

 inside front cover

 [image: IFC]

 [image:]

 Build an Orchestrator in Go (From Scratch)

 Tim Boring

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2024 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Katie Sposato Johnson

 	
 Technical development editor:

 	
 Mike Shepard

 	
 Review editor:

 	
 Adriana Sabo and Dunja Nikitović

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Alisa Larson

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Mike Haller

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617299759

 dedication

 For Jennifer, who has always believed in me, even when I didn’t believe in myself.

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1 Introduction

 1 What is an orchestrator?

 1.1 Why implement an orchestrator from scratch?

 1.2 The (not so) good ol’ days

 1.3 What is a container, and how is it different from a virtual machine?

 1.4 What is an orchestrator?

 1.5 The components of an orchestration system

 The task

 The job

 The scheduler

 The manager

 The worker

 The cluster

 Command-line interface

 1.6 Meet Cube

 1.7 What tools will we use?

 1.8 A word about hardware

 1.9 What we won’t be implementing or discussing

 Distributed computing

 Service discovery

 High availability

 Load balancing

 Security

 2 From mental model to skeleton code

 2.1 The task skeleton

 2.2 The worker skeleton

 2.3 The manager skeleton

 2.4 The scheduler skeleton

 2.5 Other skeletons

 2.6 Taking our skeletons for a spin

 3 Hanging some flesh on the task skeleton

 3.1 Docker: Starting, stopping, and inspecting containers from the command line

 3.2 Docker: Starting, stopping, and inspecting containers from the API

 3.3 Task configuration

 3.4 Starting and stopping tasks

 Part 2 Worker

 4 Workers of the Cube, unite!

 4.1 The Cube worker

 4.2 Tasks and Docker

 4.3 The role of the queue

 4.4 The role of the DB

 4.5 Counting tasks

 4.6 Implementing the worker’s methods

 Implementing the StopTask method

 Implementing the StartTask method

 An interlude on task state

 Implementing the RunTask method

 4.7 Putting it all together

 5 An API for the worker

 5.1 Overview of the worker API

 5.2 Data format, requests, and responses

 5.3 The API struct

 5.4 Handling requests

 5.5 Serving the API

 5.6 Putting it all together

 6 Metrics

 6.1 What metrics should we collect?

 6.2 Metrics available from the /proc filesystem

 6.3 Collecting metrics with goprocinfo

 6.4 Exposing the metrics on the API

 6.5 Putting it all together

 Part 3 Manager

 7 The manager enters the room

 7.1 The Cube manager

 The components that make up the manager

 7.2 The Manager struct

 7.3 Implementing the manager’s methods

 Implementing the SelectWorker method

 Implementing the SendWork method

 Implementing the UpdateTasks method

 Adding a task to the manager

 Creating a manager

 7.4 An interlude on failures and resiliency

 7.5 Putting it all together

 8 An API for the manager

 8.1 Overview of the manager API

 8.2 Routes

 8.3 Data format, requests, and responses

 8.4 The API struct

 8.5 Handling requests

 8.6 Serving the API

 8.7 A few refactorings to make our lives easier

 8.8 Putting it all together

 9 What could possibly go wrong?

 9.1 Overview of our new scenario

 9.2 Failure scenarios

 Application startup failure

 Application bugs

 Task startup failures due to resource problems

 Task failures due to Docker daemon crashes and restarts

 Task failures due to machine crashes and restarts

 Worker failures

 Manager failures

 9.3 Recovery options

 Recovery from application failures

 Recovering from environmental failures

 Recovering from task-level failures

 Recovering from worker failures

 Recovering from manager failures

 9.4 Implementing health checks

 Inspecting a task on the worker

 Implementing task updates on the worker

 Healthchecks and restarts

 9.5 Putting it all together

 Part 4 Refactorings

 10 Implementing a more sophisticated scheduler

 10.1 The scheduling problem

 10.2 Scheduling considerations

 10.3 Scheduler interface

 10.4 Adapting the round-robin scheduler to the scheduler interface

 10.5 Using the new scheduler interface

 Adding new fields to the Manager struct

 Modifying the New helper function

 10.6 Did you notice the bug?

 10.7 Putting it all together

 10.8 The E-PVM scheduler

 The theory

 In practice

 10.9 Completing the Node implementation

 10.10 Using the E-PVM scheduler

 11 Implementing persistent storage for tasks

 11.1 The storage problem

 11.2 The Store interface

 11.3 Implementing an in-memory store for tasks

 11.4 Implementing an in-memory store for task events

 11.5 Refactoring the manager to use the new in-memory stores

 11.6 Refactoring the worker

 11.7 Putting it all together

 11.8 Introducing BoltDB

 11.9 Implementing a persistent task store

 11.10 Implementing a persistent task event store

 11.11 Switching out the in-memory stores for permanent ones

 Part 5 CLI

 12 Building a command-line interface

 12.1 The core components of CLIs

 12.2 Introducing the Cobra framework

 12.3 Setting up our Cobra application

 12.4 Understanding the new main.go

 12.5 Understanding root.go

 12.6 Implementing the worker command

 12.7 Implementing the manager command

 12.8 Implementing the run command

 12.9 Implementing the stop command

 12.10 Implementing the status command

 12.11 Implementing the node command

 13 Now what?

 13.1 Working on Kubernetes and related tooling

