints are the main ingredients of optimization problems. Decision variables are the inputs that you have control over and that affect the objective function’s value. An objective function is the function that needs to be optimized, either minimized or maximized. Constraints are the limitations or restrictions that the solution must satisfy.

 	

 Optimization is a search process for finding the “best” solutions to a problem, providing the best objective function values, and possibly subject to a given set of hard (must be satisfied) and soft (desirable to satisfy) constraints.

 	

 Ill-structured problems are complex discrete or continuous problems without exact mathematical models and/or algorithmic solutions or general problem solvers. They usually have dynamic and/or partially observable large search spaces that cannot be handled by classic optimization methods.

 	

 In many real-life applications, quickly finding a near-optimal solution is better than spending a large amount of time searching for an optimal solution.

 	

 Two key concepts you’ll see frequently in future chapters are the exploration (or diversification) and exploitation (or intensification) search dilemmas. Achieving a trade-off between exploration and exploitation will allow the algorithm to find optimal or near-optimal solutions without getting trapped in local optima in an attractive region of the search space and without spending a large amount of time.

 2 A deeper look at search and optimization

 This chapter covers

 	Classifying optimization problems based on different criteria

 	Classifying search and optimization algorithms based on the way the search space is explored and how deterministic the algorithm is

 	Introducing heuristics, metaheuristics, and heuristic search strategies

 	A first look at nature-inspired search and optimization algorithms

 Before we dive into the problems and algorithms that I hinted at in chapter 1, it will be useful to be clear about how we talk about these problems and algorithms. Classifying problems allows us to group similar problems together and potentially exploit existing solutions. For example, a traveling salesman problem involving geographic values (i.e., cities and roads) may be used as a model to find the minimum length of wires connecting pins in a very large-scale integration (VLSI) design. The same can be said for classifying the algorithms themselves, as grouping algorithms with similar properties can allow us to easily identify the right algorithm to solve a problem and meet expectations, such as the quality of the solution and the permissible search time.

 Throughout this chapter, we’ll discuss common classifications of optimization problems and algorithms. Heuristics and metaheuristics will also be introduced as general algorithmic frameworks or high-level strategies that guide the search process. Many of these strategies are inspired by nature, so we’ll shed some light on nature-inspired algorithms. Let’s start by discussing how we can classify optimization problems based on different criteria.

 2.1 Classifying optimization problems

 Optimization is everywhere! In everyday life, you’ll face different kinds of optimization problems. For example, you may like to set the thermostat to a certain temperature to stay comfortable and at the same time save energy. You may select light fixtures and adjust the light levels to reduce energy costs. When you start driving your electric vehicle (EV), you may search for the fastest or most energy-efficient route to your destination. Before arriving at your destination, you may look for a parking spot that is affordable, provides the shortest walking distance to your destination, offers EV charging, and is preferably underground. These optimization problems have different levels of complexity that mainly depend on the type of problem. As mentioned in the previous chapter, the process of optimization involves selecting decision variables from a given feasible search space in such a way as to optimize (minimize or maximize) a given objective function or, in some cases, multiple objective functions.

 Optimization problems are characterized by three main components: decision variables or design vectors, objective functions or criteria to be optimized, and a set of hard and soft constraints to be satisfied. The nature of these three components, the permissible time allowed for solving the problem, and the expected quality of the solutions lead to different types of optimization problems, as shown in figure 2.1.

 [image:]

 Figure 2.1 Optimization problem classification—an optimization problem can be broken down into its constituent parts, which form the basis for classifying such problems.

 The following subsections explain these types in greater detail and provide examples of each type of optimization problem.

 2.1.1 Number and type of decision variables

 Based on the number of decision variables, optimization problems can be broadly grouped into univariate (single variable) or multivariate (multiple variable) problems. For example, vehicle speed, acceleration, and tire pressure are among the parameters that effect a vehicle’s fuel economy, where fuel economy refers to how far a vehicle can travel on a specific amount of fuel. According to the US Department of Energy, controlling the speed and acceleration of a vehicle can improve its fuel economy by 15% to 30% at highway speeds and 10% to 40% in stop-and-go traffic. A study by the US National Highway Traffic Safety Administration (NHTSA) found that a 1% decrease in tire pressure correlated to a 0.3% reduction in fuel economy. If we are only looking for the optimal vehicle speed for maximum fuel economy, the problem is a univariate optimization problem. Finding the optimal speed and acceleration for maximum fuel economy is a bivariate optimization problem, whereas finding optimal speed, acceleration, and tire pressure is a multivariate problem.

 Problem classification also varies according to the type of decision variables. A continuous problem involves continuous-valued variables, where xj ∈ R. In contrast, if xj ∈ Z, the problem is an integer or discrete optimization problem. A mixed-integer problem has both continuous-valued and integer-valued variables. For example, optimizing elevator speed and acceleration (continuous variables) and the sequence of picking up passengers (a discrete variable) is a mixed-integer problem. Problems where the solutions are sets, combinations, or permutations of integer-valued variables are referred to as combinatorial optimization problems.

 Combination vs. permutation

 Combinatorics is the branch of mathematics studying both the combination and permutation of a set of elements. The main difference between combination and permutation is the order. If the order of the elements doesn’t matter, it is a combination, and if the order does matter, it is a permutation. Thus, permutations are ordered combinations. Depending on whether repetition of the elements is allowed or not, we can have different forms of combinations and permutations.

 [image:]

 Combinations and permutations—permutations respect order and are thus ordered combinations. Both combinations and permutations have variants with and without repetition.

 For example, assume we are designing a fitness plan that includes multiple fitness activities. Five types of exercises can be included in the fitness plan: jogging, swimming, biking, yoga, and aerobics. In a weekly plan, if we choose only three of these five exercises, and repetition is allowed, the number of possible combinations will be (n + r – 1)! / r!(n – 1)! = (5 + 3 – 1)! / 3!(5 – 1)! = 7! / (3! × 4!) = 35. This means we can generate 35 different fitness plans by selecting three of the available five exercises and by allowing repetition.

 However, if repetition is not allowed, the number of possible combinations will be C(n,r) = n! / r!(n – r)! = 5! / (3! × 2!) = 10. This formula is often called “n choose r” (such as “5 choose 3”), and it’s also known as the binomial coefficient. This means that we can generate only 10 plans if we don’t want to repeat any of the exercises.

 In both combination with and without repetition, the fitness plan doesn’t include the order of performing the included exercises. If we respect specific order, the plan will take the form of a permutation. If repeating exercises is allowed, the number of possible permutations when selecting three of the five available exercises will be nr = 53 = 125. However, if repetition is not allowed, the number of possible permutations will be P(n,r) = n! / (n – r)! = 5! / (5 – 3)! = 60.

 Combinatorics can be implemented fairly easily in Python when coding from scratch, but there are excellent libraries available, such as SymPy, an open source Python library for symbolic mathematics. Its capabilities include, but are not limited to, statistics, physics, geometry, calculus, equation solving, combinatorics, discrete math, cryptography, and parsing. For example, the binomial coefficient can be calculated in SymPy using the following simple code:

 from sympy import binomial

print(binomial(5,3))

 See appendix A and the documentation for SymPy for more on implementing combinatorics in Python.

 The traveling salesman problem (TSP) is a common example of a combinational problem whose solution is a permutation—a sequence of cities to be visited. In TSP, given n cities, a traveling salesman must visit all the cities and then return home, making a loop (a round trip). The salesman would like to travel in the most efficient way (such as the fastest, cheapest, or shortest route).

 TSP can be subdivided into symmetric TSP (STSP) and asymmetric TSP (ATSP). In STSP, the distance between two cities is the same in both directions, forming an undirected graph. This symmetry halves the number of possible solutions. ATSP is a strict generalization of the symmetric version. In ATSP, paths may not exist in both directions, or the distances might be different, forming a directed graph. Traffic collisions, one-way streets, bridges, and airfares for cities with different departure and arrival fees are examples of how this symmetry could break down.

 The search space in TSP is very large. For example, let’s assume the salesman is to visit the 13 major cities in the Greater Toronto Area (GTA), as illustrated in figure 2.2. The naive solution’s complexity is O(n!). This means that there are (n-1)! = 12! = 479,001,600 possible tours in the case of ATSP. This is a huge search space in both STSP and ATSP. However, dynamic programming (DP) algorithms enable reduced complexity.

 [image:]

 Figure 2.2 TSP in the Greater Toronto Area (GTA). The traveling salesman must visit all 13 cities and wishes to select the “best” path, whether that be based on distance, time, or some other criterion.

