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foreword


  Apache Pulsar in Action is the missing guide that will walk you through your journey with Apache Pulsar. It is a book that I’d recommend to anyone, from developers starting to explore pub-sub messaging, to someone with messaging experience, up to experienced Pulsar power users.


  The Apache Pulsar project was started at Yahoo! around 2012 with the mission of experimenting with a new architecture that would be able to solve the operational challenges of existing messaging platforms. This was also a time when some significant shifts in the world of data infrastructure were starting to become more visible. Application developers started to look more and more at scalable and reliable messaging as the core component for building the next generation of products. At the same time, companies started to see large-scale real-time streaming data analytics as an essential component and business advantage.


  Pulsar was designed from the ground up with the objective of bridging these two worlds, pub-sub messaging and streaming analytics, that are too often isolated in different silos. We worked toward creating an infrastructure that would represent a next generation of real-time data platforms, where one single system would be able to support all the use cases throughout the entire life cycle of data events.


  Over time, that vision has expanded further, as can be clearly seen from the wide range of components described in this book. The project has added support for lightweight processing with Pulsar Functions, the Pulsar IO connectors framework, support for data schema, and many other features. What has not changed is the ultimate goal of creating the most scalable, flexible, and reliable platform for real-time data, and allowing any user to process the data stored in Pulsar in the most convenient form.


  I have known and worked with this book’s author, David Kjerrumgaard, for several years. Throughout this time, I’ve seen his passion for working with the Pulsar community. He is always able to help users make sense of technical issues, as well as to show them how Pulsar fits into the bigger picture of solving their data problem.


  I particularly appreciate how Pulsar in Action is able to seamlessly mix the theory and abstract concepts with the clarity of practical step-by-step examples, and how these examples are rooted in common use cases and messaging design patterns that will surely resonate with many readers. There is truly something for everyone, and everyone will be able to get acquainted with all the aspects and the possibilities that Pulsar offers.


  —Matteo Merli


  CTO at StreamNative


  Co-creator and PMC Chair of Apache Pulsar


  
preface


  Back in 2012, the Yahoo! team was looking for a global, geo-replicated platform that could stream all of Yahoo!’s messaging data between various apps such as Yahoo Mail and Yahoo Finance. At the time, there were generally two types of systems to handle in-motion data: message queues that handled mission-critical business events in real-time, and streaming systems that handled scalable data pipelines at scale. But there wasn’t a platform that provided both capabilities that Yahoo required.


  After vetting the messaging and streaming landscape, it became clear that existing technologies were not able to serve their needs, so the team at Yahoo! started working on building a unified messaging and streaming platform for in-motion data named Pulsar. After 4 years of operation across 10 datacenters processing billions of messages per day, Yahoo! decided to open source its messaging platform under the Apache license in 2016.


  I first encountered Pulsar in the fall of 2017. I was leading the professional services team at Hortonworks focused on the streaming data platform known as Hortonworks Data Flow (HDF) that comprised Apache NiFi, Kafka, and Storm. It was my job to oversee the deployment of these technologies into a customer’s infrastructure and help them get started developing streaming applications.


  The greatest challenge we faced when working with Kafka was helping our customers administer it properly, and specifically determining the proper number of partitions for a given topic to achieve a proper balance of speed and efficiency while allowing for future data growth. Those of you that are familiar with Kafka are painfully aware of the fact that this seemingly simple decision has a profound impact on the scalability of your topics, and the process of changing this value (even from 3 to 4) necessitates a rebalancing process that is slow and results in the rebalancing topic being unavailable for reading or writing during the entire process.


  This rebalancing requirement was universally disliked by all the customers who were using HDF, and rightfully so, because they saw it as a clear impediment to their ability to scale the Kafka cluster as their data volumes grew. They knew from experience just how difficult it was to scale their messaging platform up and down. Even worse was the fact that we could not simply “drop in” a few more nodes to add computing capacity to our customer’s existing cluster without also reconfiguring the topics to use them by assigning more partitions to the existing topics to have the data redistributed onto the recently added nodes. This inability to horizontally scale out their streaming capacity without manual (or heavily scripted) intervention was in direct conflict with most of our customers’ desires to move their messaging platforms to the cloud and capitalize on the elastic computing capability the cloud provides.


  That is when I discovered the Apache Pulsar platform and found its claim to be “cloud-native” especially appealing because it addressed both scalability pain points. While HDF had allowed my customers to get started quickly, they found it difficult to manage and not architected to run in the cloud. I realized that Apache Pulsar was a much better solution than what we were currently offering to our customers and tried to convince our product team to consider replacing Kafka with Pulsar in our HDF product. I even went so far as to write connectors that allowed it to work with the Apache NiFi component of our stack to facilitate that adoption, but to no avail.


  When I was approached by the original developers of Apache Pulsar in January of 2018 and offered the opportunity to join a small start-up called Streamlio, I immediately jumped at the chance to work with them. Pulsar was a young project back then, having just been placed into the Apache incubation program, and we spent the next 15 months working to get our fledgling “podling” through the incubation process and promoted to top-level project status.


  This was during the height of the streaming data hype, and Kafka was the dominant player in the space, so naturally everyone considered the terms interchangeable. The consensus was that Kafka was the only data-streaming platform available. I knew better from my prior experiences and took it upon myself to relentlessly evangelize what I knew to be a technologically superior solution—a lonely voice shouting in the proverbial wilderness.


  By the spring of 2019, the Apache Pulsar community had experienced tremendous growth in terms of contributors and users, but there was a profound lack of reliable documentation on the technology. So, when the prospect of writing Apache Pulsar in Action was first proposed to me, I immediately seized upon it as an opportunity to address the glaring need within the Pulsar community. While I was never able to convince my colleagues to join me in this endeavor, they were an invaluable source of guidance and information throughout the process and have used this book as a means of transferring some of their knowledge to you.


  This book is targeted to individuals who are brand new to Pulsar, and is a combination of the information I gathered while working directly with the project founders when they were actively developing Pulsar, along with experience gained from working directly with organizations that have adopted Apache Pulsar in production.