 13.2 Manager-worker pattern and workflow systems

 13.3 Manager-worker pattern and integration systems

 13.4 In closing

 appendix Environment setup

 index

Front matter

preface

 I was introduced to orchestrators when I started at Google in 2007. And my introduction was not to Borg but rather Ganeti. Ganeti was an internally developed cluster management system that operated on virtual machines. At the time, it was a basic wrapper around the open source version of Xen, and it provided a clustered solution that allowed us to provide virtual (instead of physical) machines to engineers.

 We didn’t refer to Ganeti as an orchestrator, nor did we talk about it in the same vein as Borg. In hindsight, I don’t think it’s too much of a stretch to consider Ganeti a kind of orchestrator. Instead of operating on tasks (in the form of containers), it operated on virtual machines. Internally at Google, Ganeti served as a bridge from a world where some engineers could run their applications on physical machines to a world where every engineer ran their applications on Borg.

 Several years later, I got a proper introduction to Borg when we rewrote the life cycle management system we built to manage Ganeti clusters and virtual machines. We ran it on Borg. Fast-forward to 2020. The COVID pandemic hit, and like everyone else, I found myself working from home. Suddenly, I had three-plus extra hours per day as a result of not having to commute to a Manhattan office. What to do?

 Of course, the obvious thing to do was to start a personal project of some kind. But what? After 13 years of working with orchestrators, I thought it might be fun to try to write one from scratch. How hard could it be?

 I spent most of the summer of 2020 working on my orchestrator. I called it Cube in an effort to continue the Star Trek theme. Surprisingly, I got it working in less than 3,000 lines of code.

 Around the same time, I read Thorsten Ball’s Writing an Interpreter in Go. While I wasn’t necessarily interested in interpreters or writing programming languages, I was interested in learning how they work. And then it hit me! I could do a book about writing an orchestrator in Go. It would be the book that I wish I’d had back in 2007! Thus was born the book you have in front of you now.

 I realized early on in the writing process that orchestration is a big topic. It’s easy to get distracted by secondary concerns when talking about orchestration systems. How do you handle service discovery? How do you handle DNS? What about consensus? I wanted to strip away all the stuff that gets piled on top of orchestration systems and present just the core, the foundation on which all that other stuff sits. Not that things like service discovery, DNS, and load balancing are unimportant. But in the context of an orchestration system, we talk about those things because they are tools in service to the core function of an orchestrator: scheduling applications to run on a pool of nodes and managing their life cycle.

 So in a nutshell, that’s what this book is about: taking a request from a user to run an application, identifying a machine that can run the application, and then sending a request to the chosen machine to start the application. It seems simple when you put it that way, doesn’t it?

 In addition to presenting the foundational concepts of an orchestration system, another goal in writing this book is to make the content approachable to a broad audience. So while I’ve chosen to write the Cube orchestrator in the Go programming language, my hope is that anyone can work through the book and get the code working, even if you’ve never written a line of Go in your life. All of the code uses basic Go features. While we do use goroutines to do some basic concurrency, we don’t use channels (there are many great resources to learn about concurrency if you’re interested). And we don’t use generics. (Shortly after Go 1.18 was released, I did attempt to refactor the code and manuscript to use generics. While I got the code working, I realized it introduced unnecessary complexity to the book. It became one more thing to explain in an already long list of things to explain.)

 I hope you have fun while you read this book. And in the process of having fun, I hope you learn as much from this book as I did writing it.

acknowledgments

 With most things in life, we get a lot of help from others. And this book is no different.

 I’d like to start by acknowledging all the folks at Manning who helped make this book a reality. I’d like to thank Andy Waldron for taking on my book and believing in it throughout its many shapes. Katie Sposato Johnson was instrumental in helping me navigate the Manning process. Without her help, this book would not exist. I’d also like to thank the many other folks at Manning who have worked on the production and marketing of the book.

 I want to thank the reviewers who read the manuscript at various stages and provided thoughtful feedback: Alain Lompo, Alessandro Campeis, Andres Sacco, Becky Huett, Bobby Lin, Christopher Villanueva, Clifford Thurber, David Paccoud, Emanuele Piccinelli, Ernesto Bossi, Fernando Bernardino, Fernando Rodrigues, Geert Van Laethem, Gregory Reshetniak, Katia Patkin, Kosmas Chatzimichalis, Larry Cai, Lucian Enache, Madiha Khalid, Matthias Busch, Michael Bright, Muneeb Shaikh, Nathan B. Crocker, Nghia To, Richard Vaughan, Sanket Naik, Simone Sguazza, Thomas Dybdahl, Timothy R. J. Langford, Tim van Deurzen, and Vamsi Krishna.

