

 inside front cover

 Data Platform Architecture

 [image:]

 Architecture of a big data platform with the Azure services used in the reference implementation presented in this book

 Data is ingested into the system and persisted in a storage layer. Processing aggregates and reshapes the data to enable analytics and machine learning scenarios. Orchestration and governance are cross-cutting concerns that cover all the components of the platform. Once processed, data is distributed to other downstream systems. All components are tracked by and deployed from source control.

 [image:]

 Data Engineering on Azure

 Vlad Riscutia

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Elesha Hyde

 	
 Technical development editor:

 	
 Danny Vinson

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Keri Hales

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Karsten Strøbaek

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617298929

 dedication

 To my daughter, Ada

brief contents

 1 Introduction

 Part 1 Infrastructure

 2 Storage

 3 DevOps

 4 Orchestration

 Part 2 Workloads

 5 Processing

 6 Analytics

 7 Machine learning

 Part 3 Governance

 8 Metadata

 9 Data quality

 10 Compliance

 11 Distributing data

 Appendix A. Azure services

 Appendix B. KQL quick reference

 Appendix C. Running code samples

contents

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Introduction

 1.1 What is data engineering?

 1.2 Who this book is for

 1.3 What is a data platform?

 Anatomy of a data platform

 Infrastructure as code, codeless infrastructure

 1.4 Building in the cloud

 IaaS, PaaS, SaaS

 Network, storage, compute

 Getting started with Azure

 Interacting with Azure

 1.5 Implementing an Azure data platform

 Part 1 Infrastructure

 2 Storage

 2.1 Storing data in a data platform

 Storing data across multiple data fabrics

 Having a single source of truth

 2.2 Introducing Azure Data Explorer

 Deploying an Azure Data Explorer cluster

 Using Azure Data Explorer

 Working around query limits

 2.3 Introducing Azure Data Lake Storage

 Creating an Azure Data Lake Storage account

 Using Azure Data Lake Storage

 Integrating with Azure Data Explorer

 2.4 Ingesting data

 Ingestion frequency

 Load type

 Restatements and reloads

 3 DevOps

 3.1 What is DevOps?

 DevOps in data engineering

 3.2 Introducing Azure DevOps

 Using the az azure-devops extension

 3.3 Deploying infrastructure

 Exporting an Azure Resource Manager template

 Creating Azure DevOps service connections

 Deploying Azure Resource Manager templates

 Understanding Azure Pipelines

 3.4 Deploying analytics

 Using Azure DevOps marketplace extensions

 Storing everything in Git; deploying everything automatically

 4 Orchestration

 4.1 Ingesting the Bing COVID-19 open dataset

 4.2 Introducing Azure Data Factory

 Setting up the data source

 Setting up the data sink

 Setting up the pipeline

 Setting up a trigger

 Orchestrating with Azure Data Factory

 4.3 DevOps for Azure Data Factory

 Deploying Azure Data Factory from Git

 Setting up access control

 Deploying the production data factory

 DevOps for the Azure Data Factory recap

 4.4 Monitoring with Azure Monitor

 Part 2 Workloads

 5 Processing

 5.1 Data modeling techniques

 Normalization and denormalization

 Data warehousing

 Semistructured data

 Data modeling recap

 5.2 Identity keyrings

 Building an identity keyring

 Understanding keyrings

 5.3 Timelines

 Building a timeline view

 Using timelines

 5.4 Continuous data processing

 Tracking processing functions in Git

 Keyring building in Azure Data Factory

 Scaling out

 6 Analytics

 6.1 Structuring storage

 Providing development data

 Replicating production data

 Providing read-only access to the production data

 Storage structure recap

 6.2 Analytics workflow

 Prototyping

 Development and user acceptance testing

 Production

 Analytics workflow recap

 6.3 Self-serve data movement

 Support model

 Data contracts

 Pipeline validation

 Postmortems

 Self-serve data movement recap

 7 Machine learning

 7.1 Training a machine learning model

 Training a model using scikit-learn

 High spender model implementation

 7.2 Introducing Azure Machine Learning

 Creating a workspace

 Creating an Azure Machine Learning compute target

 Setting up Azure Machine Learning storage

 Running ML in the cloud

 Azure Machine Learning recap

 7.3 MLOps

 Deploying from Git

 Storing pipeline IDs

 DevOps for Azure Machine Learning recap

 7.4 Orchestrating machine learning

 Connecting Azure Data Factory with Azure Machine Learning

 Machine learning orchestration

 Orchestrating recap

 Part 3 Governance

 8 Metadata

 8.1 Making sense of the data

 8.2 Introducing Azure Purview

 8.3 Maintaining a data inventory

 Setting up a scan

 Browsing the data dictionary

 Data dictionary recap

 8.4 Managing a data glossary

 Adding a new glossary term

 Curating terms

 Custom templates and bulk import

 Data glossary recap

 8.5 Understanding Azure Purview's advanced features

