

 inside front cover

 [image: IBC]

 Praise for the First Edition

 A one-stop shop for anyone who wants a guided introduction, not only to React, but to the ecosystem of tools, concepts, and libraries surrounding it.

 —Peter Cooper, Editor of JavaScript Weekly

 Perfect for new React developers and seasoned veterans alike.

 —Matthew Heck, TechChange

 An absolutely engaging read, where theory meets practice!

 —Dane Balia, Entelect

 Excellent introduction for getting up to speed on React . . . quickly!

 —Art Bergquist, Cognetic Technologies

 This book is simple to follow. It uses very basic language that helps you understand each concept step by step.

 —Israel Morales, SavvyCard

 I finally understand how to utilize React, and it’s awesome.

 —Peter Hampton, Ulster University

 React Quickly is a great resource for coming up to speed with React. Very thorough and relevant. I’ll be using it as a reference for my next app.

 —Nathan Bailey, SpringboardAuto.com

 If you’re new to React and would like to truly master it, I would look no further than this book.

 —Richard Kho, Capital One

 [image:]

 React Quickly

 Second Edition

 Morten Barklund, Azat Mardan

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Frances Lefkowitz

 	
 Technical development editor:

 	
 Ninoslav Čerkez

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Kathleen Rossland

 	
 Copy editor:

 	
 Julie McNamee

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Chris Villanueva

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439290

 dedication

 To my wife and son, who inspire me to be a better person and writer. “Family is not an important thing, it’s everything.” (Michael J. Fox)

 —Morten Barklund

 To my grandfather, Khalit Khamitov. Thank you for being such a kind and just person. You will always stay in my memory, along with the crafts you taught me, the trips we took to the dacha, and the chess games we played.

 —Azat Mardan

contents

 front matter

 preface

 acknowledgments

 about this book

 about the authors

 about the cover illustration

 1 Meeting React

 1.1 Benefits of using React

 Simplicity

 Speed and testability

 Ecosystem and community

 1.2 Disadvantages of React

 1.3 How React can fit into your website

 Single-page applications and React

 The React stack

 1.4 Your first React app: Hello World

 The result

 Writing the application

 Installing and running a web server

 Going to the local website

 1.5 Quiz

 1.6 Quiz answers

 2 Baby steps with React

 2.1 Creating a new React app

 React project commands

 File structure

 Templates

 Pros and cons

 2.2 A note about the examples in this book

 2.3 Nesting elements

 Node hierarchy

 Simple nesting

 Siblings

 2.4 Creating custom components

 2.5 Working with properties

 A single property

 Multiple properties

 The special property: children

 2.6 Application structure

 2.7 Quiz

 2.8 Quiz answers

 3 Introduction to JSX

 3.1 Why do we use JSX?

 Before and after JSX

 Keeping HTML and JavaScript together

 3.2 Understanding JSX

 Creating elements with JSX

 Using JSX with custom components

 Multiline JSX objects

 Outputting variables in JSX

 Working with properties in JSX

 Branching in JSX

 Comments in JSX

 Lists of JSX objects

 Fragments in JSX

 3.3 How to transpile JSX

 3.4 React and JSX gotchas

 Self-closing elements

 Special characters

 String conversion

 The style attribute

 Reserved names: class and for

 Multiword attributes

 Boolean attribute values

 Whitespace

 data- attributes

 3.5 Quiz

 3.6 Quiz answers

 4 Functional Components

 4.1 The shorter way to write React components

 An example application

 Destructuring properties

 Default values

 Pass-through properties

 4.2 A comparison of component types

 Benefits of functional components

 Disadvantages of functional components

 Nonfactors between component types

 Choosing the component type

 4.3 When not to use a functional component

 Error boundary

 Codebase is class-based

 Library requires class-based components

 Snapshot before updating

 4.4 Conversion from a class-based to a functional component

 Version 1: Render only

 Version 2: Class method as utility

 Version 3: Real class method

 Version 4: Constructor

 More complexity equals harder conversion

 4.5 Quiz

 4.6 Quiz answers

 5 Making React interactive with states

 5.1 Why is React state relevant?

 React component state

 Where should I put state?

 What kind of information do you store in component state?

 What not to store in state

 5.2 Adding state to a functional component

 Importing and using a hook

 Initializing the state

 Destructuring the state value and setter

 Using the state value

 Setting the state

 Using multiple states

 State scope

 5.3 Stateful class-based components

 Similarities with the useState hook

 Differences from the useState hook

 5.4 Quiz

 5.5 Quiz answers

 6 Effects and the React component life cycle

 6.1 Running effects in components

 Running an effect on mount

 Running an effect on mount and cleanup on unmount

 Running cleanup on unmount

 Running an effect on some renders

 Running an effect and cleanup on some renders

 Running an effect synchronously

 6.2 Understanding rendering

 Rendering on mount

 Rendering on parent render

 Rendering on state update

 Rendering inside functions

 6.3 The life cycle of a class-based component

 Life cycle methods

 Legacy life cycle methods

 Converting life cycle methods to hooks

 6.4 Quiz

 6.5 Quiz answers

 7 Hooks to fuel your web applications

 7.1 Stateful components

 Simple state values with useState

 Creating complex state with useReducer

 Remembering a value without re-rendering with useRef

 Easier multicomponent state with useContext

 Low-priority state updates with useDeferredValue and useTransition

 7.2 Component effects

 7.3 Optimizing performance by minimizing re-rendering

 Memoizing any value with useMemo

 Memoizing functions with useCallback

 Creating stable DOM identifiers with useId

 7.4 Creating complex component libraries

 Creating component APIs with useImperativeHandle

 Better debugging of hooks with useDebugValue

 Synchronizing non-React data with useSyncExternalStore

 Running effect before rendering with useInsertionEffect

 7.5 The two key principles of hooks

 7.6 Quiz

 7.7 Quiz answers

 8 Handling events in React

 8.1 Handling DOM events in React

 Basic event handling in React

 8.2 Event handlers

 Definition of event handlers

 Event objects

 React event objects

 Synthetic event object persistence

 8.3 Event phases and propagation

 How phases and propagation work in the browser

 Handling event phases in React

 Unusual event propagation

 Nonbubbling DOM events

 8.4 Default actions and how to prevent them

 The default event action

 Preventing default

 Other default events

 8.5 React event objects in summary

 8.6 Event handler functions from properties

 8.7 Event handler generators

 8.8 Listening to DOM events manually

 Listening for window and document events

 Dealing with unsupported HTML events

 Combining React and DOM event handling

 8.9 Quiz

 8.10 Quiz answers

 9 Working with forms in React

 9.1 Controlled vs. uncontrolled inputs

 9.2 Managing controlled inputs

 Filtered input

 Masked input

 Many similar inputs

 Form submission

 Other inputs

 Other properties

 9.3 Managing uncontrolled inputs

 Opportunities

 File inputs

 9.4 Quiz

 9.5 Quiz answers

 10 Advanced React hooks for scaling

 10.1 Resolving values across components

 React Context

 Context states

 React Context deconstructed

 10.2 How to handle complex state

 Interdependent state

 10.3 Custom hooks

 When is something a custom hook?

 When should I use a custom hook?

 Where can I find custom hooks?