 Dynamic programming is a method of solving optimization problems by breaking them down into smaller subproblems and solving each subproblem independently. For example, the complexity of the Bellman-Held-Karp algorithm [1] is O(2n × n2). There are other solvers and algorithms with different levels of computational complexity and approximation ratios such as the Concorde TSP solver, the 2-opt and 3-opt algorithms, branch and bound algorithms, the Christofides algorithm (or Christofides–Serdyukov algorithm), the Lin-Kernighan algorithm, metaheuristics-based algorithms, graph neural networks, and deep reinforcement learning methods. For example, the Christofides algorithm [2] is a polynomial-time approximation algorithm that produces a solution to TSP that is guaranteed to be no more than 50% longer than the optimal solution with a time complexity of O(n3). See appendix A for the solution of TSP using the Christofides algorithm implemented with the NetworkX package. We will discuss how to solve TSP using a number of these algorithms throughout this book.

 A wide range of discrete optimization problems can be modeled as TSP. These problems include, but are not limited to, microchip manufacturing, permutation flow shop scheduling, arranging school bus routes for children in a school district, assigning routes for airplanes, transporting farming equipment, scheduling of service calls, meal delivery, and routing trucks for parcel delivery and pickup. For example, the capacitated vehicle routing problem (CVRP) is a generalization of TSP where one has to serve a set of customers using a fleet of vehicles based at a common depot. Each customer has a certain demand for goods that are initially located at the depot. The task is to design vehicle routes starting and ending at the depot such that all customer demands are fulfilled. Later in this book, we’ll look at several examples of solving TSP and its variants using stochastic approaches.

 Problem types

 Decision problems are foundational in the study of algorithmic complexity. Generally speaking, a decision problem is a type of problem that requires determining whether a given input satisfies a certain property or condition. This problem can be answered with a simple “yes” or “no.”

 Decision problems are commonly classified based on their levels of complexity. These classes can also be applied to optimization problems, given that optimization problems can be converted into decision-making problems. For example, an optimization problem whose objective is to find an optimal or near-optimal solution within a feasible search space can be paraphrased as a decision-making problem that answers the question “Is there an optimal or a near-optimal solution within the feasible search space?” The answer will be “yes” or “no,” or “true” or “false”.

 A generally accepted notion of an algorithm’s efficiency is that its running time is polynomial. This means that the time or the computational cost to solve the problem can be described by a polynomial function of the size of the input for the algorithm. For example, in the context of TSP, the size of the input would typically be the number of cities that the salesperson needs to visit. Problems that can be solved in polynomial time are known as tractable. The following figure shows different types of problems and gives examples of commonly used benchmarks (toy problems) and real-life applications of each type.

 [image:]

 Problem classes based on hardness and completeness. Problems can be categorized into NP-hard, NP-complete, NP, or P.

 For example, a complexity class P represents all decision problems that can be solved in polynomial time by deterministic algorithms (i.e., algorithms that do not guess at a solution). The NP or nondeterministic polynomial problems are those whose solutions are hard to find but easy to verify and are solved by a nondeterministic algorithm in polynomial time. NP-complete problems are those that are both NP-hard and verifiable in polynomial time. Finally, a problem is NP-hard if it is at least as hard as the hardest problem in NP-complete. NP-hard problems are usually solved by approximation or heuristic solvers, as it is hard to find efficient exact algorithms to solve such problems.

 Clustering is a type of combinatorial problem whose solution takes the form of a combination where the order doesn’t matter. In clustering, given n objects, we need to group them in k groups (clusters) such that all objects in a single group or cluster have a “natural” relation to one another, and objects not in the same group are somehow different. This means that the objects will be grouped based on some similarity or dissimilarity metric.

 Stirling numbers can be used for counting partitions and permutations in combinatorial problems. Stirling numbers of the first kind count permutations according to their number of cycles, while Stirling numbers of the second kind represent the number of ways we can partition a set of objects into non-empty subsets. The following formula is for a Stirling number of the second kind (a Stirling partition number), and it gives the number of ways you can partition a set of n objects into k non-empty subsets in the context of our clustering problem:

 	

 [image:]

 	

 2.1

 Let’s consider smart cart clustering as an example. Shopping and luggage carts are commonly found in shopping malls and large airports. Shoppers or travelers pick up these carts at designated points and leave them in arbitrary places. It is a considerable task to re-collect them, and it is therefore beneficial if a “smarter” version of these carts could draw themselves together automatically to the nearest assembly points, as illustrated in figure 2.3.

 [image:]

 Figure 2.3 Smart cart clustering. Unused shopping or luggage carts congregate near designated assembly points to make collection and redistribution easier.

 In practice, this problem is considered an NP-hard problem, as the search space can be very large based on the numbers of available carts and assembly points. To cluster these carts effectively, the centers of clustering (the centroids) must be found. The carts in each cluster will then be directed to the assembly point closest to the centroids.

 For example, assume that 50 carts are to be clustered around four assembly points. This means that n = 50 and k = 4. Stirling numbers can be generated using the SymPy library. To do so, simply call the stirling function on two numbers, n and k:

 from sympy.functions.combinatorial.numbers import stirling

print(stirling(50,4))

print(stirling(100,4))

 The result is 5.3 × 1028, and if n is increased to 100, the number becomes 6.7 × 1058. Enumerating all possible partitions for large problems is not feasible.

 2.1.2 Landscape and number of objective functions

 An objective function’s landscape represents the distribution of the function’s values in the feasible search space. In this landscape, you’ll find the optimal solution or the global minima in the lowest valley, assuming you are dealing with a minimization problem, or at the highest peak in the case of a maximization problem. According to the landscape of the objective function, if there is only one clear global optimal solution, the problem is unimodal (e.g., convex and concave functions). In a multimodal problem, more than one optimum exists. The objective function is called deceptive when the global minimum lies in a very narrow valley and there is also a strong local minimum with a wide basin of attraction, such that the value of this objective function is close to the value of an objective function at the global minimum [3]. Figure 2.4 is a 3D visualization of the landscapes of unimodal, multimodal, and deceptive functions generated using Python in the next listing. The complete listing is available in the GitHub repo for the book.

 Listing 2.1 Examples of objective functions

 import numpy as np

import math

import matplotlib.pyplot as plt

def objective_unimodal(x, y): ①

 return x**2.0 + y**2.0

def objective_multimodal(x, y): ②

 return np.sin(x) * np.cos(y)

def objective_deceptive(x, y): ③

 return (1-(abs((np.sin(math.pi*(x-2))*np.sin(math.pi*(y-2)))/

➥ (math.pi*math.pi*(x-2)*(y-2))))**5)*(2+(x-7)**2+2*(y-7)**2)

fig = plt.figure(figsize = (25,25))

ax = fig.add_subplot(1,3,1, projection='3d')

x = np.arange(-3, 3, 0.01)

y = np.arange(-3, 3, 0.01)

X, Y = np.meshgrid(x, y)

Z = objective_unimodal(X, Y)

surf = ax.plot_surface(X, Y, Z, cmap=plt.cm.cividis)

ax.set_xlabel('x', fontsize=15)

ax.set_ylabel('y', fontsize=15)

ax.set_zlabel('Z', fontsize=15)

ax.set_title("Unimodal/Convex function", fontsize=18)

ax = fig.add_subplot(1,3,2, projection='3d')

Z = objective_multimodal(X, Y)

surf = ax.plot_surface(X, Y, Z, cmap=plt.cm.cividis)

ax.set_xlabel('x', fontsize=15)

ax.set_ylabel('y', fontsize=15)

ax.set_zlabel('Z', fontsize=15)

ax.set_title("Multimodal function", fontsize=18)

X, Y = np.meshgrid(x, y)

Z = objective_unimodal(X, Y)

ax = fig.add_subplot(1,3,3, projection='3d')

Z = objective_deceptive(X, Y)

surf = ax.plot_surface(X, Y, Z, cmap=plt.cm.cividis, antialiased=False)

ax.set_xlabel('x', fontsize=15)

ax.set_ylabel('y', fontsize=15)

ax.set_zlabel('Z', fontsize=15)

ax.set_title("Deceptive function", fontsize=18)

plt.show()

 ① Unimodal function

 ② Multimodal function

 ③ Deceptive function

 [image:]

 Figure 2.4 Unimodal, multimodal, and deceptive functions. Unimodal functions have one global optimum, whereas multimodal functions can have many. Deceptive functions contain false optima close to the value of an objective function at a global minimum, which can cause some algorithms to get stuck.

