

 RxJS in Action

 Paul P. Daniels and Luis Atencio

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2017 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Frances Lefkowitz
Technical development editor: Dean Iverson
Project editor: Janet Vail
Copyeditor: Linda Recktenwald
Proofreader: Katie Tennant
Technical proofreader: Cody Sand
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617293412

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover

 1. Understanding streams

 Chapter 1. Thinking reactively

 Chapter 2. Reacting with RxJS

 Chapter 3. Core operators

 Chapter 4. It’s about time you used RxJS

 2. Observables in practice

 Chapter 5. Applied reactive streams

 Chapter 6. Coordinating business processes

 Chapter 7. Error handling with RxJS

 3. Mastering RxJS

 Chapter 8. Heating up observables

 Chapter 9. Toward testable, reactive programs

 Chapter 10. RxJS in the wild

 Appendix A. Installation of libraries used in this book

 Appendix B. Choosing an operator

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Cover

 1. Understanding streams

 Chapter 1. Thinking reactively

 1.1. Synchronous vs. asynchronous computing

 1.1.1. Issues with blocking code

 1.1.2. Non-blocking code with callback functions

 1.1.3. Understanding time and space

 1.1.4. Are callbacks out of the picture?

 1.1.5. Event emitters

 1.2. Better callbacks with Promises

 1.3. The need for a different paradigm

 1.4. The Reactive Extensions for JavaScript

 1.4.1. Thinking in streams: data flows and propagation

 1.4.2. Introducing the RxJS project

 1.4.3. Everything is a stream

 1.4.4. Abstracting the notion of time from your programs

 1.4.5. Components of an Rx stream

 1.5. Reactive and other programming paradigms

 1.6. Summary

 Chapter 2. Reacting with RxJS

 2.1. Functional programming as the pillar of reactive programming

 2.1.1. Functional programming

 2.1.2. The iterator pattern

 2.2. Stream’s data-driven approach

 2.3. Wrapping data sources with Rx.Observable

 2.3.1. Identifying different sources of data

 2.3.2. Creating RxJS observables

 2.3.3. When and where to use RxJS

 2.3.4. To push or not to push

 2.4. Consuming data with observers

 2.4.1. The Observer API

 2.4.2. Creating bare observables

 2.4.3. Observable modules

 2.5. Summary

 Chapter 3. Core operators

 3.1. Evaluating and cancelling streams

 3.1.1. Downside of eager allocation

 3.1.2. Lazy allocation and subscribing to observables

 3.1.3. Disposing of subscriptions: explicit cancellation

 3.1.4. Cancellation mismatch between RxJS and other APIs

 3.2. Popular RxJS observable operators

 3.2.1. Introducing the core operators

 3.3. Sequencing operator pipelines with aggregates

 3.3.1. Self-contained pipelines and referential transparency

 3.3.2. Performance advantages of sequencing with RxJS

 3.4. Summary

 Chapter 4. It’s about time you used RxJS

 4.1. Why worry about time?

 4.2. Understanding asynchronous timing with JavaScript

 4.2.1. Implicit timing

 4.2.2. Explicit timing

 4.2.3. The JavaScript timing interfaces

 4.3. Back to the future with RxJS

 4.3.1. Propagation

 4.3.2. Sequential time

 4.4. Handling user input

 4.4.1. Debouncing

 4.4.2. Throttling

 4.5. Buffering in RxJS

 4.6. Summary

 2. Observables in practice

 Chapter 5. Applied reactive streams

 5.1. One for all, and all for one!

 5.1.1. Interleave events by merging streams

 5.1.2. Preserve order of events by concatenating streams

 5.1.3. Switch to the latest observable data

 5.2. Unwinding nested observables: the case of mergeMap

 5.3. Mastering asynchronous streams

 5.4. Drag and drop with concatMap

 5.5. Summary

 Chapter 6. Coordinating business processes

 6.1. Hooking into the observable lifecycle

 6.1.1. Web hooks and the observer pattern

 6.1.2. Hooked on observables

 6.2. Joining parallel streams with combineLatest and forkJoin

 6.2.1. Limitations of using Promises

 6.2.2. Combining parallel streams

 6.2.3. More coordination with forkJoin

 6.3. Building a reactive database

 6.3.1. Populating a database reactively

 6.3.2. Writing bulk data

 6.3.3. Joining related database operations

 6.3.4. Reactive databases

 6.4. Summary

 Chapter 7. Error handling with RxJS

 7.1. Common error-handling techniques

 7.1.1. Error handling with try/catch

 7.1.2. Delegating errors to callbacks

 7.1.3. Errors and Promises

 7.2. Incompatibilities between imperative error-handling techniques and functional and reactive code bases

 7.3. Understanding the functional error-handling approach

 7.4. The RxJS way of dealing with failure

 7.4.1. Errors propagated downstream to observers

 7.4.2. Catching and reacting to errors

 7.4.3. Retrying failed streams for a fixed number of times

 7.4.4. Reacting to failed retries

 7.5. Summary

 3. Mastering RxJS

 Chapter 8. Heating up observables

 8.1. Introducing hot and cold observables

 8.1.1. Cold observables

 8.1.2. Hot observables

 8.2. A new type of data source: WebSockets

 8.2.1. A brief look at WebSocket

 8.2.2. A simple WebSocket server in Node.js

 8.2.3. WebSocket client

 8.3. The impact of side effects on a resubscribe or a replay

 8.3.1. Replay vs. resubscribe

 8.3.2. Replaying the logic of a stream

 8.3.3. Resubscribing to a stream

 8.4. Changing the temperature of an observable

 8.4.1. Producers as thermometers

 8.4.2. Making a hot observable cold

 8.4.3. Making a cold observable hot

 8.4.4. Creating hot-by-operator streams

 8.5. Connecting one observable to many observers

 8.5.1. Publish

 8.5.2. Publish with replay

 8.5.3. Publish last

 8.6. Summary

 Chapter 9. Toward testable, reactive programs

 9.1. Testing is inherently built into functional programs

 9.2. Testing asynchronous code and promises

 9.2.1. Testing AJAX requests

 9.2.2. Working with Promises

 9.3. Testing reactive streams

 9.4. Making streams testable

 9.5. Scheduling values in RxJS

 9.6. Augmenting virtual reality

 9.6.1. Playing with marbles

 9.6.2. Fake it ’til you make it

 9.6.3. Refactoring your search stream for testability

 9.7. Summary

 Chapter 10. RxJS in the wild

 10.1. Building a basic banking application

 10.2. Introduction to React and Redux

 10.2.1. Rendering UI components with React

 10.2.2. State management with Redux

 10.3. Redux-ing application state

 10.3.1. Actions and reducers

 10.3.2. Redux store

 10.4. Building a hot RxJS and Redux store adapter

 10.5. Asynchronous middleware with RxJS Subject

 10.5.1. RxJS subjects

 10.5.2. Building epic, reactive middleware

 10.6. Bringing it all home

 10.7. Parting words

 10.8. Summary

 Appendix A. Installation of libraries used in this book

 Installing the example projects

 Installing RxJS

 Installing Ramda.js

 Installing PouchDB

 Installing Moment.js

 Installing Google client APIs

 Using the Bitly Web API

 Installing Mocha

 Installing Chai.js

 Installing React.js

 Installing React-Bootstrap

 Installing Redux.js

 Appendix B. Choosing an operator

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 It’s no secret that the web has grown dramatically in popularity as a platform for building large-scale, high-traffic applications. Modern web applications are somewhat unique in the computing world, however, because they require a great deal of asynchrony, ranging from AJAX requests to animations to lazy-loaded client resources and multiplexed web sockets. And all this asynchrony comes with a complexity cost.

