

 Inside front cover

 Podman and Docker feature comparison

 	
 Feature

 	
 Podman

 	
 Docker

 	
 Description

 	
 Supports all OCI and Docker images

 	
 ✔

 	
 ✔

 	
 Both pull and run container images from container registries (i.e., quay.io and docker.io)

 	
 Launches OCI container engines

 	
 ✔

 	
 ✔

 	
 Launch containers using runc, crun, Kata, gVisor, and OCI container engines

 	
 Simple command-line interface

 	
 ✔

 	
 ✔

 	
 Podman and Docker share the same CLI.

 	
 Integration with systemd

 	
 ✔

 	
 ✘

 	
 Podman supports running systemd inside of the container as well as many systemd features.

 	
 Fork/exec model

 	
 ✔

 	
 ✘

 	
 The container is a direct descendant of the podman command.

 	
 Fully support user namespace

 	
 ✔

 	
 ✘

 	
 Only Podman supports running containers in separate user namespaces.

 	
 Client–server model

 	
 ✔

 	
 ✔

 	
 Docker is a RESTful API daemon. Podman supports RESTful API via a systemd socket=activated service.

 	
 Supports dockercompose

 	
 ✔

 	
 ✔

 	
 compose scripts work against both restful APIs. Podman’s works in rootless mode.

 	
 Supports docker-py

 	
 ✔

 	
 ✔

 	
 docker-py python bindings work against both restful APIs. Podman’s works in rootless mode. Podman also supports podman-py for running advanced features.

 	
 Daemonless

 	
 ✔

 	
 ✘

 	
 The podman command runs like a traditional command-line tool, while Docker requires multiple root-running daemons.

 	
 Supports Kubernetes-like pods

 	
 ✔

 	
 ✘

 	
 Podman supports running multiple containers within the same pod.

 	
 Supports Kubernetes yaml

 	
 ✔

 	
 ✘

 	
 Podman can launch containers and pods based on Kubernetes yaml. It can also generate Kuberenetes.yaml from running containers.

 	
 Supports Docker swarm

 	
 ✘

 	
 ✔

 	
 Podman believes the future for orchestrated multi-node containers is Kubernetes and does not plan on implementing Swarm.

 	
 Customizable registries

 	
 ✔

 	
 ✘

 	
 Podman allows you to configure registries for short name expansion. Docker is hard coded to docker.io when you specify a short name.

 	
 Customizable defaults

 	
 ✔

 	
 ✘

 	
 Podman supports fully customizing all of its defaults including security, namespaces, volumes, and more.

 	
 Mac OS support

 	
 ✔

 	
 ✔

 	
 Podman and Docker support running containers on a Mac via a VM running Linux.

 	
 Windows support

 	
 ✔

 	
 ✔

 	
 Podman and Docker support running containers on a Windows WSL2 or a VM running Linux.

 	
 Linux support

 	
 ✔

 	
 ✔

 	
 Podman and Docker are supported on all major Linux distributions.

 [image:]

 Podman in Action

 Secure, rootless containers for Kubernetes, microservices, and more

 Daniel Walsh

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Toni Arritola

 	
 Technical development editor:

 	
 Joshua White

 	
 Technical editor:

 	
 Roman Zhuzha

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Alain Lompo

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633439689

 dedication

 In memory of my mother, Joan P. Walsh

brief contents

 Part 1. Foundations

 1 Podman: A next-generation container engine

 2 Command line

 3 Volumes

 4 Pods

 Part 2. Design

 5 Customization and configuration files

 6 Rootless containers

 Part 3. Advanced topics

 7 Integration with systemd

 8 Working with Kubernetes

 9 Podman as a service

 Part 4. Container security

 10 Security container isolation

 11 Additional security considerations

 Appendix A. Podman-related container tools

 Appendix B. OCI runtimes

 Appendix C. Getting Podman

 Appendix D. Contributing to Podman

 Appendix E. Podman on macOS

 Appendix F. Podman on Windows

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Foundations

 1 Podman: A next-generation container engine

 1.1 About all these terms

 1.2 A brief overview of containers

 Container images: A new way to ship software

 Container images lead to microservices

 Container image format

 Container standards

 1.3 Why use Podman when you have Docker?

 Why have only one way to run containers?