 If the quantity to be optimized is expressed using only one objective function, the problem is referred to as a mono-objective or single-objective optimization problem (such as convex or concave functions). A multi-objective optimization problem specifies multiple objectives to be simultaneously optimized. Problems without an explicit objective function are called constraint-satisfaction problems (CSPs). The goal in this case is to find a solution that satisfies a given set of constraints.

 The n-queen problem is an example of a CSP. In this problem, the aim is to put n queens on an n × n board with no two queens on the same row, column, or diagonal, as illustrated in figure 2.5. In this 4-queen problem, there are 5 conflicts in the first state ({Q1,Q2}, {Q1,Q3}, {Q2,Q3}, {Q2,Q4}, and {Q3,Q4}). After moving Q4, the number of conflicts reduces by 2, and after moving Q3, the number of conflicts is only 1, which is between Q1 and Q2.

 [image:]

 Figure 2.5 The n-queen problem. This problem has no objective function, only a set of constraints that must be satisfied.

 If we keep moving or placing the pieces, we can reach the goal state where the number of conflicts is 0, which means that no queen could attack any other queen horizontally, vertically, or diagonally. The next listing is a Python implementation of the 4-queen problem.

 Listing 2.2 n-queen CSP

 from copy import deepcopy

import math

import matplotlib.pyplot as plt

import numpy as np

board_size = 4

board = np.full((board_size, board_size), False) ①

def can_attack(board, row, col):

 if any(board[row]): ②

 return True ②

 offset = col - row ③

 if any(np.diagonal(board, offset)): ③

 return True ③

 offset = (len(board) - 1 - col) - row ③

 if any(np.diagonal(np.fliplr(board), offset)): ③

 return True ③

 return False

board[0][0] = True

col = 1

states = [deepcopy(board)]

while col < board_size:

 row = 0

 while row < board_size:

 if not can_attack(board, row, col): ④

 board[row][col] = True

 col += 1

 states.append(deepcopy(board))

 break

 row += 1

 if row == board_size: ⑤

 board = np.delete(board, 0, 1)

 new_col = [[False]] * board_size

 board = np.append(board, new_col, 1)

 states.append(deepcopy(board))

 col -= 1

 continue

 ① Create an n x n board.

 ② Check for a queen on the same row.

 ③ Check for queens on the diagonals.

 ④ The piece can be placed in this column.

 ⑤ The piece cannot be placed in this column.

 In the preceding listing, the can_attack function detects if a newly placed piece can attack a previously placed piece. A piece can attack another piece if it is in the same row, column, or diagonal. Figure 2.6 shows the solution obtained after six steps.

 [image:]

 Figure 2.6 n-queen solution

 The first piece is trivially placed in the first position. The second piece must be placed either in the third or fourth position, as the first two can be attacked. By placing it in the third position, however, the third piece cannot be placed. Thus, the first piece is removed (the board is “slid” one column over), and we try again. This continues until a solution is found.

 The full code for this problem, including the code used to generate visualizations, can be found in the code file for listing 2.2, available in the book’s GitHub repo. The solution algorithm is as follows:

 	

 Moving from top to bottom in a column, the algorithm attempts to place the piece while avoiding conflicts. For the first column, this will default to Q1 = 0.

 	

 Moving to the next column, if a piece cannot be placed at row 0, it will be placed at row 1, and so on.

 	

 When a piece has been placed, the algorithm moves to the next column.

 	

 If it is impossible to place a piece in a given column, the first column of the entire board is removed, and the current column is reattempted.

 Constraint programming solvers available in Google OR-Tools can also be used to solve this n × n queen problem. The next listing shows the steps of the solution using OR-Tools.

 Listing 2.3 Solving the n-queen problem using OR-Tools

 import numpy as np

import matplotlib.pyplot as plt

import math

from ortools.sat.python import cp_model ①

board_size = 4

 ②

model = cp_model.CpModel() ③

queens = [model.NewIntVar(0, board_size - 1, 'x%i' % i)

➥for i in range(board_size)] ④

model.AddAllDifferent(queens) ⑤

model.AddAllDifferent(queens[i] + i for i in range(board_size))

model.AddAllDifferent(queens[i] - i for i in range(board_size))

solver = cp_model.CpSolver() ⑥

solver.parameters.enumerate_all_solutions = True ⑥

solver.Solve(model) ⑥

all_queens = range(board_size) ⑦

state=[]

for i in all_queens:

 for j in all_queens:

 if solver.Value(queens[j]) == i:

 # There is a queen in column j, row i.

 state.append(True)

 else:

 state.append(None)

states=np.array(state).reshape(-1, board_size)

fig = plt.figure(figsize=(5,5)) ⑧

markers = [⑧

 x.tolist().index(True) if True in x.tolist() else None ⑧

 for x in np.transpose(states) ⑧

] ⑧

res = np.add.outer(range(board_size), range(board_size)) % 2 ⑧

plt.imshow(res, cmap="binary_r") ⑧

plt.xticks([]) ⑧

plt.yticks([]) ⑧

plt.plot(markers, marker="*", linestyle="None", ⑧

➥markersize=100/board_size, color="y")H ⑧

 ① Import a constraint programming solver that uses SAT (satisfiability) methods.

 ② Set the board size for the n x n queen problem.

 ③ Define a solver.

 ④ Define the variables. The array index represents the column, and the value is the row.

 ⑤ Define the constraint: all rows must be different.

 ⑥ Solve the model.

 ⑦ Define the constraint: no two queens can be on the same diagonal.

 ⑧ Visualize the solution.

 Running this code produces the output in figure 2.7. More information about Google OR-Tools is available in appendix A.

 [image:]

 Figure 2.7 The n-queen solution using OR-Tools

 2.1.3 Constraints

 Constrained problems have hard or soft constraints for equality, inequality, or both. Hard constraints must be satisfied, while soft constraints are nice to satisfy (but are not mandatory). If there are no constraints to be considered, aside from the boundary constraints, the problem is an unconstrained optimization problem.

 Let’s revisit the ticket pricing problem introduced in section 1.3.1. There is a wide range of derivative-based solvers in Python that can handle such kinds of differentiable mathematical optimization problems (see appendix A). The next listing shows how you can solve this simple ticket pricing problem using SciPy. SciPy is a library containing valuable tools for all things computation.

 Listing 2.4 Optimal ticket pricing

 import numpy as np

import scipy.optimize as opt

import matplotlib.pyplot as plt

def f(x): ①

 return -(-20*x**2+6200*x-350000)/1000

res=opt.minimize_scalar(f, method='bounded', bounds=[0, 250]) ②

print("Optimal Ticket Price ($): %.2f" % res.x)

print("Profit f(x) in K$: %.2f" % -res.fun)

 ① The objective function, required by minimize_scalar to be a minimization function

 ② The bounded method is the constrained minimization procedure that finds the solution.

 Running this code produces the following output:

 Optimal Ticket Price ($): 155.00

Profit f(x) in K$: 130.50

 This code finds the optimal ticket price in the range between $0 and $250 that maximizes the profit. As you may have noticed, the profit formula is converted into a minimization problem by adding a negative sign in the objective function to match with the minimize function in scipy.optimize. A minus sign is added in the print function to convert it back into profit.

 What if we imposed an equality constraint on this problem? Let’s assume that due to incredible international demand for our event, we are now considering using a different event planning company and opening up virtual attendance for our conference so that international guests can also participate. Interested participants can now choose between attending the event in person or joining via a live stream. All participants, whether in-person or virtual, will receive a physical welcome package, which is limited to 10,000 units. Thus, in order to ensure a “full” event, we must either sell 10,000 in-person tickets, 10,000 virtual tickets, or some combination thereof. The new event company is charging us a $1,000,000 flat rate for the event, so we want to sell as many tickets as possible (exactly 10,000). The following equation is associated with this problem:

 Let x be the number of physical ticket sales, and let y be the number of virtual ticket sales. Additionally, let f(x,y) be the function for profits generated from the event, where

 	

 [image:]

 	

 2.2

 Essentially, we earn $155 profit on in-person attendance, and the profit for online attendance is $70, but it increases by some amount with the more physical attendance we have (let’s say that as the event looks “more crowded,” we can charge more for online attendees).

 Suppose we add a constraint function, x + y ≤ 10000, which shows that the combined ticket sales cannot exceed 10,000. The problem is now a bivariate mono-objective constrained optimization problem. It is possible to convert this constrained optimization problem to an unconstrained optimization using the Lagrange multiplier, λ. We can use SymPy to implement Lagrange multipliers and solve for the optimal mix of virtual and physical ticket sales. The idea is to convert the constrained optimization problem defined by the objective function f(x,y) with an equality constraint g(x,y) into an unconstrained optimization problem using the Lagrangian function L(x,y,λ) = f(x,y) + λg(x,y). This function combines an objective function and constraints, enabling constrained optimization problems to be formulated as unconstrained problems through the use of Lagrange multipliers. To do so, we take the partial derivatives of the objective functions and the constraints, with respect to the decision variables x and y, to form the unconstrained optimization equations to be used by the SymPy solver, as illustrated in figure 2.8.