 10.4 Quiz

 10.5 Quiz answers

 11 Project: Website menu

 11.1 Scaffolding for the menu

 HTML output

 Component hierarchy

 Icons

 CSS

 Template

 Source code

 In the browser

 11.2 Rendering a static menu

 The goal of this exercise

 Desired HTML output

 Component tree

 Source code

 In the browser

 11.3 Homework: A dynamic menu

 Goal for this step

 Hints for solving this step

 Component hierarchy

 What now?

 11.4 Homework: Retrieving items from context

 Goal for this step

 Hints for solving this step

 Component hierarchy

 What now?

 11.5 Homework: Optional link

 Goal for this step

 Hints for solving this step

 Component hierarchy

 What now?

 11.6 Final thoughts

 12 Project: Timer

 12.1 Scaffolding for the timer

 HTML output

 Component hierarchy

 Project structure

 Source code

 Running the application

 12.2 Adding a simple play/pause timer

 The goal of this exercise

 Component hierarchy

 Updated project structure

 Source code

 Running the application

 12.3 Homework: Initializing the timer to a custom time

 12.4 Homework: Resetting timers

 12.5 Homework: Multiple timers

 13 Project: Task manager

 13.1 Scaffolding for the task manager

 Component hierarchy

 Project structure

 Source code

 Running the application

 13.2 A simple list of tasks

 The goal of this exercise

 Component hierarchy

 Updated project structure

 Source code

 Running the application

 13.3 Homework: Task steps and progress

 13.4 Homework: Prioritization of steps

 13.5 Homework: Drag and drop

 13.6 Conclusion

 index

front matter

preface

 Get ready for the ultimate love story! Boy meets library and, oh boy, does the library rock! It’s love at first sight and the library is all in. Cue the happy ending because they are going to live happily ever after!

 I had been working as a web developer for more than a decade, but I had always felt like there was something missing. I tried my hand at JavaScript, jQuery, and even Angular 1.0, but they just didn’t cut it. Honestly, who wants to write spaghetti code that falls apart six months later?

 But then, one day, I stumbled upon React, and it was an instant connection, an undeniable attraction that I couldn’t ignore. From the moment I laid eyes on the library, I knew we were meant to be.

 Suddenly, everything made sense. React’s handling of components and data flow was exactly what I’d been searching for. Who knew that coding could be this exciting?

 I dove headfirst into learning everything I could about React. I read documentation, watched tutorials, and built projects until my fingers bled. Okay, maybe not literally, but you get the point.

 I just couldn’t get enough of this new paradigm. I wanted to rewrite everything I had ever done. Once I really started to understand the deeper design philosophy behind this library, the attraction only grew deeper, becoming a lifelong relationship.

 As fate would have it, years after my initial foray into the world of React, I stumbled across the charismatic Azat—a kindred spirit with an unbridled passion for this wondrous library. Imagine my delight when I discovered that Azat had even gone so far as to immortalize his love for React in a tome of epic proportions—the first edition of React Quickly.

 Oh, how that book sang to my soul! With its practical examples, clear organization, and beginner-friendly approach, React Quickly was the perfect companion for any React enthusiast. The community showered it with praise and accolades, and rightfully so.

 But, like any young prodigy, React continued to evolve and mature with each passing year. Then, on that fateful day in 2019, hooks arrived on the scene with a flurry of excitement and innovation. It was a game changer that completely revolutionized the way applications were coded.

 And so it was that Azat and I joined forces to bring React Quickly into a new era, while keeping its original essence alive and thriving. With our energies aligned, we set out to craft a second edition that captured all the magic of React as it’s used today. The structure and spirit of the first edition remain intact, while we’ve updated it to keep pace with the times. Oh, what a joy it is to share our love for React with the world!

 —Morten Barklund

acknowledgments

 We would like to express our deepest gratitude to the team at the publishing house who helped make this book a reality. At the forefront is our main editor, Frances Lefkowitz, who tirelessly helped us shape and polish the text, making it accessible and useful to readers of all levels. Her invaluable insights and guidance have been critical to producing a book that we are truly proud of.

 We also want to extend a special thank you to our acquisition editor, Andy Waldron, who believed in this project from the beginning and helped us navigate the complex world of publishing.

 A special thanks goes to our tech editor, Ninoslav Čerkez, who provided meticulous technical feedback and helped ensure that the code examples and explanations are accurate and up to date. We are also indebted to our tech proofer, Chris Villanueva, for his careful technical proofreading, which caught countless errors and inconsistencies.

 We also want to give a special shout-out to our copy editor, Julie McNamee, for her stellar work on the manuscript. She’s not just a grammar expert, but a linguistic wizard who made sure all our excess adverbs really were actually removed—leaving the text more concise and punchy. Thanks, Julie!

 Thank you, our reviewers: Amit Lamba, Andres Sacoo, Bernard Fuentes, Brendan O’Hara, Brent Boylan, Chris Villanueva, Danilo Zeković, Derick Hitchcock, Fernando Bernardino, Francisco Rivas, Ganesh Swaminathan, Harsh Raval, James Bishop, Jason Hales, Jeff Smith, John Pantoja, Karthikeyarajan Rajendran, Kelum Prabath Senanayake, Kent Spillner, Larry Cai, Matt Deimel, Matteo Battista, Michelle Williamson, Mick Wilson, Miranda Whurr, Nitendra Bhosle, Nouran Mahmoud, Patrice Maldague, Pieter Gyselinck, Richard Harriman, Richard Tobias, Rodney Weis, Roman Zhuzha, Saioa Picado Fernández, Santosh Joseph, Thefanis Despoudis, and Yves Dorfsman—your suggestions helped make this a better book.

 Thank you all for your dedication, hard work, and expertise. We couldn’t have done this without you.

about this book

 This book aims to take the reader from a React novice to an experienced React practitioner. It’s a comprehensive guide to React fundamentals, designed to help both beginners and experienced developers master the core concepts of this popular library, such as JavaScript XML (JSX), components, state, hooks, events, and form elements.

 Overall, this book is an essential resource for anyone looking to build React applications, regardless of their experience level. By providing a strong foundation in the core concepts of React, the book can help developers write clean, maintainable code that is easy to understand and extend.

 React Quickly, Second Edition, will teach you all the fundamentals you need to design clean, effective, and easy-to-update web applications using React. As you’ll see, the React ecosystem of tools and libraries is enormous. After finishing this book and working through the projects, you may decide you want to continue to build on your skills with an eye toward advancing your career. If so, check out Job-Ready React by Morten Barklund (Manning, 2024), which builds on the skills and methodologies taught in this book. It will get you job-ready by introducing the advanced libraries, techniques, and tools used by professional React developers.

Audience

 For beginners, the book provides practical examples and exercises that can help them build their first React applications and gain a solid understanding of how React works. The book offers step-by-step guidance on how to build React applications from scratch, with practical examples and exercises that reinforce the concepts.

 For experienced developers, the book serves as a useful reference and refresher on the fundamental concepts of React. This can be particularly helpful for those who may have learned React in a less structured way or who want to deepen their understanding of React best practices.

 To make the most of this book, it’s helpful to have a bit of experience with HTML, CSS, and JavaScript, but you don’t need to be a master of these skills. Importantly, you don’t need any prior knowledge of React at all—we’ll start at the beginning and guide you all the way through building complex applications with confidence!