 Special thanks also go out to Mike Haller, technical proofreader, for his thorough review of the code shortly before the book went into production. It’s quite challenging to keep the code presented in the book in sync with the source code, but Mike was invaluable in helping me clean up the many discrepancies.

about this book

 Build an Orchestrator in Go (From Scratch) was written to help you better understand the fundamental components of orchestration systems. Whether you work as a DevOps engineer, site reliability engineer (SRE), or software engineer, much of today’s technology can seem like a black box. You just deploy it to the cloud, and then magical “stuff” happens. As we all know, magical technology is great when it works! When it fails—and it will fail!—that magical aspect can be a barrier to quickly identifying problems and fixing them. As more developers move their applications to the cloud, they are running them (or will do so) on an orchestration system. Unless they work at a larger company that has a dedicated DevOps or SRE staff, they will likely need to deploy and manage their applications themselves. This includes handling problems when they arise. My hope is that this book will remove some of the magic from how applications run on an orchestrator.

Who should read this book

 Build an Orchestrator in Go (From Scratch) is for anyone responsible for deploying and operating an orchestration system (i.e., DevOps engineers and SREs) and for anyone responsible for deploying and managing applications that run on an orchestration system (i.e., software engineers). If you want to learn how orchestrators work, you could read the source code for either Kubernetes or Nomad, both open source projects available on GitHub. Kubernetes has 5 million lines of Go code. Nomad has a considerably smaller codebase, but it’s still 500,000-plus lines of Go. I don’t know about you, but I would struggle to get much value from trying to make sense of half a million lines of code, let alone 5 million lines!

How this book is organized: A road map

 The book has five parts that cover 13 chapters. Part 1 introduces the mental model for the Cube orchestrator and sets up the skeleton codebase that will be implemented throughout the rest of the book:

 	
 Chapter 1 briefly explains the purpose of orchestration systems and then describes the mental model for Cube, the orchestrator implemented throughout the rest of the book.

 	
 Chapter 2 uses the mental model from chapter 1 to create a skeleton codebase for the core concepts of the Cube orchestrator.

 	
 Chapter 3 illustrates how we’ll implement the codebase by taking the skeleton for the Task object and fleshing it out in detail.

 Part 2 implements the concepts necessary for the worker component:

 	
 Chapter 4 fleshes out the implementation details of the Worker object.

 	
 Chapter 5 builds an API for the Worker.

 	
 Chapter 6 creates a framework for the worker to expose metrics about its state and the state of the tasks it’s running.

 Part 3 implements the concepts necessary for the manager component:

 	
 Chapter 7 fleshes out the implementation details of the Manager object.

 	
 Chapter 8 builds an API for the Manager.

 	
 Chapter 9 explores failure scenarios and implements solutions to handle them.

 Part 4 walks the reader through refactoring two components from the initial implementation:

 	
 Chapter 10 describes a scheduler interface and implements a more sophisticated scheduling algorithm.

 	
 Chapter 11 designs and builds a storage interface that allows the manager and worker components to store their tasks in-memory or persistently in a database.

 Part 5 implements a command-line interface (CLI) that allows the reader to operate the orchestrator:

 	
 Chapter 12 builds a CLI that implements commands for starting the manager and worker, starting and stopping tasks, and getting the status of tasks in the system.

 	
 Chapter 13 offers a summary of what we’ve accomplished and provides some suggestions for where to go from here.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature is added to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/build-an-orchestrator-in-go-from-scratch. The complete code for the examples in the book is available for download from the Manning website at https://www.manning.com/books/build-an-orchestrator-in-go-from-scratch and from GitHub at https://github.com/buildorchestratoringo/code.

liveBook discussion forum

 Purchase of Build an Orchestrator in Go (From Scratch) includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, point your web browser to https://www.manning.com/books/build-an-orchestrator-in-go-from-scratch. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contributions to the forum remain voluntary (and unpaid). We suggest you ask the author challenging questions lest his interest stray!

about the author

 Tim Boring is a software engineer with 20+ years of industry experience. For most of those years, he has been a user of orchestration systems, including Borg, Kubernetes, and Nomad.

about the cover illustration

 The figure on the cover of Build an Orchestrator in Go (From Scratch) is “Femme Baschkirienne,” or “Baschkirian woman,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1788. The illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1 Introduction

 The first part of this book lays the groundwork for your journey to writing an orchestration system—from scratch!