 [image:]

 Figure 2.8 Steps for solving the ticket pricing problem using the Lagrange method

 The next listing shows the Python implementation using SymPy.

 Listing 2.5 Maximizing profits using Lagrange multipliers

 import sympy as sym

x,y=sym.var('x, y', positive=True) ①

f=155*x+(0.001*x**sym.Rational(3,2)+70)*y-1000000 ②

g=x+y-10000 ③

lamda=sym.symbols('lambda') ④

Lagr=f-lamda*g ⑤

eqs = [sym.diff(Lagr, x), sym.diff(Lagr, y), g] ⑥

sol=sym.solve(eqs,[x,y,lamda], dict=True) ⑦

def getValueOf(k, L):

 for d in L:

 if k in d:

 return d[k]

profit=[f.subs(p) for p in sol]

print("optimal number of physical ticket sales: x = %.0f" % getValueOf(x, sol))

print("optimal number of online ticket sales: y = %.0f" % getValueOf(y, sol))

print("Expected profil: f(x,y) = $%.4f" % profit[0])

 ① Define the decision variables.

 ② Define the ticket pricing objective function.

 ③ Define the equality constraint.

 ④ Lagrange multiplier

 ⑤ Lagrangian function

 ⑥ Equations to the solver

 ⑦ Solve these three equations in three variables (x,y,lambda) using SymPy.

 By solving the preceding three equations, we get x and y values that correspond to the optimized quantities for virtual and physical ticket sales. With the code in listing 2.5, we can see that the best result is to sell 6,424 in-person tickets and 3,576 online tickets. This results in a maximum profit of $2,087,260.

 2.1.4 Linearity of objective functions and constraints

 If all the objective functions and associated constraint conditions are linear, the optimization problem is categorized as a linear optimization problem or linear programming problem (LPP or LP), where the goal is to find the optimal value of a linear function subject to linear constraints. Blending problems are a typical application of mixed integer linear programming (MILP), where a number of ingredients are to be blended or mixed to obtain a product with certain characteristics or properties. In the animal feed mix problem described in Paul Jensen’s Operations Research Models and Methods [4], the optimum amounts of three ingredients in an animal feed mix need to be determined. The possible ingredients, their nutritive contents (in kilograms of nutrient per kilograms of ingredient), and the unit costs are shown in table 2.1.

 Table 2.1 Animal feed mix problem

 	

 Ingredients

 	

 Nutritive content and price of ingredients

 	

 Calcium (kg/kg)

 	

 Protein (kg/kg)

 	

 Fiber (kg/kg)

 	

 Unit cost (cents/kg)

 	

 Corn

 	

 0.001

 	

 0.09

 	

 0.02

 	

 30.5

 	

 Limestone

 	

 0.38

 	

 0.0

 	

 0.0

 	

 10.0

 	

 Soybean meal

 	

 0.002

 	

 0.50

 	

 0.08

 	

 90.0

 The mixture must meet the following restrictions:

 	

 Calcium—At least 0.8% but not more than 1.2%

 	

 Protein—At least 22%

 	

 Fiber—At most 5%

 The problem is to find the mixture that satisfies these constraints while minimizing cost. The decision variables are x1, x2, and x3, which are proportions of limestone, corn, and soybean meal respectively.

 The objective function f = 30.5x1 + 10x2 + 90x3 needs to be minimized, subject to the following constraints:

 	

 Calcium limits: 0.008 ≤ 0.001x1 + 0.38x2 + 0.002x3 ≤ 0.012

 	

 Protein constraint: 0.09x1 + 0.5x3 ≥ 0.22

 	

 Fiber constraint: 0.02x1 + 0.08x3 <= 0.05

 	

 Non-negativity restriction: x1, x2, x2 ≥ 0

 	

 Conservation: x1 + x2 + x2 = 1

 In this problem, both the objective function and the constraints are linear, so it is an LPP. There are several Python libraries that can be used to solve mathematical optimization problems.

 We’ll try solving the animal feed mix problem using PuLP. PuLP is a Python linear programming library that allows users to define linear programming problems and solve them using optimization algorithms such as COIN-OR’s linear and integer programming solvers. See appendix A for more information about PuLP and other mathematical programming solvers. The next listing shows the steps for solving the animal feed mix problem using PuLP.

 Listing 2.6 Solving a linear programming problem using PuLP

 from pulp import *

model = LpProblem("Animal_Feed_Mix_Problem", LpMinimize) ①

x1 = LpVariable('Corn', lowBound = 0, upBound = 1, cat='Continous') ②

x2 = LpVariable('Limestone', lowBound = 0, upBound = 1, cat='Continous') ②

x3 = LpVariable('Soybean meal', lowBound = 0, upBound = 1, cat='Continous') ②

model += 30.5*x1 + 10.0*x2 + 90*x3, 'Cost' ③

model +=0.008 <= 0.001*x1 + 0.38*x2 + 0.002*x3 <= 0.012, 'Calcium limits' ④

model += 0.09*x1 + 0.5*x3 >=0.22, 'Minimum protein' ④

model += 0.02*x1 + 0.08*x3 <=0.05, 'Maximum fiber' ④

model += x1+x2+x3 == 1, 'Conservation' ④

model.solve() ⑤

for v in model.variables(): ⑥

 print(v.name, '=', round(v.varValue,2)*100, '%') ⑥

 ⑥

print('Total cost of the mixture per kg = ', ⑥

 ➥round(value(model.objective)/100, 2), '$') ⑥

 ① Create a linear programming model.

 ② Define three variables that represent the percentages of corn, limestone, and soybean meal in the mixture.

 ③ Define the total cost as theobjective function to be minimized.

 ④ Add the constraints.

 ⑤ Solve the problem using PuLP’s choice of solver.

 ⑥ Print the results (the optimal percentages of the ingredients and the cost of the mixture per kg)

 As you can see in this listing, we start by importing PuLP and creating a model as a linear programming problem. We then define LP variables with the associated parameters, such as name, lower bound, and upper bound for each variable’s range and the type of variable (e.g., integer, binary, or continuous). A solver is then used to solve the problem. PuLP supports several solvers, such as GLPK, GUROBI, CPLEX, and MOSEK. The default solver in PuLP is Cbc (COIN-OR branch and cut). Running this code gives the following output:

 Corn = 65.0%

Limestone = 3.0%

Soybean_meal = 32.0%

Total cost of the mixture per kg = 0.4916$

 If one of the objective functions, or at least one of the constraints, is nonlinear, the problem is considered a nonlinear optimization problem or nonlinear programming problem (NLP), and it’s harder to solve than a linear problem. A special case of NLP, when the objective function is quadratic, is called quadratic programming (QP). For example, the plant layout problem (PLP) or facility location problem (FLP) is a quadratic assignment problem (QAP) that aims at assigning different facilities (departments) F to different locations L in order to minimize a given function cost, such as the total material handling cost, as shown in figure 2.9.

 [image:]

 Figure 2.9 Plant layout problem—what is the optimal location for each department that minimizes the overall material handling costs?

 Assume that ωij is the frequency of interaction or the flow of products between these facilities and df(i)f(j) is the distance between facilities i and j. The material handling cost (MHC) is

 	

 MHCij = flow × distance = 𝜔ij × df(i)f(j)

 	

 2.3

 and the total material handling cost (TMHC) is the summation of all the material handling costs inside the material handling cost matrix. In matrix notation, the problem can be formulated as

 Find X which minimizes trace(WXDXT)

 where X represents the assignment vector, W is the flow matrix, and D is the distance matrix. Trace is the sum of elements on the main diagonal (from the upper left to the lower right) of the resultant material handling cost matrix.

 In a more general case, NLP includes nonlinear objective functions, or at least nonlinear constraints, of any form. For example, imagine you’re designing a landmine detection and disposal unmanned ground vehicle (UGV) [5]. In outdoor applications like humanitarian demining, UGVs should be able to navigate through rough terrain. Sandy soils, rocky terrain with obstacles, steep inclines, ditches, and culverts can be difficult for vehicles to negotiate. The locomotion systems of such vehicles need to carefully designed to guarantee motion fluidity.