Roadmap

 The book is structured with 10 subject matter chapters followed by 3 project chapters at the end. The first 10 chapters are designed to build on one another in a natural progression. For those who are new to React, we recommend that you read these chapters in sequence to get the most out of the learning experience.

 However, if you already have some experience with React, feel free to skip around. Chapters 1 through 4 introduce React and some core concepts such as component structure, JSX, and functional components. These chapters may be skippable if you’re already familiar with these topics.

 Chapters 5 through 7 introduce various hooks, starting with the basic state hook in chapter 5, effect hooks in chapter 6, and a brief introduction to all the other hooks in chapter 7. Chapters 8 and 9 cover events and forms, respectively. Understanding events is crucial before diving into form input-handling practices.

 Chapter 10 builds further on all the previous concepts by introducing some advanced component and logic patterns that you might encounter in more complex applications.

 Finally, chapters 11 through 13 are project chapters, where you can put your newfound knowledge to the test in three guided projects of increasing complexity. You’ll build an interactive website menu, a timer, and a feature-rich task manager. If you’re already experienced with React, you might want to start with these projects to see where your knowledge gaps lie.

Source code

 All the source code used in the book is available on GitHub as well as on the book’s accompanying website. The latter includes an online source code browser where you can not only see and download the source code for every single example but also run the resulting application right in the browser without downloading anything. The GitHub repository is available at https://github.com/rq2e/rq2e, and the source code browser can be found at https://reactquickly.dev/browse.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/react-quickly-second-edition. The complete code for the examples in the book is also available for download from the Manning website at www.manning.com/books/react-quickly-second-edition.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this wasn’t enough, and listings include line-continuation markers (➥). Code annotations accompany many of the listings, highlighting important concepts.

 Software requirements

 To use and run the examples and projects in this book, you only need two things:

 	
 A command-line environment with a recent version of Node.js and npm installed

 	
 A text editor

 That’s it! Now, let us show you how to quickly set up your command-line environment and select a text editor, so you’ll be ready for the first exercises in chapter 1.

 Command-line environment with Node.js and npm

 First, you want to check if you already have compatible versions of Node.js and npm installed. You need at least Node.js version 12 to use the examples in this book.

 In Windows:

 	
 Open the Command Prompt or PowerShell by pressing the Windows key-R and typing cmd or powershell in the Run dialog box.

 	
 Type node -v in the Command Prompt, and press Enter.

 	
 If you have Node.js installed, it will display the version number.

 In macOS and Unix-like systems:

 	
 Open the Terminal app.

 	
 Type node -v in the terminal, and press Enter.

 	
 If you have Node.js installed, it will display the version number.

 If you don’t have Node.js installed or your version is older than 12, go to https://nodejs.org/en/download, download the proper package for your operating system, and follow the installation instructions.

 If you’re a power user of your operating system, feel free to use any other package manager to install Node.js, as long as you get at least version 12.

 Text editor

 You probably already possess a text editor or have prior experience using one, given your familiarity with JavaScript, HTML, and CSS, which are crucial to make the most out of this book. However, in case you don’t have a text editor installed, here are some widely used options that are compatible with most platforms:

 	
 Sublime Text: www.sublimetext.com/download (free trial)

 	
 Brackets: https://brackets.io/ (open source and free)

 	
 Visual Studio Code: https://code.visualstudio.com/ (free)

liveBook discussion forum software requirements

 Purchase of React Quickly, Second Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/react-quickly-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 [image: Morten Barklund]

 Morten Barklund, an independent software engineer, works as a lead developer in various teams, including an open source React project funded by Google. With a degree in computer science from the Technical University of Denmark, Morten has been actively involved in the web community for more than two decades and has worked on hundreds of projects.

 [image: Azat Mardan]

 Azat Mardan is an author of best-selling books on JavaScript, React, and Node.js, including React Quickly, First Edition; Practical Node.js, Pro Express.js, Full Stack JavaScript, and 100 TypeScript Mistakes. He is a visiting professor at a technology university, startup mentor, and a software engineer/leader with experience in small startups and large corporations, including YouTube, Google, Capital One, Indeed, and DocuSign. Azat has taught many workshops and courses, including a course on edX with more than 40,000 international students. At one point, Azat was awarded Microsoft Most Valuable Professional in Developer Technologies, and was the 239th most active GitHub contributor in the world. He spoke at more than 30 conferences worldwide, keynoted, and shared the stage with prominent technologists such as Douglas Crockford, Jeff Atwood (cocreator of Stack Overflow), Jim Jagielski (creator of Apache), Scott Hanselman, and Danese Cooper.

about the cover illustration

 The figure on the cover of React Quickly, Second Edition, is “Homme Baschkir,” or “Bashkir man,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

1 Meeting React

 This chapter covers

 	
Understanding what React is

 	
Solving problems with React

 	
Fitting React into your web applications

 	
Writing your first React web app: Hello World

 React is the groundbreaking tool that web developers may not even know they need, but can’t let go of once they’ve tried. This is definitely true for the two authors of this book, as well as for many other enthusiastic web developers out there. React is immensely popular—and for good reason.

 If you were doing web development in the early 2000s, all you needed was some HTML and a server-side language such as Perl or PHP. Ah, the good old days of putting in alert() boxes just to debug your frontend code. The internet has evolved a lot since then, and the complexity of building websites has increased dramatically. Websites have become web applications with complex user interfaces (UIs), business logic, and data layers that require changes and updates over time—and often in real time.

 Many JavaScript template libraries have been written to try to solve the problems of complex UIs. But they still require developers to adhere to the old separation of concerns—which splits style (Cascading Style Sheets [CSS]), data and structure (HTML), and dynamic interactions (JavaScript)—and they don’t meet modern-day needs (remember DHTML?).

 In contrast, React offers a new approach, which, when used correctly, streamlines frontend web development. React is a powerful UI library offering an alternative that many big firms such as Facebook, Netflix, and Airbnb have adopted and see as the way forward. Instead of defining a one-off template for your UIs, React allows you to create reusable UI components in JavaScript that you can use again and again on your sites.

 Do you need a captcha control or date picker? Use React to define a <Captcha /> or <DatePicker /> component that you can add to your form: a simple drop-in component with all the functionality and logic to communicate with the backend. Do you need an autocomplete box that asynchronously queries a database once the user has typed four or more letters? Define an <Autocomplete charNum="4"/> component to make that asynchronous query. You can choose whether it has a text box UI or has no UI and instead uses another custom form element—perhaps <Autocomplete textbox="..." />.

 This approach isn’t new. Creating composable UIs has been around for a long time, but React is the first to use pure JavaScript without templates to make this possible. And this approach has proven easier to maintain, reuse, and extend.

 React is a great library for building UIs, and it should be part of your frontend web toolkit, but it isn’t a complete solution for all frontend web development. We’ll spend part of this chapter looking at the pros and cons of using React in your applications and how React might fit into your existing web development stack.

 In this book, we’ll cover the basics of React and no more, providing readers with a solid foundation in the core concepts and principles of the React library without delving into any external or advanced topics. By focusing solely on React, readers will gain a comprehensive understanding of its capabilities and be well equipped to apply their knowledge to a wide range of web development projects.