 Rootless containers

 Fork/exec model

 Podman is daemonless

 User-friendly command line

 Support for REST API

 Integration with systemd

 Pods

 Customizable registries

 Multiple transports

 Complete customizability

 User-namespace support

 1.4 When not to use Podman

 2 Command line

 2.1 Working with containers

 Exploring containers

 Running the containerized application

 Stopping containers

 Starting containers

 Listing containers

 Inspecting containers

 Removing containers

 exec-ing into a container

 Creating an image from a container

 2.2 Working with container images

 Differences between a container and an image

 Listing images

 Inspecting images

 Pushing images

 podman login: Logging into a container registry

 Tagging images

 Removing images

 Pulling images

 Searching for images

 Mounting images

 2.3 Building images

 Format of a Containerfile or Dockerfile

 Automating the building of our application

 3 Volumes

 3.1 Using volumes with containers

 Named volumes

 Volume mount options

 podman run - -mount command option

 4 Pods

 4.1 Running pods

 4.2 Creating a pod

 4.3 Adding a container to a pod

 4.4 Starting a pod

 4.5 Stopping a pod

 4.6 Listing pods

 4.7 Removing pods

 Part 2. Design

 5 Customization and configuration files

 5.1 Configuration files for storage

 Storage location

 Storage drivers

 5.2 Configuration files for registries

 registries.conf

 5.3 Configuration files for engines

 5.4 System configuration files

 6 Rootless containers

 6.1 How does rootless Podman work?

 Images contain content owned by multiple user identifiers (UIDs)

 6.2 Rootless Podman under the covers

 Pulling the image

 Creating a container

 Setting up the network

 Starting the container monitor: conmon

 Launching the OCI runtime

 The containerized application runs until completion

 Part 3. Advanced topics

 7 Integration with systemd

 7.1 Running systemd within a container

 Containerized systemd requirements

 Podman container in systemd mode

 Running an Apache service within a systemd container

 7.2 Journald for logging and events

 Log driver

 Events

 7.3 Starting containers at boot

 Restarting containers

 Podman containers as systemd services

 Distributing systemd unit files to manage Podman containers

 Automatically updating Podman containers

 7.4 Running containers in notify unit files

 7.5 Rolling back failed containers after update

 7.6 Socket-activated Podman containers

 8 Working with Kubernetes

 8.1 Kubernetes YAML files

 8.2 Generating Kubernetes YAML files with Podman

 8.3 Generating Podman pods and containers from Kubernetes YAML

 Shutting down pods and containers based on a Kubernetes YAML file

 Building images using Podman and Kubernetes YAML files

 8.4 Running Podman within a container

 Running Podman within a Podman container

 Running Podman within a Kubernetes pod

 9 Podman as a service

 9.1 Introducing the Podman service

 Systemd services

 9.2 Podman-supported APIs

 9.3 Python libraries for interacting with Podman

 Using docker-py with the Podman API

 Using podman-py with the Podman API

 Which Python library should you use?

 9.4 Using docker-compose with the Podman service

 9.5 podman - -remote

 Local connections

 Remote connections

 Setting up SSH on the client machine

 Configuring a connection

 Part 4. Container security

 10 Security container isolation

 10.1 Read-only Linux kernel pseudo filesystems

 Unmasking the masked paths

 Masking additional paths

 10.2 Linux capabilities

 Dropped Linux capabilities

 Dropped CAP_SYS_ADMIN

 Dropping capabilities

 Adding capabilities

 No new privileges

 Root with no capabilities is still dangerous

 10.3 UID isolation: User namespace

 Isolating containers using the - -userns=auto flag

 User-namespaced Linux capabilities

 Rootless Podman with the - -userns=auto flag

 User volumes with the - -userns=auto flag

 10.4 Process isolation: PID namespace

 10.5 Network isolation: Network namespace

 10.6 IPC isolation: IPC namespace

 10.7 Filesystem isolation: Mount namespace

 10.8 Filesystem isolation: SELinux

 SELinux type enforcement

 SELinux Multi-Category Security separation

 10.9 System call isolation seccomp

 10.10 Virtual machine isolation

 11 Additional security considerations

 11.1 Daemon versus the fork/exec model

 Access to the docker.sock

 Auditing and logging

 11.2 Podman secret handling

 11.3 Podman image trust

 Podman image signing

 11.4 Podman image scanning

 Read-only containers

 11.5 Security in depth

 Podman uses all security mechanisms simultaneously

 Where should you run your containers?

 Appendix A. Podman-related container tools

 Appendix B. OCI runtimes

 Appendix C. Getting Podman

 Appendix D. Contributing to Podman

 Appendix E. Podman on macOS

 Appendix F. Podman on Windows

 index

 front matter

preface

 I have been working on computer security for close to 40 years, and for the past 20 years, I’ve focused on container technologies. When Docker showed up about 10 years ago, it triggered a revolution in the way the people distributed and ran applications on the internet. As I worked on Docker, I felt it could have been designed better. Working with a root-running daemon and then adding more and more daemons felt like the wrong approach. Instead, I felt we could use low-level operating systems concepts to create a tool that ran the same containerized applications in the same manner but with more security and requiring fewer privileges. With this in mind, my team at Red Hat set out to build a series of tools to help developers and administrators run containers in the most secure way possible. Out of this effort came Podman.