 Assume that you are in charge of finding optimal values for wheel parameters (e.g., diameter, width, and loading) that will

 	

 Minimize the wheel sinkage, which is the maximum amount the wheel sinks in the soil that it is moving on

 	

 Minimize motion resistance, which is the overall resistance faced by the UGV unit due to the different components of resistance (compaction, gravitational, etc.)

 	

 Minimize drive torque, which is the driving torque required from the actuating motors for each wheel

 	

 Minimize drive power, which is the driving power required from the actuating motors for each wheel

 	

 Maximize the slope negotiability, which represents the maximum slope that can be climbed by the UGV unit considering its weight and the soil parameters.

 Due to availability in the market or manufacturing concerns and costs, the wheel diameter should be in the range of 4 to 8.2 inches, wheel width should be in the range of 3 to 5 inches, and wheel loading should be in the range of 22 to 24 pounds per wheel. This wheel design problem (figure 2.10) can be stated as follows:

 Find X which optimizes ƒ, subject to a possible set of boundary constraints, where X is a vector that is composed of a number of decision variables such as

 	

 x1 = wheel diameter, x1 ∈ [4, 8.2]

 	

 x2 = wheel width, x2 ∈ [3, 5]

 	

 x3 = wheel loading, x2 ∈ [22, 24]

 We can also consider the objective functions ƒ={ƒ1, ƒ2,…}. For example, the function for wheel sinkage might look like this:

 	

 [image:]

 	

 2.4

 where n is the exponent of sinkage, kc is the cohesive modulus of soil deformation, and kφ is the frictional modulus of soil deformation. This problem is considered to be nonlinear because the objective function is nonlinear.

 [image:]

 Figure 2.10 The MineProbe wheel design problem [5]

 The catenary problem discussed in Veselić’s “Finite catenary and the method of Lagrange” article [6] is another example of a nonlinear optimization problem. A catenary is a flexible hanging object composed of multiple parts, such as a chain or telephone cable (figure 2.11). In this problem, we are provided with n homogenous beams, with lengths d1, d2, … dn > 0 and masses m1, m2, … mn > 0, which are connected by n + 1 joints G0, G2, … Gn + 1. The location of each joint is represented by the Cartesian coordinates (xi,yi,zi). The ends of the catenary are G0 and Gn + 1, which both have the same y and z values (they are at the same height and in line with each other).

 [image:]

 Figure 2.11 Finite catenary problem—the catenary (or chain) is suspended from two points, G0 and Gn + 1.

 Assuming that the beam lengths and masses are predefined parameters, our goal is to look for stable equilibrium positions in the field of gravity—those positions where the potential energy is minimized. The potential energy to be minimized is defined as follows:

 	

 [image:]

 	

 2.5

 subject to the following constraints:

 	

 [image:]

 	

 2.6

 where γ is the gravitational constant. The nonlinearity of the constraints makes this problem nonlinear, despite having a linear objective function.

 2.1.5 Expected quality and permissible time for the solution

 Optimization problems can also be categorized according to the expected quality of the solutions and the time allowed to find the solutions. Figure 2.12 shows three main types of problems: design problems (strategic functions), planning problems (tactical functions), and control problems (operational functions).

 [image:]

 Figure 2.12 Qualities of solutions vs. search time. Some types of problems require fast computations but do not require incredibly accurate results, while others (such as design problems) allow more processing time in return for higher accuracy.

 In design problems, time is not as important as the quality of the solution, and users are willing to wait (sometimes even a few days) to get an optimal, or near-optimal, result. These problems can be solved offline, and the optimization process is usually carried out only once in a long time. Examples of design problems include vehicle design, class scheduling, asset allocation, resource planning, assembly line balancing, inventory management, flight scheduling, and political districting.

 Let’s discuss political districting as a design problem in more detail. Districting is the problem of grouping small geographic areas, called basic units, into larger geographic clusters, called districts, in such a way that the latter are acceptable according to relevant planning criteria [7]. Typical examples of basic units are customers, streets, or zip code areas. The planning criteria may include the following:

 	

 Balance or equity in terms of demographic background, equitable size, balanced workload, equal sales potential, or the number of customers

 	

 Contiguity to enable traveling between the basic units of the district without having to leave the district

 	

 Compactness to allow for round- or square-shaped undistorted districts without holes

 	

 Respect of boundaries, such as administrative boundaries, railroads, rivers, or mountains

 	

 Socio-economic heterogeneity, to allow for better representation of residents with different incomes, ethnicities, concerns, or views

 Political districting, school districting, districting for health services, districting for EV charging stations, districting for micro-mobility stations (e.g., for e-bikes and e-scooters), and districting for sales or delivery are all examples of districting problems.

 Political districting is a problem that has plagued societies since the advent of representative democracy in the Roman Republic. In a representative democracy, officials are nominated and elected to represent the interests of the people who elected them. In order to have a greater say when deciding on matters that concern the entire state, the party system came about, which defines political platforms that nominees use to differentiate themselves from their competitors. Manipulating the shapes of electoral districts to determine the outcome of elections is called gerrymandering (named after the early nineteenth century Massachusetts governor Elbridge Gerry who redrew the map of the Senate’s districts in 1810 in order to weaken the opposing federalist party). Figure 2.13 shows how manipulating the shapes of the districts can sway the vote in favor of a decision that otherwise wouldn’t have won.

 [image:]

 Figure 2.13 Example of gerrymandering. The two major political parties, Shield and Bell, try to gain an advantage by manipulating the district boundaries to suppress undesired interests and promote their own.

 An effective and transparent political districting strategy is needed to avoid gerrymandering and generate a solution that preserves the integrity of individual subdistricts and divides the population into almost equal voting populations in a reproducible way. In many countries, electoral districts are reviewed from time to time to reflect changes and movements in the country’s population. For example, the Constitution of Canada requires that federal electoral districts be reviewed after each 10-year census.

 Political districting is defined as aggregating n subregions of a territory into m electoral districts subject to constraints such as

 	

 The districts should have near-equal voting population.

 	

 The socioeconomic homogeneity inside each district, as well as the integrity of different communities, should be maximized.

 	

 The districts have to be compact, and the subregions of each district have to be contiguous.

 	

 Subregions should be considered as indivisible political units, and their boundaries should be respected.

 The problem can be formulated as an optimization problem in which a function that quantifies the preceding factors is maximized. Here is an example of this function:

 	

 F(x) = αpopƒpop(x) + αcompƒcomp(x) + αsocƒsoc(x) + αsimƒsim(x)

 	

 2.7

 where x is a solution to the problem or the electoral districts, αi are user-specified multipliers 0 ≤ αi ≤ 1, and ƒpop, ƒcomp, ƒsoc, ƒint, and ƒsim are functions that quantify the population equality, compactness of districts, socioeconomic homogeneity, integrity of different communities, and similarity to existing districts respectively. In the upcoming chapters, I will show you how we can use offline optimization algorithms to handle optimal multicriteria assignment design problems.

 Planning problems need to be solved faster than design problems, in a time span from a few seconds to a few minutes. To find a solution in such a short time, optimality is usually traded for speed. Examples of planning problems include vehicle motion planning, emergency vehicle dispatching and routing, patient admission scheduling, surgery scheduling, and crew scheduling. Let’s consider the ride-sharing problem as an example of a planning problem.

 Ride-sharing involves a fleet of pay-per-use vehicles and a set of passengers with predefined pick-up and drop-off points (figure 2.14). The dispatch service needs to assign a set of passengers in a specific order to each driver to achieve a set of objectives. This ride-sharing problem is a multi-objective constrained optimization problem. A noncomprehensive list of optimization goals for ride-sharing includes

 	

 Minimizing the total travel distance or time of drivers’ trips

 	

 Minimizing the total travel time of passengers’ trips

 	

 Maximizing the number of matched (served) requests

 	

 Minimizing the cost of the drivers’ trips

 	

 Minimizing the cost of the passengers’ trips

 	

 Maximizing the drivers’ earnings

 	

 Minimizing passengers’ waiting time

 	

 Minimizing the total number of drivers required

 [image:]

 Figure 2.14 Ride-sharing problem—this planning problem needs to be solved in a shorter amount of time, as delays could mean lost trips and a bad user experience.

 For the ride-sharing problem, both the search time and the quality of the solutions are important. On many popular ride-sharing platforms, dozens if not hundreds of users may simultaneously be searching for rides at the same place in a given district. Overly costly and time-consuming solutions would lead to higher operating costs (i.e., employing more drivers than necessary or calling in drivers from other districts) as well as the potential for lost business (bad user experiences may dissuade passengers from using the platform a second time) and high driver turnover.