 Note The source code for the example in this chapter is available at https://rq2e.com/ch01.

1.1 Benefits of using React

 Every new library or framework claims to be better than its predecessors in some respect. In the beginning, we had jQuery, and it was leaps and bounds better for writing cross-browser code in native JavaScript. If you remember JavaScript from the old days, a single server request would take many lines of code, as it had to account for Internet Explorer and WebKit-like browsers. With jQuery, this took only a single line: $.ajax(), for example. Back in the day, jQuery was in some respects known as a framework—but not anymore! Now a framework is something bigger and more powerful.

 Similarly, with Backbone and then Angular, each new generation of JavaScript frameworks has brought something new to the table. React isn’t unique in this. What is new is that React challenges some of the core concepts used by most popular frontend frameworks, for example, the idea that you need to have templates.

 The following list highlights some of the benefits of React versus other libraries and frameworks that existed at the time React emerged:

 	
 Simpler web apps—React uses a component-based architecture (CBA) with pure JavaScript; a declarative style; and powerful, developer-friendly Document Object Model (DOM) abstractions (and not just DOM, but also iOS, Android, etc.).

 	
 Fast UIs—React provides outstanding performance thanks to its virtual DOM and smart reconciliation algorithm, which, as a side benefit, lets you perform testing without spinning up (starting) a headless browser.

 	
 Less code to write—React’s great community and vast ecosystem of components provide developers with a variety of libraries and components. This is important when you’re considering what framework to use for development.

 Many features made React simpler to work with than most other frontend frameworks available in its infancy. However, many new frameworks have spawned since React came around. Partially due to the popularity of React, some of these new frameworks have been developed with similar benefits or thoughts, each slightly altered in different ways. Some other frameworks might just be inspired by the overall idea, but work completely differently, whereas others are very similar to React, just with a smaller feature set requiring you to sometimes write more code, but other times end up with a much smaller application codebase.

 We’ll consider the benefits that make React popular. These are the main selling points of React, and they made the framework unique at its introduction, although other modern frameworks have similar benefits today. Let’s start to unpack these benefits one by one, starting with how wonderfully simple React is to use.

1.1.1 Simplicity

 The concept of simplicity in computer science is highly valued by developers and users, but it doesn’t equate to ease of use. Something simple can be hard to implement, but in the end, it will be more elegant and efficient. And often, an easy thing will end up being complex. Simplicity is closely related to the KISS principle (keep it simple, stupid). The gist is that simpler systems work better.

 React’s approach allows for simpler solutions via a dramatically better web development experience for software engineers. When we began working with React, it was a considerable shift in a positive direction that reminded us of switching from using plain, no-framework JavaScript to jQuery.

 In React, this simplicity is achieved with the following features:

 	
 Declarative over imperative style—React embraces declarative style over imperative by updating views automatically.

 	
 CBA using pure JavaScript—React doesn’t use domain-specific languages (DSLs) for its components, just pure JavaScript. And there’s no separation when working on the same functionality.

 	
 Powerful abstractions—React has a simplified way of interacting with the DOM, allowing you to normalize event handling and other interfaces that work similarly across browsers.

 Let’s cover these features one by one.

 Declarative over imperative style

 Declarative style means developers write how it should be, not what to do, step by step (imperative). But why is the declarative style a better choice? The benefit is that the declarative style reduces complexity and makes your code easier to read and understand.

 The distinction between imperative and declarative coding styles can quickly become academic to some extent. When taken to the extreme, declarative programming can become really complex to read unless you understand some fairly complex concepts well, such as monads and functors. Here are a few different ways to describe the difference between the two styles:

 	
 Statements versus expressions—Imperative-style programming often works with independent statements that individually advance the program state, while declarative programming uses expressions that build upon each other to progress the flow of logic.

 	
 Reserved word usage—Imperative-style programming often uses many reserved words such as for, while, switch, if, and else, while declarative-style programming uses array methods, arrow functions, object access, Boolean expressions, and ternary operators to achieve the same results.

 	
 Function composition—Imperative-style programming often uses independent function calls and method invocations, while declarative-style programming uses function composition to build upon the previous expression and make small generalized pieces of logic that, when composed, achieve the desired result.

 	
 Mutability—Imperative-style programming often uses mutable objects and manipulates existing structures, while declarative-style programming uses immutable data and creates new structures from old ones rather than editing existing ones.

 Let’s create a simple example to illustrate these different points. The goal of this task is to create a function, countGoodPasswords, that, given a list of passwords, will return how many of the passwords are good. Here, we’ll define a good password as any password at least nine characters long.

 This is a great simple task that can be solved in any programming language in a multitude of ways. Some programming languages inherently make one style more natural to reach for, but JavaScript is a bit special, as it’s a member of both worlds. You can solve this task either imperatively or declaratively.

 Let’s start with a (very) naive imperative solution:

 function countGoodPasswords(passwords) {
 const goodPasswords = []; ❶
 for (let i = 0; i < passwords.length; i++) {
 const password = passwords[i]; ❶
 if (password.length < 9) { ❷
 continue; ❷
 }
 goodPasswords.push(password); ❶❸
 }
 return goodPasswords.length;
}

 ❶ New statement changes the program state

 ❷ Reserved word controls program flow

 ❸ Mutates an existing object

 This is, of course, partially taken to an extreme, and even under a fully imperative programming paradigm, this could be much shorter.

 Let’s implement this same example using a declarative programming mindset:

 function countGoodPasswords(passwords) {
 return passwords.filter(p => p.length >= 9).length;
}

 We arrive directly at the goal in a single statement by manipulating an object in several steps, using function composition to arrive at the target. We filter the original array to arrive at a temporary value, which is the array of only good passwords. However, we never store this array anywhere; we go directly to the next step of taking the length of that array.

 That was just some generic JavaScript code. How does this relate to React? React takes the same declarative approach when you compose UIs. First, React developers describe UI elements in a declarative style. Then, when there are changes to views generated by those UI elements, React takes care of the updates. Yay!

 The convenience of React’s declarative style fully shines when you need to make changes to the view. Those are called changes of the internal state. When the state changes, React updates the view accordingly.

 Note We’ll cover how states work in chapter 5.

 Component-based architecture using pure JavaScript

 CBA existed before React came on the scene. Separation of concerns, loose coupling, and code reuse are at the heart of this approach because it provides many benefits; software engineers, including web developers, love CBA. A building block of CBA in React is the component class. As with other CBAs, it has many benefits, with code reuse being the main one (you can write less code!).

 What was lacking before React was a pure JavaScript implementation of this architecture. When you’re working with Angular, Backbone, Ember, or most of the other Model-View-Controller (MVC)-like frontend frameworks, you have one file for JavaScript and another for the template. (Angular uses the term directives for components.)

 There are a few problems with having two languages (and two or more files) for a single component. The HTML and JavaScript separation worked well when you had to render HTML on the server, and JavaScript was only used to make your text blink. Now, single-page applications (SPAs) handle complex user input and perform rendering on the browser. This means HTML and JavaScript are closely coupled functionally. For developers, it makes more sense not to require separation of HTML and JavaScript when working on a piece of a project (component).