  It is intended to provide guidance over the stumbling blocks and pitfalls that others have encountered during their journeys with Pulsar. Above all, this book will give you the confidence to develop stream processing applications and microservices employing Pulsar using the Java programming language. Even though I have chosen to use Java for most of the code samples throughout the book due to my familiarity with the language, I have also created a similar set of code using Python and have uploaded it to my GitHub account for those of you who prefer coding in that language.
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about this book


  Apache Pulsar in Action was written as an introduction to the stream processing world and to help you become familiar with the terminology, semantics, and considerations one must take when adopting the stream processing paradigm while coming from a batch-processing background. It starts with a historical review of the evolution of messaging systems over the past 40 years and shows how Pulsar sits at the top of this evolutionary cycle.


  After a brief introduction to common messaging terminology and a discussion of the two most common message consumption patterns, it covers the architecture of Pulsar from a physical perspective focusing on its cloud-native design, as well as from its logical structuring of data and its support for multi-tenancy.


  The remainder of the book is focused on how you can use Pulsar’s built-in computing platform known as Pulsar Function to develop applications using a simple API. This is demonstrated by implementing an order-processing use case: a fictional food delivery microservices application based solely on Pulsar Functions, complete with a delivery time estimation machine learning model deployment.


  
Who should read this book


  Apache Pulsar in Action is primarily intended for Java developers who have an interest in working with streaming data, or microservice developers who are looking for an alternative message-based framework that can be used for event sourcing. DevOps teams who are looking to deploy and operate Pulsar within their organizations will find this book useful as well. One of the primary criticisms of Apache Pulsar is an overall lack of documentation and blog posts available online, and although I fully expect that to change in the near future, I hope that this book will help fill that gap in the interim and will benefit anyone wanting to learn more about stream processing in general and Apache Pulsar in particular.


  






How this book is organized: A roadmap


  This book consists of 12 chapters that are spread across three different parts. Part 1 starts with a basic introduction to Apache Pulsar and where it fits in the 40-year evolution of messaging systems by comparing it to and contrasting it with the various messaging platforms that have come before it:


  
    	
      Chapter 1 provides a historical perspective on messaging systems and where Apache Pulsar fits into the 40-year evolution of messaging technology. It also previews some of Pulsar’s architectural advantages over other systems and why you should consider using it as your single messaging platform of choice.

    


    	
      Chapter 2 covers the details of Pulsar’s multi-tiered architecture, which allows you to dynamically scale up the storage or serving layers independently. It also describes some of the common message consumption patterns, how they are different from one another, and how Pulsar supports them all.

    


    	
      Chapter 3 demonstrates how to interact with Apache Pulsar from both the command line as well as by using its programming API. After completing this chapter, you should be comfortable running a local instance of Apache Pulsar and interacting with it.

    

  


  Part 2 covers some of the more basic usage and features of Pulsar, including how to perform basic messaging and how to secure your Pulsar cluster, along with more advanced features such as the schema registry. It also introduces the Pulsar Functions framework, including how to build, deploy, and test functions:


  
    	
      Chapter 4 introduces Pulsar’s stream native computing framework called Pulsar Functions, provides some background on its design and configuration, and show you how to develop, test, and deploy functions.

    


    	
      Chapter 5 introduces Pulsar’s connector framework that is designed to move between Apache Pulsar and external storage systems, such as relational databases, key-value stores, and blob storage such as S3. It teaches you how to develop a connector in a step-by-step fashion.

    


    	
      Chapter 6 provides step-by-step details on how to secure your Pulsar cluster to ensure that your data is secured while it is in transit and while it is at rest.

    


    	
      Chapter 7 covers Pulsar’s built-in schema registry, why it is necessary, and how it can help simplify microservice development. We also cover the schema evolution process and how to update the schemas used inside your Pulsar Functions.

    

  


  Part 3 focuses on the use of Pulsar Functions to implement microservices and demonstrates how to implement various common microservice design patterns within Pulsar Functions. This section focuses on the development of a food delivery application to make the examples more realistic and addresses more-complex use cases including resiliency, data access, and how to use Pulsar Functions to deploy machine learning models that can run against real-time data:


  
    	
      Chapter 8 demonstrates how to implement common messaging routing patterns such as message splitting, content-based routing, and filtering. It also shows how to implement various message transformation patterns such as value extraction and message translation.

    


    	
      Chapter 9 stresses the importance of having resiliency built into your microservices and demonstrates how to implement this inside your Java-based Pulsar Functions with the help of the resiliency4j library. It covers various events that can occur in an event-based program and the different patterns you can use to insulate your services from these failure scenarios to maximize your application uptime.

    


    	
      Chapter 10 focuses on how you can access data from a variety of external systems from inside your Pulsar functions. It demonstrates various ways of acquiring information within your microservices and considerations you should take into account in terms of latency.

    


    	
      Chapter 11 walks you through the process of deploying different machine learning model types inside of a Pulsar function using various ML frameworks. It also covers the very important topic of how to feed the necessary information into the model to get an accurate prediction

    


    	
      Chapter 12 covers the use of Pulsar Functions within an edge computing environment to perform real-time analytics on IoT data. It starts with a detailed description of what an edge computing environment looks like and describes the various layers of the architecture before showing how to leverage Pulsar Functions to process the information on the edge and only forward summaries rather than the entire dataset.

    

  


  Finally, two appendices demonstrate more advanced operational scenarios including deployment within a Kubernetes environment and geo-replication:


  
    	
      Appendix A walks you through the steps necessary to deploy Pulsar into a Kubernetes environment using the Helm charts that are provided as part of the open source project. It also covers how to modify these charts to suit your environment.

    


    	
      Appendix B describes Pulsar’s built-in geo-replication mechanism and some of the common replication patterns that are used in production today. It then walks you through the process of implementing one of these geo-replication patterns in Pulsar.

    

  


  
About the code


  This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.


