

 [image: manning]

 Generative AI in Action

 Amit Bahree

 To comment go to livebook.

 [image: manning]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to manning.com.

 copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

   Special Sales Department

   Manning Publications Co.

   20 Baldwin Road        

   PO Box 761

   Shelter Island, NY 11964 

   Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 The author and publisher have made every effort to ensure that the information in this book was correct at press time. The author and publisher do not assume and hereby disclaim any liability to any party for any loss, damage, or disruption caused by errors or omissions, whether such errors or omissions result from negligence, accident, or any other cause, or from any usage of the information herein.

 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964

 Development editor: Rebecca Johnson
 Technical editor: Wee Hyong Tok
 Review editor: Radmila Ercegovac
 Production editor: Kathy Rossland
 Copy editor: Lana Todorovic-Arndt
 Proofreader: Melody Dolab
 Technical proofreader: John Aziz
 Typesetter and cover designer: Marija Tudor

 ISBN 9781633436947

 Printed in the United States of America

 dedication

 To my family, who patiently listened to my tech rambles,

 although they were no help in writing this book and will never read it,

 and to you, dear reader, who boldly chose to engage with these ideas—

 may your neurons spark joy and your circuits never short.

 Together, let’s build a future where AI is more brains than brawn.

 contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Foundations of generative AI

 1 Introduction to generative AI

 1.1 What is this book about?

 1.2 What is generative AI?

 1.3 What can we generate?

 1.3.1 Entities extraction

 1.3.2 Generating text

 1.3.3 Generating images

 1.3.4 Generating code

 1.3.5 Ability to solve logic problems

 1.3.6 Generating music

 1.3.7 Generating videos

 1.4 Enterprise use cases

 1.5 When not to use generative AI

 1.6 How is generative AI different from traditional AI?

 1.7 What approach should enterprises take?

 1.8 Architecture considerations

 1.9 So your enterprise wants to use generative AI. Now what?

 2 Introduction to large language models

 2.1 Overview of foundational models

 2.2 Overview of LLMs

 2.3 Transformer architecture

 2.4 Training cutoff

 2.5 Types of LLMs

 2.6 Small language models

 2.7 Open source vs. commercial LLMs

 2.7.1 Commercial LLMs

 2.7.2 Open source LLMs

 2.8 Key concepts of LLMs

 2.8.1 Prompts

 2.8.2 Tokens

 2.8.3 Counting tokens

 2.8.4 Embeddings

 2.8.5 Model configuration

 2.8.6 Context window

 2.8.7 Prompt engineering

 2.8.8 Model adaptation

 2.8.9 Emergent behavior

 3 Working through an API: Generating text

 3.1 Model categories

 3.1.1 Dependencies

 3.1.2 Listing models

 3.2 Completion API

 3.2.1 Expanding completions

 3.2.2 Azure content safety filter

 3.2.3 Multiple completions

 3.2.4 Controlling randomness

 3.2.5 Controlling randomness using top_p

 3.3 Advanced completion API options

 3.3.1 Streaming completions

 3.3.2 Influencing token probabilities: logit_bias

 3.3.3 Presence and frequency penalties

 3.3.4 Log probabilities

 3.4 Chat completion API

 3.4.1 System role

 3.4.2 Finish reason

 3.4.3 Chat completion API for nonchat scenarios

 3.4.4 Managing conversation

 3.4.5 Best practices for managing tokens

 3.4.6 Additional LLM providers

 4 From pixels to pictures: Generating images

 4.1 Vision models

 4.1.1 Variational autoencoders

 4.1.2 Generative adversarial networks

 4.1.3 Vision transformer models

 4.1.4 Diffusion models

 4.1.5 Multimodal models

 4.2 Image generation with Stable Diffusion

 4.2.1 Dependencies

 4.2.2 Generating an image

 4.3 Image generation with other providers

 4.3.1 OpenAI DALLE 3

 4.3.2 Bing image creator

 4.3.3 Adobe Firefly

 4.4 Editing and enhancing images using Stable Diffusion

 4.4.1 Generating using image-to-image API

 4.4.2 Using the masking API

 4.4.3 Resize using the upscale API

 4.4.4 Image generation tips

 5 What else can AI generate?

 5.1 Code generation

 5.1.1 Can I trust the code?

 5.1.2 GitHub Copilot

 5.1.3 How Copilot works

 5.2 Additional code-related tasks

 5.2.1 Code explanation

 5.2.2 Generate tests

 5.2.3 Code referencing

 5.2.4 Code refactoring

 5.3 Other code generation tools

 5.3.1 Amazon CodeWhisperer

 5.3.2 Code Llama

 5.3.3 Tabnine

 5.3.4 Check yourself

 5.3.5 Best practices for code generation

 5.4 Video generation

 5.5 Audio and music generation

 Part 2 Advanced techniques and applications

 6 Guide to prompt engineering

 6.1 What is prompt engineering?

 6.1.1 Why do we need prompt engineering?

 6.2 The basics of prompt engineering

 6.3 In-context learning and prompting

 6.4 Prompt engineering techniques

 6.4.1 System message

 6.4.2 Zero-shot, few-shot, and many-shot learning

 6.4.3 Use clear syntax

 6.4.4 Making in-context learning work

 6.4.5 Reasoning: Chain of Thought

 6.4.6 Self-consistency sampling

 6.5 Image prompting

 6.6 Prompt injection

 6.7 Prompt engineering challenges

 6.8 Best practices

 7 Retrieval-augmented generation: The secret weapon

 7.1 What is RAG?

 7.2 RAG benefits

 7.3 RAG architecture

 7.4 Retriever system

 7.5 Understanding vector databases

 7.5.1 What is a vector index?

 7.5.2 Vector search

 7.6 RAG challenges

 7.7 Overcoming challenges for chunking

 7.7.1 Chunking strategies

 7.7.2 Factors affecting chunking strategies

 7.7.3 Handling unknown complexities

 7.7.4 Chunking sentences

 7.7.5 Chunking using natural language processing

 7.8 Chunking PDFs

 8 Chatting with your data

 8.1 Advantages to enterprises using their data

 8.1.1 What about large context windows?

 8.1.2 Building a chat application using our data

 8.2 Using a vector database

 8.3 Planning for retrieving the information

 8.4 Retrieving the data

 8.4.1 Retriever pipeline best practices

 8.5 Search using Redis

 8.6 An end-to-end chat implementation powered by RAG

 8.7 Using Azure OpenAI on your data

 8.8 Benefits of bringing your data using RAG

 9 Tailoring models with model adaptation and fine-tuning

 9.1 What is model adaptation?

 9.1.1 Basics of model adaptation

 9.1.2 Advantages and challenges for enterprises

 9.2 When to fine-tune an LLM

 9.2.1 Key stages of fine-tuning an LLM

 9.3 Fine-tuning OpenAI models

 9.3.1 Preparing a dataset for fine-tuning

 9.3.2 LLM evaluation

 9.3.3 Fine-tuning

 9.3.4 Fine-tuning training metrics

 9.3.5 Fine-tuning using Azure OpenAI

 9.4 Deployment of a fine-tuned model

 9.4.1 Inference: Fine-tuned model

 9.5 Training an LLM

 9.5.1 Pretraining

 9.5.2 Supervised fine-tuning

 9.5.3 Reward modeling

 9.5.4 Reinforcement learning

 9.5.5 Direct policy optimization

 9.6 Model adaptation techniques

 9.6.1 Low-rank adaptation

 9.7 RLHF overview

 9.7.1 Challenges with RLHF

 9.7.2 Scaling an RLHF implementation

 Part 3 Deployment and ethical considerations

 10 Application architecture for generative AI apps

 10.1 Generative AI: Application architecture

 10.1.1 Software 2.0

 10.1.2 The era of copilots

 10.2 Generative AI: Application stack

 10.2.1 Integrating the GenAI stack

 10.2.2 GenAI architecture principles

 10.2.3 GenAI application architecture: A detailed view

 10.3 Orchestration layer

 10.3.1 Benefits of an orchestration framework

 10.3.2 Orchestration frameworks

 10.3.3 Managing operations

 10.3.4 Prompt management

 10.4 Grounding layer

 10.4.1 Data integration and preprocessing

 10.4.2 Embeddings and vector management

 10.5 Model layer

 10.5.1 Model ensemble architecture

 10.5.2 Model serving

 10.6 Response filtering

 11 Scaling up: Best practices for production deployment

 11.1 Challenges for production deployments

 11.2 Deployment options

 11.3 Managed LLMs via API

 11.4 Best practices for production deployment

 11.4.1 Metrics for LLM inference

 11.4.2 Latency

 11.4.3 Scalability

 11.4.4 PAYGO

 11.4.5 Quotas and rate limits

 11.4.6 Managing quota

 11.4.7 Observability

 11.4.8 Security and compliance considerations

 11.5 GenAI operational considerations

 11.5.1 Reliability and performance considerations

 11.5.2 Managed identities

 11.5.3 Caching

 11.6 LLMOps and MLOps

 11.7 Checklist for production deployment

 12 Evaluations and benchmarks

 12.1 LLM evaluations

 12.2 Traditional evaluation metrics

 12.2.1 BLEU

 12.2.2 ROUGE

 12.2.3 BERTScore

 12.2.4 An example of traditional metric evaluation

 12.3 LLM task-specific benchmarks

 12.3.1 G-Eval: A measuring approach for NLG evaluation

 12.3.2 An example of LLM-based evaluation metrics

 12.3.3 HELM

 12.3.4 HEIM

 12.3.5 HellaSWAG

 12.3.6 Massive Multitask Language Understanding

 12.3.7 Using Azure AI Studio for evaluations

 12.3.8 DeepEval: An LLM evaluation framework

 12.4 New evaluation benchmarks

 12.4.1 SWE-bench

 12.4.2 MMMU

 12.4.3 MoCa

 12.4.4 HaluEval

 12.5 Human evaluation

 13 Guide to ethical GenAI: Principles, practices, and pitfalls

 13.1 GenAI risks

 13.1.1 LLM limitations

 13.1.2 Hallucination

 13.2 Understanding GenAI attacks

 13.2.1 Prompt injection

 13.2.2 Insecure output handling example

 13.2.3 Model denial of service

 13.2.4 Data poisoning and backdoors

 13.2.5 Sensitive information disclosure

 13.2.6 Overreliance

 13.2.7 Model theft

 13.3 A responsible AI lifecycle

 13.3.1 Identifying harms

 13.3.2 Measure and evaluate harms

 13.3.3 Mitigate harms

 13.3.4 Transparency and explainability

 13.4 Red-teaming

 13.4.1 Red-teaming example

 13.4.2 Red-teaming tools and techniques

 13.5 Content safety

 13.5.1 Azure Content Safety

 13.5.2 Google Perspective API

 13.5.3 Evaluating content filters

 appendix A The book’s GitHub repository

 appendix B Responsible AI tools

 B.1 Model card

 B.2 Transparency notes

 B.3 HAX Toolkit

 B.4 Responsible AI Toolbox

 B.5 Learning Interpretability Tool (LIT)