 Under the hood, React uses a virtual DOM to find differences (the delta) between what’s already in the browser and the new view. This process is called DOM diffing or reconciliation of state and view (bringing them back to similarity). This means developers don’t need to worry about explicitly changing the view; all they need to do is update the state, and the view will be updated automatically as needed. You’ll see us implicitly using this concept over and over in the book. We never do DOM manipulation directly; we let React do that work for us.

 Conversely, with jQuery, you’d need to implement updates imperatively. By manipulating the DOM, developers can programmatically modify parts of the web page without re-rendering the entire page. DOM manipulation is what you do when you invoke jQuery methods.

 Think of the help provided by the underlying framework on a scale as shown in figure 1.1. At one end of the scale, you have a “framework” that doesn’t actually help you at all. If you built your application in plain JavaScript, you would be at this extreme. Using jQuery would make it easier to manipulate the DOM, but you would still have no help from the framework when things update. You would have to manually make sure that your jQuery views update when your jQuery data updates.

 [image: 01-01]

 Figure 1.1 How much does the framework help you? jQuery does nothing; Angular does it all. For some, React hits the sweet spot in between.

 At the other end of the scale, we have frameworks such as Angular, which is another very popular framework and comparable to React in every way. However, Angular works in a fundamentally different way with a lot more “magic” happening behind the scenes. You often merely described how your components fit together, and Angular will try to connect things correctly behind the scenes. The problem with Angular is that you often lose the desired fine-grained control if things don’t work correctly. Many things are hidden from you, which makes things unnecessarily complex.

 React strikes that happy medium, where the framework helps you with a lot of the tedious work of connecting various things behind the scenes, but without locking you out of the fine-grained control required to make complex web applications. This is obviously a subjective opinion, but we’re not alone in feeling that way.

 Powerful abstractions

 React comes with the following great abstractions that make life as a React developer easier:

 	
 Synthetic events abstracting out browser differences in native events

 	
 JavaScript XML (JSX) abstracting out the JS DOM

 	
 Browser independence allowing rendering in nonbrowser environments (e.g., on the server)

 React has a powerful abstraction of the browser event model. In other words, it hides the underlying interfaces and provides normalized/synthesized methods and properties. For example, when you create an onClick event in React, instead of the event handler receiving a native browser-specific event object, it receives a synthetic event object that’s a wrapper around native event objects. You can expect the same behavior from synthetic events regardless of the browser in which you run the code. React also has a set of synthetic events for touch events, which are great for building web apps for mobile devices.

 Then there’s JSX, which is one of the more controversial elements of React. For some, the abstraction of JSX is a strong argument for using React, while JSX has been a stumbling block or even a deterrent for others.

 If you’re familiar with Angular, then you’ve already had to write a lot of JavaScript in your template code because, in modern web development, plain HTML is too static and is hardly any use by itself. Our advice is to give React the benefit of the doubt and give JSX a fair run.

 JSX is a bit of syntactic sugar on top of JavaScript for writing React elements in JavaScript using HTML-like notation with <>. React pairs nicely with JSX because developers can better implement and read the code. Think of JSX as a mini-language that’s compiled into native JavaScript. So, JSX isn’t run on the browser but is used as the source code for compilation. Here’s a compact snippet written in JSX:

 if (user.session) {
 return Logout;
} else {
 return Login;
}

 Even if you load a JSX file in your browser with the runtime transformer library that compiles JSX into native JavaScript on the run, you still don’t run the JSX; you run JavaScript instead. In this sense, JSX is akin to CoffeeScript. You compile these languages into native JavaScript to get better syntax and features than that provided by regular JavaScript.

 We know that to some of you, it looks bizarre to have HTML interspersed within JavaScript code. It takes every new React developer (including us) a while to adjust because we’re expecting an avalanche of syntax error messages. And yes, using JSX is optional. For these two reasons, we aren’t covering JSX until chapter 3. Trust us, though—it’s very powerful and even addictive once you get familiar with it.

 Another example of React’s DOM abstraction is that you can render React elements on the server. This can be handy for better search engine optimization (SEO) and improving performance.

 There are many options when it comes to rendering React components in both DOM and HTML strings on the server. You can even use hybrid approaches where your templates are rendered with some content on the server and later rehydrated with live data in the browser. We’ll talk a lot more about this in section 1.3. And, speaking of the DOM, one of the most sought-after benefits of React is its splendid performance.

1.1.2 Speed and testability

 In addition to the necessary DOM updates, your framework may perform unnecessary updates, which makes the performance of complex UIs even worse. This becomes especially noticeable and painful for users when you have a lot of dynamic UI elements on your web page.

 On the other hand, React’s virtual DOM exists only in the JavaScript memory. Every time there’s a data change, React first compares the differences using its virtual DOM; only when the library knows there has been a change in the rendering will it update the actual DOM. Figure 1.2 shows a high-level overview of how React’s virtual DOM works when there are data changes.

 [image: 01-02]

 Figure 1.2 Once a component has been rendered, if its state changes, it’s compared to the in-memory virtual DOM and re-rendered if necessary.

 Ultimately, React updates only those parts that are necessary so that the internal state (virtual DOM) and the view (real DOM) are the same. For example, if there’s a <p> element, and you augment the text via the state of the component, only the text will be updated (i.e., innerHTML), not the element itself. This results in increased performance compared to re-rendering entire sets of elements or, even more so, entire pages (server-side rendering).

 The geeky details of reconciliation

 If you like to geek out on algorithms and Big O notation, these two articles do a great job of explaining how the React team managed to turn an O(n3) problem into an O(n) one:

 	
“Reconciliation,” on the React website (http://mng.bz/PQ9X)

 	
“React’s Diff Algorithm” by Christopher Chedeau (http://mng.bz/68L4)

 The added benefit of the virtual DOM is that you can do unit testing without headless browsers such as PhantomJS (http://phantomjs.org). There are several libraries out there, including Jest and React Testing Library, that allow you to test your components directly from the command line. We’ll obsess quite a bit more on unit testing React components and hooks in later chapters.

1.1.3 Ecosystem and community

 Last, but not least, React is supported by the developers of the juggernaut web application called Facebook, as well as by their peers at Instagram. As with Angular and some other libraries, having a big company behind the technology provides a sound testing ground (it’s deployed to millions of browsers), reassurance about the future, and an increase in contribution velocity. This is, of course, also a risk because if Facebook suddenly wants to take React in a new direction, you might get stranded if you don’t like that direction, so weigh your options carefully.

 A lot of great content already exists that has been created for React by the community. You’ll find that when you need some kind of component or interface, you can just search the web for “react [name-of-component]”, and more than 95% of the time, you’ll find something worthwhile.

 The history of open source software clearly shows that the marketing of open source projects is as important to its wide adoption and success as the code itself. By that, we mean that if a project has a poor website, lacks documentation and examples, or has an ugly logo, most developers won’t take it seriously—especially now, when there are so many JavaScript libraries. Developers are picky, and they won’t use an ugly duckling library.

 As the saying goes, “Don’t judge a book by its cover.” This might sound controversial, but, sadly, most people, including software engineers, are prone to biases such as good branding. Luckily, React has a great engineering reputation backing it. And, speaking of book covers, we hope you didn’t buy this book just for its cover!