 I started blogging on subjects like SELinux in the early 2000s and have been writing articles ever since. I have written hundreds of articles on containers and security over the years, but I wanted to consolidate the ideas and describe the technology of Podman in a single book I could point users and customers to.

 This book introduces Podman and how to use it. It also dives deep into the technology and the different parts of the Linux operating system that we take advantage of. Since I am a security engineer, I also spend a couple of chapters describing how the security of containers works. Reading this book should give you a better understanding of what containers are, how they work, and how to work with different features of Podman. You will even learn a lot more about Docker. As Podman grows in popularity and infiltrates your infrastructure, this book will be a handy reference to guide your way.

acknowledgments

 I extend thanks to all the people who helped me write this book. This includes members of the Podman team, who have written articles that helped me understand some of the technology I did not fully comprehend and have helped build a great product. Thank you, Brent Baude, Matt Heon, Valentin Rothberg, Giuseppe Scrivano, Urvashi Mohnani, Nalin Dahyabhai, Lokesh Mandvekar, Miloslav Trmac, Jason Greene, Jhon Honce, Scott McCarty, Tom Sweeney, Ashley Cui, Ed Santiago, Chris Evich, Aditya Rajan, Paul Holzinger, Preethi Thomas, and Charlie Doern. I also want to thank the countless open source contributors who have made Linux containers and Podman possible.

 I thank the entire team at Manning, but especially Toni Arritola. Toni taught me how to better focus my ideas and has been a great partner on this journey. She’s had to deal with me, an old mathematics major who was never great at writing, and she helped make this book possible.

 To all the reviewers—Alain Lompo, Alessandro Campeis, Allan Makura, Amanda Debler, Anders Björklund, Andrea Monacchi, Camal Cakar, Clifford Thurber, Conor Redmond, David Paccoud, Deepak Sharma, Federico Kircheis, Frans Oilinki, Gowtham Sadasivam, Ibrahim Akkulak, James Liu, James Nyika, Jeremy Chen, Kent Spillner, Kevin Etienne, Kirill Shirinkin, Kosmas Chatzimichalis, Krzysztof Kamyczek, Larry Cai, Michael Bright, Mladen Knežić, Oliver Korten, Richard Meinsen, Roman Zhuzha, Rui Liu, Satadru Roy, Seung-jin Kim, Simeon Leyzerzon, Simone Sguazza, Syed Ahmed, Thomas Peklak, and Vivek Veerappan—thank you, your suggestions helped make this a better book.

about this book

 Podman in Action describes how users can build, manage, and run containers. My goal in writing it was to explain how easy it is to transfer skills you might have learned in Docker to Podman as well as how easy it is to use Podman if you have never used a container engine before. Podman in Action also teaches you how to use advanced features like pods and guides you on your journey toward building applications ready to run on the edge of or inside Kubernetes. Finally, Podman in Action explains all of the security features of the Linux kernel used to isolate containers from the system as well as from other containers.

Who should read this book?

 Podman in Action is written for software developers who are looking to understand, develop, and work with containers, as well as system administrators who need to run containers in production. Reading this book will give you a deeper understanding of what containers are. Having knowledge of Linux processes and familiarity working with the Linux shells is necessary to get the full benefit of the book.

 The book should have something for everyone on their quest to use containers. Users with a deep understanding of Docker will learn about advanced features of Podman not available from Docker and will get an even deeper understanding of how Docker works. Novice users will learn the basics of containers and pods.

How this book is organized: A roadmap

 Podman in Action is split into four parts and six appendixes:

 	
 Part 1, “Foundations,” comprises four chapters and provides readers an introduction to Podman. Chapter 1 explains what Podman does, why it was created, and why it is important. The next two chapters introduce the command-line interface and how to use volumes within containers. Finally, chapter 4 introduces the concept of pods and how Podman works with them. There should be something for everyone in these chapters, but if you have great experience with Docker, you should be able to skim over much of the content in chapter 2.

 	
 Part 2, “Design,” comprises two chapters in which I dig deep into Podman’s design. You will learn about rootless containers and how they work and will come out of these chapters with a better understanding of user namespaces and the security of rootless containers. You will also learn how to customize the configuration of your Podman environment.

 	
 Part 3, “Advanced topics,” comprises three chapters and moves beyond the basics of Podman. In chapter 7 you will see how Podman can work in production through its integration with systemd. It covers running systemd inside a container and how you can use it as a container manager. You will learn how to set up edge servers with Podman containers, where systemd manages the life cycle of the container. Podman makes it easy to generate systemd unit files to help you put your containerized applications into production. In chapter 8 you will learn how Podman can be used to help you move containers into Kubernetes. Podman supports launching containers with the same YAML files that Kubernetes uses as well as the ability to generate Kubernetes YAML from your current containers. In chapter 9 you will see Podman running as a service, allowing remote access to Podman containers. Using Podman as a service allows you to use other programming languages and tools to manage Podman containers. You will see how docker-compose can work with Podman containers. You will also learn how to use the Python libraries like podman-py and docker-py to communicate with the Podman service for managing containers.

