

 [image: cover]

CoreOS in Action: Running Applications on Container Linux

 Matt Bailey

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Cynthia Kane
Review editor: Ivan Martinović
Project editor: Tiffany Taylor
Copyeditor: Tiffany Taylor
Proofreader: Katie Tennant
Technical proofreader: Ivan Kirkpatrik
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617293740

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Dedication

 This book is dedicated to my wife, Jenn; and my kids, Adam and Melanie. Without your gracious absence, I wouldn’t have been
 able to substitute sleepless nights of diaper changing for sleepless nights of book writing.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Acknowledgments

 Preface

 About this Book

 1. Getting to know CoreOS

 Chapter 1. Introduction to the CoreOS family

 Chapter 2. Getting started on your workstation

 Chapter 3. Expecting failure: fault tolerance in CoreOS

 2. Application architecture

 Chapter 4. CoreOS in production

 Chapter 5. Application architecture and workflow

 Chapter 6. Web stack application example

 Chapter 7. Big Data stack

 3. CoreOS in production

 Chapter 8. CoreOS on AWS

 Chapter 9. Bringing it together: deployment

 Chapter 10. System administration

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Acknowledgments

 Preface

 About this Book

 1. Getting to know CoreOS

 Chapter 1. Introduction to the CoreOS family

 1.1. Meet CoreOS

 1.1.1. The CoreOS family

 1.1.2. etcd and the distributed configuration state

 1.1.3. fleet and the distributed service state

 1.1.4. systemd as CoreOS’s init system

 1.1.5. Docker and/or rkt, your container runtimes

 1.1.6. Initial configuration with cloud-config

 1.2. Fitting together the core services

 1.2.1. The CoreOS workflow

 1.2.2. Creating and running services

 1.2.3. Creating your unit files

 1.2.4. Service topology and failover

 1.3. Summary

 Chapter 2. Getting started on your workstation

 2.1. Setting up Vagrant

 2.1.1. Requirements and setup

 2.1.2. Getting Vagrant up and running

 2.1.3. Getting a CoreOS cluster running in Vagrant

 2.2. Tooling for interacting with CoreOS

 2.2.1. fleetctl

 2.2.2. etcdctl

 2.2.3. The Toolbox container

 2.2.4. Conceptual shift for Linux admins

 2.3. Summary

 Chapter 3. Expecting failure: fault tolerance in CoreOS

 3.1. The current state of monitoring

 3.1.1. What’s lacking

 3.1.2. What CoreOS does differently

 3.2. Service scheduling and discovery

 3.2.1. Deploying production NGINX and Express

 3.2.2. Using etcd for configuration

 3.3. Breaking things

 3.3.1. Simulating a machine failure

 3.3.2. Self-repair

 3.4. Application architectures and CoreOS

 3.4.1. Common pitfalls

 3.4.2. Greenfield and legacy systems

 3.4.3. Configuration management

 3.5. Summary

 2. Application architecture

 Chapter 4. CoreOS in production

 4.1. Planning and deployment options

 4.1.1. Amazon Web Services

 4.1.2. Using in-house VM infrastructure

 4.1.3. On bare metal

 4.2. Networking considerations

 4.2.1. How programmable is your network?

 4.2.2. Up and running with flannel

 4.3. Where is your mass storage?

 4.3.1. Data systems background

 4.3.2. NAS and storage outsourcing

 4.3.3. Ceph

 4.4. Summary

 Chapter 5. Application architecture and workflow

 5.1. Your application and the twelve-factor methodology

 5.1.1. CoreOS’s approach

 5.1.2. The architecture checklist

 5.2. The software development cycle

 5.2.1. Codebase and dependencies

 5.2.2. Environment logic and microservices

 5.2.3. The application edge

 5.3. Summary

 Chapter 6. Web stack application example

 6.1. Scope of the example

 6.1.1. What does this app do?

 6.1.2. App architecture overview

 6.1.3. The target environment

 6.2. Setting up persistence layers

 6.2.1. Couchbase setup

 6.2.2. Setting up memcached

 6.3. Application layer

 6.3.1. The worker

 6.3.2. The web application

 6.4. Where to from here?

 6.4.1. Responding to failure

 6.4.2. What’s missing?

 6.5. Summary

 Chapter 7. Big Data stack

 7.1. Scope of this chapter’s example

 7.1.1. Adding to the architecture

 7.1.2. New data source

 7.2. New stack components

 7.2.1. Twitter scraper

 7.2.2. Orchestrating Couchbase

 7.2.3. Startup and verification

 7.2.4. Starting your workers

 7.3. Breaking your stack

 7.3.1. Watching the failure

 7.3.2. Restoring the machine

 7.4. Summary

 3. CoreOS in production

 Chapter 8. CoreOS on AWS

 8.1. AWS background

 8.1.1. AWS regions and uptimes

 8.1.2. AWS services

 8.1.3. Chapter requirements

 8.1.4. CloudFormation template

 8.1.5. Cloud-config in AWS

 8.1.6. Deployment

 8.2. Summary

 Chapter 9. Bringing it together: deployment

 9.1. New CloudFormation objects

 9.1.1. Parameter and output

 9.1.2. AWS Lambda

 9.1.3. API Gateway

 9.1.4. Updating your stack

 9.2. Deploying the app!

 9.2.1. Web sidekick

 9.2.2. Initial deployment

 9.3. Automated deployment