 B.6 AI Fairness 360

 B.7 C2PA

 References

 index

 foreword

 Generative AI is a transformative force for technology and society. Generative AI in Action, written by Amit Bahree, is a must-read for anyone who wants to build the applications and services that are the future of software.

 This practical and interesting book introduces the basics of generative AI, diving deep into large language models, the backbone of many generative AI applications, discussing their architecture, training, and various use cases. Written for practitioners, it provides detailed guidance on working through APIs for text generation, a core application of generative AI. You’ll enjoy the examples demonstrating the generation of images, code, and even music, showcasing the versatility of these models. Included prompt-engineering techniques are particularly valuable, offering readers strategies to optimize their interactions with AI models. Amit’s clear explanations and step-by-step instructions make even the advanced topics accessible and actionable.

 Generative AI in Action doesn’t stop at the technical aspects. You’ll also explore the operational challenges of deploying generative AI at scale, providing best practices for production environments. These include architecture considerations, performance optimization, and maintenance strategies, ensuring the insights are theoretical and actionable. The discussions on responsible AI practices, including fairness, transparency, and security, are essential reading for anyone deploying AI technologies in real-world scenarios. Because every topic is grounded in real-world applications, the theoretical concepts become tangible and relevant.

 Amit’s extensive experience and expertise in AI and machine learning are evident throughout this book. His ability to simplify complex topics makes this book an invaluable resource for newcomers and seasoned professionals.

 In Generative AI in Action, Amit has created a comprehensive and accessible guide that makes this transformative technology approachable and practical. Whether you are a developer, data scientist, or business leader, this book will equip you with the knowledge and tools to effectively harness the power of generative AI.

 —Eric Boyd

 CVP Engineering, AI Platform, Microsoft

 preface

 With nearly 30 years of experience as a developer and applied researcher, I have been involved in fundamental technology shifts from the early days. Generative artificial intelligence (AI) is one of those areas where the hype and the fear of missing out reach stratospheric levels! Organizations are trying to understand this new technology and how to implement it. Some of this means trying to gain an edge; in other cases, it is responding to the market and the pressure from the board and CEOs to join the trend.

 At Microsoft, I have the privilege of being part of the Azure AI platform engineering team, helping develop some of our advanced AI technologies, such as Azure OpenAI, and Azure AI Services, including speech, vision, and small language models (e.g., the new Phi family of models). Part of my role has been collaborating with many Fortune 500 companies that are our clients. These companies are scattered around the world, representing different industry domains, with many of them being leaders in their fields.

 My experience with GenAI across various domains and applications, particularly in collaboration with Fortune 500 companies, has revealed that there is a gap between the hype and the reality of generative AI. I’ve noticed that many users and customers are confused or intimidated by the complexity and challenges of this field. In response, I set out to write a book to bridge this gap, providing a practical and accessible guide to generative AI. This guide empowers anyone, regardless of background, to learn and apply generative AI effectively.

 The technology industry is known for its rapid pace, but the field of GenAI is growing even faster, and we see changes in weeks rather than months and years. While I was writing this book, the technology advanced, and I have had to update many of the new areas in the book several times. However, the basics of GenAI and large language models (LLM) remain novel and crucial to grasp. These are the building blocks on which new areas are being developed. Understanding these fundamentals is not just a goal of the book but a necessity in this rapidly evolving field.

 This book focuses on generative AI aspects, especially LLMs, which are often the most common use cases. I expect newer models with additional multimodal capabilities that combine vision, speech, and video will grow in the future. Here, we’ll mainly use OpenAI and Azure OpenAI, but I also show other providers’ examples. Most LLM providers are similar to OpenAI, so the book is beneficial even if you use a different provider. I also used Python for the examples, as it is easy and common in AI. In addition, there are SDKs for most languages and REST APIs that you can call in any language.

 Welcome to Generative AI in Action, a book aiming to demystify the generative AI field and help you apply it to your projects. I am excited to share some insights from my learning and assist you on your path.

 acknowledgments

 First and foremost, I want to thank my parents for letting me disappear into the “computer room” to tinker with those amazing machines and for buying me my first computer. I also thank my wife, Meenakshi, for putting up with me, especially when I conveniently ignored most other things and worked through the graveyard shift after long days to write the book and code. To my daughter Maya, I thank you for never doubting my literal and coding abilities (even if it came with a teenager’s eye roll). This book would not be complete without my dog, Champ, who, as you will see, is a recurring theme. And finally, I thank my dear friend Somya for showing us what true courage looks like and reminding us that most of life’s dramas are just things we get ourselves worked up over.

 I thank Eric Boyd for writing the foreword and for his time and collaboration on this project. Working under his guidance on the Azure AI team has been an exhilarating experience. Pushing the limits of technology and rekindling that childlike excitement in all of us—it reminds me why I fell in love with computers and programming in the first place.

 A special thanks goes to Wee Hyong Tok, the technical editor of this book, for his incredible time spent assisting, directing, challenging, and verifying everything. Your efforts have been invaluable in my learning and in improving this book! Wee Hyong is a partner director of product at Microsoft. He has a PhD in computer science from the National University of Singapore and is a recognized expert on data and AI. He has also authored over 10 books on AI.

 To all the reviewers—Amit Basnak, Andres Sacco, Arun Kandregula, Bruno Ricardo Santos, Dan Sheikh, Erim Ertürk, Gregory V, Hariskumar Panakkal, Ike Okonkwo, James Coates, Julien Pohie, Lokesh Kumar, Louis Luangkesorn, Luiz Davi, Manish Jain, Matteo Battista, Maxim Volgin, Nathan B. Crocker, Pradeep Bhattiprolu, Radhakrishna MV, Raj Kumar, Rambabu Posa, Roy Wilsker, Rui Liu, Sanjeev Jaiswal, Scott Ling, Simon Verhoeven, Sumit Pal, Sushil Singh, Swaminathan Subramanian, Swapneelkumar Deshpande, Victor Durán, and Weronika Burman—your suggestions helped make this a better book.

 Finally, I would like to thank the team at Manning. I have immense empathy and gratitude for my development editor, Rebecca Johnson, and acquisitions editor, Mike Stephens. Rebecca especially deserves a medal for making sense of my initial drafts and turning gibberish into coherent content. Thank you all for your patience and dedication!

 about this book

 Generative AI in Action is designed to equip enterprise professionals and enthusiasts with the knowledge and skills to effectively use generative AI technologies. This book provides a comprehensive understanding of generative AI, covering its fundamental principles, practical applications, and the challenges associated with implementing it in real-world scenarios.

 The book teaches you how to create and use generative models for tasks and use cases. It focuses on this technology’s practical and hands-on aspects and how it works. It does not dive deep into the science, but it references the papers and scientific breakthroughs that have helped develop some of the technology—you can see these at the end of the book.

 This book is designed to provide a comprehensive understanding of generative AI and its potential within an enterprise context. It explores foundational models, large language models, and related algorithms and architectures, offering readers a thorough grasp of these advanced technologies. Practical insights and examples are provided to help develop and deploy generative AI models, ensuring that readers can apply these concepts in real-world scenarios.

 Advanced topics such as prompt engineering, retrieval-augmented generation, and model adaptation are discussed in detail, giving readers an in-depth understanding of these cutting-edge techniques. The book also highlights best practices for integrating generative AI into existing systems and workflows, ensuring a smooth and efficient implementation. Furthermore, it addresses the ethical considerations, governance, and safety measures necessary for responsible AI deployment, guiding readers on how to responsibly navigate the complexities of this rapidly evolving field.

 Who should read this book

 Generative AI in Action is designed for a diverse audience. It is ideal for developers and software architects looking to integrate generative AI into their projects and data scientists who want to enhance their understanding of generative AI technologies and applications. Business and technical decision-makers will find it valuable for grasping the strategic implications of generative AI for their organizations. Power users across various enterprise sectors can explore generative AI’s practical applications and benefits. Additionally, educators and students in AI-related fields will gain comprehensive knowledge of the latest advancements in generative AI.

 This book primarily targets developers, data scientists, and technology decision-makers with some programming background who want to explore the fascinating and powerful world of generative AI. One doesn’t need to be an expert in machine learning, deep learning, or generative AI or have a PhD in mathematics to follow this book. Still, you should be familiar with the basics of APIs, SDKs, and Python or one of the other common programming languages.