 	
 Part 4, “Container security,” comprises two chapters, in which I discuss important security considerations. Chapter 10 covers features used to ensure container isolation. This chapter covers security subsystems of Linux, like SELinux, seccomp, Linux capabilities, kernel file systems, and namespaces. Chapter 11 then examines the security considerations I consider best practices for running your containers in as secure a manner as possible.

 Additionally, there are six appendixes covering Podman-related subjects:

 	
 Appendix A covers all of the Podman-related tools, including Buildah, Skopeo, and CRI-O.

 	
 Appendix B dives into the different OCI runtimes available to Podman as well as Docker. It covers runc, crun, Kata, and gVisor.

 	
 Appendix C describes how you can get Podman onto your local system, whether that system is a Linux, Mac, or Windows box.

 	
 Appendix D describes the Podman open source community and how you can join.

 	
 Appendixes E and F dive into running Podman on Mac and Windows boxes.

liveBook discussion forum

 Each purchase of Podman in Action includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/podman-in-action/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

Author online

 You can follow Dan Walsh on Twitter and GitHub @rhatdan. He regularly blogs at https://www.redhat.com/sysadmin/users/dwalsh as well as on several other sites. There are many videos of talks Dan has presented available on YouTube as well.

about the author

 [image:]

 Daniel Walsh leads the team that created Podman, Buildah, Skopeo, CRI-O, and their related tools. Dan is a senior distinguished engineer at Red Hat, having joined in August 2001. He has worked in the computer security field for over 40 years. Dan is sometimes referred to as Mr. SELinux after leading the development of SELinux at Red Hat prior to leading the container team. Dan has a BA in mathematics from the College of the Holy Cross and an MS in computer science from Worcester Polytechnic Institute. On Twitter and GitHub you can find him @rhatdan. You can email him at dwalsh@redhat.com.

about the cover illustration

 The figure on the cover of Podman in Action is captioned “La vandale,” or “The vandal,” and is taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 Part 1. Foundations

 In part 1 of the book, I introduce you to several ways you can use Podman from the command line. In chapter 2 you learn how to create and work with containers and how containers work with images. You also learn the difference between a container and an image, how to save a container into an image, and then to push the image to a registry, so it can be shared with other users.

 In chapter 3 I introduce the concept of a volume. Volumes are the mechanisms most users of your containerized applications use to store their data and keep it isolated from the application. The first two chapters really concentrate on the use of containers and images, which is very similar to the way containers work in Docker.

 Chapter 4 adds the concept of pods, similar to Kubernetes Pods, a feature Docker does not support. Pods allow you to share one or more containers within the same resource, namespaces, and security constraints. Pods can allow you to write more complex applications and manage them as a single entity.

1 Podman: A next-generation container engine

 This chapter covers

 	
What Podman is

 	
The advantages of using Podman over Docker

 	
Examples of using Podman

 Starting this book is difficult because so many people come to it with different expectations and experiences. You likely have some experience with containers, Docker, or Kubernetes—or at least are interested in learning more about Podman because you’ve heard about it. If you’ve used or evaluated Docker, you’ll find that Podman works the same as Docker in most cases, but it solves some problems inherent in Docker; most significantly, Podman offers enhanced security and the ability to run commands with non-root privileges. This means you can manage containers with Podman without root access or privileges. Because of Podman’s design, it can run with much better security than Docker by default.

 In addition to being open source (and therefore free), Podman’s commands, run from the command-line interface (CLI), are quite similar to Docker’s. This book shows how you can use Podman as a local container engine to launch containers on a single node, either locally or through a remote REST API. You’ll also learn how to find, run, and build containers using Podman with open source tools such as Buildah and Skopeo.

1.1 About all these terms

 Before you go further, I think it is important to define the terminology that will be used throughout this book. In the container world, terms like container orchestrator, container engine, and container runtime are often used interchangeably, which commonly leads to confusion. The following list is a summary of what each of these terms refers to in the context of this text:

 	
 Container orchestrators—Software projects and products that orchestrate containers onto multiple different machines or nodes. These orchestrators communicate with container engines to run containers. The primary container orchestrator is Kubernetes, which was originally designed to talk to the Docker daemon container engine, but using Docker is becoming obsolete because Kubernetes primarily uses CRI-O or containerd as its container engine. CRI-O and containerd are purpose built for running orchestrated Kubernetes containers (CRI-O is covered in appendix A). Docker Swarm and Apache Mesos are other examples of container orchestrators.