 A simple drag and drop, for example, is actually a coordination of three or more different events: wait for a mouse-down and then listen to all mouse movements until the next mouse-up. Current imperative approaches to implement this sort of thing are not always straightforward; they’re difficult to maintain, and they’re rarely bug free.

 RxJS is an ideal tool to help you manage asynchronous complexity in your applications in a declarative, easy-to-maintain, and fun way. So how do you learn Rx?

 This book, RxJS in Action, is to date the only resource of its type to cover the latest version, RxJS 5. As the project lead for RxJS, I’m very happy to see this book reach the masses with important information you need to know about this library in order to be an effective reactive programmer.

 —Ben Lesh

 Project lead, RxJS 5

Preface

 We wrote this book to help you understand the power and significance of reactive programming in JavaScript and develop the skills to put RxJS to work.

 FROM PAUL: Like many skills, RxJS was not something I had originally set out to learn but instead something I stumbled on and continued in, only because of a confluence of events. Earlier in my programming career, I had been working on a new UI system for an internal tool in which the project owner had given me a large degree of latitude regarding what technologies I employed. Because the only constraint was that it be written in .NET, I was introduced to Rx.NET first while trying to build out various UI interactions. During and after my college years, my experience had been primarily of an object-oriented nature. I understood the singleton pattern, the decorator, the adapter, and others, and I had heard of a fabled programming paradigm that focused—seemingly counterintuitively—on functions. But to me, that seemed entirely backward. Ignoring the larger context involved, I happily plugged the new library into my application, thinking it a simple substitute for the existing .NET event system.

 On a later project, where I was first starting to really cut my teeth with JavaScript, I thought back to the library I had used that made my event management so much easier, and I went looking for a parallel in JavaScript. Lo and behold, RxJS entered my life! At first, I happily plugged it in wherever I could, seeing it simply as a way to replace the ugliness of event callbacks. The full breadth of what could be accomplished with RxJS and the benefits of reactive, functional programming dawned slowly. It started with the gift of a book from a family member on Clojure, which gave me some insight into this mystical functional world. It expanded as I looked more into asynchronous patterns and saw the parallels in other asynchronous structures like promises.

 It was around this time, as I became more involved in the community of RxJS (primarily through contributions to the open source library back in the old days of RxJS 2!), that Manning approached me about the possibility of writing a book on RxJS. It was to be a rather large undertaking, especially for me as a first-time author. But it presented me with the ability to give back to the overall community in a way that hadn’t been available when I started learning Rx, because most of the resources focused primarily on Rx.NET. And I was lucky enough to have Luis join me on the project, making it less daunting.

 FROM LUIS: I came across RxJS a couple of years ago, while studying monads in functional programming. The realization that the two were intimately related opened my eyes to new and different ways of designing APIs. I instantly fell in love with it. So I began using RxJS as an orchestration layer to consume information from different remote services and feed user interfaces an object, easy to digest, containing all the information that needed to be displayed.

 I wanted others to learn about RxJS, so I decided to end my first book, Functional Programming in JavaScript, with a section on reactive programming and RxJS observables. But my passion didn’t stop there. A couple of months later, Manning approached me and I was privileged to pair up with Paul, who I found to be an incredibly talented engineer, to coauthor this book. And just like that, I was again writing about my two favorite topics—JavaScript and functional programming.

Acknowledgments

 Writing a book is no simple task. It isn’t a straightforward data dump of knowledge onto paper (or e-ink). Building a book that’s accurate, well paced, and sufficiently difficult yet not overly abstract takes many people working through the countless revisions to bring you a book like the one you’re reading now.

 The staff at Manning were instrumental in getting this book from a loosely related set of lessons into a quality resource of learning material. Special thanks to Mike Stephens and Erin Twohey for originally approaching me about writing a book about RxJS; to Frances Lefkowitz for being the best editor out there and herding the cats otherwise known as us authors through to the finish line; to Bert Bates for never settling for less, passing on his wisdom on teaching technical topics, and always trying to help elevate us as writers; and to everyone on the editorial and production teams, including Kevin Sullivan, Linda Recktenwald, Dottie Marsico, Katie Tennant, and all the other people who worked behind the scenes.

 We owe a huge thanks to Aleksandar Dragosavljevic and his amazing team of technical peer reviewers—Álvaro Falquina, Bachir Chihani, Carlos Curotto, Clinton Campbell, Corinna Cohn, Damian Esteban, James Anaipakos, Kamal Raj, Matteo Gildone, Osama Khan, Rod Monk, Sai Ram Kota, Thomas Peklak, Tim Thornton, and Zachary Lysobey—and, of course, all the wonderful insights and suggestions from the forum contributors.

 For the technical side of things, we’d like to thank Dean Iverson for being a fantastic technical editor, whose attention to detail was frankly incredible. Also, we’d like to thank Cody Sand for his quick and thorough edits; he was really the best technical proofer one could ask for with tight deadlines. In addition, we’d like to especially thank Ben Lesh for writing the foreword to the book.

 FROM PAUL: I would like to thank foremost my family—mother, father, brothers, and all the aunts, uncles, and grandparents who inspired me to grow up reading, writing, and playing with computers. Also, I thank my friends for supporting me through this long process and not being too disappointed when I had to choose writing over you. And finally, I thank my coworkers for being willing guinea pigs as I learned how to teach this topic. And to everyone who asked what the book was about and followed up by asking what JavaScript was—seriously, love you guys ☺—thank you.

 FROM LUIS: I would like to thank my wife for being my inspiration and my family for always supporting me, pushing me to become better every day, and not questioning why I decided to do this all over again ☺; also, my friends and colleagues at work for your support in purchasing early releases of the chapters.