 How this book is organized: A road map

 Generative AI in Action is divided into three main parts, encompassing 13 chapters. Each chapter is crafted to build on previous ones, providing a structured and comprehensive learning experience.

 The first part, “Foundations of Generative AI,” lays the foundation of generative AI, starting with new use cases and a comprehensive understanding of the basics, including foundational models. It delves into the architecture of LLMs, demonstrating their application across various modalities such as text, images, code, and chat. This section also includes examples to help readers grasp these new AI technologies effectively:

 	 Chapter 1 introduces the basics of generative AI, differentiating it from traditional AI and showcasing its potential through various real-world applications.

 	 Chapter 2 delves into the architecture and functionality of LLMs, exploring their capabilities and limitations.

 	 Chapter 3 covers practical steps to generate text using APIs, including hands-on examples.

 	 Chapter 4 shows you how generative AI can create images from text descriptions and understand the underlying models, such as DALL-E.

 	 Chapter 5 explores other generative AI applications, such as generating music, code, and 3D models.

 The book’s second part, “Next steps with generative AI,” focuses on advanced topics crucial for anyone wanting to deploy a GenAI-powered application. This part addresses new architecture patterns and constructs such as prompt engineering, data integration, fine-tuning, and model adaptation. It also explores the components of the new GenAI application stack:

 	 Chapter 6 is a detailed guide to crafting effective prompts to achieve desired outputs from generative AI models.

 	 Chapter 7 explains how to enhance generative AI models by incorporating external data sources.

 	 Chapter 8 teaches you how to integrate conversational AI with your enterprise data for more interactive applications.

 	 Chapter 9 teaches you techniques for customizing generative AI models to better suit specific use cases.

 The book’s final section, “Deployment and ethical considerations,” covers best practices for production deployment, scaling strategies, evaluation and benchmarking techniques, and responsible and ethical AI guidelines. These advanced topics are essential for organizations preparing to deploy and utilize generative AI in production at scale:

 	 Chapter 10 will help you understand the architectural considerations for developing and deploying generative AI applications.

 	 Chapter 11 offers strategies for scaling generative AI models in a production environment.

 	 Chapter 12 teaches you how to evaluate and benchmark generative AI models to ensure they meet performance standards.

 	 Chapter 13 is a comprehensive guide on the ethical considerations, governance, and safety measures necessary for responsible AI deployment.

 The book is designed to be read sequentially from cover to cover, as each chapter builds on the concepts introduced in the previous chapters. However, readers already familiar with the basics may focus on specific chapters that address their particular interests or needs. Code samples are included throughout the book to reinforce learning and provide hands-on experience. Running these samples is highly recommended; the code can be found in the book’s GitHub repository. This approach ensures that readers understand the theoretical aspects of generative AI and gain practical skills to implement these technologies effectively.

 This book focuses on Azure OpenAI and OpenAI, the leading LLM platforms, due to their stability and enterprise readiness. It aims to educate readers on generative AI applications in business, with principles applicable across various LLMs. While it includes diverse LLM examples and open source models, the emphasis is on the Microsoft stack, mainly because it is widely used in the industry and also accessible to the author.

 About the code

 This book provides source code for various chapters to enhance the hands-on learning experience. The code is designed to help you practice and apply the concepts discussed in the book. You can download the source code for the relevant chapters of the book.

 Many examples of source code are contained both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes, code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (↪). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/generative-ai-in-action. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/generative-ai-in-action, and from GitHub at https://github.com/bahree/GenAIBook.

 You will need the following software and versions to run the provided code:

 	 IDE—Visual Studio Code (or similar).

 	 Python—Version 3.7.1 or later; we use version 3.11.3 for the book.

 	 Package manager—Although technically a package manager is not needed, it would make things much easier to maintain. We use conda for the book, but you can use any package manager.

 	 Git—Given we are using GitHub, you need Git installed locally.

 	 Docker—Used for containerized deployments and reproducible environments. In the second part of the book, containers are utilized for more advanced use cases.

 	 Various SDKs—Used for text and image generation examples, including Azure OpenAI, OpenAI, Gemini, etc.

 	 Various other packages—Used for working through different aspects of the chapters.

 I edited most of the book’s code for clarity and brevity. For example, I left out some things that are not very useful in a printed book, such as exception handling, boilerplate functions, and so forth. The GitHub repository has all these, and the code there is tested and runnable.

 These tools and libraries are essential for running the examples and exercises provided in the book. Ensure you have the correct versions installed to avoid compatibility issues. Detailed instructions for setting up the environment and dependencies are included in the GitHub code repository, which can be found at https://github.com/bahree/GenAIBook.

 liveBook discussion forum

 Purchase of Generative AI in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/generative-ai-in-action/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 Amit Bahree is a Principal TPM at Microsoft, where he is part of the engineering team building the next generation of AI products and services for millions of customers using the Azure AI platform. He is also responsible for custom engineering across the platform with key customers, solving complex enterprise scenarios using all forms of AI, including generative AI.

 [image: figure]

 A simple geek at heart, Amit has nearly 30 years of experience in technology and product development. He has a strong background in applied research, machine learning, AI, and cloud platforms. He is passionate about creating potent and responsible AI products that transform industries and improve lives.

 Amit resides in the Seattle area with his wife, daughter, and the sweetest dog, who is not spoilt rotten.

 about the cover illustration

 The figure on the cover of Generative AI in Action, titled “La Grisette,” or “Young working woman (Grisette),” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Foundations of generative AI

 This section introduces the fundamental concepts and technologies that underpin generative AI. We start with a general overview of what generative AI can do, how it works, and how it can be applied in various enterprise settings. Then we examine the details of large language models (LLMs), such as their structures, categories, and main concepts. The final chapters in this section cover generating text, images, and similar things through APIs, offering a hands-on guide to accessing and utilizing these technologies.

 Chapter 1 introduces the concept of generative AI and explains its ability to create new content, such as text, images, and code. It discusses various enterprise use cases, compares generative to traditional AI, and provides guidance for organizations considering adopting this technology.

 Chapter 2 dives into large language models, explaining their foundational concepts and architecture, particularly focusing on the transformer model. It also covers different types of LLMs and essential concepts such as prompts, tokens, and embeddings.

 Chapter 3 explores how to generate text using APIs, starting with basic implementations and moving on to more advanced options. It explains model categories and dependencies, providing practical examples of text generation applications.

 Chapter 4 focuses on generating images and other media types. It provides an overview of image generation models and explains how to use APIs to create various types of media content.

 Finally, chapter 5 expands on generating other media types, such as video and audio. It covers the techniques and technologies behind media generation, practical examples, and API usage. The chapter also covers code generation using various models.

1 Introduction to generative AI

 This chapter covers

 	An introduction to generative AI

 	Examples of what can be generated using generative AI

 	Guidance for organizations when adopting generative AI

 	Key use cases for generative AI

 	A comparison between generative AI and other AI types

 Artificial intelligence (AI) is familiar and has been around for years. We all use it when we use a search engine, read a product recommendation, listen to a curated playlist, or use the suggested words as we type on a phone—all these actions are powered by AI. However, everything seems new in AI today, with the world on fire talking about it, specifically about generative AI.

 Generative AI, a fascinating and unique advancement in AI technology, has garnered public interest and ignited global enthusiasm. OpenAI's ChatGPT has significantly boosted its popularity, attracting 100 million users in two months—the fastest user adoption of any technology in human history. Many businesses view this technology as the key driver for the next wave of digital transformation and automation. Generative AI creates new content and processes that can enhance various business operations. It is already being used to generate a wide range of content, from images, text, and music to more complex outputs, such as design patterns and code. Its potential is vast and exciting, capable of generating almost anything—from new game levels to novel recipes and much more.

 With the lightning-fast progress of AI technologies, the journey to achieving human-level performance has significantly accelerated. Figure 1.1 vividly illustrates how image and language recognition capabilities have swiftly surpassed human parity, marking a significant milestone in AI.

 [image: figure]

Figure 1.1 AI system capabilities [1]

 This book explores various aspects of this emerging technology. We will discuss practical use cases and how businesses can integrate generative AI into existing frameworks. Furthermore, we will explore its technical foundations, critical components, and the necessary modifications in application architecture. Additionally, we will examine the most effective practices for implementing AI in a production environment and managing its operation optimally.

 Generative AI fundamentally differs from other types of AI, as it is about creating something new that is not modified or copied from its training data. Whereas traditional AI makes predictions based on input data, generative models create new things by predicting the next set of words based on their ability to generate and understand the semantics of the real world. These new things span a wide range of text, images, music, and 3D models. We will see how enterprises can adapt to using these new techniques. Generative AI, akin to an imaginative artist or an inventive novelist, paints vivid pictures from fragments of information, writes poetry that touches the soul, and builds whole universes from thin air. Welcome, dear readers, to the awe-inspiring world of generative AI—a realm where machines learn to understand, analyze, and create.

1.1 What is this book about?

 After reading this book, you will have gained a thorough understanding of generative AI and its applications in an enterprise. The book covers fundamental technologies and principles of generative AI, including foundational models, large language models, embeddings, and related algorithms and architectures. It will provide the knowledge needed to identify and implement the steps to incorporate generative AI into your organization’s AI strategies and projects. Additionally, the book presents real-world use cases and guides to developing and deploying generative AI models in enterprise settings. It also explores emerging applications of architecture patterns, best practices, and integration patterns with existing systems and enterprise workflows. The book highlights emerging tools and trends that enterprises should know, including prompt engineering, explainable AI, transfer learning, and reinforcement learning (specifically reinforcement learning from human feedback, or RLHF).