 	
 Container engines—Primarily used for configuring containerized applications to run on a single local node. They can be launched directly by users, administrators, and developers. They can also be launched out of systemd unit files at boot as well as launched by container orchestrators like Kubernetes. As previously mentioned, CRI-O and containerd are container engines used by Kubernetes to manage containers locally. They really are not intended to be used directly by users. Docker and Podman are the primary container engines used by users to develop, manage, and run containerized applications on a single machine. Podman is seldom used to launch containers for Kubernetes; therefore, Kubernetes is not generally covered in this book. Buildah is another container engine, although it is only used for building container images.

 	
 Open Container Initiative (OCI) container runtimes—Configure different parts of the Linux kernel and then, finally, launch the containerized application. The two most commonly used container runtimes are runc and crun. Kata and gVisor are other examples of container runtimes. See appendix B to understand the differences between the OCI container runtimes.

 Figure 1.1 shows into which categories these open source container projects fit.

 [image:]

 Figure 1.1 Different open source projects dealing with containers within the categories of orchestrators, engines, and runtimes.

 Podman is short for Pod Manager. A pod, a concept popularized by the Kubernetes project, is one or more containers sharing the same namespaces and cgroups (resource constraints). Pods are covered in greater depth in chapter 4. Podman runs individual containers as well as pods. The Podman logo in figure 1.2 is a group of Selkies, the Irish concept of a mermaid. Groups of Selkies are called pods.

 [image:]

 Figure 1.2 Podman’s logo

 The Podman project describes Podman as “a daemonless container engine for developing, managing, and running OCI Containers on your Linux System. Containers can either be run as root or in rootless mode” (https://podman.io). Podman is often summarized with the simple line alias Docker = Podman because Podman does almost everything that Docker can do with the same command line as Docker. But as you will learn in this book, Podman can do so much more. Understanding Docker is not critical to understanding Podman, but it is helpful.

 Note The Open Container Initiative (OCI) is a standards body with the primary goal of creating open industry standards regarding container formats and runtimes. For more information, see https://opencontainers.org.

 The Podman upstream project resides at github.com in the Containers project, (https://github.com/containers/podman) shown in figure 1.3, along with other container libraries and container management tools like Buildah and Skopeo. (See appendix A for a description of some of these tools.)

 [image:]

 Figure 1.3 Containers is the developer site for Podman and other related container tools (see https://github.com/containers).

 Podman runs images with the newer OCI format, described in section 1.1.2, as well as the legacy Docker (v2 and v1) format images. Podman runs any image available at container registries, like docker.io and quay.io, as well as the hundreds of other container registries. Podman pulls these images to a Linux host and launches them in the same way as Docker and Kubernetes. Podman supports all OCI runtimes, including runc, crun, kata, and gvisord (appendix B), just like Docker.

 This book is intended to aid Linux administrators in understanding the advantages of using Podman as their primary container engine. You will learn how to configure your systems as securely as possible but still allow your users to work with containers. One of Podman’s primary use cases is running containerized applications on single-node environments, such as edge devices. Podman and systemd allow you to manage the entire life cycle of the application on nodes without human intervention. Podman’s goal is running containers naturally on a Linux box, taking advantage of all the features of the Linux platform.

 Note Podman is available for many different Linux distributions and on Mac and Windows platforms. Please refer to appendix C to see how to get Podman on your platform.

 Application developers are also an intended audience for this book. Podman is a great tool for developers looking to containerize their applications in a secure manner. Podman allows developers to create Linux containers on all Linux distributions. In addition, Podman is available on the Mac and Windows platforms, where it can communicate with the Podman service running within a VM or on a Linux box available on the network. Podman in Action shows you how to work with containers, build container images, and then convert their containerized applications into either single-node services to run on edge devices or into Kubernetes-based microservices.

 Podman and the container tools are open source projects with contributors from many different companies, universities, and organizations. Contributors come from all over the world. The projects are always looking to add new contributors to improve them; please refer to appendix D to see how you can join the effort. In this chapter, I first provide a brief overview of containers, and then I explain some key features that make Podman a great tool for working with containers.

1.2 A brief overview of containers

 Containers are groups of processes running on a Linux system that are isolated from each other. Containers make sure one group of processes does not interfere with other processes on the system. Rogue processes can’t dominate system resources, which might prevent other processes from performing their task. Hostile containers are also prevented from attacking other containers, stealing data, or causing denial of service attacks. A final goal of containers is allowing applications to be installed with their own versions of shared libraries that do not conflict with applications requiring different versions of the same libraries. Instead they allow applications to live in a virtualized environment, giving the impression that they own the entire system.

 Containers are isolated via the following:

 	
 Resource constraints (cgroups)—The cgroup man page (https://man7.org/linux/man-pages/man7/cgroups.7.html) defines cgroups as the following: “Control groups, usually referred to as cgroups, are a Linux kernel feature which allow processes to be organized into hierarchical groups whose usage of various types of resources can then be limited and monitored.”