  In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  This book is first and foremost a programming book designed to be used as a hands-on guide for learning how to develop microservices using Pulsar Functions. Therefore, I have provided multiple source code repositories that I often refer to throughout the course of the book. I encourage you to download the code from the publisher’s website at https://www.manning.com/books/apache-pulsar-in-action, or from my personal GitHub account:


  
    	
      This GitHub repository contains the code examples for chapters 3 through 6 as well as chapter 8: https://github.com/david-streamlio/pulsar-in-action

    


    	
      The code for the food delivery microservices application can be found in the following GitHub repository: https://github.com/david-streamlio/GottaEat

    


    	
      The code for the IoT Analytics application discussed in Chapter 12 can be found here: https://github.com/david-streamlio/Pulsar-Edge-Analytics

    


    	
      For those of you looking for Python-based examples, you can find them in the following repository: https://github.com/david-streamlio/pulsar-in-action-python

    

  


  
Other online resources


  Need additional help?


  
    	
      The Apache Pulsar project website, https://pulsar.apache.org, is a good source of information about the configuration settings of various components of the Apache Pulsar software, as well as various cookbooks on how to implement specific features of the software, and it will have the most current information.

    


    	
      The Apache Pulsar Slack channel, apache-pulsar.slack.com, is an active forum where members of the Apache Pulsar community from around the world meet to exchange advice, share best practices, and provide troubleshooting advice to people who are experiencing problems with Pulsar. It is a great place to go for advice if you get stuck.

    


    	
      In my current capacity as a Developer Advocate, I will continue to develop additional educational content including blog posts and code examples that will be made readily available online at my company’s website, streamnative.io.

    

  


  






liveBook discussion forum


  Purchase of Apache Pulsar in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/apache-pulsar-in-action/discussion. You can also learn more about Manning’s forums and the rules of conduct at https:// livebook.manning.com/#!/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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        David Kjerrumgaard is a committer on the Apache Pulsar project and serves as a Developer Advocate for StreamNative with a focus on educating developers about Apache Pulsar. He was formerly the Global Practice Director at Hortonworks, where he was responsible for the development of best practices and solutions for the professional services team, with a focus on Streaming technologies including Kafka, NiFi, and Storm. He has both a BS and MS in computer science and mathematics from Kent State University.

      
    

  


  
about the cover illustration


  The figure on the cover of Apache Pulsar in Action is captioned “Cosaque,” or a Cossack man. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes civils actuels de tous les peuples connus, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.


  The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.


  At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.


  
Part 1 Getting started with Apache Pulsar


  Enterprise messaging systems (EMS) are designed to promote loosely coupled architectures that allow geographically distributed systems to communicate with one another by exchanging messages via a simple API that supports two basic operations: publish a message and subscribe to a topic (read messages). Over the course of their 40+ year history, enterprise messaging systems have given rise to several important distributed software architectural styles, including


  
    	
      Remote-procedure-call (RPC) programming, using technologies such as COBRA and Amazon Web Services, which enables programs developed in different languages to directly interact with one another.

    


    	
      Messaging-oriented middleware (MOM) programming for enterprise application integration, as exemplified by Apache Camel, which allows different systems to exchange information using a common message format using XML or a similar self-describing format.

    


    	
      Service-oriented-architecture (SOA), which promotes a modular programming-by-contract style that allowed applications to be composed of services that were combined in a specific way to perform the necessary business logic.

    


    	
      Event-driven-architecture (EDA), which promotes the production and detection of and reaction to individual changes in state, referred to as events, and writing code that detects and reacts to these individual events. This style was adopted in part to address the need to process continuous streams of internet-scale data, such as server logs and digital events like clickstreams.

    

  


  The EMS plays a key role in each of these architectural styles, as it serves as the underlying technology that allows these distributed components to communicate with one another by storing the intermediate messages and distributing to all the intended consumers in a timely manner. The key differentiator between communication via an EMS and some other network-only-based communication mechanisms is that an EMS is designed to guarantee message delivery. If an event is published to an EMS, it will be stored and forwarded to all the intended recipients, as opposed to a HTTP-based inter-microservices call that can be lost in the event of a network failure.


  These retained messages on an EMS have also proven to be valuable sources of information for organizations, which they can analyze to extract more business value. Consider the treasure trove of information on customer behavior that a company’s click stream provides them. Processing these types of data sources is referred to as stream processing because you are literally processing an unbounded stream of data. This is why there is great interest in processing these streams with analytical tools, such as Apache Flink or Spark.


  The first part of this book provides an evolutionary overview of the EMS with a focus on the core capabilities that were added at each evolutionary step. Having this background will help you better understand how various messaging systems compare with one another by knowing each generation’s strengths and weaknesses and the capabilities the next generation added along the way. At the end, I hope you understand why Apache Pulsar is an evolutionary step forward in the EMS lineage and worthy of your consideration as a critical piece of your company’s infrastructure.


  Chapter 1 provides a basic introduction to Apache Pulsar and where it fits in the 40-year evolution of messaging systems by comparing it to and contrasting it with the various messaging platforms that have come before it. Next, chapter 2 dives into the details of Pulsar’s physical architecture and how its multitiered architecture allows its storage and computing layers to scale independently of one another. It also describes some of the common message consumption patterns, how they are different from one another, and how Pulsar supports them all. Finally, chapter 3 demonstrates how to interact with Apache Pulsar from both the command line as well as by using its programming API. After completing this chapter, you should be comfortable running a local instance of Apache Pulsar and interacting with it.


  
1 Introduction to Apache Pulsar


  This chapter covers


  
    	
      The evolution of the enterprise messaging system

    


    	
      A comparison of Apache Pulsar to existing enterprise messaging systems

    


    	
      How Pulsar’s segment-centric storage differs from the partition-centric storage model used in Apache Kafka

    


    	
      Real-world use cases where Pulsar is used for stream processing, and why you should consider using Apache Pulsar

    

  


  Developed by Yahoo! in 2013, Pulsar was first open sourced in 2016, and only 15 months after joining the Apache Software Foundation’s incubation program, it graduated to top-level project status. Apache Pulsar was designed from the ground up to address the gaps in current open source messaging systems, such as multi-tenancy, geo-replication, and strong durability guarantees.