 In chapter 1, you will learn the core components that make up every orchestration system. From these core components, you will build a mental model for the Cube orchestrator, which we will implement together through the rest of the book.

 Chapter 2 guides you through creating code skeletons from the mental model you learned in chapter 1.

 In chapter 3, you will take the skeleton for the Task object and flesh it out in detail. This exercise will illustrate the process we’ll use to implement the rest of Cube’s codebase.

1 What is an orchestrator?

 This chapter covers

 	
The evolution of application deployments

 	
Classifying the components of an orchestration system

 	
Introducing the mental model for the orchestrator

 	
Defining requirements for our orchestrator

 	
Identifying the scope of our work

 Kubernetes. Kubernetes. Kubernetes. If you’ve worked in or near the tech industry in the last five years, you’ve at least heard the name. Perhaps you’ve used it in your day job. Or perhaps you’ve used other systems such as Apache Mesos or HashiCorp’s Nomad.

 In this book, we’re going to build our own Kubernetes, writing the code ourselves to gain a better understanding of just what Kubernetes is. And what Kubernetes is—like Mesos and Nomad—is an orchestrator.

 When you’ve finished the book, you will have learned the following:

 	
 What components form the foundation of any orchestration system

 	
 How those components interact

 	
 How each component maintains its own state and why

 	
 What tradeoffs are made in designing and implementing an orchestration system

1.1 Why implement an orchestrator from scratch?

 Why bother writing an orchestrator from scratch? No, the answer is not to write a system that will replace Kubernetes, Mesos, or Nomad. The answer is more practical than that. If you’re like me, you learn by doing. Learning by doing is easy when we’re dealing with small things. How do I write a for loop in this new programming language I’m learning? How do I use the curl command to make a request to this new API I want to use? These things are easy to learn by doing them because they are small in scope and don’t require too much effort.

 When we want to learn larger systems, however, learning by doing becomes challenging. The obvious way to tackle this situation is to read the source code. The code for Kubernetes, Mesos, and Nomad is available on GitHub. So if the source code is available, why write an orchestrator from scratch? Couldn’t we just look at the source code for them and get the same benefit?

 Perhaps. Keep in mind, though, that these are large software projects. Kubernetes contains more than 2 million lines of source code. Mesos and Nomad clock in at just over 700,000 lines of code. While not impossible, learning a system by slogging around in codebases of this size may not be the best way.

 Instead, we’re going to roll up our sleeves and get our hands dirty. We’ll implement our orchestrator in less than 3,000 lines of code.

 To ensure we focus on the core bits of an orchestrator and don’t get sidetracked, we are going to narrow the scope of our implementation. The orchestrator you write in the course of this project will be fully functional. You will be able to start and stop tasks and interact with those tasks.

 It will not, however, be production ready. After all, our purpose is not to implement a system that will replace Kubernetes, Nomad, or Mesos. Instead, our purpose is to implement a minimal system that gives us deeper insight into how production-grade systems like Kubernetes and Nomad work.

1.2 The (not so) good ol’ days

 Let’s take a journey back to 2002 and meet Michelle. Michelle is a system administrator for her company, and she is responsible for keeping her company’s applications up and running around the clock. How does she accomplish this?

 Like many other sysadmins, Michelle employs the common strategy of deploying applications on bare metal servers. A simplistic sketch of Michelle’s world can be seen in figure 1.1. Each application typically runs on its own physical hardware. To make matters more complicated, each application has its own hardware requirements, so Michelle has to buy and then manage a server fleet that is unique to each application. Moreover, each application has its own unique deployment process and tooling. The database team gets new versions and updates in the mail via compact disk, so its process involves a database administrator (DBA) copying files from the CD to a central server and then using a set of custom shell scripts to push the files to the database servers, where another set of shell scripts handles installation and updates. Michelle handles the installation and updates of the company’s financial system herself. This process involves downloading the software from the internet, at least saving her the hassle of dealing with CDs. But the financial software comes with its own set of tools for installing and managing updates. Several other teams are building the company’s software product, and the applications these teams build have a completely different set of tools and procedures.

 [image: 01-01]

 Figure 1.1 This diagram represents Michelle’s world in 2002. The outer box represents physical machines and the operating systems running on them. The inner box represents the applications running on the machines and demonstrates how applications used to be more directly tied to both operating systems and machines.

 If you weren’t working in the industry during this time and didn’t experience anything like Michelle’s world, consider yourself lucky. Not only was that world chaotic and difficult to manage, it was also extremely wasteful. Virtualization came along next in the early to mid-2000s. These tools allowed sysadmins like Michelle to carve up their physical fleets so that each physical machine hosted several smaller yet independent virtual machines (VMs). Instead of each application running on its own dedicated physical machine, it now ran on a VM. And multiple VMs could be packed onto a single physical one. While virtualization made life for folks like Michelle better, it wasn’t a silver bullet.