 This book is intended for a diverse audience, including developers, software architects, data scientists, business decision-makers, and power users working in enterprises across all sectors. The examples of real-world enterprise scenarios primarily focus on the technical aspects and demonstrate how generative AI can address the distinct challenges many enterprises face. The fundamental principles discussed here apply equally to smaller organizations and startups. In addition, we will examine the challenges and risks associated with generative AI, such as using corporate and private data, ethical considerations, data privacy, security, and safety considerations, to enable informed decision-making when integrating these technologies into organizations.

 LLM models and platforms

 The book mainly uses Azure OpenAI and OpenAI, the top LLM models and platforms for publication. They have been in production for almost two years (at the time of writing) and are the most stable, tested, and ready for cloud-scale enterprise use. Thousands of enterprises depend on and use these platforms.

 The goal is to help you understand generative AI and how to use new technology for your enterprises. Even if you use a different LLM, these concepts and primitives are the same. In the book, we will also see examples of other LLMs and providers, how the concepts are the same, and how the APIs and SDKs are similar to OpenAI. We also cover various open-source models in depth.

 Finally, many of these models are only for enterprise accounts and are not available to everyone. Consequently, I do not have access to all of these, but I do have access to the Microsoft stack, which is another reason we’ll use it here.

1.2 What is generative AI?

 Generative AI is not a new field of AI, but it has gained more popularity and attention lately. It can generate new content in various outputs—from realistic human faces and writing persuasive text to composing music and developing novel drug compounds. This new AI technique is about replicating existing patterns, imagining new ones, crafting new scenarios, and creating new knowledge.

 [image: figure]

Figure 1.2 Generative AI overview

 As shown in figure 1.2, generative AI is a subsection of AI that is trained on a vast array of data to learn the underlying patterns and distributions. The magic lies in its potential to generate something novel and original, a task previously believed to be the sole domain of human ingenuity.

 Machine and deep learning provide the fundamental techniques we need to understand before diving into generative AI. They give us the toolkit to navigate the landscape of AI and understand the processes behind data engineering, model training, and inference. As we progress through this book, we will apply these principles but will not get into the details. Multiple books have been dedicated to both topics, and it would be more prudent for the reader to consult those for details.

 At its simplest, machine learning (ML) is the scientific discipline focusing on how computers can learn from data. Instead of explicitly programming computers to carry out tasks, in ML, we develop algorithms that can learn from and make predictions or decisions based on data. This data-driven decision-making is applicable to numerous real-world scenarios, ranging from spam filtering in emails to recommendation systems on e-commerce platforms.

 Deep learning (DL), a subset of ML, takes this concept further. It uses artificial neural networks with several layers. These networks attempt to simulate the behavior of the human brain—albeit in a simplified form—to learn from large amounts of data. While a neural network with a single layer can still make approximate predictions, additional hidden layers can help optimize its accuracy. DL drives many AI applications today and helps execute tasks with improved efficiency, speed, and scale.

 An AI model is a sophisticated algorithmic structure trained on extensive datasets to autonomously perform specific tasks such as text generation, translation, and decision-making. These models learn from data patterns to mimic human cognitive abilities, which enables them to understand and generate natural language. Once trained, developers should recognize that these models can process and analyze data independently, using ML and DL techniques. ML models apply mathematical frameworks to data for predictions, while DL models use neural networks for complex tasks involving unstructured data. In essence, an AI model is a self-sufficient tool that can carry out intelligent tasks based on learned data patterns after training, which are crucial for creating smart applications.

 Generative AI is an evolution of DL. Many incorrectly assume that ChatGPT is generative AI. ChatGPT is a web application that uses generative AI at its simplest level. The rise and popularity of ChatGPT exposed many folks to generative AI, and the power of the other generative models called large language models (LLMs) is, as the name suggests, related to language. OpenAI trained ChatGPT on diverse internet text to produce a human-like conversation. In addition to ChatGPT, table 1.1 outlines some of the key generative AI models used today; these are grouped by generated AI area types: language, image, and code generation.

Table 1.1 Popular generative AI models

 	

 Name

 	

 Description

 	

 Area

 	 Generative Pre-trained Transformer (GPT)

 	 A large language model developed by OpenAI and trained on a massive dataset of text and code can generate text, translate languages, write various kinds of creative content, and answer your questions informatively. GPT4-Omni (more commonly referred to as GPT-4o) is a multimodal model. At the time of writing, it is the latest version and is a significant upgrade from GPT-4, offering speed, cost, and capability improvements.

 	 Language/ multimodal

 	 Llama 3

 	 Meta recently released the third version of a natural large language model, open-sourced under a special license. The models come in various sizes and have varying capabilities.

 	 Language

 	 Claude 3

 	 Anthropic has introduced the Claude 3 model family, which includes Claude 3 Haiku, Claude 3 Sonnet, and Claude 3 Opus. These models offer a range of capabilities, with Opus being the most intelligent. It is capable of complex tasks and exhibits near-human comprehension and fluency levels. Like OpenAI’s ChatGPT, Claude can generate text, write code, summarize, and reason, among other things, for a given prompt.

 	 Language

 	 Cohere Command

 	 Cohere offers two models (Command R and Command R+) as part of its Command family. While these LLMMS are optimized for various use cases, Cohere’s newest large language model, Command R+, is optimized for conversational interaction and long- context tasks. It is designed to be highly performant for complex retrieval-augmented generation (RAG) workflows and multistep tool use.

 	 Language

 	 Mistral

 	 Mistral Large Language Models are advanced AI models designed for text generation and other language tasks. They have models in different sizes from a collection of open source models (Mistral-7B, 8x7B, and 8x22B) and optimized commercial models (Mistral Small, Medium, and Large), each tailored for different reasoning complexities and workloads.

 	 Language

 	 Gemini

 	 Gemini is Google’s new multimodal model that can understand text, images, videos, and audio. It will be available in different sizes (Ultra, Pro, and Nano), each with different capabilities.

 	 Language/multimodal

 	 DALL-E

 	 Visual AI model developed by OpenAI that can create realistic images from text prompts

 	 Image

 	 Stable Diffusion

 	 Open source image generation model that generates images from a prompt as input. It is primarily used to generate detailed images conditioned on text descriptions and can also be applied to other tasks such as inpainting, outpainting, and generating image-to-image translations.

 	 Image

 	 Midjourney

 	 An image generation model using natural language prompts from a startup called Midjourney, Inc., similar to OpenAI’s DALL-E and Stable Diffusion.

 	 Image

 	 CodeWhisperer

 	 CodeWhisperer is an AWS code-generation model that can generate code in several programming languages, including Python, Java, JavaScript, and TypeScript.

 	 Code

 	 CodeLlama

 	 CodeLlama is a large language model built on Llama 2 and specifically trained on code. It is available in various sizes and supports multiple popular programming languages.

 	 Code

 	 Codex

 	 A large language model is trained specifically on code and used to help with code generation. It supports over a dozen programming languages, including some of the more commonly used, such as C#, Java, Python, JavaScript, SQL, Go, PHP, and Shell, among others.

 	 Code

 The following list describes a few areas where generative AI is used today. We expect to see even more innovative and creative applications as generative AI technology develops:

 	 Images —This technology creates realistic images of people, objects, and scenes that do not exist in the real world. It is used for various purposes, such as creating virtual worlds for gaming and entertainment, generating realistic product images for e-commerce, and training data for other AI models.

 	 Videos —Creates videos that do not exist in the real world. This technology is used for various purposes, such as creating special effects for movies and TV shows, generating training data for other AI models, and creating personalized video content for marketing and advertising.

 	 Text (language) —This technology creates realistic text, such as news articles, blog posts, and creative writing. It is used for various purposes, such as generating content for websites and social media, creating personalized marketing materials, and creating synthetic data.

 	 Text (code) —Generative AI models augment and assist developers when they write code. GitHub’s research found that developers who use its Copilot feature feel 88% more productive and are 96% faster on repetitive tasks.

 	 Music —Generative AI models are being used to create original and creative new music. This technology serves various purposes, such as creating music for movies and TV shows, generating personalized playlists, and creating training data for other AI models.

 We’ll dive into the specifics of how generative AI works in the next chapter, but for now, let’s discuss what can be generated using this technology and how it can help your enterprise.

1.3 What can we generate?

 When it comes to generating things using generative AI, the sky is the limit. As discussed earlier, we can generate text, images, music, code, voice, and even designs. Before we look at some examples of things that can be generated, it is worth noting that generative AI does not understand the content as humans do. It uses patterns in the data (part of its training set) to generate new, similar data—the quality and relevance of the generated content are directly correlated to the quality and relevance of the training data.

1.3.1 Entities extraction

 We can use generative AI, specifically a large language model (LLM), to extract entities from text. Entities are pieces of information that are of interest to us. In the past, we would need to use a named entity recognition (NER) model for entity extraction; furthermore, that model would need to have seen the data and be trained as part of its dataset. With LLM models, we can do this without any training, and they are more accurate. While traditional NER methods are effective, they often require manual effort and domain-specific customization. LLMs have significantly reduced this burden, offering a more efficient and often more accurate approach to NER across various domains. A key reason is the Transformer architecture, which we will cover in the next few chapters. This is a great example of traditional AI being more rigid and less flexible than generative AI.

 Here, we will use OpenAI’s GPT-4 model to extract the first name, company name, location, email, and phone number from the text:

 [image: image]Extract the name, company, email, and phone number from the text below:

 Hello. My name is Amit Bahree. I’m calling from Acme Insurance, Seattle, WA. My colleague mentioned that you are interested in learning about our comprehensive benefits policy. Could you give me a call back at (555) 111-2222 when you get a chance so we can go over the benefits? I can be reached Monday to Friday during normal business hours. If you want, you can also email me at aweomseinsrance@acme.com. Thanks, Amit.