 Examples of resources controlled by cgroups include the following:

 	
The amount of memory a group of processes can use

 	
The amount of CPU processes can use

 	
The amount of network resources a process can use

 The basic idea of cgroups is preventing one group of processes from dominating certain system resources in such a way that another group of processes can’t make progress on the system.

 	
 Security constraints—Containers are isolated from each other using many security tools available in the kernel. The goal is blocking privilege escalation and preventing a rogue group of processes from committing hostile acts against the system, including the following examples:

 	
Dropped Linux capabilities limit the power of root.

 	
SELinux controls access to the filesystem.

 	
There is read-only access to kernel filesystems.

 	
Seccomp limits the system calls available in the kernel.

 	
A user namespace to map one group of UIDs in the host to another allows access to limited root environments.

 Table 1.1 gives further information and provides links with more detail about some of these security features.

 Table 1.1 Advanced Linux security features

 	
 Component

 	
 Description

 	
 Reference

 	
 Linux capabilities

 	
 Linux capabilities subdivide the power of root into distinct capabilities.

 	
 The capabilities man page is a good overview of the available capabilities (https://bit.ly/3A3Ppeg).

 	
 SELinux

 	
 Security-Enhanced Linux (SELinux) is a Linux kernel mechanism that labels every process and every filesystem object on the system. A SELinux policy defines the rules on how labeled processes interact with label objects. The Linux kernel enforces the rules.

 	
 I wrote the SELinux Coloring Book, which is a fun way to help you understand SELinux (https://bit.ly/33plEbD). If you really want to study the subject, check out the SELinux notebook (https://bit.ly/3GxGhkm).

 	
 Seccomp

 	
 seccomp is a Linux kernel mechanism that limits the number of syscalls to a group of processes on the system. You can remove potentially dangerous syscalls from being called by the processes.

 	
 The seccomp man page is a good source of additional information on seccomp (https://bit.ly/3rnnim1).

 	
 User namespace

 	
 The user namespace allows you to have Linux capabilities within the group of UIDs and GIDs assigned to the namespace, without having root capabilities on the host.

 	
 The user namespace is fully explained in chapter 3.

 	
 Virtualization technologies (namespaces)—The Linux kernel employs a concept called namespaces, which creates virtualized environments, where one set of processes sees one set of resources, while another set of processes sees a different set of resources. These virtualized environments eliminate processes’ views into the rest of the system, giving them the feel of a virtual machine (VM) without the overhead. Examples of namespaces include the following:

 	
Network namespace—Eliminates the access to the host network but gives access to virtual network devices

 	
Mount namespace—Eliminates the view of all the filesystem, except the containers filesystem

 	
PID namespace—Eliminates the view of other processes on the system; container processes only see the processes within the container

 These container technologies have existed in the Linux kernel for many years. Security tools for isolating processes started in Unix back in the 1970s, and SELinux started in 2001. Namespaces were introduced around 2004, and cgroups were introduced around 2006.

 Note Windows container images exist, but this book concentrates on Linux-based containers. Even when running Podman on Windows, you are still working with Linux containers. Podman on Mac is covered in appendix E. Podman on Windows is covered in appendix F.

1.2.1 Container images: A new way to ship software

 Containers really didn’t take off until the Docker project introduced the concept of the container image and container registry. Basically, they created a new way to ship software.

 Traditionally, installing multiple software applications on a Linux system has led to a problem of dependency management. Before containers, you packaged software using package managers like RPM and Debian packages. These packages are installed on a host and share the content on the host, including shared libraries. When developers test their code, everything might work fine when run on the host machine. The quality engineering team then might test the software on a different machine with different packages and see failures. Both teams would need to work together to generate the proper requirements. Finally, the software is shipped to customers, who have many different configurations and software installed, leading to further breakage of the application.

 Container images solve the dependency management problem by bundling all the software needed to run your application together into a unit. You ship all the libraries, executables, and configuration files together. The software is isolated from the host via container technology. Usually the only part of the host system that your application interacts with is the host kernel.

 The developer, quality engineers, and customer all run the exact same containerized environment along with the application. This helps guarantee consistency and limits the number of bugs caused by misconfiguration.

 Containers are often compared to VMs in that they both can run multiple isolated applications on a single node. When using VMs, you need to manage the entire VM operating system as well as the isolated application. You need to manage the life cycle of the different kernel, init system, logging, security updates, backups, and so on. The system also has to deal with the overhead of the entire running operation system, not just the application. In the container world, all you run is the containerized application—there is no overhead and no additional OS management. Figure 1.4 shows three applications running in three different VMs.

 [image:]

 Figure 1.4 Physical machine running three applications in three VMs

 With VMs you end up needing to manage four operations systems, whereas with containers the three applications run with just their required user spaces. You end up managing just one operating system, as shown in figure 1.5.