 In practice, the assignment of drivers to passengers goes well beyond the distance between passenger and driver—it may also include factors such as driver reliability, passenger rating, vehicle type, and pickup and destination location types. For example, a customer going to the airport may request a larger vehicle to accommodate luggage. In the upcoming chapters, we will discuss how to solve planning problems using different search and optimization algorithms.

 Control problems require very fast solutions in real time. In most cases, this means a time span from a millisecond to a few seconds. Vehicle lateral or longitudinal motion control, surgical robot motion control, disruptions management, and ad hoc communication relaying are examples of control problems. Online optimization algorithms are required to handle these kinds of problems. Optimization tasks in both planning and control problems are often carried out repetitively—new orders will, for instance, continuously arrive in a production facility and need to be scheduled to machines in a way that minimizes the waiting time for all jobs.

 Imagine a real-world situation where a swarm of unmanned aerial vehicles (UAVs) or micro aerial vehicles (MAVs) is deployed to search for victims trapped on untraversable terrain after a natural disaster, like an earthquake, avalanche, tsunami, tornado, wildfire, etc. The mission consists of two phases: a search phase and a relay phase. During the search phase, the MAVs will conduct a search according to the deployment algorithm. When a target is found, the swarm of MAVs will self-organize to utilize their range-limited communication capabilities and set up an ad hoc communication relay network between the victim and the base station, as illustrated in figure 2.15.

 [image:]

 Figure 2.15 Communication relaying problem—a swarm of MAVs must form an ad hoc communication relay between a base station and a trapped victim. The movement of the MAVs is a control problem that must be solved repeatedly, multiple times per second. In this case, speed is more important than accuracy, as minor errors can be immediately corrected during the next cycle.

 During the search phase, MAVs can be deployed to maximize the area covered. After they detect a victim, the MAVs can be repositioned to maximize the victim’s visibility. The ad hoc communication relay network is then established to maximize the radio coverage in the swarm and find the shortest path between the MAV that detected the victim and the base station, given the following assumptions:

 	

 MAVs are capable of situational awareness by combining data from three noise-prone sensors: a magnetic compass for direction, a speedometer for speed, and an altimeter for altitude.

 	

 MAVs are capable of communicating via a standard protocol such as IEEE 802.11b with a limited range of 100 m.

 	

 MAVs are capable of relaying ground signals as well as controlling signals sent among MAVs.

 	

 MAVs have enough onboard power to sustain 30 minutes of continuous flight, at which point they must return to the base to recharge. However, the amount of flight time varies depending on the amount of signaling completed during flight.

 	

 MAVs are capable of quickly accelerating to a constant flight speed of 10 m/s.

 	

 MAVs are not capable of hovering and have a minimum turn radius of approximately 10 m.

 For control problems such as MAV repositioning, search time is of paramount importance. As the MAVs cannot hover and thus must remain in constant motion, delayed decisions may lead to unexpected situations, such as mid-air collisions or a loss of signal. As instructions are sent (or repeated) every few milliseconds, each MAV must be able to decide its next move within that span of time. A MAV must account not only for its current position, target position, and velocity, but must also consider obstacles, communications signal strength, wind, and other environmental effects. Minor errors are acceptable, as they can be corrected in subsequent searches. In the upcoming chapters, we will discuss how to solve control problems like this.

 This book will largely focus on complex, ill-structured problems that cannot be handled by traditional mathematical optimization or derivative-based solvers. We’ll look at examples of design, planning and control problems in various domains. Next, let’s take a look at how search and optimization algorithms are classified.

 2.2 Classifying search and optimization algorithms

 When we search, we try to examine different states to find a path from the start (initial) state to the goal state. Often, an optimization algorithm searches for an optimum solution by iteratively transforming a current state or a candidate solution into a new, hopefully better, solution. Search algorithms can be classified based on the way the search space is explored:

 	

 Local search uses only local information about the search space surrounding the current solution to produce new solutions. Since only local information is used, local search algorithms (also known as local optimizers) locate local optima (which may or may not be global optima).

 	

 Global search uses more information about the search space to locate global optima.

 In other words, global search algorithms explore the entire search space, while local search algorithms only exploit neighborhoods.

 Yet another classification distinguishes between deterministic and stochastic algorithms, as illustrated in figure 2.16:

 	

 Deterministic algorithms follow a rigorous procedure in their path, and both the values of their design variables and their functions are repeatable. From the same starting point, they will follow the same path, whether you run the program today or tomorrow. Examples include, but are not limited to, graphical methods, gradient and Hessian-based methods, penalty methods, gradient projection methods, and graph search methods. Graph search methods can be further subdivided into blind search methods (e.g., depth-first, breadth-first, or Dijkstra) and informed search methods (e.g., hill climbing, beam search, best-first, A*, or contraction hierarchies). Deterministic methods are covered in part 1 of this book.

 	

 Stochastic algorithms explicitly use randomness in their parameters or decision-making process or both. For example, genetic algorithms use some random or pseudo-random numbers, resulting in individual paths that are not exactly repeatable. With stochastic algorithms, the time taken to obtain an optimal solution cannot be accurately foretold. Solutions do not always get better, and stochastic algorithms sometimes miss the opportunity to find optimal solutions. This behavior can be advantageous, however, because it can prevent them from becoming trapped in local optima. Examples of stochastic algorithms include tabu search, simulated annealing, genetic algorithms, differential evolution algorithms, particle swarm optimization, ant colony optimization, artificial bee colony, firefly algorithm, etc. Most statistical machine learning algorithms are stochastic because they make use of randomness during the learning stage and they make predictions during the inference stage with a certain level of uncertainty. Moreover, some machine learning models are, like people, unpredictable. Models trained using human behavior-based data as independent variables are more likely to be unpredictable than those trained using independent variables that strictly follow physical laws. For example, the human intent recognition model is less predictable than a model that predicts the stress-strain curve of a material. Due to the uncertainty associated with machine learning predictions, machine learning–based algorithms used to solve optimization problems can be considered stochastic methods. Stochastic algorithms are covered in parts 2 to 5 of this book.

 [image:]

 Figure 2.16 Deterministic vs. stochastic algorithms. Deterministic algorithms follow a set procedure, and the results are repeatable, while stochastic searches have elements of randomness built into the algorithms.

 Treasure-hunting mission

 The search for an optimal solution in a given search space can be likened to a treasure-hunting mission. Imagine you and a group of friends decided to visit an island looking for pirate treasure.

 All the areas on the island (except the active volcano area) correspond to the feasible search space of the optimization problem. The treasure corresponds to the optimal solution in this feasible space. You and your friends are the “search agents” launched to search for the solution, each following different search approaches. If you don’t have any information that can guide you while searching, you are following a blind (uninformed) search approach, which is usually inefficient and time-consuming. If you know that the pirates used to hide the treasure in elevated spots, you could then directly climb up the steepest cliff and try to reach the highest peak. This scenario corresponds to the classic hill-climbing technique (informed search). Uninformed and informed search algorithms are presented in the next two chapters. You could also follow a trial-and-error approach, looking for hints and repeatedly moving from one place to another plausible place until you find the treasure. This corresponds to trajectory-based search, which we’ll discuss in part 2 of the book.

 If you do not want to take the risk of getting nothing and decide to share information with your friends instead of treasure-hunting alone, you will be following a population-based search approach. While working in a team, you may notice that some treasure hunters show better performance than others. In this case, only better-performing hunters can be kept, and new ones can be recruited to replace the lesser-performing hunters. This is akin to evolutionary algorithms, such as genetic algorithms, where the fittest hunters survive. Genetic algorithms are covered in part 3 of the book. Alternatively, you and other friends can try to emulate the success of the outperforming hunters in each area of the treasure island without getting rid of any team members and without recruiting new ones. This scenario uses the so-called swarm intelligence and corresponds to population-based optimization algorithms such as particle swarm optimization, ant colony optimization, and artificial bee colony algorithm. These algorithms will be discussed in part 4 of the book.

 You alone, or with the help of your friends, can build a mental model based on historical data of previous and similar treasure-hunting missions, or you can train a reward predictor based on trial-and-error interaction with the treasure island (search space), taking the strength of the metal detector signal as a reward indicator. After a few iterations, you will learn to maximize the reward from the predictor and improve your behavior until you fulfill the desired goal and find the treasure. This corresponds to a machine learning–based approach, which we’ll discuss in part 5 of this book.