 Finally, we both would like to thank the JavaScript community at large for adopting RxJS through this book and giving us feedback.

About this Book

 Asynchronous code is something the human brain never seems quite able to understand. Its behavior is, at best, difficult to synthesize and, at worst, completely nondeterministic.

 We, as programmers, have been to the dark side and seen what happens when code is written with a series of timeouts and callbacks. We’ve tried to keep up with all the possible outcomes and implications of a block of code where asynchronous execution is involved. We’ve handled new failure cases because we now have to face cases where our code executes out of order. And we’ve seen the type of chaos that nested callbacks and global state bring to code that can execute out of order.

 Moreover, the amount of data that we’re processing these days, both on the client side and on the server side, means that we can’t spend our time sweating the small stuff. We shouldn’t reinvent the wheel every time we have data coming over the wire. And the paradigm that we use should include the necessary constructs for free so that we can simply layer our business logic on top.

 Reactive programming, and RxJS in particular, gives us the tools to build pipelines to move our data through without worrying about the boilerplate underneath. And it does so using concepts distilled from functional programming to give us clean, readable syntax that will be useful six months from now.

Road map

 This book has 10 chapters split over three parts that will take you from a basic introduction to RxJS and the functional concepts underlying it all the way to more-advanced practical examples of using RxJS in the real world.

 Part 1 is all about getting your feet wet with reactive programming. We know that, for many readers, this is a new topic, but fortunately, if you’ve been using JavaScript for any amount of time, chances are you’ve already been exposed to some of the concepts that RxJS uses:

 	
Chapter 1 introduces the idea of thinking reactively. We compare asynchronous versus synchronous paradigms and point out where existing patterns fall short. This chapter explains why you need reactive programming and how it fits in with your existing models of computing.

 	
Chapter 2 introduces the primitives of RxJS: the Observable and the Observer. We look at RxJS’s data-driven model and how the consistent computational model of streams allows you to see all data sources as Observables.

 	
Chapter 3 opens the RxJS toolbox to look at the operators that make building functional pipelines possible. Here, you’ll see how streams are built and expanded through the use of these operators.

 	
Chapter 4 adds time as a new layer of complexity for building pipelines. We examine how time can be recorded and even manipulated by RxJS operators.

 Part 2 zeroes in on more-practical aspects of RxJS, such as nesting and combining multiple streams and handling exceptions in Rx:

 	
Chapter 5 looks at nesting Observables and the functional technique of flattening streams. This chapter walks through the process of converting multiple streams into a single stream.

 	
Chapter 6 covers combining the output of streams to build unions or intersections out of their respective events. In particular, this chapter looks at a few of the possibilities when combining the outputs of multiple observables.

 	
Chapter 7 is all about exceptions—or, more specifically, how to handle them in a stream without having messy boilerplate logic everywhere. This chapter starts with a foundation in functional error handling through a Try object and builds up to an understanding of how exceptions can be handled gracefully in an Observable.

 Part 3 is about the more complex tasks in RxJS. In this section, we look at practical examples of handling the temperature of Observables and unit testing with virtual time, and finally we put together all we’ve discussed to build a reactive application by integrating RxJS with other frameworks. Note: we decided to wait until chapter 8 to discuss Subjects because we think they’re often a beginner’s crutch that allows you to use patterns that are more familiar to you, while seemingly “Rx-ified.” Although this isn’t wrong, our view is that this isn’t in following with the spirit of Rx and it tends to rob developers of many of the benefits of using RxJS. Thus, we focus first and primarily on Observables and Observers, in order to show the multitude of solutions available before you resort to using Subjects.

 	
Chapter 8 explores how to manage the temperature of Observables. This involves not just a discussion about whether certain data sources are hot or cold but also how you can change the temperature of such data sources to fit your needs.

 	
Chapter 9 handles reactive testing. We cover topics that are important for testing your Observables and address techniques for building modular and testable applications. Finally, we show how you can control the flow of time explicitly while testing, to avoid making tests dependent on real-world time.

 	
Chapter 10 puts RxJS to use in the real world by integrating it into a functional banking application with React and Redux. This app is both modular and reactive, and we show how you can easily test and extend this application.

 Finally, there are two appendixes at the end of the book:

 	
Appendix A, “Installation of libraries used in this book” Our goal was to use external libraries only as necessary and helpful, while also being as inclusive as possible. So, for instance, we don’t use TypeScript, because it’s still a sore spot for many developers, with ongoing transpiler wars (with PureScript, CoffeeScript, Dart, or Flow + JavaScript, and others). Eliminating the need to explain TypeScript and its many evolving language features—or worse, assuming all our readers know it—allowed us to focus on the meat of RxJS and avoid alienating developers who haven’t, can’t, or don’t want to join the transpiler bandwagon. Along the same lines, we wanted to go with the simplest route of installation, so we decided not to include the install for other frameworks, even those commonly associated with RxJS. Most frameworks have several steps for installing, and likely those steps will have changed by the time of publication. So we leave it to the library maintainers and Stack Overflow for troubleshooting RxJS integrations with your favorite framework.

 	
Appendix B, “Choosing an operator” This is a list of all the operators that we use in the book. There are plenty more operators, but there is not one standard set that everyone agrees on, and the list is still growing and changing. Purists may wish we included fewer operators, whereas kitchen-sinkers will want operators for a use case they came up with for a pet project no one else may ever see. We decided it would be most helpful if we stuck to the operators that we show you how to use throughout the book, so you can be assured that you’ll know how to put all operators on our list to work. A more complete list of operators can be found at http://reactivex.io/rxjs/manual/overview.html#choose-an-operator.

Who should read this book

 RxJS in Action is for JavaScript developers who are aware of the current asynchronous challenges facing modern applications. We expect that, for beginners, this book will be quite the crash course because we assume that the reader is already familiar with JavaScript syntax and conventions.

 Intermediate developers improve their development chops by adding a new set of tools to their JavaScript toolkit. Reactive programming standardizes the push-based event model to allow the consolidation of many of the familiar patterns of event emission under one roof. Advanced developers or developers who are coming from Rx in other languages will benefit from learning some of the gotchas and pitfalls involved in using RxJS as well as understanding some of the common patterns for using RxJS in practice. Also, although this book covers some functional concepts, it shouldn’t be considered an introduction to functional programming. For a better resource on that, see Functional Programming in JavaScript (Manning, 2016).

How to use this book

 For your best reading experience, it’s important to understand that the first three chapters will be new for some readers but review for others. We had to strike a balance between addressing readers who need a more gentle introduction to what is in some ways a large paradigm shift and those who are already “thinking in streams” and coming to this book strictly to learn the RxJS approach. We erred on the side of providing more introduction, and we encourage more-advanced readers to skip ahead to the topics they’re ready to learn.