  The Apache Pulsar site describes it as a distributed pub-sub messaging system that provides very low publish and end-to-end latency, guaranteed message delivery, zero data loss, and a serverless, lightweight computing framework for stream data processing. Apache Pulsar provides three key capabilities for processing large data sets:


  
    	
      Real-time messaging —Enables geographically distributed applications and systems to communicate with one another in an asynchronous manner by exchanging messages. Pulsar’s goal is to provide this capability to the broadest audience of clients via support for multiple programming languages and binary messaging protocols.

    


    	
      Real-time compute —Provides the ability to perform user-defined computations on these messages inside of Pulsar itself and without the need for an external computational system to perform basic transformational operations, such as data enrichment, filtering, and aggregations.

    


    	
      Scalable storage —Pulsar’s independent storage layer and support for tiered storage enable the retention of your message data for as long as you need. There is no physical limitation on the amount of data that can be retained and accessed by Pulsar.

    

  


  
1.1 Enterprise messaging systems


  Messaging is a broad term that is used to describe the routing of data between producers and consumers. Consequently, there are several different technologies and protocols that have evolved over the years that provide this capability. Most people are familiar with messaging systems such as email, text messaging, and instant messaging applications, including WhatsApp and Facebook Messenger. Messaging systems within this category are designed to transmit text data and images over the internet between two or more parties. More-advanced instant messaging systems support Voice over IP (VoIP) and video chat capabilities as well. All of these systems were designed to support person-to-person communication over ad hoc channels.


  Another category of messaging system that people are already familiar with is video on demand streaming services, such as Netflix or Hulu, that stream video content to multiple subscribers simultaneously. These video streaming services are examples of one-way broadcast (one message to many consumers) transmissions of data to consumers that subscribe to an existing channel in order to receive the content. While these types of applications might be what comes to mind when using the terms messaging systems or streaming, for the purposes of this book, we will be focusing on enterprise messaging systems.


  An enterprise messaging system (EMS) is the software that provides the implementation of various messaging protocols, such as data distribution service (DDS), advanced message queuing protocol (AMQP), Microsoft message queuing (MSMQ), and others. These protocols support the sending and receiving of messages between distributed systems and applications in an asynchronous fashion. However, asynchronous communication wasn’t always an option, particularly during the earliest days of distributed computing when both client/server and remote procedure call (RPC) architectures were the dominant approach. Prime examples of RPC were the simple object access protocol (SOAP) and representational state transfer (REST) based web services that interacted with one another through fixed endpoints. Within both of these styles, when a process wanted to interact with a remote service, it needed to first determine the service’s remote location via a discovery service and then invoke the desired method remotely, using the proper parameters and types, as shown in figure 1.1.
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  Figure 1.1 Within an RPC architecture, an application invokes a procedure on a service that is running on a different host and must wait for that procedure call to return before it can continue processing.


  The calling application would then have to wait for the called procedure to return before it could continue processing. The synchronous nature of these architectures made applications based upon them inherently slow. In addition, there was the possibility that the remote service was unavailable for a period of time, which would require the application developer to use defensive programming techniques to identify this condition and react accordingly.


  Unlike the point-to-point communication channels used in RPC programming, where you had to wait for the procedure calls to provide a response, an EMS allows remote applications and services to communicate with one another via an intermediate service rather than directly with one another. Rather than having to establish a direct network communication channel between the calling/receiving applications over which the parameters are exchanged, an EMS can be used to retain these parameters in message form, and they are guaranteed to be delivered to the intended recipient for processing. This allows the caller to send its request asynchronously and await a response from the service they were trying to invoke. It also allows the service to communicate its response back in an asynchronous manner as well by publishing its result to the EMS for eventual delivery to the original caller. This decoupling promotes asynchronous application development by providing a standardized, reliable intra-component communication channel that serves as a persistent buffer for handling data, even when some of the components are offline, as you can see in figure 1.2.
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  Figure 1.2 An EMS allows distributed applications and services to exchange information in an asynchronous fashion.


  An EMS promotes loosely coupled architectures by allowing independently developed software components that are distributed across different systems to communicate with one another via structured messages. These message schemas are usually defined in language-neutral formats, such as XML, JSON, or Avro IDL, which allows the components to be developed in any programming language that supports those formats.


  
1.1.1 Key capabilities


  Now that we have introduced the concept of enterprise message systems and provided some context for the types of problems they have been used to solve, let’s further refine the definition of what an EMS is, based upon the capabilities it provides.


  Asynchronous communication


  Messaging systems allow services and applications to communicate with one another in a non-blocking manner, meaning that the message sender and receiver are not required to interact with the messaging system (or one another) at the same time. A messaging system will retain the messages until all of the intended recipients consume it.


  Message retention


  Unlike network-based messaging in which the messages only exist on the network, such as RPC, messages published to a messaging system are retained on disk until they are delivered. Undelivered messages can be held for hours, days, or even weeks, and most messaging systems allow you to specify the retention policy.


  Acknowledgment


  Messaging systems are required to retain messages until all of the intended recipients receive it; therefore, a mechanism by which the message consumers can acknowledge the successful delivery and processing of the message is required. This allows the messaging system to purge all successfully delivered messages and to retry message delivery to those consumers who have not yet received it.


  Message consumption


  Obviously, a messaging system isn’t particularly useful if it doesn’t provide a mechanism by which the intended recipients can consume messages. First and foremost, an EMS must guarantee that all the messages it receives get delivered. Oftentimes, a message might be intended for multiple consumers, and the EMS must maintain the information along with which messages have been delivered and to whom.


  
1.2 Message consumption patterns


  With an EMS, you have the option of publishing messages to either a topic or a queue, and there are fundamental differences between the two. A topic supports multiple concurrent consumers of the same message. Any message published to a topic is automatically broadcast to all of the consumers who have subscribed to the topic. Any number of consumers can subscribe to a topic in order to receive the information being sent—like any number of users can subscribe to Netflix and receive their streaming content.