 9.3.1. Docker Hub setup

 9.3.2. Pushing a change

 9.4. Summary

 Chapter 10. System administration

 10.1. Logging and backups

 10.1.1. Setting up logs

 10.1.2. Updating cloud-config

 10.1.3. awslogs in units

 10.1.4. Viewing logs

 10.1.5. Backing up data

 10.2. Scaling systems

 10.2.1. Scaling your cluster

 10.2.2. Scale partitioning

 10.2.3. Migrating services

 10.3. CoreOS horizon

 10.3.1. New toys

 10.3.2. rkt

 10.4. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Acknowledgments

 I would like to thank Manning Publications for reaching out to me to start writing this book; and express my thanks to publisher
 Marjan Bace, to Cynthia Kane for guiding me through this long process, to Ivan Kirkpatrick for his very detailed effort in
 the technical review of this book, to Tiffany Taylor for helping push the last bits over the line, and to everyone on the
 editorial and production teams, including Janet Vail, Katie Tennant, Dottie Marsico, and many others who worked behind the
 scenes. In addition, I’d like to thank all my friends in #gh and #omgp (you know who you are) for always providing encouragement.

 I can’t thank enough the amazing group of technical peer reviewers, led by Ivan Martinovic—Michael Bright, Raffaello Cimbro,
 Luke Greenleaf, Mike Haller, Sriram Macharla, Palak Mathur, Javier Muñoz Mellid, Thomas Peklak, Austin Riendeau, Kent Spillner,
 Antonis Tsaltas, Filippo Veneri, and Marco Zuppone—and the talented forum contributors. Their contributions included catching
 technical mistakes, errors in terminology, and typos, and making topic suggestions. Each pass through the review process and
 each piece of feedback implemented through the forum topics shaped and molded the manuscript.

Preface

 As is probably true for many of you reading this book, I started out in the technology industry as a systems administrator
 for Linux and UNIX systems and networks. Also, like many, I was never satisfied with the levels of (and confidence in) automation
 available to me. Some of us worked with things like CFEngine, Puppet, and Chef, to manage more with less and to do more serious
 engineering and less “systems janitoring” with our technology. Then containers became popular, and CoreOS was launched to
 bridge the gap between containers and systems administration at scale.

 I began using CoreOS in late 2013 when it was just getting started. It was the OS that most systems admins knew had to exist
 eventually: an integrated way to orchestrate services as an abstraction from the pool of compute resources they run on. Manning
 reached out to me in late 2015 to see if I was interested in writing a CoreOS book, and I pulled together a proposal and started
 writing. I also began to feel guilty doing anything other than writing when I had spare time without my kids around. This is my first book, and I’ve discovered that coming up with
 the content and typing it in Vim isn’t the hardest part: it’s finding the magic alignment of motivated book-writing time and
 uninterrupted free time. These things rarely happen at once, especially when you have young kids.

 I hope this book informs and challenges you. The progression of this book, in a way, follows the progression of my career
 and the progression of this slice of technology. Specifically, CoreOS and systems like it are intended to turn mundane operations
 work into software development, and to turn sysadmin firefighting into declarative engineering. So, this book begins with
 nuts and bolts, and ends with a complete software stack.

About this Book

 This book serves as a resource for application architects, systems administrators, and anyone seeking information on how to
 do computing at a large scale without sacrificing development workflow or operational simplicity. CoreOS and its suite of
 components provide a solid approach to systems design in which high availability, service discovery, and fault tolerance become
 less painful to implement and are part of your core infrastructure and application architecture from the beginning. CoreOS
 and the concepts it espouses are useful to both developers and operations professionals; CoreOS realizes the intents of containerization
 in a way that becomes much easier to operationalize, maintain, and iterate.

 If you’re reading this book, you’ve probably noticed a general movement in technology to break down silos and bring together
 the worlds of development and operations. In many organizations, the roles of operations professionals and application architects
 are being combined in a role such as DevOps or Site Reliability Engineering. As a result, some people may end up with knowledge
 gaps. At times, this book may seem to mix information that’s obvious to you with more-advanced topics, but that’s because
 I’ve tried to provide a complete picture for people who may be missing parts of the foundational knowledge required to be
 successful with CoreOS.