 So our recommendations for how to use this book depend on who you are. If you’re a beginner or intermediate developer or are just curious about the foundational aspects that led to the development of RxJS, start with chapter 1. If you’re a strong programmer already familiar with the reactive paradigm, you can skim chapters 1 and 2 and then jump in at chapter 3, where we really start diving into code samples with RxJS. More-advanced developers, those who are strong JavaScript developers with functional backgrounds or who are coming from Rx in a different language, can probably do a quick review of chapter 3 for JavaScript-specific fundamentals and then start reading in earnest with chapter 4.

Examples and source code

 The code examples in this book use ECMAScript 6 JavaScript (aka ES6, aka ES2015), which run equally well on either the server side, aka Node.js, or in the browser. Some examples show network I/O operations or browser DOM APIs but don’t include any remarks about browser incompatibilities, nor do we use any browser-specific Java-Script. We assume a basic level of competence with HTML pages and the console. During the course of our examples, this book makes use of third-party libraries like Ramda.js and PouchDB. You can find the documentation and installation information for these libraries in appendix A. This book contains extensive code listings that showcase reactive patterns and compare promises and callbacks to their Rx counterparts. You can find all the code samples at the publisher’s website, www.manning.com/books/rxjs-in-action, and on GitHub, https://github.com/RxJSinAction/. The sample code project and the final banking application project are both available under the root GitHub at https://github.com/RxJSinAction/rxjs-in-action and https://github.com/RxJSinAction/banking-in-action, respectively. You can find installation details for both projects in appendix A.

Author Online

 Purchase of RxJS in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/books/rxjs-in-action. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the Author Online forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the Authors

 [image:]

 PAUL P. DANIELS (@paulpdaniels) is a professional software developer with over 6 years of industry experience as a full stack engineer working in various fields from augmented reality to embedded systems to cloud platforms. A long-time user and contributor to the Rx community, he enjoys evangelizing and teaching reactive programming. When not behind a computer screen, Paul is in the dance studio, where he teaches and trains as a competitive Latin dancer.

 [image:]

 LUIS ATENCIO (@luijar) is a Staff Software Engineer for Citrix Systems in Fort Lauderdale, Florida. He has a BS and an MS in Computer Science and now works full-time developing and architecting cloud web applications using JavaScript, Java, and PHP. Luis is also very involved in the community and has presented at conferences and local meet-ups. When he isn’t coding, Luis writes a developer blog (http://luisatencio.net) focused on software engineering, and has written several magazine articles for php[architect] and DZone. Luis is also the author of Functional Programming in Java-Script (Manning 2016), and Functional PHP (Leanpub).

About the Cover

 The figure on the cover of RxJS in Action is captioned “Calmouck,” and shows a man equipped with a spear, a sword, and a bow and arrows. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint--Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

 Part 1. Understanding streams

 In this first part of the book, you’ll get your feet wet with streams by discovering the stream as the missing data contemporary to the iterable.

 Chapter 1 lays out the problem with the state of asynchrony in JavaScript and where other solutions don’t quite reach your ideal. In chapter 2, you’ll get an introduction to functional programming as the foundation for reactive programming. Here, you’ll walk through the basic parts of producing and consuming a stream. (If you’re already on board with streaming, you may wish to skim or skip these first two chapters.) In chapter 3, you’ll start to see some real RxJS usage as you explore your first operators and how you use them to create fluent streaming applications. Finally, in chapter 4, you’ll start looking at some more-complex operators and introduce a new dimension of streams: time. With this new dimension, you’ll see the real power of using Rx for your asynchronous data.

 Chapter 1. Thinking reactively

 This chapter covers

 	Comparing asynchronous JavaScript with callback- and Promise-based solutions

 	Using streams to model static, dynamic, and time-bound data

 	Using observable streams to handle unbounded data in a functional manner

 	Thinking reactively to deal with the composition of asynchronous data flows

 Right now, somewhere in the world, someone just created a tweet, a stock price just dropped, and, most certainly, a mouse just moved. These tiny pinpricks of data light up the internet and pass ubiquitously through semiconductors scattered across the planet. A deluge of data propagates from any connected device. What does this have to do with you? As you push your code to production, this fire hose of events is pointed squarely at your JavaScript application, which needs to be prepared to handle it effectively. This creates two important challenges: scalability and latency.

 As more and more data is received, the amount of memory that your application consumes or requires will grow linearly or, in worst cases, exponentially; this is the classic problem of scalability, and trying to process it all at once will certainly cause the user interface (UI) to become unresponsive. Buttons may no longer appear to work, fancy animations will lag, and the browser may even flag the page to terminate, which is an unacceptable notion for modern web users.

 This problem is not new, though in recent years there has been exponential growth in the sheer scale of the number of events and data that JavaScript applications are required to process. This quantity of data is too big to be held readily available and stored in memory for use. Instead, we must create ways to fetch it from remote locations asynchronously, resulting in another big challenge of interconnected software systems: latency, which can be difficult to express in code.

 Although modern system architectures have improved dramatically to include faster network devices and highly concurrent processing, the libraries and methods for dealing with the added complexity of remote data haven’t made the same strides. For example, when it comes to fetching data from a server or running any deferred computation, most of us still rely on the use of callbacks, a pattern that quickly breaks down when business rules evolve and change or the problem we’re trying to solve involves data that lives not in one but in several different remote locations.

 The solution lies not only in which library to use but which paradigm best suits these types of problems. In this book, you’ll first learn about the fundamental principles of two emerging paradigms: functional programming (FP) and reactive programming (RP). This exhilarating composition is what gives rise to functional reactive programming (FRP), encoded in a library called RxJS (or rx.js), which is the best prescription to deal with asynchronous and event-based data sources effectively.

 Our prescriptive roadmap has multiple parts. First, you’ll learn about the principles that lead to thinking reactively as well as the current solutions, their drawbacks, and how RxJS improves on them. With this new-found mindset, you’ll dive into RxJS specifics and learn about the core operators that will allow you to express complex data flows of bounded or unbounded data in a succinct and elegant manner. You’ll learn why RxJS is ideal for applications of any size that are event driven in nature. So, along the way, you’ll find real-world examples that demonstrate using this library to combine multiple pieces of remote data, autocompleting input fields, drag and drop, processing user input, creating responsive UIs, parallel processing, and many others. These examples are intended to be narrow in scope as you work through the most important features of RxJS. Finally, all these new techniques will come together to end your journey with a full-scale web application using a hybrid React/Rx architecture.