1.2 Disadvantages of React

 Of course, almost everything has its drawbacks. This is true with React, but the full list of cons depends on whom you ask. Some of the differences, such as declarative versus imperative, are highly subjective. They can be both pros and cons depending on your personal preference. Here’s our list of React’s disadvantages (as with any such list, it may be biased):

 	
 React isn’t a full-blown, Swiss Army knife-type of framework. Developers need to pair it with a library such as Redux or XState to achieve functionality comparable to Angular or Ember. This can also be an advantage if you need a minimalistic UI library to integrate with your existing stack.

 	
 React stacks require maintenance and continuous package management. Because you never use React only on its own, but almost always combine it with several other packages, you need to constantly maintain your dependencies and make sure you’re using the correct versions of various packages. In larger projects, this can become a significant source of extraneous tasks.

 	
 React uses a somewhat new approach to web development, and JSX and functional programming can be intimidating to beginners. Especially in the early days, there was a lack of best practices, good books, courses, and resources available for mastering React and similar frameworks. We’ll discuss JSX in much more detail in chapter 3.

 	
 React only has a one-way binding. Although one-way binding is better for complex web apps and removes a lot of complexity, some developers (especially Angular developers) who got used to a two-way binding will find themselves writing a bit more code. We’ll explain how React’s one-way binding works compared to Angular’s two-way binding in chapter 9, which covers working with form data.

 	
 React isn’t reactive (as in reactive programming and architecture, which are more event-driven, resilient, and responsive) out of the box. Developers need to use other libraries, such as the React Query library, to make their applications integrate with external content seamlessly and responsively. This also requires developers to use a different mindset when developing React applications, or terribly coded applications will result from attempting to force a round React into a square architecture.

 To continue with this introduction to React, let’s look at how it fits into a web application.

1.3 How React can fit into your website

 Websites come in many variants, and React can be used to create interactive content in many types of websites, either as a replacement for other technologies or as a way to add new functionality to your website. React can be used on both “classic” websites that are mostly rendered by a server as well as client-side web applications, also known as single-page applications (SPAs), as mentioned earlier.

 The React core library is a UI library first and foremost. The core library alone is comparable to other UI libraries, but not directly comparable to more full-fledged web application frameworks such as Angular. However, combined with other libraries, either developed by the React team or other parties (e.g., React Router and Redux), React can be a full competitor to any web application framework.

 If you’re using another SPA framework (e.g., Angular, Vue, Ember, Backbone, etc.) to render your web application today, you’ll probably need to replace the entire thing with a React-based stack. It’s very difficult and bordering on impossible to create a hybrid SPA with some parts rendered by, for example, Angular, and others by React.

 You can use React for just part of your UI if you have a website with smaller interactive UI elements (or widgets). In such a case, you can replace your widgets one by one with small React applications, without changing everything else. These existing widgets might be written in plain JavaScript, jQuery, or even Angular or similar frameworks. As you go along converting widgets to React, you can evaluate the best fit for your organization.

 React is backend agnostic for frontend development. In other words, you don’t have to rely on a JavaScript-based backend (Node or Deno) to use React. It’s fine to use React with any other backend technology, such as Java, Ruby, Go, or Python. React is a UI library, after all. You can integrate it with any backend and any frontend data library (Backbone, Angular, Meteor, etc.).

 Another popular use case for React is for static site generators. In such a setup, React is used to define your website locally on your environment, but when deployed to the live server, it’s rendered “down” to a plain HTML website with JavaScript only doing a minimal bit of work to add interactivity. All your templates, and so on, will have been resolved. Initially, this was mostly popular for smaller websites, such as blogs, which don’t update too frequently.

 Recent advances in server-side React rendering have made this pre-rendered approach more and more popular even for larger SPAs that update often. You can do this with popular frameworks built on top of React, such as Next.js or Remix. These are considered partially server-rendered web applications, where your React code runs on both the server and in the client. You might, for example, pre-render a list on the server and add interactive filtering and sorting options in the client. This can sound a bit daunting, but newer frameworks such as Next.js and Remix make it relatively easy.

 To summarize how React fits into a website, it’s most often used in these scenarios:

 	
 As a UI library in an SPA, such as React+React Router+Redux

 	
 As a drop-in widget in any frontend stack, such as a React autocomplete input component in a website built using any other combination of technologies

 	
 As a static website rendered on deployment to serve infrequently updated content

 	
 As a partially server-side-rendered website or SPA built on top of a more powerful framework potentially fed content by an external CMS, such as WordPress or Contentful

 	
 As a UI library in mobile apps using React Native, or desktop apps using Electron

 React works nicely with some frontend technologies, but it’s mostly used as a part of SPAs. We cover how React fits into an SPA in the next section.

1.3.1 Single-page applications and React

 SPAs are a subset of websites in general. A website is considered an SPA if it has a lot of functionality directly available in the browser and not just information. Examples include Facebook, Google Docs, Gmail, and so on.

 SPAs are built using a multitude of technologies, of which React is only one potential part in the stack. You can’t even use React alone; at least a few other technologies are needed for React to be usable as a standalone application. In this section, we’ll establish what an SPA is in general and then point out how React fits into this structure.

 SPAs are also known as thick clients because the browser, being a client, holds more logic and performs functions such as rendering of the HTML, validation, UI changes, and so on. Contrast this with a thin client, where the browser client is only used to display information that has been pre-rendered by a server. In a thin client, the browser does very little work.

 Figure 1.3 is a very high-level example of a generic SPA regardless of the technology used. It shows a bird’s-eye view of a typical architecture with a user, a browser, and a server. The figure depicts a user making a request, and the input actions of clicking a button, dragging and dropping, mouse hovering, and so on.

 [image: 01-03]

 Figure 1.3 A generic SPA architecture

 Let’s walk through this typical end-to-end process, following the numbered steps in figure 1.3:

 	
 The user types a URL in the browser to open a new page.

 	
 The browser sends a URL request to the server.

 	
 The server responds with static assets such as HTML, CSS, and JavaScript. In most cases, the HTML is bare-bones; that is, it has only a skeleton of the web page. Usually, there’s a “Loading . . . ” message and/or rotating spinner GIF.

 	
 The static assets include the JavaScript code for the application. When loaded, this code makes additional requests for data.

 	
 The data comes back in JSON, XML, or any other format.

 	
 Once the application receives the data, it can render missing HTML (the User Interface block in the figure). To put it differently, the process of rendering the UI occurs within the browser as the application injects data into pre-rendered templates, also known as hydration.

 	
 Once the browser rendering is finished, the browser updates the displayed content, and the user can work with the application.

 	
 The user sees a beautiful web page. The user may interact with the page (Inputs in the figure), triggering new requests from the application to the server, and the cycle of steps 2-6 continues. At this stage, browser routing may happen if the application implements it, meaning navigation to a new URL will trigger not a new page reload from the server, but rather an application re-render in the browser.

 To summarize, in an SPA, most rendering for UIs happens in the browser. Only data travels to and from the browser. Contrast that with a “classic” website, which is not an SPA, where all the rendering happens on the server. React fits into this SPA architecture in steps 6 and 8 by rendering content based on data as well as handling user input and updating the content based on the updated data that results from these inputs.