 We can see the entities extracted by the model in the output in figure 1.3.

 [image: figure]

Figure 1.3 Entity extraction

1.3.2 Generating text

 Generating text in many ways is the bread and butter of generative AI. We can generate different things, such as poems, jokes, and personalized content. In this example, we will use GPT-4 to generate a book launch email for a new book on generative AI. We give the model a prompt with our requirements and some context from which to build. We set up the scene, outline the requirements, and add additional context, such as the text's tone, which will generate the email for us.

 Given the broad nature of the underlying model (called foundational models, covered in the next chapter), it is also good at understanding grammar and spelling mistakes. For example, we misspelled “pracrtices” and “architectes,” and it understood both:

 [image: image]Write a short book launch email for the new generative AI book available at all bookstores. The book covers introduction to generative AI, the different types and use cases, and best pracrtices for enterprises, including how they can incorporate this new AI technology in their business processes. The book is published by Manning and the author is Amit Bahree. The name of the book is Generative AI in Action: Real-World Applications and Case Studies of AI for Enterprises. The target audience is developers and enterprise architectes, and the tone is friendly and exciting.

 	 What should be the subject line of the email?

 	 What should be the body of the email?

 We get the following answer, which is rather good:

 	
[image: image]1. Subject Line: “Explore the Power of Generative AI with our New Book: ‘Generative AI in Action’ by Amit Bahree!”

 	
2. Email Body:

 Dear [Recipient's Name],

 I am thrilled to announce the release of a remarkable new book, “Generative AI in Action: Real-World Applications and Case Studies of AI for Enterprises”, authored by Amit Bahree and published by Manning.

 Our dynamic business environment is calling for cutting-edge solutions, and Generative AI is just that. It is one of the most exciting advancements in the tech industry and can be a game-changer for your business. Whether you're a developer or an enterprise architect, this book is your ticket to harnessing the power of Generative AI.

 “Generative AI in Action” unravels the complexities of Generative AI. It provides an accessible introduction and dives deep into its different types, use cases, and how it can revolutionize business processes. Furthermore, it offers the best practices for enterprises looking to incorporate this state-of-the-art technology into their operations.

 Here's what you can expect from this enlightening read:

 	A comprehensive introduction to Generative AI.

 	Exploration of various types of Generative AI and their real-world applications.

 	Insightful case studies demonstrating how businesses leverage Generative AI.

 	Valuable guidance on the best practices for implementing Generative AI in your enterprise.

 We’ve carefully curated this book to make Generative AI accessible to anyone eager to understand and use it. So whether you're new to AI or an experienced professional seeking to stay at the forefront of technological advancements, “Generative AI in Action” is the resource you've been waiting for.

 We're excited to share that “Generative AI in Action” is now available at all leading bookstores. Grab your copy today and start your journey towards transforming your business with Generative AI.

 Thank you for your continued support and happy reading!

 Best Regards,

 [Your Name]

 [Your Position]

 [Your Contact Information]

1.3.3 Generating images

 We are not restricted to only text—we can generate images using a prompt. To be clear, the model does not find a similar image that satisfies these attributes; rather, it generates something new that does not exist. It does not matter if we ask for something whimsical that will not exist in the real world, such as a dog writing a book with the Taj Mahal in the background. The AI can deconstruct and comprehend each aspect and then use that to create something new, similar to how an artist would. In figure 1.4, we use OpenAI’s DALL-E 3 model to generate the images from the prompt.

 [image: image]Generate an image of a dog wearing glasses sitting at a table and authoring a book on AI using a computer. Make it a positive image with the background of the Taj Mahal in the window in the distance at the golden hour.

 [image: figure]

Figure 1.4 Image generation using DALL-E 3

1.3.4 Generating code

 When thinking about generating code, it is helpful to think of AI not as being able to create fully functioning applications but rather as being able to create some functions and routines. A lot of code is about scaffolding of different runtimes and frameworks and less about the exact business logic. In many of these scenarios, code generation can help improve the developer’s productivity. In the following example, we use GPT-3.5 to generate code for a classic “Hello, World!” function. We can give it a prompt such as the following, and it will generate the code for us.

 [image: image]Write a hello world equivalent in Python using OpenAI API’s for a developer who is new to using OpenAI and translate the output into French.

 You get an answer like listing 1.1, including the steps required to start, which is impressive. Of course, this is just an illustrative example to show the model’s power—understanding the context and rules of the request, including the programming language, the software development kit (SDK), packages to use, and, finally, generating code. This code does not follow established best practices (e.g., one should not have their API key in the code).

Listing 1.1 “Hello, World!” calling OpenAI service

 import os

from openai import OpenAI

gpt_model = "gpt-3.5-turbo"

Replace with your actual OpenAI API key

client = OpenAI(api_key='your-api-key')

Generate English text

response_english = client.chat.completions.create(

 model="gpt-3.5-turbo",

 messages=[

 {

 "role": "user",

 "content": "Hello, World!"

 }

],

 max_tokens=50

)

english_text = response_english.choices[0].message.content.strip()

print(english_text)

Translate English text to French

response_french = client.chat.completions.create(

 model="gpt-3.5-turbo",

 messages=[

 {

 "role": "user",

 "content": "Translate the following English

   ↪text to French: " + english_text

 }

],

 max_tokens=100

)

This prints the translation to French

print(response_french.choices[0].message.content.strip())

 Run the script:

 python helloworld.py

 The output is shown in figure 1.5. Note that given the non-deterministic nature of AI, we get a slightly different response each time we run this. In chapter 3, we will see how we can control some of this using different options and nudge the model toward being more deterministic. Some of these options are how large language models (LLMs), a type of generative AI model, work. We will explore LLMs in the next chapter.

 [image: figure]

Figure 1.5 Generated code

 While we outline code generation, LLMs can be helpful in other aspects related to code, such as explainability, optimization, and readability. We will get into more details about the code later in chapter 5.

1.3.5 Ability to solve logic problems

 Generative AI's ability to reason is impressive. Due to the emergent behavior of these AI techniques, if we can express the problem domain via a prompt, we can get an answer and a step-by-step thought process of the approach. This resembles how humans think, break down, and approach a problem.

 For example, we can ask the model to solve a simple math equation, explain the steps, and give us the answer.

 [image: image]Solve this problem and think it through step by step.

 If x = 80 and y = 60

 What is x when y = 30?

 Here is the response showing the model working through its steps and the exact thought process it underwent. Achieving something like this that can generalize across a wider domain space with traditional AI would be difficult, if not impossible:

 [image: image]Given that x = 80 when y = 60, we can establish a proportion to solve for x when y = 30.

 In this case, we assume a linear relationship between x and y, that is, x is directly proportional to y. So, when y is halved, x will also be halved.

 Using the given values:

 x1/y1 = x2/y2

 Where:

 x1 = 80

 y1 = 60

 y2 = 30

 and we're trying to find x2.

 We can set up the equation:

 80/60 = x2/30

 Solving for x2, we get:

 x2 = (80/60) * 30

 This simplifies to:

 x2 = (4/3) * 30

 x2 = 40

 So, if y = 30, then x = 40.

 Traditional AI cannot solve this problem because it has a narrow understanding of the world. It cannot understand the question’s intent to outline a step-by-step process because traditional AI is not generative. It can only follow instructions that are explicitly programmed into it.

 Generative AI, however, can comprehend the intent of the question because it has a broader understanding of the world and can generate step-by-step processes. Another aspect that allows this is the emergent behavior of generative AI models. This behavior is the ability to outline a step-by-step process. It is not present in any of the individual components of the model but emerges from the interaction of the components. The next chapter will cover emergent behavior in more detail when introducing large language models.

1.3.6 Generating music

 Similar to how we can use prompts and generate images, we can do the same with music. Music generation is still new compared to text, but there are rapid advancements in the underlying models and techniques. We can use generative AI music models, such as MusicLM from Google or MusicGen from Meta and others, to generate music. For example, as shown in figure 1.6, we can use a prompt such as “Create a meditative song that is calming and soothing with flutes and guitars. The music should be slow and focus on creating a sense of peace and tranquility.” This generates a couple of 30-second clips.

 [image: figure]

Figure 1.6 Screenshot of MusicLM

1.3.7 Generating videos

 Sora is a new AI model from OpenAI that can generate text-to-video scenes. It can create realistic and creative scenes based on users’ textual descriptions (prompts). These prompts can determine anything from artistic styles to imaginary imagery or real-world situations. Sora creates short video clips, while maintaining visual quality and following the user’s instructions.

 In addition to Sora, some other models can generate videos. One example is Runway’s Gen-2, which has the same abilities as Sora. Pika is another AI-powered video generator that produces videos and 3D animation from prompts. Hotshot is an open-source option for Sora. Finally, there is Stable Video Diffusion from StabilityAI. Sora seems to be more advanced compared to others and can create clips up to a minute long with coherent characters and movements.

1.4 Enterprise use cases

 The Generative AI sector is on a steep upward trajectory, with market value estimations soaring from $1.75B in 2022 to a projected $33B by 2027 and an impressive CAGR of 80% [2]. Industry experts from Bloomberg Intelligence forecast a staggering market expansion to $1.3 trillion in a decade, a leap from the $40B recorded in 2022 [3]. GenAI's widespread adoption is evident in various industries, including financial services and customer relationship management, driven by its capacity to enhance insights and productivity. Considering Gartner’s prediction that 90% of service providers will incorporate GenAI for software development by 2027 [4], it’s clear that generative AI is not just reshaping existing business landscapes but also paving the way for novel market prospects. Enterprises are swiftly integrating GenAI into their offerings, positioning themselves at the forefront of this technological revolution and the myriad of opportunities it presents.