 2.3 Heuristics and metaheuristics

 Heuristics (also known as mental shortcuts or rules of thumb) are solution strategies, seeking methods, or rules that can facilitate finding acceptable (optimal or near-optimal) solutions to a complex problem in a practical time. Despite the fact that heuristics can seek near-optimal solutions at a reasonable computational cost, they cannot guarantee either feasibility or degree of optimality.

 “Eureka! Eureka!”

 The word heuristic comes from the Greek word heuriskein, which means “to find or discover.” The past tense of this verb, eureka, was used by the Greek mathematician, physicist, engineer, astronomer, and inventor Archimedes. Archimedes was contracted to detect fraud in the manufacture of a golden crown, and he accepted the challenge. During a subsequent visit to the public baths, he had a revelation. As his body submerged in the water, he observed that the more he sank, the more water was displaced, offering an exact measure of his volume. Realizing the principle at play, he deduced that a crown containing silver, being less dense than pure gold, would need to have greater volume to match the weight of a pure gold crown. Consequently, it would displace more water. Recognizing the solution, Archimedes leaped out of the bath and hurried home, exclaiming “Eureka! Eureka!” which translates to “I’ve found it! I’ve found it!”

 The term metaheuristic is a combination of two Greek words: meta, which means “beyond, on a higher level,” and heuristics. It’s a term coined by Fred Glover, inventor of the tabu search (discussed in chapter 6) to refer to high-level strategies used to guide and modify other heuristics to enhance their performance. The goal of metaheuristics is to efficiently explore the search space in order to find optimal or near-optimal solutions. Metaheuristics may incorporate mechanisms to achieve a trade-off between exploration (diversification) and exploitation (intensification) of the search space to avoid getting trapped in confined areas of the search space while also finding optimal or near-optimal solutions in a reasonable amount of time. Finding this balance of exploration and exploitation is crucial in heuristics, as discussed in section 1.5. Metaheuristic algorithms are often global optimizers that can be applied to different linear and nonlinear optimization problems with relatively few modifications for specific problems. These algorithms are often robust and can handle different problem sizes, problem instances, and random variables.

 Let’s assume that we have 6 objects with different sizes (2, 4, 3, 6, 5, and 1) and we need to pack them into a minimum number of bins. Each bin has a limited size of 7, so the total size of the objects in the bin should be 7 or less. If we have n objects, there are n! possible ways of packing the objects. The minimum number of bins we need is the lower bound. To calculate this lower bound, we need to find the total number of object sizes (2 + 4 + 3 + 6 + 5 + 1 = 21). The lower bound is 21 / 7 = 3 bins. This means that we need at least 3 bins to pack these objects. Figure 2.17 illustrates two heuristics that can be used to solve this bin packing problem.

 [image:]

 Figure 2.17 Handling the bin packing problem using first-fit and first-fit decreasing heuristics

 First-fit heuristics pack the objects following their order without taking into consideration their sizes. This results in the need for four bins that are not fully utilized, as there are seven spaces left in three of these bins. If we apply the first-fit decreasing heuristic, we will order the objects based on their sizes and pack them following this order. This heuristic allows us to pack all the objects in three fully utilized bins, which is the lower bound.

 In the previous example, all the objects have the same height. However, in a more generalized version, let’s consider objects with different widths and heights, as illustrated in figure 2.18. Applying heuristics such as smallest-first can allow us to load the container much faster. Some heuristics do not guarantee optimality; for example, the largest-first heuristic gives a suboptimal solution, as one object is left out. This can be considered an infeasible solution if we need to load all the objects into the container, or it will be a suboptimal solution if the objective is to load as many objects as possible.

 [image:]

 Figure 2.18 Bin packing problem. Using heuristics allows us to solve the problem much faster than with a brute-force approach. However, some heuristic functions may result in infeasible or suboptimal solutions, and they do not guarantee optimality.

 To solve this problem in Python, let’s first define the objects, the containers, and what it means to place an object inside a container. For the sake of simplicity, the following listing avoids custom classes and uses numpy arrays instead.

 Listing 2.7 Bin packing problem

OEBPS/Images/CH01_F09_Khamis.png
Elevator buttons A B c D Hall buttons

9 10 o o o © © @

7| 8
5 | 6
>y o Jo o) ole

(&) (&)
v
® O O e} ¢ (@) (4
Drop-off request / e
o* o) o) o T (@)
OI o) ° o s @) @

Elevator going up/
O

O
)
O
o
.
®

o
o
o
0
.
()

o
°

o
-
°
.
»

o
o
o
o
.
»

OEBPS/Images/CH02_F02_UN02_Khamis-EQ01.png

OEBPS/Images/CH02_F02_UN02_Khamis.png
NP-hard

(atleast as diffcult as the
hardest NP problems)

Problem

class.

NP-hard

NP-

Description

NP-hard problems may not
have a solution verifiable in
polynomial time or they
may not even have a
solution atall They are.
atleast as hard as the
hardest problems in NP.

NP-complete problems are
NP-hard but the

NP
(nondeterministic polynomial)

NP/co-NP.

solutions can be verified in
polynomial time.

Decision problems whose “yes™

answer (or “no" in the case
of co-NP) can be verified in
polynomial time if we already
have the proof (or witness).

P problems are deterministic
in nature and can be solved in
polynomial time.

Examples of benchmarks

(toy problems)
« Traveliing salesman problem
(TSP)

« Graph coloring
« Set covering and partitioning

5 Bin packing problem (B5E)

~ Subsel Sum Problem (S5P)
- Hamiltonian circuit
- Vertex cover problem

« n-puzzle problem

« Boolean satisfiability (SAT)

- Integer Factorization
- Graph Isomorphism
« Maximum flow problem

* Minimum spanning tree
(MST) problem
~ Shortest path problem

« Vehicle routing

« Microchips manufacturing

- Mobile Radio Frequency
Assignment

- Map Coloring

- Register Allocation

 Pollticalschoolealthcare
distrcting

« Container/truck loading

- Telecommunication
overl

- Design of queuing network

s in manufa

- Combinational equivalence
checking
= Job shop scheduling

- Image matching

« Direct orindirect interaction in
social media

« Protein structure analysis

« Network designs
+ Some single-machine
scheduling problems

OEBPS/Images/cover.jpeg
INRCIGUITIRROY dosiqn, planning, and control problems

Alaa Khamis

/'l MANNING

OEBPS/Images/CH02_F01_UN01_Khamis.png
Combinatorics

Combinations Permutations

Repetition is allowed No repetition Repetition is allowed No repetition

OEBPS/Images/CH02_F02_Khamis.png
Dur]

Uxbridge

Clarington

Brampton,

Mississauga,

Lake Ontario

1. Newmarket
2. Aurora
3. Richmond Hill

2

OEBPS/Images/CH02_F12_Khamis.png
Quality of solutions

High

Medium

Low

AN

Design problems (strategic functions)

(e.9., vehicle design, class scheduling, asset allocation, resource planning,
assembly line balancing, inventory management, mobil
bunding, fiight scheduling, and politcal districting)

Planning problems (tactical functions)

(e.g., motion planning, emergency vehicle dispatching and routing, patient
admission scheduling, surgery scheduling, and crew scheduling)

Control problems (operational functions)

(e.g., vehicle lateral/longitudinal motion control, ad hoc communication
relaying, adaptive traffic control, and network traffic management)

Search time

Long and infrequent
(min. to days)

Medium and intermittent
(sto min.)

Short and continuous
(mstos)

OEBPS/Images/CH01_F01_Khamis.png
‘Search algorithm/optimization solver

Algorithm source of inspiration

1

Algorithm pseudocode

1

Algorithm parameters and heuristics

i

Algorithm pros and cons

i

Algorithm adaptation

Find optimal/near-optimal values of a decision vector that
minimize/maximize a set of objective functions subject to a set
of hard andlor soft constraints

v

A searchloptimization problem

Benchmark/classic problems

1
Real-world problems

1

Hand-iterations on a
scaled-down problem

Python programming
on a scaled-up problem

L— Algorithm refinement and tuning v—‘

OEBPS/Images/CH01_F10_Khamis.png
Problem space

Infeasible region

Free unacceptable
solution

Bound unacceptable|
solution

Feasible search space

Q

Bound acceptable
solution

Q
Q

Q

(2]

Optimal/
9 near-optimal solution

Q

Q

Free candidate solution

-

\‘99 9,

Q! \ Local optimum /

\9_ 9/

9

Exploration

q Zoom out

Search algorithm

Exploitation

Zoomin

‘Neighbors of
elite solutions

OEBPS/Images/CH02_F15_Khamis.png
-

‘Trapped person

Base station

/
/ MAV with limited
communication range

OEBPS/Images/CH02_F05_Khamis.png
Number of conflicts = 5

Number of conflicts = 3

Number of conflicts = 1

Number of conflicts = 0

at Q2

at

Q2

Q1 Q2

Q2

Q3 Q4

Q3

at

Q4

Q3

Q3

Move a queen to reduce the number of conflicts.