 Tracking lineage

 Classification rules

 REST API

 Advanced features recap

 9 Data quality

 9.1 Testing data

 Availability tests

 Correctness tests

 Completeness tests

 Detecting anomalies

 Testing data recap

 9.2 Running data quality checks

 Testing using Azure Data Factory

 Executing tests

 Creating and using a template

 Running data quality checks recap

 9.3 Scaling out data testing

 Supporting multiple data fabrics

 Testing at rest and during movement

 Authoring tests

 Storing tests and results

 10 Compliance

 10.1 Data classification

 Feature data

 Telemetry

 User data

 User-owned data

 Business data

 Data classification recap

 10.2 Changing classification through processing

 Aggregation

 Anonymization

 Pseudonymization

 Masking

 Processing classification changes recap

 10.3 Implementing an access model

 Security groups

 Securing Azure Data Explorer

 Access model recap

 10.4 Complying with GDPR and other considerations

 Data handling

 Data subject requests

 Other considerations

 11 Distributing data

 11.1 Data distribution overview

 11.2 Building a data API

 Introducing Azure Cosmos DB

 Populating the Cosmos DB collection

 Retrieving data

 Data API recap

 11.3 Serving machine learning

 11.4 Sharing data for bulk copy

 Separating compute resources

 Introducing Azure Data Share

 Sharing data for bulk copy recap

 11.5 Data sharing best practices

 Appendix A. Azure services

 Appendix B. KQL quick reference

 Appendix C. Running code samples

 index

 front matter

preface

 This is the book I wish I had available to refer to over the past few years, while scaling out the big data platform of the Customer Growth and Analytics team in Azure. As our data science team grew and the insights generated by the team became more and more critical to the business, we had to ensure that our platform was robust.

 The world of big data is relatively new, and the playbook is still being written. I believe our story is common: data teams start small with a handful of people, who first prove they can generate valuable insights. At this stage, a lot of work happens ad hoc, and there is no immediate need for big engineering investments. A data scientist can run a machine learning (ML) model on their machine, generate some predictions, and email the results.

 Over time, the team grows and more workloads become mission critical. The same ML model now plugs into a system serving live traffic and needs to run on a daily basis with more than a hundred times the data it was originally prototyped with. At this point, solid engineering practices are critical; we need scale, reliability, automation, monitoring, etc.

 This book contains several years of hard-learned lessons in data engineering. To name a few examples:

 	
 Empowering every data scientist on the team to deploy new analytics and data movement pipelines onto our platform while maintaining a reliable production environment

 	
 Architecting an ML platform to streamline and automate execution of dozens of ML models

 	
 Building a metadata catalog to make sense of the large number of available datasets

 	
 Implementing various ways to test the quality of the data and sending alerts when issues are identified

 The underlying theme of this book is DevOps, bringing the decades-old best practices of software engineering to the world of big data. Data governance is another important topic; making sense of the data, ensuring quality, compliance, and access control are all a critical part of governance.

 The patterns and practices described in this book are platform agnostic. They should be just as valid regardless of which cloud you use. That said, we can’t be too abstract, so I provide some concrete examples through a reference implementation. The reference implementation is Azure. Even here, there is a wide selection of services we can pick from.

 The reference implementation uses a set of services, but keep in mind, the book is less about the particular set of services and more about the data engineering practices realized through them. I hope you enjoy the book, and that you find some best practices you can apply to your environment and business space.

acknowledgments

 Many thanks to my wife, Diana, and daughter, Ada, for their support. Thanks for bearing with me for a second round!

 This book wouldn’t be what it is without the great input and advice from Michael Stephens and Elesha Hyde. Also, thanks go to Danny Vinson for reviewing the early draft and to Karsten Strøbæk for checking all the code samples. I thank all the reviewers for their time and feedback: Albert Nogués, Arun Thangasamy, Dave Corun, Geoff Clark, Glenn Swonk, Hilde Van Gysel, Jesús A. Juárez Guerrero, Johannes Verwijnen, Kelum Senanayake, Krzysztof Kamyczek, Luke Kupka, Matthias Busch, Miranda Whurr, Oliver Korten, Peter Kreyenhop, Peter Morgan, Phil Allen, Philippe Van Bergen, Richard B. Ward, Richard Vaughan, Robert Walsh, Sven Stumpf, Todd Cook, Vishwesh Ravi Shrimali, and Zekai Otles.