 This was the way of things until the mid-2010s when two new technologies appeared on the horizon. The first was Docker, which introduced containers to the wider world. The concept of containers was not new. It had been around since 1979 (see Ell Marquez’s “The History of Container Technology” at http://mng.bz/oro2). Before Docker, containers were mostly confined to large companies, like Sun Microsystems and Google, and hosting providers looking for ways to efficiently and securely provide virtualized environments for their customers. The second new technology to appear at this time was Kubernetes, a container orchestrator focused on automating the deployment and management of containers.

1.3 What is a container, and how is it different from a virtual machine?

 As mentioned earlier, the first step in moving from Michelle’s early world of physical machines and operating systems was the introduction of virtual machines. Virtual machines, or VMs, abstracted a computer’s physical components (CPU, memory, disk, network, CD-Rom, etc.) so administrators could run multiple operating systems on a single physical machine. Each operating system running on the physical machine was distinct. Each had its own kernel, its own networking stack, and its own resources (e.g., CPU, memory, disk).

 The VM world was a vast improvement in terms of cost and efficiency. The cost and efficiency gains, however, only applied to the machine and operating system layers. At the application layer, not much had changed. As you can see in figure 1.2, applications were still tightly coupled to an operating system. If you wanted to run two or more instances of your application, you needed two or more VMs.

 [image: 01-02]

 Figure 1.2 Applications running on VMs

 Unlike VMs, a container does not have a kernel. It does not have its own networking stack. It does not control resources like CPU, memory, and disk. In fact, the term container is just a concept; it is not a concrete technical reality like a VM.

 The term container is really just shorthand for process and resource isolation in the Linux kernel. So when we talk about containers, what we really are talking about are namespaces and control groups (cgroups), both of which are features of the Linux kernel. Namespaces are a mechanism to isolate processes and their resources from each other. Cgroups provide limits and accounting for a collection of processes.

 But let’s not get too bogged down with these lower-level details. You don’t need to know about namespaces and cgroups to work through the rest of this book. If you are interested, however, I encourage you to watch Liz Rice’s talk “Containers from Scratch” (https://www.youtube.com/watch?v=8fi7uSYlOdc).

 With the introduction of containers, an application can be decoupled from the operating system layer, as seen in figure 1.3. With containers, if I have an app that starts up a server process that listens on port 80, I can now run multiple instances of that app on a single physical host. Or let’s say that I have six different applications, each with their own server processes listening on port 80. Again, with containers, I can run those six applications on the same host without having to give each one a different port at the application layer.

 [image: 01-03]

 Figure 1.3 Applications running in containers

 The real benefit of containers is that they give the application the impression that it is the sole application running on the operating system and thus has access to all of the operating system’s resources.

1.4 What is an orchestrator?

 The most recent step in the evolution of Michelle’s world is using an orchestrator to deploy and manage her applications. An orchestrator is a system that provides automation for deploying, scaling, and otherwise managing containers. In many ways, an orchestrator is similar to a CPU scheduler. The difference is that the target objects of an orchestration system are containers instead of OS-level processes. (While containers are typically the primary focus of an orchestrator, some systems also provide for the orchestration of other types of workloads. HashiCorp’s Nomad, for example, supports Java, command, and the QEMU VM runner workload types in addition to Docker.)

 With containers and an orchestrator, Michelle’s world changes drastically. In the past, the physical hardware and operating systems she deployed and managed were mostly dictated by requirements from application vendors. Her company’s financial system, for example, had to run on AIX (a proprietary Unix OS owned by IBM), which meant the physical servers had to be RISC-based (https://riscv.org/) IBM machines. Why? Because the vendor that developed and sold the financial system certified that the system could run on AIX. If Michelle tried to run the financial system on, say, Debian Linux, the vendor would not provide support because it was not a certified OS. And this was just one of the many applications that Michelle operated for her company.

 Now Michelle can deploy a standardized fleet of machines that all run the same OS. She no longer has to deal with multiple hardware vendors who deal in specialized servers. She no longer has to deal with administrative tools that are unique to each operating system. And, most importantly, she no longer needs the hodgepodge of deployment tools provided by application vendors. Instead, she can use the same tooling to deploy, scale, and manage all of her company’s applications (table 1.1).

 Table 1.1 Michelle’s old and new worlds

 	
 Michelle’s old world

 	
 Michelle’s new world

 	
 Multiple hardware vendors

 	
 Single hardware vendor (or cloud provider)

 	
 Multiple operating systems

 	
 Single operating system

 	
 Runtime requirements dictated by application vendors

 	
 Application vendors build to standards (containers and orchestration)

1.5 The components of an orchestration system

 So an orchestrator automates deploying, scaling, and managing containers. Next, let’s identify the generic components and their requirements that make those features possible. They are as follows:

 	
 The task

 	
 The job

 	
 The scheduler

 	
 The manager

 	
 The worker

 	
 The cluster

 	
 The command-line interface (CLI)

 Some of these components can be seen in figure 1.4.