1.3.2 The React stack

 React isn’t a full-blown, frontend JavaScript SPA framework. React is minimalistic in the sense that it only does a single job (rendering reactive UIs) and tries to do that very well. It doesn’t enforce a particular way of doing things such as data modeling, styling, or routing (it’s non-opinionated). Because of that, developers often need to pair React with a routing and/or data library.

 While you can use React as a smaller part of your stack, developers most often opt to use a React-centric stack, which consists of the React core itself as well as data, routing, and styling libraries created to be used specifically with React, such as the following:

 	
 Data model libraries and backends—Examples include TanStack Query (https://tanstack.com/query/latest), Redux (http://redux.js.org), Recoil.js (https://recoiljs.org/), XState (https://xstate.js.org/), and Apollo (www.apollographql.com/)

 	
 Routing library—Often React Router (https://github.com/remix-run/react-router) or a similar router implemented in many frameworks

 	
 Styling libraries—Either a predefined set of styled components such as Material UI (https://mui.com/) or Bootstrap (https://react-bootstrap.github.io/) or a library to easily work with CSS inside React components, such as Styled-Components (https://styled-components.com/), Vanilla Extract (https://vanilla-extract.style/), or even Tailwind CSS (https://tailwindcss.com/)

 The ecosystem of libraries for React is growing every day. In addition, React’s ability to describe composable components (self-contained chunks of the UI) enables code reuse. Many components are packaged as npm modules.

 A great (curated) list of a lot of various React components for many purposes can be found here: https://github.com/brillout/awesome-react-components. This list has everything from UI components (including tons of form elements) to complete UI frameworks to development utilities and testing tools.

 React website frameworks

 Another category of React frameworks is the full-blown server-side framework, which takes care of everything for you. Such frameworks come in two variants, but sometimes a framework can work in either way:

 	
Static site generators (SSGs)

 	
Dynamic server-rendered React (SSR)

 SSGs are just that—frameworks that will generate a completely static website for you fully ready to deploy to any static website host, which requires very little work on your part and no expensive hosting. This is particularly popular for smaller personal websites such as blogs, but can also be used for smaller businesses and even e-commerce websites (that don’t require updates too often).

 SSR frameworks are more complex and will take care of pre-rendering your React application on the server before serving the HTML over the wire to your visitors’ browsers. This means it’s good for SEO, embraces shareability, and has many other benefits.

 We’ll list three such frameworks here:

 	
Gatsby—This very popular blogging framework is also useful for many other types of static websites.

 	
Next.js—As probably the most popular React website framework out there, this is useful for both small static websites and huge dynamic behemoths.

 	
Remix—This fairly new kid on the block is gaining traction and popularity very quickly in serving super-fast dynamic React websites.

 All of these frameworks—and many, many more—are different extensions of React, each functioning by its own paradigms. They all add extra functionality on top of React and sometimes also come with a set of React components that helps you create your website to utilize the framework to its fullest.

 By now, you should have an understanding of what React is, its stack, its place in higher-level web applications, and how you can use tools built on top of React to generate complex websites. It’s time to get your hands dirty and write your first React application.

1.4 Your first React app: Hello World

 Let’s explore your first React application by implementing a Hello World application—the quintessential example used for learning programming languages (see figure 1.4). If we don’t, the gods of programming might punish us.

 [image: 01-04]

 Figure 1.4 The process to create your first React application has just three simple steps.

 You’ll need a few things before you can get going. Fortunately, because we’re developing an application that runs in the browser, you don’t need all sorts of compilers or libraries. Here’s the short list of things you do need before you can get started:

 	
 A text editor.

 	
 Knowledge of how to use the terminal on your system.

 	
 Have npm version 5.2 or newer installed (given that version 5.2 has been around since July 2017, odds are strong that your npm version is good enough if you have one).

 	
 Have a modern browser installed (any recent version of Edge, Firefox, Chrome, or Safari will work).

 And that’s about it. If you can check off this list, you’re good to go for this first example. When we get to other examples in future chapters, you won’t need a lot more than what’s on this list.

1.4.1 The result

 The project will print a “Hello world!!!” heading (<h1>) on a web page. Figure 1.5 shows what it will look like when you’re finished (unless you’re not quite that enthusiastic and prefer just a single exclamation point).

 [image: 01-05]

 Figure 1.5 Hello World application

 You won’t be using JSX yet, just plain JavaScript (we actually won’t start using JSX until chapter 3 and onward).

 Learning React first without JSX

 Although all React developers write React using JSX, browsers will only run standard JavaScript and not understand JSX directly. That’s why it’s beneficial to be able to understand React code in pure JavaScript. Another reason we’re starting with plain JavaScript is to show that JSX is optional, albeit the de facto standard template language for React. Finally, preprocessing JSX requires a bit more tooling, but it will make the whole setup simpler because you’ll see less of how the sausage is made and do more of the fun stuff—writing awesome React components.

 We want to get you started with React as soon as possible without spending too much time on setups in this chapter. You’ll be introduced to how to start a new application in chapter 2, and we’ll add JSX to the mix in chapter 3.

1.4.2 Writing the application

 This project is so simple, it’ll only consist of a single HTML file. This file will include links to the most recent versions of React 18 (the most stable version at the time of writing) of the React Core and ReactDOM libraries. It will also, of course, include a tiny bit of JavaScript code required to render the very simple application that we’re building.

 The code for the HTML file is simple and starts with the inclusion of the libraries in <head>. In the <body> element, you’ll create a <div> container with the ID root and a <script> element (that’s where the app’s code will go later), as shown in the following listing.

 Listing 1.1 Loading React libraries and code

 <!DOCTYPE html>
<html>
 <head>
 <title>My First React Application</title>
 <script ❶
➥ src="//unpkg.com/react@18/umd/react.development.js"> ❶
➥ </script> ❶
 <script src="//unpkg.com/react-dom@18/umd ❷
➥ /react-dom.development.js"></script> ❷
 </head>
 <body>
 <div id="root"></div> ❸
 <script type="text/javascript"> ❹
 ... ❺
 </script>
 </body>
</html>

 ❶ Imports the React library

 ❷ Imports the ReactDOM library

 ❸ Defines an empty <div> element to mount the React UI

 ❹ Creates a script node that will hold our JavaScript

 ❺ The actual JavaScript code will go in here.

 Just type this code using your text editor and save it as a file named index.html in some folder on your machine.

 You might be wondering why we have to create a <div> node to render the content into instead of rendering the React element directly in the <body> element. The answer is that doing so can lead to conflict with other libraries and browser extensions that manipulate the document body. If you try attaching an element directly to the body, you’ll get this console error:

 Warning: createRoot(): Creating roots directly with document.body is
➥ discouraged,

 This is another good thing about React: it has great warnings and error messages!

 Note React warning and error messages aren’t part of the production build to reduce noise, increase security, and minimize the distribution size. The production build is the minified file from the React Core library, that is, react.min.js. The development version with the warnings and error messages is the unminified version, react.development.js, as you see us using in this example.