 The goal of this chapter is to give a broad view of the topics you’ll be learning about in this book. We’ll focus on looking at the limitations of the current solutions and point you to the chapters that show how RxJS addresses them. Furthermore, you’ll learn how to shift your mindset to think in terms of streams, also known as functional sequences of events, which RxJS implements under the hood through the use of familiar patterns such as iterator and observer. Finally, we’ll explore the advantages of RxJS to write asynchronous code, minus the entanglement caused by using callbacks, which also scales to any amount of data. Understanding the differences between these two worlds is crucial, so let’s begin there.

1.1. Synchronous vs. asynchronous computing

 In simple terms, the main factor that separates the runtime of synchronous and asynchronous code is latency, also known as wait time. Coding explicitly for time is difficult to wrap your head around; it’s much easier to reason about solutions when you’re able to see the execution occur synchronously in the same order as you’re writing it: “Do this; then immediately do that.”

 But the world of computing doesn’t grant such luxuries. In this world of highly networked computing, the time it takes to send a message and receive a response represents critical time in which an application can be doing other things, such as responding to user inputs, crunching numbers, or updating the UI. It’s more like “Do this (wait for an indeterminate period of time); then do that.” The traditional approach of having applications sit idle waiting for a database query to return, a network to respond, or a user action to complete is not acceptable, so you need to take advantage of asynchronous execution so that the application is always responsive. The main issue here is whether it’s acceptable to block the user on long-running processes.

 1.1.1. Issues with blocking code

 Synchronous execution occurs when each block of code must wait for the previous block to complete before running. Without a doubt, this is by far the easiest way to implement code because you put the burden on your users to wait for their processes to complete. Many systems still work this way today, such as ATMs, point of sale systems, and other dumb terminals. Writing code this way is much easier to grasp, maintain, and debug; unfortunately, because of JavaScript’s single-threaded nature, any long-running tasks such as waiting for an AJAX call to return or a database operation to complete shouldn’t be done synchronously. Doing so creates an awful experience for your users because it causes the entire application to sit idle waiting for the data to be loaded and wasting precious computing cycles that could easily be executing other code. This will block further progress on any other tasks that you might want to execute, which in turn leads to artificially long load times, as shown in figure 1.1.

 Figure 1.1. A program that invokes two processes synchronously. A process in this case can be as simple as a function call, an I/O process, or a network transaction. When process 1 runs, it blocks anything else from running.

 [image:]

 In this case, the program makes a blocking call to process 1, which means it must wait for it to return control to the caller, so that it can proceed with process 2. This might work well for kiosks and dumb terminals, but browser UIs should never be implemented this way. Not only would it create a terrible user experience (UX), but also browsers may deem your scripts unresponsive after a certain period of inactivity and terminate them. Here’s an example of making an HTTP call that will cause your application to block, waiting on the server to respond:

 let items = blockingHttpCall('/data'); 1
items.forEach(item => {
 // process each item
});

 	
1 Loading server-side data synchronously halts program execution. The nature of the data isn’t important right now; it’s some generic sample data pertaining to your application.

 A better approach would be to invoke the HTTP call and perform other actions while you’re waiting on the response. Long-running tasks aren’t the only problem; as we said earlier, mouse movement generates a rapid succession of very quick, fine-grained events. Waiting to process each of these synchronously will cause the entire application to become unresponsive, whether it’s long wait times or handling hundreds of smaller waits quickly. So what can you do to handle these types of events in a non-blocking manner? Luckily, JavaScript provides callback functions.

 1.1.2. Non-blocking code with callback functions

 Using functions as callbacks has been a staple of JavaScript development for years. They’re used in everything from mouse clicks and key presses to handling remote HTTP requests or file I/O. JavaScript, being a single-threaded language, requires such a construct in order to maintain any level of usability. Callback functions were created to tackle the problem of blocking for long-running operations to complete by allowing you to provide a handler function that the JavaScript runtime will invoke once the data is ready for use. In the meantime, your application can continue carrying out any other task, as shown in figure 1.2.

 Figure 1.2. Callback functions in JavaScript create an inversion of control where functions call the application back, instead of the other way around.

 [image:]

 Unlike the previous code that makes a blocking HTTP call that you must wait for, using callbacks with asynchronous (AJAX) requests creates an inversion of control that permits your application to continue executing the next lines of code. Inversion of control in this sense refers to the way in which certain parts of your code receive the flow of control back from the runtime system. In this case, the runtime calls you (or returns control to you) via the function handler when the data is ready to be processed; hence, the term callback. Look at this alternative:

 ajax('/data', 1
 items => { 2
 items.forEach(item => {
 // process each item 3
 });
});
beginUiRendering(); 4

 	
1 No explicit return value

 	
2 Declaration of callback function

 	
3 All processing is carried out within the callback body after the data has been fetched from the server.

 	
4 This function begins immediately after AJAX is called.

 Callback functions allow you to invoke code asynchronously, so that the application can return control to you later. This allows the program to continue with any other task in the meantime. In this code sample, the HTTP function runs in the background and immediately returns control to the caller to begin rendering the UI; it handles the contents of the items only after it has completely loaded. This behavior is ideal because it frees up the application to make progress on other tasks such as loading the rest of a web page, as in this case. As you’ll see throughout this book, asynchronous code is a good design for I/O-bound work like fetching data from the web or a database. The reason this works is that I/O processes are typically much slower than any other type of instruction, so we allow them to run in the background because they’re not dependent on processor cycles to complete.

 	

 Syntax check

 In the code sample in section 1.1.2, the second parameter of ajax() is the callback function. In that code, as in many parts of the book, we use the ECMAScript 6 lambda expression syntax,[1] which offers a terser and more succinct way of invoking functions. Also called arrow functions, lambda expressions behave somewhat similarly to an anonymous function call, which you’re probably familiar with. The subtle difference has to do with what the keyword this refers to. On rare occasions, when the value of this is important, we’ll call it out in the text and switch to using an anonymous function expression.

 1

 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions.

 	

 1.1.3. Understanding time and space

 Certainly, asynchronous functions allow us to stay responsive, but they come at a price. Where synchronous programs allow us to reason directly about the state of the application, asynchronous code forces us to reason about its future state. What does this mean? State can be understood simply as a snapshot of all the information stored into variables at any point in time. This information is created and manipulated via sequences of statements. Synchronous code can be thought of as an ordered, step-by-step execution of statements, as shown in figure 1.3.

 Figure 1.3. Synchronous code is a step-by-step sequential execution of statements where each step depends on the previous one to run.