Who should read this book

 This book is intended for systems administrators, software engineers, and everyone in between. The book goes into both the
 operationalization and software architecture of building services using CoreOS; if you’re someone who has any interest in
 building scalable, fault-tolerant systems, this book is for you.

 There isn’t a lot of functional code in this book—mostly, I show you configuration files and some YAML templates for Amazon
 Web Services. A basic understanding of Bash and general Linux system administration should be enough to get you started. Later
 in the book, there are examples of a Node.js service with a JavaScript front end, but JavaScript experience isn’t required.

 Before I describe the book’s chapters, let’s look at some technological background and history that led to the creation of
 CoreOS.

Background

 Since around 2008, the need to scale out systems to meet the needs of an organization’s customers or manage the load of its
 own internal compute resources has spawned an entire industry of services, tooling, and consultancies to achieve these scale
 goals with varying amounts of ease. The ultimate goal was always to manage more scale with less resources—and to do so quickly.
 These platform-as-a-service (PaaS), infrastructure-as-a-service (IaaS), and configuration-management suites were all designed
 to shift the burden of systems administration into automated systems so that organizations could “easily” decouple IT manpower
 from scaling goals. The ideal was captured in a metaphor (which should be attributed to Bill Baker, as best I can find) that
 you should treat your infrastructure like cattle, not like pets. That is, your unit of computing resource is a commodity or
 an appliance, not a discrete, well-groomed server with a name. You dispose of cattle if they get sick; you nurse pets back
 to health. You should make the most of automation, and you shouldn’t care too much if you have to rebuild things; doing so
 should be easy and repeatable.

 But the reality of attempting to achieve these goals of repeatability and ephemerality is often exceedingly complex. Your
 particular way of doing it can become a black box of siloed logic and workflow, even if you’re using widely used tools. Configuration-management
 systems like Chef and Puppet are particularly vulnerable to this complexity—not because they were designed to be, but because
 organizations often run into obstacles (technical and nontechnical) that end up being solved in ways that are orthogonal to
 the best practices for these tools. In the IaaS world, organizations often treat their public cloud compute resources just
 like they treated their on-site resources, mostly because IaaS has the flexibility to allow this, even if it leads to unmaintainable
 systems. Enter containers.

Containers

 LXC was an early effort to create a virtual runtime within the user space of Linux. It was a heavier abstraction than chroots
 and jails, but a lighter abstraction than full virtualization. Few people used or heard of LXC until Docker started up in
 2013 and added a lot of features around LXC’s technology, eventually entirely replacing LXC’s components with its own. In
 my opinion, Docker, and containerization in general, solves the problems that virtualization was supposed to: simple isolation
 of concerns, replication of systems, and immutable runtime state. The benefits are obvious: dependency management becomes
 easily contained; runtime is standardized; and the approach is developer-friendly enough that development and operations can
 use the same tools and, byte for byte, the same container. Thus, “It works for me, but not in production” is uttered far fewer
 times. CoreOS is the operationalization of this computing model in a way that uses the advantages of containerization in a
 generic, distributed system model.

 Throughout this book, you’ll learn how to take advantage of this computing model. You’ll learn how to deploy and manage CoreOS
 both in a prototype environment and in production in the cloud. You’ll also learn how to design and adapt your application
 stacks to operate well in this context. In addition to the OS, I’ll cover each of CoreOS’s components in detail, along with
 their application: etcd for configuration and discovery, rkt for a different approach to the container runtime, fleet for
 distributed service scheduling, and flannel for network abstraction.

 Distributed computing is nothing new; many models and software packages for distributed systems have been around since the
 dawn of computing. But most of these systems have been historically obscure, highly proprietary, or cloistered in particular
 industries like scientific computing. Some of the oldest designs exist today only to support legacy systems from the 1970s
 that powered distributed computing for mainframes and minicomputers.

History and motivations behind CoreOS

 The concept of single system image (SSI) computing is an OS architecture that hasn’t seen much activity since the 1990s, except for a few cases that have longstanding
 support to run legacy systems. SSI is an architecture that presents many computers in a cluster as a single system. There
 is a single filesystem, shared interprocess communication (IPC) via shared runtime space, and process checkpointing/migration.
 MOSIX/openMosix, Kerrighed, VMScluster, and Plan 9 (natively supported) are all SSI systems. Plan 9 has probably received
 the most current development activity, which should tell you something about the popularity of this computing model.