  
1.2.1 Publish-subscribe messaging


  In publish and subscribe messaging, producers publish messages to named channels, known as topics. Consumers can then subscribe to those topics to receive the incoming messages. A publish-subscribe (pub-sub) message channel receives incoming messages from multiple producers and stores them in the exact order that they arrive. However, it differs from message queuing on the consumption side because it supports multiple consumers receiving each message in a topic via a subscription mechanism, as shown below in figure 1.3.
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  Figure 1.3 With pub-sub message consumption, each message is delivered to each and every subscription that has been established on the topic. In this case, message M0 was delivered to subscriptions through N inclusive.


  Publish-subscribe messaging systems are ideally suited for use cases that require multiple consumers to receive each message or those in which the order in which the messages are received and processed is crucial for maintaining a correct system state. Consider the case of a stock price service that can be used by a large number of systems. Not only is it important that these services receive all the messages, but it is also equally important that the price changes arrive in the correct order.


  
1.2.2 Message queuing


  Queues, on the other hand, provide first in, first out (FIFO) message delivery semantics to one or more competing consumers, as shown in figure 1.4. With queues, the messages are delivered in the order they are received, and only one message consumer receives and processes an individual message, rather than all of them. These are perfect for queuing up messages that represent events that trigger some work to be performed, such as orders into a fulfillment center for dispatch. In this scenario, you want each order processed just once.


  Message queues can easily support higher rates of consumption by scaling up the number of consumers in the event of a high number of backlogged messages. To ensure that a message is processed exactly once, each message must be removed from the queue after it has been successfully processed and acknowledged by the consumer. Due to its exactly-once processing guarantees, message queuing is ideal for work queue use cases.
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  Figure 1.4 With queue-based message consumption, each message is delivered to exactly one consumer. In this case, message M0 was consumed by consumer 1, M1 by consumer 2, etc.


  In the event of consumer failures (meaning no acknowledgment is received within a specified timeframe), the message will be resent to another consumer. In such a scenario, the message will most likely be processed out of order. Therefore, message queues are well suited for use cases where it is critical that each message is processed exactly once, but the order in which the messages are processed is not important.


  
1.3 The evolution of messaging systems


  Now that we have clearly defined what constitutes an EMS along with the core capabilities it provides, I would like to provide a brief historical review of messaging systems and how they have evolved over the years. Messaging systems have been around for decades and have been effectively used within many organizations, so Apache Pulsar isn’t some brand-new technology that emerged on the scene but rather another step in the evolution of the messaging system. By providing some historical context, my hope is that you will be able to understand how Pulsar compares to existing messaging systems.


  
1.3.1 Generic messaging systems


  Before I jump into specific messaging systems, I wanted to present a simplified representation of a messaging system in order to highlight the underlying components that all messaging systems have. Identifying these core features will provide a basis for comparison between messaging systems over time.


  As you can see in figure 1.5, every messaging system consists of two primary layers, each with its own specific responsibilities that we will explore next. We will examine the evolution of messaging systems across each of these layers in order to properly categorize and compare different messaging systems, including Apache Pulsar.
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  Figure 1.5 Every messaging system can be separated into two distinct architectural layers.


  Serving layer


  The serving layer is a conceptual layer within an EMS that interacts directly with the message producers and consumers. Its primary purpose is to accept incoming messages and route them to one or more destinations. Therefore, it communicates via one or more of the supported messaging protocols, such as DDS, AMQP, or MSMQ. Consequently, this layer is heavily dependent on network bandwidth for communication and CPU for message protocol translation.


  Storage layer


  The storage layer is the conceptual layer within an EMS that is responsible for the persistence and retrieval of the messages. It interacts directly with the serving layer to provide the requested messages and is responsible for retaining the proper order of the messages. Consequently, this layer is heavily dependent on the disk for message storage.


  
1.3.2 Message-oriented middleware


  The first category of messaging systems is often referred to as message-oriented middleware (MOM), which was designed to provide inter-process communication and application integration between distributed systems running on different networks and operating systems. One of the most prominent MOM implementations was IBM WebSphere MQ, which debuted in 1993.


  The earliest implementations were designed to be deployed on a single machine that was often located deep within the company’s datacenter. Not only was this a single point of failure, it also meant that the scalability of the system was limited to the physical hardware capacity of the host machine because this single server was responsible for handling all client requests and storing all messages, as shown in figure 1.6. The number of concurrent producers and consumers these single-server MOM systems could serve was limited by the bandwidth of the network card, and the storage capacity was limited by the physical disk on the machine.
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  Figure 1.6 Message-oriented middleware was designed to be hosted on a single server and therefore hosted all of the message topics and handled requests from all clients.


  To be fair, these limitations were not limited to just IBM, but are rather a limitation of all messaging systems that were designed to be hosted on a single machine, including RabbitMQ and RocketMQ, among many others. In fact, this limitation wasn’t limited to just messaging systems of this era, but rather was pervasive across all types of enterprise software that were designed to run on one physical host.


  Clustering


  Eventually these scalability issues were addressed though the addition of clustering capabilities to these single-server MOM systems. This allowed multiple single-service instances to share the processing of the messages and provide some load balancing, as shown in figure 1.7. Even though the MOM was clustered, in reality it just meant that each single-service instance was responsible for serving and storing messages for a subset of all the topics. A similar approach, called sharding, was taken by relational databases during this period to address this scalability issue.
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  Figure 1.7 Clustering allowed the load to be spread across multiple servers instead of just one. Each server in the cluster was responsible for handling only a portion of the topics.


  In the event of topic “hot-spots,” the unlucky server assigned that particular topic could still become a bottleneck or potentially run out of storage capacity as well. In the event that any one of these servers in the cluster were to fail, it would take all of the topics it was serving down with it. While this did minimize the impact of the failure on the cluster as a whole (i.e., it continued to run) it was a single point of failure for the particular topics/queues it was serving.