 [image: 01-04]

 Figure 1.4 The basic components of an orchestration system. Regardless of what terms different orchestrators use, each has a scheduler, a manager, and a worker, and they all operate on tasks.

1.5.1 The task

 The task is the smallest unit of work in an orchestration system and typically runs in a container. You can think of it like a process that runs on a single machine. A single task could run an instance of a reverse proxy like NGINX, or it could run an instance of an application like a RESTful API server; it could be a simple program that runs in an endless loop and does something silly, like ping a website and write the result to a database.

 A task should specify the following:

 	
 The amount of memory, CPU, and disk it needs to run effectively

 	
 What the orchestrator should do in case of failures, typically called a restart policy

 	
 The name of the container image used to run the task

 Task definitions may specify additional details, but these are the core requirements.

1.5.2 The job

 The job is an aggregation of tasks. It has one or more tasks that typically form a larger logical grouping of tasks to perform a set of functions. For example, a job could be comprised of a RESTful API server and a reverse proxy.

 Kubernetes and the concept of a job

 If you’re only familiar with Kubernetes, this definition of job may be confusing at first. In Kubernetesland, a job is a specific type of workload that has historically been referred to as a batch job—that is, a job that starts and then runs to completion. Kubernetes has multiple resource types that are Kubernetes-specific implementations of the job concept:

 	
 Deployment

 	
 ReplicaSet

 	
 StatefulSet

 	
 DaemonSet

 	
 Job

 In the context of this book, we’ll use job in its more generic definition.

 A job should specify details at a high level and will apply to all tasks it defines:

 	
 Each task that makes up the job

 	
 Which data centers the job should run in

 	
 How many instances of each task should run

 	
 The type of the job (should it run continuously or run to completion and stop?)

 We won’t be dealing with jobs in our implementation for the sake of simplicity. Instead, we’ll work exclusively at the level of individual tasks.

1.5.3 The scheduler

 The scheduler decides what machine can best host the tasks defined in the job. The decision-making process can be as simple as selecting a node from a set of machines in a round-robin fashion or as complex as the Enhanced Parallel Virtual Machine (E-PVM) scheduler (used as part of Google’s Borg scheduler), which calculates a score based on a number of variables and then selects a node with the best score.

 The scheduler should perform these functions:

 	
 Determine a set of candidate machines on which a task could run

 	
 Score the candidate machines from best to worst

 	
 Pick the machine with the best score

 We’ll implement both the round-robin and E-PVM schedulers later in the book.

1.5.4 The manager

 The manager is the brain of an orchestrator and the main entry point for users. To run jobs in the orchestration system, users submit their jobs to the manager. The manager, using the scheduler, then finds a machine where the job’s tasks can run. The manager also periodically collects metrics from each of its workers, which are used in the scheduling process.

 The manager should do the following:

 	
 Accept requests from users to start and stop tasks.

 	
 Schedule tasks onto worker machines.

 	
 Keep track of tasks, their states, and the machine on which they run.

1.5.5 The worker

 The worker provides the muscles of an orchestrator. It is responsible for running the tasks assigned to it by the manager. If a task fails for any reason, it must attempt to restart the task. The worker also makes metrics about its tasks and overall machine health available for the manager to poll.

 The worker is responsible for the following:

 	
 Running tasks as Docker containers

 	
 Accepting tasks to run from a manager

 	
 Providing relevant statistics to the manager for the purpose of scheduling tasks

 	
 Keeping track of its tasks and their states

1.5.6 The cluster

 The cluster is the logical grouping of all the previous components. An orchestration cluster could be run from a single physical or virtual machine. More commonly, however, a cluster is built from multiple machines, from as few as five to as many as thousands or more.

 The cluster is the level at which topics like high availability (HA) and scalability come into play. When you start using an orchestrator to run production jobs, these topics become critical. For our purposes, we won’t be discussing HA or scalability in any detail as they relate to the orchestrator we’re going to build. Keep in mind, however, that the design and implementation choices we make will impact the ability to deploy our orchestrator in a way that would meet the HA and scalability needs of a production environment.

1.5.7 Command-line interface

 Finally, our CLI, the main user interface, should allow a user to

 	
 Start and stop tasks

 	
 Get the status of tasks

 	
 See the state of machines (i.e., the workers)

 	
 Start the manager

 	
 Start the worker

 All orchestration systems share these same basic components. Google’s Borg, seen in figure 1.5, calls the manager the BorgMaster and the worker a Borglet but otherwise uses the same terms as previously defined.