 Generative AI is a powerful technology that can create new content or data from existing ones. Many enterprises use it for different use cases inside and outside their organizations. Some of these are for improving their workflow or efficiency, while others provide better services or products to their customers. Depending on the purpose, the challenges of using generative AI vary. For instance, one common challenge is when the AI system produces something that does not make sense (i.e., it makes up things—also called hallucinations). This is usually easier to handle internally than externally because customers might have higher expectations or lower trust in the AI system.

 There are many reasons why an AI system tends to hallucinate, but it is often because the underlying model cannot distinguish between facts and fiction in its training data. LLMs are trained to generate coherent, context-aware text rather than factually accurate responses. They tend to hallucinate when the prompt or context is inaccurate but relevant to the task. We will cover hallucinations and techniques that can be used to reduce them later in the book.

 Table 1.2 outlines a few enterprise use cases. These are generic because they are more horizontal examples applicable to multiple industries. Table 1.3 outlines some industry-specific use cases.

Table 1.2 Horizontal enterprise use cases for generative AI

 	

 Horizontal use case

 	

 Description

 	 Content generation

 	 GPT-4 can generate content such as blogs, reports, emails, and social media posts, which can help businesses scale their content marketing efforts.

 	 Personalized marketing

 	 Generative AI can create personalized marketing content such as emails, landing pages, and social media posts. This can help businesses to reach their target audience more effectively and increase conversion rates.

 	 Customer service

 	 Generative AI can be used to create chatbots that can answer customer questions and resolve problems. This can free up human customer service representatives to focus on more complex tasks. Many of these chatbots are being implemented via an Enterprise ChatGPT-like paradigm.

 	 Risk management

 	 Generative AI can identify and predict risks such as fraud, cyberattacks, and supply chain disruptions. This can help businesses to mitigate risks and protect their assets.

 	 Compliance

 	 Generative AI can generate compliant documents, such as contracts, reports, and disclosures. This can help businesses to save time and money and reduce the risk of noncompliance.

 	 Software development

 	 In software development, generative AI can generate new code, provide code snippets, or even write simple software, potentially saving time and reducing errors. It also helps document code, refactor, generate test cases, and optimize existing code.

 	 Data augmentation

 	 In data science and ML, generative AI can create synthetic data when there is insufficient real data for model training.

 	 Contract management

 	 A key use case for Generative AI is contract generation and contract understanding—both creating draft legal documents and understanding legal contracts that incorporate specific regulatory and regional legal requirements for enterprises and specific corporate policies. This approach reduces human mistakes and helps enterprises make informed decisions.

Table 1.3 Industry-specific use cases for generative AI

 	

 Industry use case

 	

 Description

 	 Financial

 	 In the financial sector, generative AI can simulate different scenarios to help with decision-making, risk model assessment, and the development of new financial products and services. Customer operations to enhance services and resolutions for each client are based on transactions and history.

 	 Healthcare

 	 Generative AI is used to develop new drugs and treatments, design medical devices, create personalized patient treatment plans, and generate patient documentation on instructions, risks, and drug interactions.

 	 Manufacturing

 	 Generative AI is used to design new products, optimize manufacturing processes, and improve quality control.

 	 Retail and consumer packaged goods

 	 Generative AI is used to personalize shopping experiences, recommend products, manage inventory, accelerate consumer research, enhance the supply chain, etc.

 	 Marking and sales

 	 Marketing and sales already use much narrower AI. Generative AI is helping enhance some aspects of the industry—specifically, helping us understand real-time customer trends, personalized outreaches embedded into virtual assistants, and dynamic customer journeys.

 These are just a few enterprise use cases for generative AI. As the technology continues to develop, we can expect to see even more innovative and impactful applications.

1.5 When not to use generative AI

 Using generative AI in an enterprise environment differs greatly from individuals using it for personal reasons. Organizations must follow certain regulations and expectations that apply to their industries, some of which will vary by location. In addition, there are other financial, legal, technical, and moral considerations. What if the AI-generated content is incorrect, full of bias, or just plain offensive—what problems would that cause? For example, there is little harm if an AI chatbot messes up a recipe, but it is a whole different story if it gives bad instructions to someone fixing a complex piece of machinery.

 If enterprises do not set up proper ethical guidelines for generative AI, it could lead to unintended consequences. Generative AI can create misinformation and fake content, including fake news articles, fake images, sensitive content, and malicious content. A picture is not worth a thousand words anymore; some images are so good that it is getting increasingly difficult to distinguish fake from real images. In some cases, the generated output could also infringe on third-party copyrighted material. Adding human oversight and contribution can help address some of these challenges.

 Generative AI models can also unintentionally amplify biases present in training data, leading to problematic outputs that perpetuate stereotypes and harmful ideologies. They can also generate fabricated or nonsensical responses not grounded in facts (i.e., hallucinations).

 Companies need a solid plan for using generative AI and ensuring it aligns with their business goals, such as how it will affect sales, marketing, commerce, service, and IT jobs. Where there are life-and-death decisions, ensure a human is in the loop, making the final decision with the AI as a copilot and assisting.

1.6 How is generative AI different from traditional AI?

 Traditional AI, which some now refer to as narrow AI, is predominantly the common form of AI we encounter today. It uses classical data science and a systematic approach to extracting insights and knowledge from data using various methods and techniques. It typically involves the following steps: data collection, data preparation, data analysis, feature engineering, training, and data validation. Traditional AI predicts things operating within pre-established boundaries on which it has been trained. These boundaries are the rules and instructions that are coded in a model. It can only act based on predefined conditions, constraints, and potential outcomes. Thus, the outcome is deterministic and relatively predictable. For instance, a traditional AI could be programmed to automate customer service through chatbots by generating responses based on predefined scripts. While these systems are highly effective within their prescribed domain, they stay within their lanes and cannot learn and adapt to situations outside their programmed knowledge—hence the narrow aspect. Almost all the AI implementations that enterprises have done thus far are traditional AI.

 In contrast, generative AI leans toward a probabilistic approach, where the outcome is calculated based on probabilities influenced by the input data and learned patterns. This allows these AI systems to create outputs that were neither hard-coded nor explicitly taught to the system. Generative AI needs the classical data science process, which enhances and complements it in many ways. Generative AI can help deal with new types of data and content, evaluate the quality and validity of generated outputs, and ensure the ethical and responsible use of generative AI. Classical data science and generative AI must work together to create value and impact from data.

 One significant difference is that the modality to talk to these newer generative AI models is by using a prompt, as we have seen in the examples. More formally, a prompt is a set of instructions that tells the generative AI system what kind of content we want to create. The better the prompt, the better the results. A prompt should be tailored to the type of response you want to receive and to the specifics of the generative AI you use. We will cover prompt engineering in more detail later.

 Prompting allows us to be more expressive and not only outline the requirements and the intent, but also capture empathy and emotion via language. Prompt engineering is a new, rising area for developers and enterprises, and is more art and less science.

 [image: image]Write a funny haiku about prompt engineering vs. traditional AI.

 AI-generated text:

 [image: image]Old AI’s a bore,

 With prompts we engineer more -

 Laughs galore, encore!

 Table 1.4 outlines broad categories to show differences between generative and traditional AI architectures. It is also important to note that there is much overlap between different types of AI. For example, a chatbot might use both generative and predictive models, generating responses based on a learned understanding of language and predicting what type of response a user will likely find most helpful.

Table 1.4 How generative AI differs from traditional AI

 	

 Area

 	

 Difference

 	 Creation versus prediction

 	 Traditional AI focuses on prediction or classification tasks, identifying what something is or forecasting what will happen next based on existing data. Generative AI creates new content and outputs that did not exist in the original data.

 	 Hosting and inference

 	 Relative to generative AI, traditional AI models are less complex and require fewer computing resources, allowing them to run on various hardware, from small edge devices to large cloud clusters and everything in between. This flexibility cloud-to-edge is a huge advantage for enterprises.
 Generative models are large and complex; for the most part, they are available only on large cloud compute nodes via an API, which has other advantages, such as the knowledge of the world encoded in these foundational models being available to everyone. However, there are other constraints that one needs to consider.
 Note: There is a growing set of smaller open-source models that can be run on-premises, but today, they are still more experimental and nascent. Many claim to be AI Quality (AIQ), similar to OpenAI’s models. Given the broad spectrum that generative AI covers, there is a new emerging set of benchmarks, such as Stanford’s Holistic Evaluation of Language Model (HELM), and Hugging Face recently published an Open LLM Leaderboard. We will cover these in depth later in the book when talking about evaluations and benchmarks.

 	 Training method

 	 Generative models require a different method of training (self-supervision and multitask learning), which is longer and much more expensive because of the massive scale of data, model sizes, and computing resources required. The costs and complexity of managing this are enormous, and we will touch on them later in the chapter.

 	 Training dataset

 	 Generative AI models are typically trained on large datasets of existing content, while traditional AI models are typically trained on smaller datasets of labeled data. For example, a generative AI model for image generation might be trained on a dataset of millions of images. In contrast, a discriminative AI model for image classification might be trained on a few thousand labeled image datasets.

 	 Model complexity

 	 Generative AI models are often more complex than other types because they need to learn the patterns and relationships in the data to generate new content similar to the existing content.

 	 Adaptation approach

 	 Traditional AI has no adaptive techniques other than labeling more data and going through a full ML loop of training, deploying, and evaluating. Generative AI, in contrast, has vast world knowledge. Sometimes, one needs to tailor it to specific needs and tasks or distill internal private and proprietary knowledge; this is done via adaptation. Various techniques can be used depending on what is needed.