Goal configuration (no queen
is attacking another queen)

OEBPS/Images/CH02_F18_Khamis.png
4x2=8

3x1=3
o
5x1=5 &
3x3=9 &
4x2=8 3x2=6
Objects to be loaded with their areas Container Largest-first (infeasible Smallest-first

(width X height) or suboptimal solution) (optimal solution)

OEBPS/Images/CH02_F08_Khamis.png
3
£(x,y) = 155x + (0.001x% + 70)y — 1000000

quations to the soly 9(x,y) = x +y = 10000

o 112 U _\%
35 = 155 +0.0015yx /! Frial ™
155 +0.0015yx'/2 = A
I _ 001552 +70
o

SymPy solver |——— Solution

OEBPS/Images/CH02_F11_Khamis.png
Gnet

-x

1 gravity

OEBPS/Images/CH02_F01_Khamis.png
* Univariate
* Bivariate
* Multivariate optimization

Integer/discrete
Continuous optimization
Mixed integer programming (MIP)

Mono-objective
Mult-objective optimization
Constraint-satisfaction problems (CSP)

Unimodal
Multimodal
Deceptive functions

« Equality
« Inequality

+ Hard constraints.
« Soft constraints

Expected high quality with long
and infrequent search

Accepted low quality with short
and continuous search

_’-
Expected medium quality with
™ medium and intermittent search

OEBPS/Images/CH02_F11_Khamis-EQ07.png
gi= (i —xi1)" + (i =vi-1)" + (2 —2zi-1)*

OEBPS/Images/Manning_M_small.png

OEBPS/Images/AlaaKhamis.png

OEBPS/Images/CH01_F07_Khamis.png
Cargo bike Item Weight (kg) Profit () Efficiency ($/kg)

Max. payload: 100 kg 1 146 14.54 1.00
2 20 15.26 076

3 85 58 068

4 10 1212 121

5 13 82 063

6 96 74 0.77

7 49 103 210

8 165 135 082

g ‘ v | J o | o | 9 877 66 075

v v v v

10 78 209 268

Parcels to be delivered in a ride

OEBPS/Images/CH02_F07_Khamis-EQ02.png
f(z,y) = 1552+ (0.001:3 +7U)y— 1000000

OEBPS/Images/CH02_F09_Khamis-EQ05.png
3a3 Tl

= Bttt

OEBPS/Images/CH02_F11_Khamis-EQ06.png
i

b1 “‘;’i—l’y >0
E Zm,y

OEBPS/Images/CH01_F06_Khamis.png
Better

500

450

5
8
s

EPA range [miles]
©
8
g

300

250

200

A candidate solution

Motor power: X,
Battery capacity: X;

Wheel size:x;
x=

3 4 5
Acceleration time [0-60 mph (s)]

Better

OEBPS/Images/CH02_F07_Khamis.png

OEBPS/Images/CH02_F17_Khamis.png
Objects to be packed in the

Buned uig

Bins of capacity 7

suopnjos
elqissod

First-fit heuristics First-fit decreasing heuristics
(four bins are needed and (three bins are needed and no
seven spaces are not used) spaces are not used)

OEBPS/Images/CH02_F03_Khamis.png
- A

Smart cart *

y v Smart cart
- Assembly
. point 1
Smart cart
Assembly %,
- pointn
o LY
; Lo Y
/
Smart cart
Smart cart
N
o Assembly

point 2

Smart cart

OEBPS/Images/CH01_F02_Khamis.png
Optimization problems

i

Benchmark/classic problems

Examples:

Mathematical test functions (e.g., Ackley,
Easom, EggCrate, Eggholder, Rastrigin,
Schaffer, McCormick, Beale, Branin,
Colvile, and Rosenbrock)

n-puzzle problem
n-queens problem

Grid search problem

Bin packing problem

Knapsack problem

Minimum spanning tree (MST)
Traveling salesman problem (TSP)
Chinese postman problem (CPP)
Optimal assignment problem (OAP)
Quadratic assignment problem (QAP)
Job shop scheduling problem (JSP)
Graph coloring problem

v

Real-world problems

!

¥

}

Design problems

Planning problems

Control problems

Examples

+ Suspensioniwheel design

+ VLS design

+ Assembly line balancing (ALBP)

+ Railway scheduling

+ PID controller design

+ Voice aclivity detector (VAD)

+ Timetabling problem (TTP)

+ Poliical districting problem

+ Hospitalresource planning

+ Optimal placement of physical
assets (e.g., cameras, EV.
charging stations, micromobilty
stations, and walkinglcycling
routes/lanes)

Examples:

Motion planning
Ride-sharinglrde-haling

Shifts planning
Task allocation

Vehicle routing
Problem (VRP)
Appointment scheduling
Patient admission
scheduling

Fitness planning

Trip itinerary planning
Eco-efficient delivery
Deadheading problem

Examples:

+ Elevator dispatching

+ Communication relaying

+ Lateral and longitudinal
‘motion control

+ Multirobot control

+ Targeted drug delivery using
microrobots

* Multiple target clustering
+ Dynamic order orchestration

+ Sel-driving vehicle (SDV)
coordination in warehouses.

+ Truck platooning

OEBPS/Images/CH01_F07_Khamis-EQ06.png

OEBPS/Images/CH02_F06_Khamis.png
step1 Step2 step3

e
e

step steps Step6.

OEBPS/Images/CH02_F10_Khamis.png

OEBPS/Images/CH02_F16_Khamis.png
‘Search/optimization algorithms

1 ¥

Deterministic algorithms Stochastic algorithms
i b i 1 1
Numericallclassical | | Graph search filos o ased Popuationbased | | Machine learning—
methode iz (S-metaheuristics) | | (P-metaheuristics) | | D2sed methods

L] v v v
Evolutionary Swarm
Biind search Informed search s e

i b ! b

Graph traversal | Shortest path| | <+ | |Shortest path
algorithms algorithms algorithms.

OEBPS/Images/CH02_F09_Khamis.png
Location 4

OEBPS/Images/CH01_F08_Khamis.png
A priori knowledge

- ,,l,,,

Initial states
Problem space
—— Goal state

Feasible states Problem

L]

Operators

solver

Legal moves/
Transitions

L Hard/soft J

constraints

Proposed
Solution

Generate alternative solution

- - Computational tractability - - -

Evaluation
criterion

Stopping
ciiteria

R

Solution execution
upon external world

Optimalinear-
optimal solution

OEBPS/Images/CH01_F04_Khamis.png
Streched: (~20 * x*+ 6200 * x_—350000) / 2

Ticket price (8): x

Shifted: (20 * 2+ 6200 * x —350000) + 3

Ticket price ($): x

EE]
() :(831) woidt

L)

(X :(83) woud

Base function: (~20 * x:+ 6200 * x - 350000)

Ticket price (8): x

Duality: ~(~20 * x*+ 6200 * x_~ 350000)

Ticket price (8): x

E R T
() :(831) woidt

ERENC
(X :(83) woud

OEBPS/Images/CH02_F14_Khamis.png
V, location

V, location

Available vehicles

OEBPS/Images/CH02_F04_Khamis.png
Unimodal (convex) function Multimodal function Deceptive function

OEBPS/Images/CH01_F03_Khamis.png
fix)

~104

~20-]

—30-

—40-

Weak local minima/saddle points

/J

Strong local minimum

1
|
|
i
|)
i i
| i
| i
i |
| i
| Global minimum [
| |
i i
i |
| i
i |
i i
| I
i

-

% Lower bound Upper bound i

|
|
|
|
|
|
— Infeasible solution
|
A
-3

|
|
|
|
|
|
|
|
3

o]

-2 - [1

=

OEBPS/Images/Manning_copyright.png

OEBPS/Images/CH01_F05_Khamis.png
Profit (K$)

100

-100

-200

-300

50

100 150

Ticket price ($)

200

250

OEBPS/Images/CH02_F13_Khamis.png
50 voters: Electoral districting based on
administrative boundaries of the region Compact but unfair Neither compact nor fair

4 Bell districts 3 Bell districts 5 Bell districts
3 Shield districts 4 Shield districts. 2 Shield districts
Bell wins Shield wins Bell wins

OEBPS/Images/CH01_F07_Khamis-EQ07.png
fo=

Zw, -c| ,50 is added if f [Zw e,
=0 =0