 [image: 01-05]

 Figure 1.5 Google’s Borg. At the bottom are a number of Borglets, or workers, which run individual tasks in containers. In the middle is the BorgMaster, or the manager, which uses the scheduler to place tasks on workers.

 Apache Mesos, seen in figure 1.6, was presented at the Usenix HotCloud workshop in 2009 and was used by Twitter starting in 2010. Mesos calls the manager simply the master and the worker an agent. It differs slightly, however, from the Borg model in how it schedules tasks. It has a concept of a framework, which has two components: a scheduler that registers with the master to be offered resources, and an executor process that is launched on agent nodes to run the framework’s tasks (http://mesos.apache.org/documentation/latest/architecture/).

 [image: 01-06]

 Figure 1.6 Apache Mesos

 Kubernetes, which was created at Google and influenced by Borg, calls the manager the control plane and the worker a kubelet. It rolls up the concepts of job and task into Kubernetes objects. Finally, Kubernetes maintains the usage of the terms scheduler and cluster. These components can be seen in the Kubernetes architecture diagram in figure 1.7.

 [image: 01-07]

 Figure 1.7 The Kubernetes architecture. The control plane, seen on the left, is equivalent to the manager function or to Borg’s BorgMaster.

 HashiCorp’s Nomad, released a year after Kubernetes, uses more basic terms. The manager is the server, and the worker is the client. While not shown in figure 1.8, Nomad uses the terms scheduler, job, task, and cluster as we’ve defined here.

 [image: 01-08]

 Figure 1.8 Nomad’s architecture. While it appears more sparse, it still functions similarly to the other orchestrators.

1.6 Meet Cube

 We’re going to call our implementation Cube. If you’re up on your Star Trek: Next Generation references, you’ll recall that the Borg traveled in a cube-shaped spaceship.

 Cube will have a much simpler design than Google’s Borg, Kubernetes, or Nomad. And it won’t be anywhere nearly as resilient as the Borg’s ship. It will, however, contain all the same components as those systems.

 The mental model in figure 1.9 expands on the architecture outlined in figure 1.4. In addition to the higher-level components, it dives a little deeper into the three main components: the manager, the worker, and the scheduler.

 [image: 01-09]

 Figure 1.9 Mental model for Cube. It has a manager, a worker, and a scheduler, and users (i.e., you) will interact with it via a command line.

 Starting with the scheduler in the lower left of the diagram, we see it contains three boxes: feasibility, scoring, and picking. These boxes represent the scheduler’s generic phases, and they are arranged in the order in which the scheduler moves through the process of scheduling tasks onto workers:

 	
 Feasibility—This phase assesses whether it’s even possible to schedule a task onto a worker. There will be cases where a task cannot be scheduled onto any worker; there will also be cases where a task can be scheduled but only onto a subset of workers. We can think of this phase as similar to choosing which car to buy. My budget is $10,000, but depending on which car lot I go to, all the cars on the lot could cost more than $10,000, or only a subset of cars may fit into my price range.

 	
 Scoring—This phase takes the workers identified by the feasibility phase and gives each one a score. This stage is the most important and can be accomplished in any number of ways. For example, to continue our car purchase analogy, I might give a score for each of three cars that fit within my budget based on variables like fuel efficiency, color, and safety rating.

 	
 Picking—This phase is the simplest. From the list of scores, the scheduler picks the best one. This will be either the highest or lowest score.

 Moving up the diagram, we come to the manager. The first box inside the manager component shows that the manager uses the scheduler we described previously. Next, there is the API box. The API is the primary mechanism for interacting with Cube. Users submit jobs and request jobs be stopped via the API. A user can also query the API to get information about job and worker status. Next, there is the Task Storage box. The manager must keep track of all the jobs in the system to make good scheduling decisions, as well as to provide answers to user queries about job and worker statuses. Finally, the manager also keeps track of worker metrics, such as the number of jobs a worker is currently running, how much memory it has available, how much load the CPU is under, and how much disk space is free. This data, like the data in the job storage layer, is used for scheduling.

 The final component in our diagram is the worker. Like the manager, it too has an API, although it serves a different purpose. The primary user of this API is the manager. The API provides the means for the manager to send tasks to the worker, to tell the worker to stop tasks, and to retrieve metrics about the worker’s state. Next, the worker has a task runtime, which in our case will be Docker. Like the manager, the worker also keeps track of the work it is responsible for, which is done in the Task Storage layer. Finally, the worker provides metrics about its own state, which it makes available via its API.