  This limitation required organizations to meticulously monitor their message distribution in order to align their topic distribution to match their underlying physical hardware and ensure that the load was evenly distributed across the cluster. Even then, there was still the possibility that a single topic could be problematic. Consider the scenario where you work for a major financial institution, and you want a single topic to store all the trade information for a particular stock and provide this information to all the trade desk applications within your organization. The sheer number of consumers and volume of data for this one topic could easily overwhelm a single server that was dedicated to serving just that topic. What was needed in such a scenario was the ability to distribute the load of a single topic across multiple machines, which, as we shall see, is exactly what distributed messaging systems do.


  
1.3.3 Enterprise service bus


  Enterprise service buses (ESB) emerged during the early part of this century when XML was the preferred message format used for implementing service-oriented architecture (SOA) applications using SOAP-based web services. The core concept of ESBs was the message bus, as shown in figure 1.8, which served as a communication channel between all applications and services. This centralized architecture is in direct contrast to the point-to-point integration previously used by other message-oriented middleware.
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  Figure 1.8 The core concept of ESBs is the use of a message bus in order to eliminate the need for point-to-point communication. Service A merely publishes its message to the bus, and it is automatically routed to applications B and C.


  With an ESB, each application or service would send and receive all its messages over a single communication channel, rather than having to specify the specific topic names they wanted to publish and consume from. Each application would register itself with the ESB and specify a set of rules used to identify which messages it was interested in, and the ESB would handle all of the logic necessary to dynamically route messages from the bus that matched those rules. Similarly, each service was no longer required to know the intended target(s) of its messages beforehand and could simply publish its messages to the bus and allow it to route the messages.


  Consider the scenario where you have a large XML document that contains hundreds of individual line items within a single customer order, and you want to route only a subset of those items to a service based upon some criteria within the message itself (e.g., by product category or department). An ESB provided the capability to extract those individual messages (based on the results of an XQuery) and route them to different consumers based on the content of the message itself.


  In addition to these dynamic routing capabilities, ESBs also took the first evolutionary step down the road of stream processing by emphasizing the capabilities to process the messages inside the messaging system itself, rather than having the consuming applications perform this task. Most ESBs provided message transformation services, often via XSLT or XQuery, which handled the translation of message formats between the sending and receiving services. They also provided message enrichment and processing capabilities into the message system itself, which up until that point had been performed by the applications receiving the messages. This was a fundamentally new way of thinking about messaging systems that had previously been used almost exclusively as a transportation mechanism.


  One could argue that the ESB was the first category of EMS to introduce a third layer to the basic architecture of messaging systems, as shown in figure 1.9. In fact, today most modern ESBs support more advanced computing capabilities, including process choreography for managing business process flows, complex event processing for event correlation and pattern matching, and out-of-the-box implementations of several enterprise integration patterns.
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  Figure 1.9 The ESB’s emphasis on dynamic routing and message processing represented the first time stream processing capabilities were added to a messaging system. This introduced a whole new architectural layer to the base messaging system architecture.


  The ESB’s other significant contribution to the evolution of the messaging system was its focus on integration with external systems, which forced messaging systems to support a wide variety of non-messaging protocols for the first time. While ESBs still fully support AMQP and other pub-sub messaging protocols, a key differentiator of ESB was its ability to move data onto and off of the bus from non-message-oriented systems, such as email, databases, and other third-party systems. In order to do this, ESBs provided software development kits (SDKs) that allowed developers to implement their own adapters to integrate with their system of choice.


  As you can see in figure 1.10, this allowed data to be more readily exchanged between systems, which simplified the integration of a variety of systems. In this role, the ESB served as both the message-passing infrastructure as well as the mediator between the systems that provided the protocol transformation.
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  Figure 1.10 ESBs supported the integration of non-message-based systems into the message bus, thereby expanding the messaging capabilities beyond applications and into third-party applications, such as databases.


  While ESBs undoubtedly pushed the EMS forward with these innovations and features and are still very popular today, they are centralized systems that are designed to be deployed on a single host. Consequently, they suffer from the same scalability issues as their MOM predecessors.


  
1.3.4 Distributed messaging systems


  A distributed system can be described as a collection of computers working together to provide a service or feature, such as a filesystem, key-value store, or database, that acts as though they are running on a single computer to the end user. That is to say, the end user isn’t aware of the fact that the service is being provided by a collection of machines working together. Distributed systems have a shared state, operate concurrently, and are able to tolerate hardware failures without affecting the availability of the system as a whole.


  When the distributed computing paradigm started becoming widely adopted, as popularized by the Hadoop computing framework, the single-machine constraint was lifted. This ushered in an era where new systems were developed that distributed the processing and storage across multiple machines. One of the biggest benefits of distributed computing is the ability to scale the system horizontally, simply by adding new machines to the system. Unlike their non-distributed predecessors that were constrained to the physical hardware capacity of a single machine, these newly developed systems could now leverage the resources from hundreds of machines easily and cost effectively.


  As you can see in figure 1.11, messaging systems, just like databases and computation frameworks, have also made the transition to the distributed computing paradigm as well. Newer messaging systems, with Apache Kafka being the first and, more recently, Apache Pulsar, have adopted the distributed computing model in order to provide the scalability and performance required by modern enterprises.
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  Figure 1.11 Within a distributed messaging system, several nodes act together to behave as a single logic system from the perspective of the end user. Internally, the data storage and message processing are distributed across all the nodes.


  Within a distributed messaging system, the contents of a single topic are distributed across multiple machines in order to provide horizontally scalable storage at the message layer, which is something that was not possible with previous messaging systems. Distributing the data across several nodes in the cluster also provides several advantages, including redundancy and high availability of the data, increased storage capacity for messages, increased message throughput due to the increased number of message brokers, and the elimination of a single point of failure within the system.