 [image:]

 Figure 1.5 Physical machine running three applications in three containerized applications

1.2.2 Container images lead to microservices

 Packing applications inside of container images allows the installation of multiple applications with conflicting requirements on the same host. For example, one application might require a different version of the C library than another, which prevents them from being installed at the same time. Figure 1.6 shows a traditional application running within an operating system without use of containers.

 [image:]

 Figure 1.6 Traditional LAMP stack (Linux, Apache, MariaDB, and PHP/PERL application) running on a server

 Containers can have the correct C library within their container image, with each image potentially having different versions of the library specific to the container’s application. You can run applications from totally different distributions.

 Containers make it easy to run multiple instances of the same application, as shown in figure 1.7. Container images encourage the packaging of a single service or application into a single container. Containers allow you to easily wire multiple applications together via the network.

 [image:]

 Figure 1.7 LAMP stack packaged individually into microservice containers. As containers communicate via the network, they can be easily moved to other VMs, making reuse much easier.

 Instead of designing monolithic applications in which you have a web frontend, a load balancer, and a database, you can build three different container images and then wire them together to build microservices. Microservices allow you and other users to experiment with running multiple databases and web frontends, then orchestrate them together. Containerized microservices make the sharing and reuse of software possible.

1.2.3 Container image format

 A container image consists of three components:

 	
 A directory tree containing all the software required to run your application

 	
 A JSON file that describes the contents of the rootfs

 	
 Another JSON file called a manifest list that links multiple images together to support different architectures

 The directory tree is called a rootfs (root filesystem). The software is laid out like it was the root (/) of a Linux system.

 The executable to be run within the rootfs, the working directory, the environment variables to be used, the maintainer of the executable, and other labels to help identify the content of the image are defined in the first JSON file. You can see this JSON file using the podman inspect command:

 $ podman inspect docker:/ /registry.access.redhat.com/ubi8
{
...
 "created": "2022-01-27T16:00:30.397689Z", ❶
 "architecture": "amd64", ❷
 "os": "linux", ❸
 "config": {
 "Env": [❹
 "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "container=oci"
],
 "Cmd": [❺
 "/bin/bash"
],
 "Labels": { ❻
 "architecture": "x86_64",
 "build-date": "2022-01-27T15:59:52.415605",
 ...
}

 ❶ Date the image was created

 ❷ Architecture for this image

 ❸ Operating system for this image

 ❹ Environment variables that the developer of the image wants to be set within the container

 ❺ Default command to be executed when the container starts

 ❻ Labels to help describe the contents of the image. These fields can be free-form and do not affect the way images are run but can be used to search for and describe the image.

 The second JSON file, the manifest list, allows users on an arm64 machine to pull an image with the same name as they would if they were on an arm64 machine. Podman pulls the image based on the default architecture of the machine, using this manifest list. Skopeo is a tool that uses the same underlying libraries as Podman and is available at github.com/containers/skopeo (see appendix A). Skopeo provides lower-level output examining the structures of a container image. In the following example, use the skopeo command with the --raw option to examine the registry.access.redhat.com/ ubi8 image manifest specification:

 $ skopeo inspect --raw docker:/ /registry.access.redhat.com/ubi8
{
 "manifests": [
 {
 "digest": "sha256:cbc1e8cea
➥ 8c78cfa1490c4f01b2be59d43ddbb
➥ ad6987d938def1960f64bcd02c", ❶
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",❷
 "platform": {
 "architecture": "amd64", ❸
 "os": "linux" ❹
 },
 "size": 737
 },
 {
 "digest": ❺
➥ "sha256:f52d79a9d0a3c23e6ac4c3c8f2ed8d6337ea47f4e2dfd46201756160ca193308",
 "mediaType": "application/vnd.docker.distribution.manifest.v2+json",
 "platform": {
 "architecture": "arm64",
 "os": "linux"
 },
 "size": 737
 },
...
}

 ❶ Digest of the exact image pulled when the architecture and OS match

 ❷ mediaType describes the type of the image, OCI, Docker, and so on.

 ❸ The architecture of this image digest: amd64

 ❹ The OS of this image digest: Linux

 ❺ This stanza points to a different image for a different architecture: arm64.

 Images use the Linux tar utility to pack the rootfs and the JSON files together. These images are then stored on web servers called container registries (e.g., docker.io, quay.io, and Artifactory). Container engines like Podman can copy these images to a host and unpack them onto the filesystem. Then the engine merges the image’s JSON file, the engine’s built-in defaults, and the user’s input to create a new container OCI runtime specification JSON file. The JSON file describes how to run the containerized application.