 [image:]

 In this model, it’s easy to determine at any point what the states of the variables are and what will occur next, which is why it’s easy to write and debug. But when tasks have different wait times or complete at different times, it’s difficult to guarantee how they’ll behave together. Functions that terminate at unpredictable times are typically harder to deal with without the proper methods and practices. When this happens, the mental model of our application needs to shift to compensate for this additional dimension. Compare figure 1.3 to the model in figure 1.4, which grows not only vertically but also horizontally.

 Figure 1.4. In asynchronous execution, steps that are invoked in sequence need not terminate all at the same time. So there’s absolutely no guarantee that you can rely on the data from step 1 to be available in step 2, for example.

 [image:]

 As of now, if steps 1, 2, and 3 were independent tasks, then executing them in any order wouldn’t be a problem. But if these were functions that shared any global state, then their behavior would be determined by the order in which they were called or by the global state of the system. These conditions we refer to as side effects, which you’ll learn more about in chapter 2; they involve situations where you need to read or modify an external resource like a database, the DOM, the console, and others. Functions with side effects can perform unreliably when run in any arbitrary order. In functional and reactive programming, you’ll learn to minimize them by using pure functions, and you’ll learn in this book that this is extremely advantageous when dealing with asynchronous code.

 So, assuming that our functions were side effect free, we still have another important issue—time. Steps 1, 2, and 3 might complete instantly or might not complete depending on the nature of the work. The main issue is how we can guarantee that these steps run in the correct order. As you’ve probably done many times before, the proper way to achieve this is by composing these functions together, so that the output of one becomes the input to the next, and therefore a chain of steps is created. The traditional approach that ensures the proper sequence of steps takes place is to nest a sequence of callbacks, and the model of the application’s runtime resembles figure 1.5.

 Figure 1.5. In order to guarantee the proper order of steps and asynchronous invocation takes place, we use callback functions to transfer control of the application once a longrunning operation terminates.

 [image:]

 Undoubtedly, this nested control flow is much harder to reason about than the synchronous, straight-line model of figure 1.4. In figure 1.5, step 1 runs first, which then calls step 2 as soon as it completes; then step 3 executes, and so on for the rest of the steps. This suggests the presence of a temporal dependency or time coupling between these steps, which means that one can begin as soon as the previous finishes—it’s a chain of commands. In this scenario, the callback functions are used to respond to the asynchronous request that happened before them and begin processing its data. This happens typically when making sequential AJAX requests, but it can also happen when mixing in any other event-based system, whether it be key presses, mouse movements, database reads and writes, and others; all these systems rely on callbacks.

 1.1.4. Are callbacks out of the picture?

 The short answer is no. Using a paradigm to tackle event-based or asynchronous code isn’t necessary when you’re dealing with simple interactions with users or external services. If you’re writing a simple script that issues a single remote HTTP request, RxJS is a bit of overkill, and callbacks remain the perfect solution. On the other hand, a library that mixes functional and reactive paradigms really begins to shine when implementing state machines of moderate-to-advanced complexity such as dynamic UIs or service orchestration. Some examples of this can be the need to orchestrate the execution of several business processes that consume several microservices, data mashups, or perhaps the implementation of features of a rich UI made up of several widgets on the page that interact with each other.

 Consider the task of loading data from the client originating from different remote server-side endpoints. To coordinate among them, you’d need several nested AJAX requests where each step wraps the processing of the data residing within each callback body in the logic of invoking the next step, as you saw previously in figure 1.5. Following is a possible solution for this, which requires the use of three composed callback functions to load datasets that potentially live in the same host or different hosts, together with its related meta-information and files:

 ajax('<host1>/items', 1
 items => {
 for (let item of items) {
 ajax(`<host2>/items/${item.getId()}/info`, 2
 dataInfo => {
 ajax(`<host3>/files/${dataInfo.files}`, 3
 processFiles);
 });
 }
});
beginUiRendering();

 	
1 Loads all items you want to display

 	
2 For each item, loads additional meta-information

 	
3 For each meta record, loads associated files

 Now although you might think this code looks trivial, if continuing this pattern, we’ll begin to sink into horizontally nested calls—our model starts to grow horizontally. This trend is informally known in the JavaScript world as callback hell, a design that you’ll want to avoid at all costs if you want to create maintainable and easy-to-reason-about programs. It isn’t simply aesthetics—making sure that separate asynchronous operations are synchronized is hard enough without also having difficult-to-read code. There’s another hidden problem with this code. Can you guess what it is? It occurs when you mix a synchronous artifact like a for..of imperative block invoking asynchronous functions. Loops aren’t aware that there’s latency in those calls, so they’ll always march ahead no matter what, which can cause some really unpredictable and hard-to-diagnose bugs. In these situations, you can improve matters by creating closures around your asynchronous functions, managed by using forEach() instead of the loop:

 ajax('<host1>/items',
 items => {
 items.forEach(item => { 1
 ajax(`<host2>/items/${item.getId()}/info`,
 dataInfo => {
 ajax(`<host3>/files/${dataInfo.files}`,
 processFiles);
 });
 });
});

 	
1 The forEach() method of arrays will properly scope each item object into the nested HTTP call.

 This is why in RxJS—and FP in general, for that matter—all loops are virtually eliminated! Instead, in chapters 4 and 5 you’ll learn about operators that allow you to spawn sequences of asynchronous requests taking advantage of pure functions to keep all of the information properly scoped. Another good use of callbacks is to implement APIs based on Node.js event emitters. Let’s jump into this next.

 1.1.5. Event emitters

 Event emitters are popular mechanisms for asynchronous event-based architectures. The DOM, for instance, is probably one of the most widely known event emitters. On a server like Node.js, certain kinds of objects periodically produce events that cause functions to be called. In Node.js, the EventEmitter class is used to implement APIs for things like WebSocket I/O or file reading/writing so that if you’re iterating through directories and you find a file of interest, an object can emit an event referencing this file for you to execute any additional code.

 Let’s implement a simple object to show this API a bit. Consider a simple calculator object that can emit events like add and subtract, which you can hook any custom logic into; see figure 1.6.

 Figure 1.6. Node emitter object representing a simple calculator, which exposes two events: add and subtract

 [image:]

 Here’s some code for the calculator add and subtract events:

 const EventEmitter = require('events'); 1
class Calculator extends EventEmitter {} 2

const calc = new Calculator();

calc.addListener('add', (a, b) => { 3
 calc.emit('result', a + b);
});
calc.addListener('subtract', (a, b) => { 3
 calc.emit('result', a - b);
});

calc.addListener('result', (result) => {
 console.log('Result: ' + result);
});

calc.emit('add', 2, 3); //-> Prints 'Result: 5'
calc.emit('subtract', 2, 3); //-> Prints 'Result: 1'

 	
1 Loads the events module

 	
2 Creates a custom emitter

 	
3 Handles the add event

 Subscribing to an event emitter is done through the addListener() method, which allows you to provide the callback that will be called when an event of interest is fired. Unfortunately, event emitters have all of the same problems associated with using callbacks to handle emitted data coming from multiple composed resources. Overall, composing nested asynchronous flow is difficult.