 By including the libraries in the HTML file, you get access to the React and ReactDOM global objects: window.React and window.ReactDOM. You’ll need two methods from those objects: one to create an element (React) and another to render it in the <div> container (ReactDOM), as shown in listing 1.2. To create a React element, all you need to do is call React.createElement(elementName, data, children) with three arguments that have the following meanings:

 	
 elementName—HTML tag as a string (e.g., 'h1') or a custom component class as an object. We don’t have any custom components just yet, but we’ll start creating those in chapter 2.

 	
 data—A data object containing attributes and properties for the element. We don’t need any properties now, so we just pass null. We’ll get back to using properties in chapter 2.

 	
 children—Child elements or inner HTML/text content. In this example, it’s just “Hello world!!!”.

 Listing 1.2 Creating and rendering an h1 element

 const reactElement = React.createElement(❶
 'h1', ❶
 null, ❶
 'Hello world!!!' ❶
); ❶
const domNode = document.getElementById('root'); ❷
const root = ReactDOM.createRoot(domNode); ❸
root.render(reactElement); ❹

 ❶ Creates an h1 React element with the text “Hello world!!!”

 ❷ Grabs a reference to the DOM element on the page with ID “root”

 ❸ Creates a root holder for the React application connected to the specific DOM element

 ❹ Renders the h1 element into the root holder

 The code in listing 1.2 goes into the <script> tag in the HTML file, which you created before, in place of the ... that we originally put there as a placeholder. This listing gets a React element and stores the reference to this object in the reactElement variable. The reactElement variable isn’t an actual DOM node; rather, it’s an instantiation of the React h1 component (element). You can name it any way you want, for example, helloWorldHeading. In other words, React provides an abstraction over the DOM.

 Once the element is created and stored in the variable, you then create a React application holder (called root) from the DOM element using the ReactDOM.createRoot() method. Finally, you render the React element into the root with the root .render() method, shown in listing 1.2.

 If you prefer, you can move all steps into a single call. The result is the same, except you don’t use the three extra variables, as we’ve done in the next listing.

 Listing 1.3 Single statement

 ReactDOM
 .createRoot(document.getElementById('root'))
 .render(React.createElement('h1', null, 'Hello world!'));

 We’ll be using the more explicit version in listing 1.2, so the full HTML file should now look like the following listing.

 Listing 1.4 Creating and rendering an h1 element

 <!DOCTYPE html>
<html>
 <head>
 <title>My First React Application</title>
 <script src="//unpkg.com/react@18/umd/react.development.js"></script>
 <script src="//unpkg.com/react-dom@18/umd/react-
➥ dom.development.js"></script>
 </head>
 <body>
 <div id="root"></div>
 <script type="text/javascript">
 const reactElement = React.createElement(❶
 "h1", ❶
 null, ❶
 "Hello world!!!" ❶
); ❶
 const domNode = document.getElementById("root"); ❶
 const root = ReactDOM.createRoot(domNode); ❶
 root.render(reactElement); ❶
 </script>
 </body>
</html>

 ❶ The inserted JavaScript is located in its proper place.

 With the HTML file completed, we now need to see this in action by serving the content to our browser.

1.4.3 Installing and running a web server

 Now comes the next step, serving the HTML page to a browser. Why do we need to serve the content? Can’t we just open the HTML file directly in the browser? Due to cross-origin restrictions, you can’t open a file located on your local hard drive in the browser and have it access content on other domains (such as the React libraries loaded from https://unpkg.com). Browsers simply don’t allow this. You can try to open the file in your browser directly by double-clicking it, but it will just show an empty white page. So that’s no good.

 Instead, we need to serve the content using a local development web server. That might sound terribly complex, but it’s surprisingly simple to do today.

 If you have node set up as recommended in the introduction, this will be enough to get you going. Just type the following command in the folder where you saved your index.html file:

 $ npx serve

 That’s it. You might be asked to install a package (if you haven’t used this command before, simply press Enter to confirm), but after a few seconds, once the tool reports that everything is rolling, your web server is running.

 Local development web server

 Unfortunately, in this very first example, you have to worry about setting up your own local web server. Although the task is very simple, it’s a bit annoying to do here.

 If for some reason the given command doesn’t work for you, there are a couple of other ways to easily serve the current folder as a local web server.

 If you have Node, you can try this command:

 $ npx http-server -p 3000

 Alternatively, if you have a working Python 2 installation on your computer, you can just do the following:

 $ python -m SimpleHTTPServer 3000

 Or, if you have a working Python 3 installation, you can do this (you might have to type python3 rather than python in the following depending on your setup):

 $ python -m http.server 3000

 Finally, if you have a PHP setup working locally, you can do this:

 $ php -S localhost:3000

 Any of those commands will run a local web server on your computer in the folder where you run the command serving your HTML file to http:/ /localhost:3000.

1.4.4 Going to the local website

 With the web server running, you can now use your browser and go to this site:

 http:/ /localhost:3000

 Here, you should be able to see your application in action, and it should look pretty much like figure 1.5 at the start of this section.

 Figure 1.6 shows the Elements tab in the browser developer tools with the <h1> element selected. You know that React must have done something here because, in your source HTML file, there’s no <h1> element inside the root node—it was empty.

 [image: 01-06]

 Figure 1.6 Inspecting the Hello World web app as rendered by React

 Congratulations! You’ve just implemented your first React application!

 Separate JavaScript file

 You can abstract the JavaScript code into a separate file instead of including the script directly in the HTML file (refer to listing 1.1). For example, you can create a file named script.js and copy and paste the entire snippet from either listing 1.2 or listing 1.3 into that file. Then, in the HTML file, you need to link to your script.js file after the <div id="root"> rather than include the script itself, like this:

 <div id="root"></div>
<script src="script.js"></script>

 From the next chapter going forward, we won’t be creating our React applications like this. We’ll be using a small tool to quickly generate and set up our React application basics for us, which will make this entire process much smoother. It will take care of serving our content as well, so you don’t have to worry about web servers anymore.

1.5 Quiz

 	
 React is a complete framework in and of itself, and you can create many applications using nothing but React. True or false?

 	
 What is the primary problem that React solves?

 	
 Fetching data from the server

 	
 Creating beautiful HTML widgets

 	
 Rendering dynamic data in a UI layer

 	
 React components are rendered into the DOM with which of the following methods? (Beware, it’s a tricky question!)

 	
 ReactDOM.appendRoot(...).render()

 	
 ReactDOM.renderRoot(...).render()

 	
 ReactDOM.createRoot(...).render()

 	
 ReactDOM.launchRoot(...).render()

 	
 You have to use Node.js on the server to be able to use React in your SPA. True or false?

 	
 You must include react-dom.js to render React elements on a web page. True or false?

Quiz answers

 	
 False. You almost always have to use other frameworks or libraries to create the vast majority of React applications.

 	
 While you can create beautiful HTML widgets in React, the primary problem that React solves is to render dynamic data in a UI layer (answer c).

 	
 ReactDOM.createRoot(...).render().

 	
 False. You can use any backend technology.

 	
 True. You need the ReactDOM library.

Summary

 	
 React for the web consists of the React Core and ReactDOM libraries. React Core is a library geared toward building and sharing composable UI components using JavaScript and (optionally) JSX in a universal manner. On the other hand, to work with React in the browser, you can use the ReactDOM library, which has methods for DOM rendering as well as for server-side rendering.