 The main drawbacks of SSI are, first, that the systems are often extremely difficult to configure and maintain and aren’t
 geared toward generic use. Second, the field has stagnated significantly: there’s nothing new in SSI, and it has failed to
 catch on as a popular model. I think this is because scientific and other Big Data computing have embraced grid-compute, batch
 operating models like Condor, BOINC, and Slurm. These tools are designed to run compute jobs in a cluster and deliver a result;
 SSI’s shared IPC provides little benefit for these applications, because the cost (in time) of data transmission is eclipsed
 by the cost of the blocking batch process. In the world of application server stacks, abstractions by protocols like HTTP
 and distributed queues have also made shared IPC not worth investing in.

 The problem space now for distributed computing is how to effectively manage large-scale systems. Whether you’re working on
 a web stack or distributed batch processing, you may not need shared IPC, but the other things that came with SSI have more
 apparent value: a shared filesystem means you configure only one system, and process checkpointing and migration mean nodes are disposable and more “cattle-like.” Without shared IPC, these
 solutions can be difficult to implement. Some organizations turn to configuration-management systems that apply configuration
 to many machines, or set up extremely complicated monitoring systems full of custom logic. In my experience, configuration-management
 systems fall short of the goal by only ensuring any state exactly at runtime; after they’ve made their pass, the state becomes
 unknown. These systems are more focused on repeatability than consistency, which is a fine goal but doesn’t provide the reliability
 of a shared configuration via a distributed filesystem. Monitoring systems that attempt to also manage processes are often
 either application-specific or hairy to implement and maintain.

 Intentionally or not, container systems like Docker laid the groundwork for resurrecting the advantages of SSI without having
 to implement shared IPC. Docker guarantees runtime state and provides an execution model that’s abstracted from the OS. “But
 Matt,” you may think, “this is the complete opposite of SSI. Every discrete system now has an even more isolated configuration
 and runtime, not shared!” Yes, this approach is orthogonal, but it achieves the same goals. If runtime state is defined only
 once (in the Dockerfile, for example) and maintained throughout the life of the container, you’ve reached the goal of a single
 point of configuration. And if you can orchestrate the discrete process state both remotely and independently from the OS
 and the cluster node it’s running on, you’ve achieved the goal of cluster-wide process scheduling of generic services.

 Realizing those possibilities is where there needs to be tooling independent of the containerization system. This is where
 CoreOS and its suite of systems come in. CoreOS provides just enough OS to run a few services; the rest is handled by the
 orchestration efforts of etcd and fleet—etcd provides a distributed configuration from which containers can define their runtime
 characteristics, and fleet manages distributed initialization and scheduling of containers. Internally, CoreOS also uses etcd
 to provide a distributed lock to automatically manage OS upgrades, which in turn uses fleet to balance services across the
 cluster so that a node can upgrade itself.

This book’s roadmap

 Chapter 1 starts you off with a brief introduction to the CoreOS ecosystem. I offer some explanation of the core systems in the container
 OS and a brief example that isn’t really designed for you to execute, but rather to illustrate how the parts fit together.

 Chapter 2 walks you through the process of setting up a local CoreOS environment that you’ll use throughout most of the rest of the
 book as your sandbox. This is also the process people use in the real world to build things for CoreOS, so it’s a good idea
 to pay close attention to this chapter.

 Chapter 3 teaches you about CoreOS’s approach to fault tolerance and system upgrades, and will walk you through setting up a fault-tolerant
 web application. You’ll build on this “Hello World” example in the remainder of the book.

 Chapter 4 discusses real-world requirements and targets for a production deployment of CoreOS, as well as a real-world example of how
 to deal with the option of distributed filesystems in a cluster.

 Chapter 5 goes into the twelve-factor app methodology and how to apply it to application stacks that you want to deploy in CoreOS.
 The chapter ends with a preview of how you’ll apply this methodology in chapter 6.

 Chapter 6 extends the example from chapter 3 into a more realistic web application with many layers. You’ll also be introduced to a persistent database layer.

 Chapter 7 takes the persistence layer from chapter 6 and dives deep into how to make it fault tolerant and scalable across an entire cluster of machines.

 Chapter 8 takes a dive into practical deployment of CoreOS into Amazon Web Services (AWS).

 Chapter 9 teaches you how to take the entire software stack you built in chapters 6 and 7 and deploy it with automation into the AWS environment you constructed in chapter 8.

 Chapter 10 wraps up the book by discussing the system administration portion of CoreOS, including logging, backups, scaling, and CoreOS’s
 new rkt container system.

Downloading the code

 The code for all the examples in this book, including some of the very long AWS templates, is available at www.manning.com/books/coreos-in-action.

About the author

 [image:]

 Matt Bailey is currently a technical lead at ZeniMax. He has worked in higher education and with scientific computing, medical,
 and networking technology companies, as well as a few startups. You can find him online via http://mdb.io.

OEBPS/common0a.jpg

OEBPS/0xxfig01.jpg

OEBPS/logo.jpg

OEBPS/common0b.jpg

OEBPS/cover.jpg