  The key architectural difference between a distributed messaging system and a clustered single-node system is the way in which the storage layer is designed. In the previous single-node systems, the message data for any given topic was all stored together on the same machine, which allowed the data to be served quickly from a local disk. However, as we mentioned earlier, this limited the size of the topic to the capacity of the local disk on that machine. Within a distributed messaging system, the data is distributed across several machines within the cluster. This distribution of data across multiple machines allowed us to retain messages within an individual topic that exceeded the storage capacity of an individual machine. The key architectural abstraction that makes this distribution of data possible is the write-ahead log, which treats the contents of a message queue as a single append-only data structure that messages can be stored in.


  As you can see in figure 1.12, from a logical perspective, when a new message is published to the topic, it is appended to the end of the log. However, from a physical perspective, the message can be written to any server within the cluster.
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  Figure 1.12 The key architectural concept underlying distributed messaging systems is the append-only log (aka the write-ahead log). From a logical perspective, the messages within a topic are all stored sequentially, but are stored in a distributed fashion across multiple servers.


  This provides distributed messaging systems with a far more scalable storage capacity layer than the previous generations of messaging systems. Another benefit of the distributed messaging architecture is the ability of more than one broker to serve the messages for any given topic, which increases the message production and consumption throughput by spreading the load across multiple machines. For example, messages published to the topic shown in figure 1.12 would be handled by three separate servers, each with its own write path to disk. This would result in a higher write rate, since the load is spread across multiple disks rather than just a single disk, as it was in the previous generation of messaging systems. There are two distinct approaches taken when it comes to how the data is distributed across the nodes in the cluster: partition-based and segment-based.


  Partition-centric storage in Kafka


  When using the partition-based strategy within a messaging system, the topic is divided into a fixed number of groupings known as partitions. Data that is published to the topic is distributed across the partitions, as shown in figure 1.13, with each partition receiving a portion of the messages published to the topic. The total storage capacity of the topic is now equal to the number of partitions in the topic times the size of each partition. Once this limit is reached, no more data can be added to the topic. Simply adding more brokers to the cluster will not alleviate this issue because you will also need to increase the number of partitions in the topic, which must be performed manually. Furthermore, increasing the number of partitions also requires a rebalance to be performed, which, as I will discuss, is an expensive and time-consuming process.
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  Figure 1.13 Message storage in a partition-based messaging system


  Within a partition-centric storage-based system, the number of partitions is specified when the topic is created, as this allows the system to determine which nodes will be responsible for storing which partition, etc. However, predetermining the number of partitions has a few unintended side effects, including the following:


  
    	
      A single partition can only be stored on a single node within the cluster, so the size of the partition is limited to the amount of free disk space on that node.

    


    	
      Since the data is evenly distributed across all partitions, each partition is limited to the size of the smallest partition in the topic. For instance, if a topic is distributed across three nodes with 4 TB, 2 TB, and 1 TB of free disk, respectively, then the partition on the third node can only grow to 1 TB in size, which in turn means all partitions in the topic can only grow to 1 TB as well.

    


    	
      Although it isn’t strictly required, each partition is usually replicated multiple times to different nodes to ensure data redundancy. Therefore, the maximum partition size is further restricted to the size of the smallest replica.

    

  


  In the event that you run into one of these capacity limitations, your only remedy is to increase the number of partitions in the topic. However, this capacity expansion process requires rebalancing the entire topic, as shown in figure 1.14. During this rebalancing process, the existing topic data is redistributed across all of the topic partitions in order to free up disk space on the existing nodes. Therefore, when you add a fourth partition to an existing topic, each partition should have approximately 25% of the total messages once the rebalancing process has completed.
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  Figure 1.14 Increasing the storage capacity of a partition-based topic incurs the cost of rebalancing, in which a portion of the data from the existing partitions is copied over to the newly added partition(s) in order to free up disk space on the existing nodes.


  This recopying of data is expensive and error prone, as it consumes network bandwidth and disk I/O directly proportional to the size of the topic (e.g., rebalancing a 10 TB topic would result in 10 TB of data being read from disk, transmitted over the network, and written to disk on the target brokers). Only after the rebalancing process has completed can the previously existing data be deleted and the topic resume serving clients. Therefore, it is advisable to choose your partition sizing wisely, as the cost to rebalance cannot be easily dismissed.


  In order to provide redundancy and failover for the data, you can configure the partitions to be replicated across multiple nodes. This ensures that there is more than one copy of the data available on disk even in the event of a node failure. The default replica setting is three, which means that the system will retain three copies of each message. While this is a good trade-off in terms of space for redundancy, you need to account for this additional storage requirement when you size your Kafka cluster.


  Segment-centric storage in Pulsar


  Pulsar relies upon the Apache BookKeeper projects to provide the persistent storage of its messages. BookKeeper’s logical storage model is based on the concept of boundless stream entries stored as a sequential log. As you can see in figure 1.15, within BookKeeper each log is broken down into smaller chunks of data, known as segments, which in turn are comprised of multiple log entries. These segments are then written across a number of nodes, known as bookies, in the storage layer for redundancy and scale.
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  Figure 1.15 Message storage in a segment-centric messaging system is done by writing a predetermined number of messages into a “segment” and then storing multiple replicas of the segment across different nodes in the storage layer.


  As you can see from figure 1.15, the segments can be placed anywhere on the storage layer that has sufficient disk capacity. When there isn’t sufficient storage capacity in the storage layer for new segments, new nodes can be easily added and used immediately for storing data. One of the key benefits of segment-centric storage architecture is true horizontal scalability as segments can be created indefinitely and stored anywhere, unlike partition-centric storage which imposes artificial limitations to both vertical and horizontal scaling based on the number of partitions.


  
1.4 Comparison to Apache Kafka


  Apache Kafka and Apache Pulsar are both distributed messaging systems that have similar messaging concepts. Clients interact with both systems via topics that are logically treated as unbounded, append-only streams of data. However, there are some fundamental differences between Apache Pulsar and Apache Kafka when it comes to scalability, message consumption, data durability, and message retention.