1.7 What tools will we use?

 To focus on our main goal, we’re going to limit the number of tools and libraries we use. Here’s the list of tools and libraries we’re going to use:

 	
 Go

 	
 chi

 	
 Docker SDK

 	
 BoltDB

 	
 goprocinfo

 	
 Linux

 As the title of this book says, we’re going to write our code in the Go programming language. Both Kubernetes and Nomad are written in Go, so it is obviously a reasonable choice for large-scale systems. Go is also relatively lightweight, making it easy to learn quickly. If you haven’t used Go before but have written non-trivial software in languages such as C/C++, Java, Rust, Python, or Ruby, then you should be fine. If you want more in-depth material about the Go language, either The Go Programming Language (www.gopl.io/) or Get Programming with Go (www.manning.com/books/get-programming-with-go) are good resources. That said, all the code presented will compile and run, so simply following along should also work.

 There is no particular requirement for an IDE to write the code. Any text editor will do. Use whatever you’re most comfortable with and makes you happy.

 We’ll focus our system on supporting Docker containers. This is a design choice. We could broaden our scope so our orchestrator could run a variety of jobs: containers, standalone executables, or Java JARs. Remember, however, our goal is not to build something that will rival existing orchestrators. This is a learning exercise. Narrowing our scope to focus solely on Docker containers will help us reach our learning goals more easily. That said, we will be using Docker’s Go SDK (https://pkg.go.dev/github.com/docker/docker/client).

 Our manager and worker are going to need a datastore. For this purpose, we’re going to use BoltDB (https://github.com/boltdb/bolt), an embedded key/value store. There are two main benefits to using Bolt. First, by being embedded within our code, we don’t have to run a database server. This feature means neither our manager nor our workers will need to talk across a network to read or write its data. Second, using a key/value store provides fast, simple access to our data.

 The manager and worker will each provide an API to expose their functionality. The manager’s API will be primarily user-facing, allowing users of the system to start and stop jobs, review job status, and get an overview of the nodes in the cluster. The worker’s API is internal-facing and will provide the mechanism by which the manager sends jobs to workers and retrieves metrics from them. In many other languages, we might use a web framework to implement such an API. For example, if we were using Java, we might use Spring. Or if we were using Python, we might choose Django. While there are such frameworks available for Go, they aren’t always necessary. In our case, we don’t need a full web framework like Spring or Django. Instead, we’re going to use a lightweight router called chi (https://github.com/go-chi/chi). We’ll write handlers in plain Go and assign those handlers to routes.

 To simplify the collection of worker metrics, we’re going to use the goprocinfo library (https://github.com/c9s/goprocinfo). This library will abstract away some details related to getting metrics from the proc filesystem.

 Finally, while you can write the code in this book on any operating system, it will need to be compiled and run on Linux. Any recent distribution should be sufficient.

 For everything else, we’ll rely on Go and its standard tools that are installed by default with every version of Go. Since we’ll be using Go modules, you should use Go v1.14 or later. I’ve developed the code in this book using versions 1.20, 1.19, and 1.16.

1.8 A word about hardware

 You won’t need a bunch of hardware to complete this book. You can do everything on a single machine, whether that’s a laptop, a desktop, or even a Raspberry Pi. The only requirements are that the machine is running Linux and it has enough memory and disk to hold the source code and compile it.

 If you are going to do everything on a single machine, there are a couple more things to consider. You can run a single instance of the worker. This means when you submit a job to the manager, it will assign that job to the single worker. For that matter, any job will be assigned to that worker. For a better experience, and one that better exercises the scheduler and showcases the work you’re going to do, you can run multiple instances of the worker. One way to do this is to simply open multiple terminals and run an instance of the worker in each. Alternatively, you can use something like tmux (https://github.com/tmux/tmux), seen in figure 1.10, which achieves a similar outcome but allows you to detach from the terminal and leave everything running.

 [image: 01-10]

 Figure 1.10 A tmux session showing three Raspberry Pis running the Cube worker

 If you have extra hardware lying around (e.g., an old laptop or desktop or a couple of Raspberry Pis), you can use those as your worker nodes. Again, the only requirement is that they are running Linux. For example, in developing the code in preparation for writing this book, I used eight Raspberry Pis as workers. I used my laptop as the manager.

1.9 What we won’t be implementing or discussing

 So, to reiterate, our purpose here is not to build something that can be used to replace a production-grade system like Kubernetes. Engineering is about weighing tradeoffs against your requirements. This is a learning exercise to gain a better understanding of how orchestrators, in general, work. To that end, we won’t be dealing with or discussing any of the following that might accompany discussions of production-grade systems:

 	
 Distributed computing

 	
 Service discovery

 	
 High availability

 	
 Load balancing

 	
 Security

1.9.1 Distributed computing

 Distributed computing is an architectural style where a system’s components run on different computers, communicate across a network, and have to coordinate actions and states. The main benefits of this style are scalability and resiliency to failure. An orchestrator is a distributed system. It allows engineers to scale systems beyond the resources of a single computer, thus enabling those systems to handle larger and larger workloads. An orchestrator also provides resiliency to failure by making it relatively easy for engineers to run multiple instances of their services and for those instances to be managed in an automated way.