 The JavaScript community as a whole has made strides in the right direction to solve these types of issues. With the help of patterns emerging from FP, an alternative available to you with ES6 is to use Promises.

1.2. Better callbacks with Promises

 All hope is not lost; we promise you that. Promises are not part of the RxJS solution, but they work together perfectly well. JavaScript ES6 introduced Promises to represent any asynchronous computation that’s expected to complete in the future. With Promises, you can chain together a set of actions with future values to form a continuation.[2] A continuation is just a fancy term for writing callbacks and has a lot to do with the principle of Inversion of Control we referenced earlier. A continuation (a callback) allows the function to decide what it should do next, instead of indiscriminately waiting for a return value. They’re used heavily when iterating over arrays, tree structures, try/catch blocks, and, of course, asynchronous programming. So, the code you saw earlier—

 2

 http://www.2ality.com/2012/06/continuation-passing-style.html.

 ajax('<host1>/items',
 items => {
 for (let item of items) {
 ajax(`<host2>/items/${item.getId()}/info`,
 dataInfo => {
 ajax(`<host3>/files/${dataInfo.files}`,
 processFiles);
 });
 }
});

 —is known to be continuation-passing style (CPS), because none of the functions are explicitly waiting for a return value. But as we mentioned, abusing this makes code hard to reason about. What you can do is to make continuations first-class citizens and actually define a concrete interpretation of what it means to “continue.” So, we introduce the notion of then: “Do X, then do Y,” to create code that reads like this:

 Fetch all items, then 1
 For-each item fetch all files, then 1
 Process each file

 	
1 The key term “then” suggests time and sequence.

 This is where Promises come in. A Promise is a data type that wraps an asynchronous or long-running operation, a future value, with the ability for you to subscribe to its result or its error. A Promise is considered to be fulfilled when its underlying operation completes, at which point subscribers will receive the computed result. Because we can’t alter the value of a Promise once it’s been executed, it’s actually an immutable type, which is a functional quality we seek in our programs. Different Promise implementations exist based on the Promises/A+ protocol (see https://promisesaplus.com/), and it’s designed to provide some level of error handling and continuations via the then() methods. Here’s how you can tackle the same example if you assume that ajax() returns Promises:

 ajax('<host1>/items')
 .then(items =>
 items.forEach(item =>
 ajax(`<host2>/data/${item.getId()}/info`)
 .then(dataInfo =>
 ajax(`<host3>/data/files/${dataInfo.files}`)
)
 .then(processFiles);
)
);

 This looks similar to the previous statement! Being a more recent addition to the language with ES6 and inspired in FP design, Promises are more versatile and idiomatic than callbacks. Applying these functions declaratively—meaning your code expresses the what and not the how of what you’re trying to accomplish—into then blocks allows you to express side effects in a pure manner. We can refactor this to be more declarative by pulling out each function independently

 let getItems = () => ajax('<host1>/items');
let getInfo = item => ajax(`<host2>/data/${item.getId()}/info`);
let getFiles = dataInfo => ajax(`<host3>/data/files/${dataInfo.files}`);

 and then use Promises to stitch together our asynchronous flow. We use the Promise.all() function to map an array of separate Promises into a single one containing an array of results:

 getItems()
 .then(items => items.map(getInfo))
 .then(promises => Promise.all(promises))
 .then(infos => infos.map(getFiles))
 .then(promises => Promise.all(promises))
 .then(processFiles);

 The use of then() explicitly implies that there’s time involved among these calls, which is a really good thing. If any step fails, we can also have matching catch() blocks to handle errors and potentially continue the chain of command if necessary, as shown in figure 1.7.

 Figure 1.7. Promises create a flow of calls chained by then methods. If the Promise is fulfilled, the chain of functions continues; otherwise, the error is delegated to the Promise catch block.

 [image:]

 Of course, Promises also have shortcomings, or else we wouldn’t be talking about Rx. The drawback of using Promises is that they’re unable to handle data sources that produce more than one value, like mouse movements or sequences of bytes in a file stream. Also, they lack the ability to retry from failure—all present in RxJS. The most important downside, moreover, is that because Promises are immutable, they can’t be cancelled. So, for instance, if you use a Promise to wrap the value of a remote HTTP call, there’s no hook or mechanism for you to cancel that work. This is unfortunate because HTTP calls, based on the XmlHttpRequest object, can be aborted,[3] but this feature isn’t honored through the Promise interface. These limitations reduce their usefulness and force developers to write some of the cancellation logic themselves or seek other libraries.

 3

 https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/abort.

 Collectively, Promises and event emitters solve what are essentially the same problems in slightly different ways. They have different use cases (Promises for single-value returns like HTTP requests and event emitters for multiple-value returns like mouse click handlers), mostly because of their own implementation constraints, not because the use cases are so different. The result is that in many scenarios a developer must use both in order to accomplish their goal, which can often lead to disjointed and confusing code.

 The problems of readability; hard-to-reason-about code; and the downsides of current technology that we’ve discussed so far aren’t the only reasons that we, as developers, need to worry about asynchronous code. In this next section, we’ll outline more concretely why we need to switch to a different paradigm altogether to tackle these issues head on.

1.3. The need for a different paradigm

 For many years now, we’ve learned to use many JavaScript async libraries; everyone has their own preference, whether it be JQuery, Async.js, Q.js, or others, yet they all fall short one way or another. We believe that it’s not a matter of just choosing a library, but choosing the right paradigm for the job. By combining functional and reactive programming paradigms, RxJS will help you address the following issues:

 	Familiar control flow structures (like for and while loops) with asynchronous functions don’t work well together because they’re not async aware; that is, they’re oblivious of wait time or latency between iterations.

 	Error-handling strategies become easily convoluted when you begin nesting try/catch blocks within each callback. In chapter 7, we’ll approach error handling from a functional perspective. Also, if you want to implement some level of retry logic at every step, this will be incredibly difficult even with the help of other libraries.

 	Business logic is tightly coupled within the nested callback structure you need to support. It’s plain to see that the more nested your code is, the harder it is to reason about. Functions that are deeply nested become entangled with other variables and functions, which is problematic in terms of readability and complexity. It would be ideal to be able to create reusable and modular components in order to have loosely coupled business logic that can be maintained and unit tested independently. We’ll cover unit testing with RxJS in chapter 9.