  
1.4.1 Multilayered architecture


  Apache Pulsar’s multilayered architecture completely decouples the message-serving layer from the message-storage layer, allowing each to scale independently. Traditional distributed messaging technologies, such as Kafka, have taken the approach of co-locating data processing and data storage on the same cluster nodes or instances. That design choice offers a simpler infrastructure and some performance benefits due to reducing the transfer of data over the network, but at the cost of a lot of tradeoffs that impact scalability, resiliency, and operations.
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  Figure 1.16 Monolithic distributed architectures co-locate the serving and storage layers, while Pulsar uses a multilayer architecture that decouples the storage and serving layers from one another, which allows them to scale independently.


  Pulsar’s architecture takes a very different approach—one that’s starting to gain traction in a number of cloud-native solutions and that is made possible in part by the significant improvements in network bandwidth that are commonplace today: namely the separation of compute and storage. Pulsar’s architecture decouples data serving and data storage into separate layers: data serving is handled by stateless broker nodes, while data storage is handled by bookie nodes, as shown in figure 1.16. This decoupling has several benefits, including dynamic scalability, zero downtime upgrades, and infinite storage capacity upgrades, just to name a few. Further, this design is container-friendly, making Pulsar the ideal technology for hosting a cloud-native streaming system.


  Dynamic scaling


  Consider the case where we have a service that is CPU-intensive and whose performance starts to degrade when the requests exceed a certain threshold. In such a scenario, we need to horizontally scale the infrastructure to provide new machines and instances of the application to distribute the load when the CPU usage goes above 90% on the current machine. Rather than relying on a monitoring tool to alert your DevOps team to this condition and having them perform this process manually, it would be preferable to have the entire process automated.


  Autoscaling is a common feature of all public cloud providers, such as AWS, Microsoft Azure, Google Cloud, and Kubernetes. It allows autoscaling of the infrastructure horizontally based on resource utilization metrics, such as CPU/memory, without any human interaction. While it is true that this capability is not exclusive to Pulsar and can be leveraged by any other messaging platforms to scale up during high traffic conditions, it is much more useful in a multitiered architecture such as Pulsar’s for two reasons we will discuss.


  Pulsar’s stateless brokers in the serving layer also enable the ability to scale the infrastructure down once the spike has passed, which translates directly into cost savings in a public cloud environment. Other messaging systems that use a monolithic architecture cannot scale down the nodes due to the fact that the nodes contain data on their attached hard drives. Removal of the excess nodes can only be done once that data has been completely processed or has been moved to another node that will remain in the cluster. Neither of these can be performed in an automated fashion easily.


  Secondly, in a monolithic architecture, such as Apache Kafka, the broker can only serve requests for data that is stored on an attached disk. This limits the usefulness of autoscaling the cluster in response to traffic spikes, because the newly added nodes to the Kafka cluster will not have any data to serve and, therefore, will not be able to handle any incoming requests to read existing data from the topics. The newly added nodes will only be able to handle write requests.


  Lastly, in a monolithic architecture such as Apache Kafka, horizontal scaling is achieved by adding new nodes that have both storage and serving capacity, regardless of which metric you are tracking and responding to. Therefore, when you scale up your serving capacity in response to high CPU usage, you are also scaling up your storage capacity whether you actually need additional storage or not and vice-versa


  Auto-recovery


  Before you move your messaging platform into production, you will need to understand how to recover from various failure scenarios, starting with a single node failure. In a multitiered architecture such as Pulsar, the process is very straightforward. Since the broker nodes are stateless, they can be replaced by spinning up a new instance of the service to replace the one that failed without a disruption of service or any other data replacement considerations. At the storage layer, multiple replicas of the data are distributed across multiple nodes, which can be easily replaced with new nodes in the event of a failure. In either scenario, Pulsar can rely on cloud-provider mechanisms, such as autoscaling groups, to ensure that a minimum number of nodes are always running. Monolithic architectures, such as Kafka, will suffer again from the fact that newly added nodes to the Kafka cluster will not have any data to serve and, therefore, will only be able to handle incoming write requests.


  
1.4.2 Message consumption


  Reading messages from a distributed messaging system is a bit different from reading them from a legacy messaging system, as distributed messaging systems were designed to support a large number of concurrent consumers. The way in which the data is consumed is driven in large part by the way it is stored inside the system itself, with both partition-centric and segment-centric systems having their own unique way of supporting pub-sub semantics for consumers.


  Message consumption in Kafka


  Within Kafka, all consumers belong to what is referred to as a consumer group, which forms a single logical subscriber for a topic. Each group is composed of many consumer instances for scalability and fault tolerance, so if one instance fails, the remaining consumers will take over. By default, a new consumer group is created whenever an application subscribes to a Kafka topic. An application can leverage an existing consumer group by providing the group.id as well.


  According to the Kafka documentation, “The way consumption is implemented in Kafka is by dividing up the partitions in the log over the consumer instances so that each instance is the exclusive consumer of a ‘fair share’ of partitions at any point in time” (https://docs.confluent.io/5.5.5/kafka/introduction.html). In layman’s terms, this means that each partition within a topic can only have one consumer at a time, and the partitions are distributed evenly across the consumers within the group. As shown in figure 1.17, if a consumer group has less members than partitions, then some consumers will be assigned to multiple partitions, but if you have more consumers than partitions, the excess consumers will remain idle and only take over in the event of a consumer failure.


  [image: CH01_F17_Kjerrumgaard]



  Figure 1.17 Kafka’s consumer groups are closely tied to the partition concept. This limits the number of concurrent topic consumers to the number of topic partitions.


  One important side effect of creating exclusive consumers is that within a consumer group, the number of active consumers can never exceed the number of partitions in the topic. This limitation can be problematic, as the only way of scaling data consumption from a Kafka topic is by adding more consumers to a consumer group. This effectively limits the amount of parallelism to the number of partitions, which in turn limits the ability to scale up data consumption in the event that your consumers cannot keep up the topic producers. Unfortunately, the only remedy to this is to increase the number of topic partitions, which as we discussed earlier, is not a simple, fast, or cheap operation.
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