1.7 What approach should enterprises take?

 Generative AI can offset the limitations of traditional data-driven AI systems and offer an extraordinary toolkit to build smarter applications and systems; for enterprises, the possibilities are vast and exciting. Imagine designing systems that self-optimize over time or developing AI assistants (Copilots) that can draft emails and reports, generate code snippets, and so on, thereby improving productivity and reducing time-to-market.

 Many organizations may fall for the excitement and fear of missing out on generative AI, which appears to be magical. However, the truth is that having a foundational model such as GPT-4, a big language model, does not make any difference by itself. These advanced AI systems must be implemented and connected to the enterprise’s business lines and processes like any other external software. We will see examples of how to implement this in subsequent chapters.

 At a high level, there should be few changes from an overall approach; enterprises are still advised to take a thoughtful and strategic approach when incorporating generative AI. The following are a few key considerations—these span various dimensions that most enterprises need to consider, from strategic to business to technical:

 	 Crawl, walk, and run. Start small, and do not rush in to do too much too soon. Start with a small pilot project to evaluate, learn, and adapt. This is a complex technology, and it takes time to develop and deploy effective generative AI applications. Do not expect to see results overnight.

 	 Define clear objectives and the right use cases. It is important for enterprises to carefully evaluate potential use cases and select those that are most likely to deliver value. The selected use case will guide the choice of AI models, data preparation, and resource allocations. Some generative AI applications are more mature and have a proven record of success, while others are still in their early days.

 	 Establish governance policies. Generative AI can generate data, some of which may be sensitive or harmful. Enterprises must establish governance policies to ensure this data is used responsibly and securely. These policies should address problems such as data ownership, privacy, and security.

 	 Establish responsible AI and ethical governance. Considering the ethical implications of using generative AI is important. Establish a separate responsible AI and ethical set of policies that reflect the company’s values and that are important to managing its reputation and brand. This includes concerns around bias in AI outputs, the potential misuse of generated content, hallucinations and incorrect details in generated content, and the implications of automating tasks that humans previously performed. A robust AI governance and ethics framework can help manage these risks.

 	 Experiment and iterate. Unlike computer science, AI, particularly generative AI, is nondeterministic, and depending on the model parameters and settings, the output can be quite different. As with any AI application, it is essential to take an iterative approach when implementing generative AI. Start with smaller projects, learn from the outcomes, and gradually scale up. This approach helps to manage risk and gain practical experience.

 	 Design for failure. Most generative AI models today are commercially available as cloud APIs. As such, they are complex and have a considerable latency compared to more traditional APIs. Enterprises should adhere to cloud best practices and design for failure. They should also factor in best practices of retry mechanics, including exponential backoff policies, caching, security, etc.

 	 Expand existing architecture. These new generative AI endpoints are just additional pieces of the overall system. As such, most organizations will want to keep their existing architecture guidance and practices and expand their existing architecture and best practices, rather than starting from scratch. New constructs, such as context windows, tokens, and embeddings, need to be incorporated.

 	 Bring your data. One of the main differentiators enterprises have is their proprietary data and associated prompts; therefore, determining how one can utilize their proprietary internal data when using GenAI-powered applications is crucial. This needs to be anchored in the use cases at hand, and if not managed properly, it can get complex quickly, which will be covered in later chapters when we talk about RAG.

 	 Manage cost. Generative AI is complex and much more expensive. The cost is typically measured differently (such as in tokens) and not in API calls. Much of this is new and different for enterprises, and the costs can easily get out of hand.

 	 Complement traditional AI. In most cases, generative AI would help assist existing investment in traditional AI that enterprises already have. Both sets of technologies are not mutually exclusive but rather support each other.

 	 Open-source versus commercial models. Some models are commercially available, such as Azure OpenAI’s GPT models, and some are open source, such as Stable Diffusion. Depending on the use case, it is important to validate which models to use, what the licensing allows, and what legal and regulatory aspects are already covered.

1.8 Architecture considerations

 Suppose you are an enterprise developer who is seeing all the news on generative AI and the various product announcements from major technology companies. In that case, you might think that for AI, everything has changed. Still, in reality, nothing has changed.

 From an enterprise perspective, there are new aspects of generative AI that one needs to consider—most, if not all, of these would be things to add to existing architecture best practices and guidance, rather than throwing out anything. We will cover the details later in the book, but new architectural patterns must be accounted for at a high level. We have already touched on many of these, but the key ones are

 	 Prompts —We will see how to assess engineering and managing aspects around prompts, including tokens and context windows.

 	 Model adaptation —The aim is to make the output better for specific tasks.

 	 Integrating generative AI into existing enterprise line-of-business systems —These new AI models alone do not solve a business problem.

 	 Design for failure —This aspect is nothing new per se when building mission-critical systems, but many still take shortcuts.

 	 Cost and ROI —These generative AI systems are tremendously expensive because the underlying compute is very expensive as well. The costs will come down over time, but they must be consciously planned and designed up front. For example, the cost of GPT-3.5 Turbo from OpenAI came down by 90%, and its quality went up by 90% compared to GPT-3 [5].

 	 Implement policies and approaches for open source (OSS) versus commercial models —Each week, newer models power AI systems and are released. Some are commercial and others are OSS, with different licensing structures.

 	 Vendor —There are a few vendors in production that enterprises can use today, but more are coming soon. Today, two of the most mature are OpenAI and Azure OpenAI. The former targets smaller companies and startups, whereas the latter targets enterprises. Google is also releasing its generative AI suite on Google Cloud, and there have been similar announcements from Amazon. In addition, many well-funded startups have announced similar products, such as Anthropic and Mistral. Enterprises need to consider each as a vendor and identify which one they would want to utilize and depend on.

1.9 So your enterprise wants to use generative AI. Now what?

 Your enterprise has taken a critical step toward using generative AI to drive innovation and efficiency. However, understanding what comes next is crucial to maximizing the benefits and mitigating the risks of this advanced technology.

 To get started, we will use the example of implementing an Enterprise ChatGPT and outline the steps needed at a high level. Throughout the next few chapters, we will dig into more technical details, including guidance on implementation and best practices. Figure 1.7 shows a high-level overview of what a typical workflow in an enterprise might look like.

 [image: figure]

Figure 1.7 High-level overview of implementing generative AI

 You should start by setting clear goals for your chatbot. What challenges do you want to address with generative AI? How can it help you the most? This could be anything from creating content for marketing to enhancing customer service with chatbots, forecasting for business plans, or even innovating new products or services. In our example, we are building an Enterprise ChatGPT, such as OpenAI’s ChatGPT, but one that is deployed and runs in an enterprise environment, using internal and proprietary data, and only authorized users can access it.

 Next, we need to ensure that we have the necessary resources available, that is, people with the right competencies, a suitable hardware and software framework, defining indicators of success, and the appropriate governance and ethics principles in place.

 Then, consider the data. In our example, the enterprise chatbot would need access to relevant, high-quality enterprise data that the user can employ. This data needs to be ingested and indexed to help answer proprietary questions. Before that, the data must be managed properly, ensuring privacy and legal compliance. Remember, the quality of the data fed will influence the output quality.

 Next, we need to integrate the enterprise chatbot into the line of business applications that address the use case and the problem we are trying to address. As an enterprise, we will also want to address the risks associated with generative AI and implement corporate guidance around safety and responsible AI.

 Lastly, although we might be ready to deploy in production, implementing generative AI is not a one-time event but a journey. It requires continuous monitoring, testing, and fine-tuning to ensure it works optimally and responsibly. It’s a good idea to start with smaller, manageable projects and gradually scale up as you gain more confidence and expertise in handling this powerful technology.

 Adopting generative AI is a significant commitment that could transform your enterprise, but it requires careful planning, appropriate resources, ongoing monitoring, and an unwavering focus on ethical considerations. With these in place, your enterprise can reap the numerous benefits of generative AI.

 Summary

 	 Generative AI can be used for multiple use cases, such as entity extraction; generating specific and personalized text, images, code, and music; interpreting text; and solving logical problems.

 	 Generative AI use cases can be horizontal across most industries (such as customer services and personalized marketing) or industry specific (such as fraud detection in finance or personalized treatment plans in healthcare).

 	 Traditional AI predominantly operates in predefined narrow lanes and can act only in those dimensions, unlike generative AI, which is broader and allows for more flexibility.

 	 This chapter outlined an approach and architecture considerations for enterprises to use when adopting and implementing generative AI.

2 Introduction to large language models

 This chapter covers

 	An overview of LLMs

 	Key use cases powered by LLMs

 	Foundational models and their effect on AI development

 	New architecture concepts for LLMs, such as prompts, prompt engineering, embeddings, tokens, model parameters, context window, and emergent behavior

 	An overview of small language models

 	Comparison of open source and commercial LLMs

 Large language models (LLMs) are generative AI models that can understand and generate human-like text based on a given input. LLMs are the foundation of many natural language processing (NLP) tasks, such as search, speech-to-text, sentiment analysis, text summarization, and more. In addition, they are general-purpose language models that are pretrained and can be fine-tuned for specific tasks and purposes.

 This chapter explores the fascinating world of LLMs and their transformative effect on artificial intelligence (AI). As a significant advancement in AI, LLMs have demonstrated remarkable capabilities in understanding and generating human-like text, thus enabling numerous applications across various industries. Here, we dive into the critical use cases of LLMs, the different types of LLMs, and the concept of foundational models that has revolutionized AI development.

 The chapter discusses essential LLM concepts, such as prompts, prompt engineering, embeddings, tokens, model parameters, context windows, transformer architecture, and emergent behavior. Finally, we compare open source and commercial LLMs, highlighting their advantages and disadvantages. By the end of this chapter, you will have a comprehensive understanding of LLMs and their implications for AI applications and research. LLMs are built on foundational models; therefore, we will start by outlining what these models are before discussing LLMs in more depth.