 In the last step, the container engine launches a small program called a container runtime (e.g., runc, crun, kata, or givisord). The container runtime reads the container’s JSON and instruments, kernel cgroups, security constraints, and namespaces before finally launching the primary process of the container.

1.2.4 Container standards

 The OCI standards body defined the standard formats for storing and defining container images. They also defined the standard for container engines running containers. The OCI created the OCI Image Format, which standardizes the format of the container images and the images’ JSON file. They also created the OCI Runtime Specification, which standardized the container’s JSON file to be used by OCI runtimes. The OCI standards allow other container engines, like Podman,1 to follow the standards and be able to work with all the images stored at container registries and to run them in the exact same way as all other container engines, including Docker (see figure 1.7).

1.3 Why use Podman when you have Docker?

 I often get asked the question, “Why do you need Podman when you already have Docker?” Well one reason is that open source is all about choice. Operating systems have more than one editor, more than one shell, more than one filesystem, and more than one internet web browser. I believe that Podman’s design is fundamentally better than Docker’s and offers features that advance the security and use of containers.

1.3.1 Why have only one way to run containers?

 One of Podman’s advantages was that it was created long after Docker existed. Podman developers looked at ways to improve on Docker’s design from a totally different perspective. Because Docker was written as open source, Podman shares some of the code and takes advantage of new standards, like the Open Container Initiative. Podman works with the open source community to concentrate on developing new features.

 In the rest of this section, I cover some of these improvements. Table 1.2 describes and compares features available in Podman and Docker.

 Table 1.2 Podman and Docker feature comparison

 	
 Feature

 	
 Podman

 	
 Docker

 	
 Description

 	
 Supports all OCI and Docker images

 	
 ✔

 	
 ✔

 	
 Pulls and runs container images from container registries (i.e., quay.io and docker.io). See chapter 2.

 	
 Launches OCI container engines

 	
 ✔

 	
 ✔

 	
 Launches runc, crun, Kata, gVisor, and OCI container engines. See appendix B.

 	
 Simple command-line interface

 	
 ✔

 	
 ✔

 	
 Podman and Docker share the same CLI. See chapter 2.

 	
 Integration with systemd

 	
 ✔

 	
 ✘

 	
 Podman supports running systemd inside the container as well as many systemd features. See chapter 7.

 	
 Fork/exec model

 	
 ✔

 	
 ✘

 	
 The container is a child of the command.

 	
 Fully supports user namespace

 	
 ✔

 	
 ✘

 	
 Only Podman supports running containers in separate user namespaces. See chapter 6.

 	
 Client-server model

 	
 ✔

 	
 ✔

 	
 Docker is a REST API daemon. Podman supports REST APIs via a systemd socket-activated service. See chapter 9.

 	
 Supports docker-compose

 	
 ✔

 	
 ✔

 	
 Compose scripts work against both REST APIs. Podman works in rootless mode. See chapter 9.

 	
 Supports docker-py

 	
 ✔

 	
 ✔

 	
 Docker-py Python bindings work against both REST APIs. Podman works in rootless mode. Podman also supports podman-py for running advanced features. See chapter 9.

 	
 Daemonless

 	
 ✔

 	
 ✘

 	
 The Podman command runs like a traditional command-line tool, while Docker requires multiple root-running daemons.

 	
 Supports Kubernetes-like pods

 	
 ✔

 	
 ✘

 	
 Podman supports running multiple containers within the same pod. See chapter 4.

 	
 Supports Kubernetes YAML

 	
 ✔

 	
 ✘

 	
 Podman can launch containers and pods based on Kubernetes YAML. It can also generate Kubernetes YAML from running containers. See chapter 8.

 	
 Supports Docker Swarm

 	
 ✘

 	
 ✔

 	
 Podman believes the future for orchestrated multinode containers is Kubernetes and does not plan on implementing Swarm.

 	
 Customizable registries

 	
 ✔

 	
 ✘

 	
 Podman allows you to configure registries for short-name expansion. Docker is hardcoded to docker.io when you specify a short name. See chapter 5.

 	
 Customizable defaults

 	
 ✔

 	
 ✘

 	
 Podman supports fully customizing all of its defaults, including security, namespaces, and volumes. See chapter 5.

 	
 macOS support

 	
 ✔

 	
 ✔

 	
 Podman and Docker support running containers on a Mac via a VM running Linux. See appendix E.

 	
 Windows support

 	
 ✔

 	
 ✔

 	
 Podman and Docker support running containers on a Windows WSL 2 or a VM running Linux. See appendix F.

 	
 Linux support

 	
 ✔

 	
 ✔

 	
 Podman and Docker are supported on all major Linux distributions. See appendix C.

 	
 Containers aren’t stopped on software upgrade.

 	
 ✔

 	
 ✘

 	
 Podman is not required to remain running when containers are running. Since the Docker daemon is monitoring containers, by default, when it stops, all containers stop.