 	You want to avoid excessive use of closures, but functions in JavaScript create a closure around the scope in which they’re declared. Nesting them means that you need to be concerned about not just the state of the variables passed in as arguments but also the state of all external variables surrounding each function declaration, causing side effects to occur. In the next chapter, you’ll learn how detrimental side effects can be and how FP addresses this problem. Side effects increase the cognitive load of the state of your application, making it virtually impossible to keep track of what’s going on in your programs. Throw a few loops and conditional if-else statements into the mix, and you’ll regret the day a bug occurs that impacts this functionality.

 	It’s difficult to detect when events or long-running operations go rogue and need to be cancelled. Consider the case of a remote HTTP request that’s taking too long to process. Is the script unresponsive or is the server just slow? It would be ideal to have an easy mechanism to cancel events cleanly after some predetermined amount of time. Implementing your own cancellation mechanism can be very challenging and error prone even with the help of third-party libraries.

 	One good quality of responsive design is to always throttle a user’s interaction with any UI components, so that the system isn’t unnecessarily overloaded. In chapter 4, you’ll learn how to use throttling and debouncing to your advantage. Manual solutions for achieving this are typically very hard to get right and involve functions that access data outside their local scope, which breaks the stability of your entire program.

 	It’s rare to be concerned about memory management in JavaScript applications, especially client-side code. After all, the browser takes care of most of these low-level details. But as UIs become larger and richer, we can begin to see that lingering event listeners may cause memory leaks and cause the size of the browser process to grow. It’s true that this was more prevalent in older browsers; nevertheless, the complexity of today’s JavaScript applications is no match for the applications of years past.

 This long list of problems can certainly overwhelm even the brightest developers. The truth of the matter is that the very paradigms that help us tackle these problems are hard to express in code, which is why a tool like RxJS is necessary to redefine our approach.

 You learned that Promises certainly move the needle in the right direction (and RxJS integrates with Promises seamlessly if you feel the need to do so). But what you really need is a solution that abstracts out the notion of latency away from your code while allowing you to model your solutions using a linear sequence of steps through which data can flow over time, as shown in figure 1.8.

 Figure 1.8. RxJS can treat asynchronous data flows with a programming model that resembles a simple chain of sequential steps.

 [image:]

 In essence, you need to combine the ability to decouple functionality like event emitters with the fluent design pattern of Promises, all into a single abstraction. Moreover, you need to work with both synchronous and asynchronous code, handle errors, discourage side effects, and scale out from one to a deluge of events. This is certainly a long laundry list of things to take care of.

 As you think about this, ask yourself these questions: How can you write code as a linear sequence of steps that acts only after some event has occurred in the future? How do you combine it with other code that might have its own set of constraints? Your desire for synchronicity isn’t just about convenience; it’s what you’re used to. Unfortunately, most of the common language constructs that you use in synchronous code aren’t well suited for asynchronous execution. This lack of language support for things like async try/catch, async loops, and async conditionals means that developers must often roll their own. It’s not surprising that in the past few years, other people have asked the same questions and come together with the community at large to address these challenges, emerging as what’s known as the Reactive Extensions—we have arrived!

1.4. The Reactive Extensions for JavaScript

 Reactive Extensions for JavaScript (RxJS) is an elegant replacement for callback or Promise-based libraries, using a single programming model that treats any ubiquitous source of events—whether it be reading a file, making an HTTP call, clicking a button, or moving the mouse—in the exact same manner. For example, instead of handling each mouse event independently with a callback, with RxJS you handle all of them combined.

 As you’ll learn in chapter 9, RxJS is also inherently robust and easy to test with a vibrant community to support it. The power of RxJS derives from being built on top of the pillars of functional and reactive programming, as well as a few popular design patterns such as observer and iterator that have been used successfully for years. Certainly, RxJS didn’t invent these patterns, but it found ways to use them within the context of FP. We’ll discuss FP and its role in RxJS further in the next chapter; in order to take full advantage of this framework, the key takeaway from this section is that you must learn to think in terms of streams.

 1.4.1. Thinking in streams: data flows and propagation

 Whether you deal with thousands of key presses, movement events, touch gestures, remote HTTP calls, or single integers, RxJS treats all of these data sources in exactly the same way, which we’ll refer to as data streams from now on.

 	

 Streams

 Traditionally, the term stream was used in programming languages as an abstract object related to I/O operations such as reading a file, reading a socket, or requesting data from an HTTP server. For instance, Node.js implements readable, writable, and duplex streams for doing just this. In the RP world, we expand the definition of a stream to mean any data source that can be consumed.

 	

 Reactive programming entails a mental shift in the way you reason about your program’s behavior, especially if you come from an imperative background. We’ll illustrate this shift in mindset with a simple exercise:

 let a = 20;
let b = 22;
let c = a + b; //-> 42

a = 100;
c = ?

 You can easily predict the value of c in this case: 42. The fact that we changed a didn’t have any influence on the value of c. In other words, there’s no propagation of change. This is the most important concept to understand in reactive programming. Now we’ll show you a pseudo JavaScript implementation of this:

 A$ = [20]; 1
B$ = [22]; 2
C$ = A$.concat(B$).reduce(adder); //-> [42] 3

A$.push(100); 4
C$ = ?

OEBPS/OEBPS/Images/01fig02_alt.jpg
Input

Inversion
of control

OEBPS/OEBPS/Images/01fig03.jpg
(Siep1 |—-| Step2 }——‘ Step3 |

——

Program execution

OEBPS/OEBPS/Images/fmfig02.jpg

OEBPS/OEBPS/Images/01fig01_alt.jpg
Blocked! Must wait for

process | to complete. —__ X

Program execution

OEBPS/OEBPS/Images/common01.jpg

OEBPS/OEBPS/Images/fmfig01.jpg

OEBPS/OEBPS/Images/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/OEBPS/Images/common02.jpg

OEBPS/OEBPS/Images/01fig04_alt.jpg
step1 |————————————| Completes

Program execution Sp2 |———————————| Completes

Sp3 |——————————| Completes

OEBPS/OEBPS/Images/01fig06_alt.jpg
‘When an emitter fires the
event, it executes the logic
associated to that event.

/

Calculator Client

emit(2, 3)
‘Adder function

on.

=)

/

Calculator publishes
PO SR, e

OEBPS/OEBPS/Images/01fig05_alt.jpg
Step 1
Calls step 2
Program execution m

Calls step 3

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/01fig08.jpg
Events

7\

w1 @@ swz)@ sws)

R/_/R/_/

Latency Latency

——

Program execution

OEBPS/OEBPS/Images/01fig07_alt.jpg
e e e
Fuliled

Rejected
.catch(error)