2.1 Overview of foundational models

 Introduced by Stanford researchers in 2021, foundational models have substantially transformed the construction of AI systems. They diverge from task-specific models, shifting to broader, more adaptable models trained on large data volumes. These models can excel in diverse natural language tasks, such as machine translation and question answering, as they learn general language representations from extensive text and code datasets. These representations can then be used to perform various tasks, even tasks they were not explicitly trained on, as shown in figure 2.1.

 In more technical terms, foundational models utilize established machine learning techniques such as self-supervised learning and transfer learning, enabling them to apply acquired knowledge across various tasks. Developed by means of deep learning, these models employ multilayered artificial neural networks to comprehend complex data patterns; hence, their proficiency with unstructured data such as images, audio, and text. This also extends to 3D signals—data representing 3D attributes that capture spatial dimensions and depth, such as 3D point clouds from LiDAR sensors, 3D medical imaging such as CT scans, or 3D models used in computer graphics and simulations. These can be utilized to make predictions based on 3D data for tasks such as object recognition, scene understanding, and navigation in robotics and autonomous vehicles.

 Note  Transfer learning is a machine learning technique in which a model developed for one task is reused as a starting point for a similar task. Instead of starting from scratch, we use the knowledge from the previous task to perform better on the new one. It’s like using knowledge from a previous job to excel at a new but related job.

 Generative AI and foundational models are closely interlinked. As outlined, foundational models, trained on massive datasets, can be adapted to perform various tasks; this property makes them particularly suitable for generative AI and allows for creating new content. The broad knowledge base of these models allows for effective transfer learning, which can be used to generate new, contextually appropriate content across diverse domains. They represent a unified approach, where a single model can generate various outputs, offering state-of-the-art performance owing to their extensive training. Without foundational models as the backbone, there would be no generative AI models.

 [image: figure]

Figure 2.1 Foundational model overview

 Here are some examples of the common foundation models:

 	 GPT (Generative Pre-trained Transformer) Family is an NLP family of models developed by OpenAI. It is a large language model trained on a massive dataset of text and code, which makes it capable of generating text, translating languages, writing creative content, and answering your questions informatively. GPT-4, the latest version at the time of this writing, is also a multimodal model—it can manage both language and images.

 	 Codex is a large language model trained specifically on code that is used to help with code generation. It supports over a dozen programming languages, including some of the more commonly used, such as C#, Java, Python, JavaScript, SQL, Go, PHP, and Shell, among others.

 	 Claude is an LLM built by a startup called Anthropic. Like OpenAI’s ChatGPT, it predicts the next token in a sequence when given a certain prompt and can generate text, write code, summarize, and reason.

 	 BERT (Bidirectional Encoder Representations from Transformers) is an NLP model developed by Google. It is a bidirectional model, meaning it can process text in both directions, from left to right and right to left. This feature makes it better at understanding the context of words and phrases.

 	 PaLM (Pathway Language Model) and its successor PaLM2 are large multimodal language models developed by Google. The multimodal model can process text, code, and images simultaneously, making it capable of performing a wider range of tasks across those modalities compared to traditional language models operating only in one modality.

 	 Gemini is Google’s latest AI model, capable of understanding text, images, videos, and audio. It’s a multimodal model described as being able to complete complex tasks in math, physics, and other areas, as well as understanding and generating high-quality code in various programming languages. Gemini was built from the ground up to be multimodal, meaning it can generalize and seamlessly understand, operate across, and combine different types of information. It’s also the new umbrella name for all of Google’s AI tools, replacing Google Bard and Duet AI, and is considered a successor to the PaLM model.

 Once a foundational model is trained, it can be adapted to a wide range of downstream tasks by fine-tuning its parameters. Fine-tuning involves adjusting the model’s parameters to optimize the model for a specific task. It can be done using a small amount of labeled data. By fine-tuning these models for specific tasks or domains, we use their general understanding of language and supplement it with task-specific knowledge. The benefits of this approach include time and resource efficiency, coupled with remarkable versatility. We can also adapt a model via Prompt engineering, which we’ll discuss later in this chapter. Now that we know more about foundational models, let’s explore LLMs.

2.2 Overview of LLMs

 LLMs represent a significant advancement in AI. They are trained on a vast amount of text data, such as books, articles, and websites, to learn patterns in human language. They are also hard to develop and maintain, as they require lots of data, computing, and engineering resources. OpenAI’s ChatGPT is an example of an LLM—it generates human-like text by predicting the probability of a word considering the words already used in the text.

 The model learns to generate coherent and contextually relevant sentences by adjusting its internal parameters to minimize the difference between its predictions and the actual outcomes in the training data. When generating text, the model chooses the word with the highest probability as its subsequent output and then repeats the process for the next word.

 LLMs are foundational models adapted for natural language processing and language generation tasks. These LLMs are general-purpose and can handle tasks without task-specific training data. As briefly described in the previous chapter, given the right prompt, they can answer questions, write essays, summarize texts, translate languages, and even generate code. LLMs can be applied to many applications across different industries, as outlined in chapter 1—from summarization to classification, Q&A chatbots, content generation, data analysis, entity extraction, and more. Before we get into more details of LLMs, let us look at the Transformer architecture, which makes these foundational models possible.

2.3 Transformer architecture

 Transformers are the bedrock of foundational models and are responsible for their remarkable language understanding capabilities. The Transformer model was first introduced in the paper “Attention Is All You Need” by Vaswani et al. in 2017 [1]. Since then, Transformer-based models have become state-of-the-art for many tasks. GPT and BERT are examples of Transformer-based models, and the “T” in GPT stands for Transformers.

 At their core, Transformers use a mechanism known as attention (specifically self-attention), which allows the model to consider the entire context of a sentence, considering all words simultaneously rather than processing the sentence word by word. This approach is more efficient and can improve the results of many NLP tasks.

 The strength of this approach is that it captures dependencies regardless of their position in the text, which is an essential factor in language understanding. This is key for tasks such as machine translation and text summarization, where the meaning of a sentence can depend on terms that are several words apart.

 Transformers can parallelize their computations, which makes them much faster to train than other types of neural networks. This mechanism enables the model to pay attention to the most relevant parts of the task input.

 In the context of generative AI, a transformer model would take an input (such as a prompt) and generate an output (such as the next word or the completion of the sentence) by weighing the importance of each part of the input in generating the output. For example, in the sentence “The cat sat on the...,” a Transformer model would likely give much weight to the word “cat” when determining that the likely next word might be “mat.” These models exhibit generative properties by predicting the next item in a sequence—the next word in a sentence or the next note in a melody. We explore this more in the next chapter.

OEBPS/Images/Response.png

OEBPS/Images/cover.jpg
Genera
INACTI

Amit Bahree

Foreword by ic Boyd

/“ MANNING

OEBPS/Images/CH01_F06_Bahree.png
Create a meditative song that is calming and soothing wit...

Track 01

@

Create a meditative song that is calming
and soothing with flutes and guitars. The
music should be slow and focus on creatin...

Which track is better? Give it a trophy to improve the model.

Track 01 ®

Track 02 ! :

OEBPS/Images/Prompt.png

OEBPS/Images/CH02_F01_Bahree.png
Data
I Text
Images

u Speech
Str;:t;red

3D signals

Training
_

Foundational
model

Transformer model

Adaptation

—

Sentiment analysis

Information
extraction

Image captioning

Object recognition

Instruction follow

Code generation

Code
understanding

OEBPS/Images/CH01_F05_Bahree.png
B Command Prompt - conda ac X + v - [m]

C:\src\book>python Listing-1.1-helloworld.py
Hello! How can I assist you today?
Bonjour! Comment puis-je vous aider aujourd'hui?

C:\src\book>

OEBPS/Images/CH01_F02_Bahree.png
Atificial
intelligence

OEBPS/Images/manning_m.jpg

OEBPS/Images/CH01_F03_Bahree.png
Extract the name, company, email, and phone number from the text below:

Hello. My name is Amit Bahree. I'm calling from Acme Insurance, Seattle, WA. My colleague
mentioned that you are interested in learning about our comprehensive benefits policy. Could you
give me a call back at (555) 111-2222 when you get a chance so we can go over the benefits? | can be!
reached Monday to Friday during normal business hours. If you want, you can also email me at
aweomseinsrance@acme.com. Thanks, Amit.

Here is the extracted information from the provided text:

Name: Amit Bahree

Company: Acme Insurance

Email: aweomseinsrance@acme.com
Phone Number: (555) 111-2222

OEBPS/Images/Manning_M_small.png

OEBPS/Images/AmitB.png

OEBPS/Images/CH01_F04_Bahree.png

OEBPS/Images/CH01_F01_Bahree.png
Language and image recognition capabilities of Al systems have improved rapidly [

in

Test scores of the Al relative to human performance
+20

Alsystems perform better than

0~Human performance, as the benchmark, is set to zero. I"‘e humans who did these tests

Alsystems performworse

o

Handwriting recognition
peech recognition

Language understanding

-100

\

Data source: Kiela et al. (2021) - Dynabench: Rethinking Benchmarking in NLP
OurWorldinData.org - Research and data to make progress against the world'’s largest problems. Licensed under CC-BY by the author Max Roser

e U T T 1
2000 2005 2010 2015 2020

The capability of each Al system is normalized

to aninitial performance of -100.

OEBPS/Images/CH01_F07_Bahree.png
Goals Resources

* Use cases « People

* Success criteria * Software
*+ Hardware
Deploy
« Test MVP

* Deploy to production

* Monitor
(5]