 Many thanks go to the Customer Growth and Analytics leadership team for their support and for giving me the opportunity to learn: Tim Wong, Greg Koehler, Ron Sielinski, Merav Davidson, Vivek Dalvi, and everyone else on the team.

 I was also fortunate to partner with many other teams across Microsoft. I want to thank the IDEAs team, especially Gerardo Bodegas Martinez, Wayne Yim, and Ayyappan Balasubramanian; the Azure Data Explorer team, Oded Sacher and Ziv Caspi; the Azure Purview team, Naga Krishna Yenamandra and Gaurav Malhotra; and the Azure Machine Learning team, especially Tzvi Keisar.

 And I thank the Manning team, who helped put this book together from development through production and everything in between.

about this book

 Just as software engineering brings engineering rigor to software development, data engineering aims to bring the same rigor to working with data in a reliable way. This book is about implementing the various aspects of a big data platform in a real-world production system: data ingestion, running analytics and machine learning (ML), and distributing data, to name a few. The focus of this book is on the operational aspects such as DevOps, monitoring, scale, and compliance. Examples are provided using Azure services.

 Who should read this book?

 A typical reader is a data scientist, software engineer, or architect with several years of experience who has become a data engineer looking into building and scaling a production data platform. Readers should have a basic knowledge of the cloud and some experience working with data.

 How this book is organized: A roadmap

 This book is divided into three parts, and each part looks at a data platform through a different lens. Chapter 1 introduces the overall architecture of a data platform, gives an overview of the Azure services we’ll use for the reference implementation, and defines some of the key terms (such as what we mean by data engineering and infrastructure as code, etc.) to lay some common groundwork. Then, part 1 covers the core infrastructure of a data platform:

 	
 Chapter 2 discusses storage infrastructure, the heart of a big data platform.

 	
 Chapter 3 covers DevOps, the key ingredient that brings engineering discipline to the realm of data.

 	
 Chapter 4 talks about orchestration, how data movement and processing is scheduled and executed throughout the platform.

 Part 2 covers the main workloads a data platform needs to support:

 	
 Chapter 5 deals with processing data, reshaping it to better support various analytical scenarios.

 	
 Chapter 6 covers analytics and how we can apply good engineering practices to recurring reporting and analysis.

 	
 Chapter 7 shows how we can support end-to-end machine learning workloads (also known as MLOps).

 Part 3 cover various aspects of governance:

 	
 Chapter 8 focuses on metadata (data about the data) and how to make sense of all the assets in a big data platform.

 	
 Chapter 9 discusses data quality and different types of tests that we can run against our datasets.

 	
 Chapter 10 covers an important topic—compliance—including how we classify and handle different types of data.

 	
 Chapter 11 talks about data distribution and the various way data is shared with other teams downstream.

 The chapters can be read in any order, as these each touch on different aspects of data engineering. Part 1, however, is a prerequisite if you want to run the code examples. These chapters also set up the foundational pieces of the infrastructure, but otherwise, feel free to skip around and focus on the chapters that sound most interesting to you.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font, like this to separate it from ordinary text.

 Also, in many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page width in the printed book. In some cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, code annotations accompany many of the listings, highlighting important concepts.

 All the code samples in this book are available on GitHub at https://github.com/vladris/azure-data-engineering. The code was thoroughly tested, but because the Azure cloud and surrounding tooling continuously evolves, check appendix C if you run into issues trying any of the code samples.

 liveBook discussion forum

 Purchase of Data Engineering on Azure includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/data-engineering-on-azure/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Vlad Riscutia is a software engineer at Microsoft, where he oversees development of the data platform supporting the central data science team for Azure. He spent the past few years as an architect on the Customer Growth and Analytics team, building out a big data platform used by Azure’s data science organization. He has headed up several major software projects and mentors up-and-coming software engineers.

about the cover illustration

 The figure on the cover of Data Engineering on Azure is captioned “Femme Tartar,” or Tartar woman. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

1 Introduction

 This chapter covers

 	
Defining data engineering

 	
Anatomy of a data platform

 	
Benefits of the cloud

 	
Getting started with Azure

 	
Overview of an Azure data platform

 With the advent of cloud computing, the amount of data generated every moment reached an unprecedented scale. The discipline of data science flourishes in this environment, deriving knowledge and insights from massive amounts of data. As data science becomes critical to business, its processes must be treated with the same rigor as other components of business IT. For example, software engineering teams today embrace DevOps to develop and operate services with 99.99999% availability guarantees. Data engineering brings a similar rigor to data science, so data-centric processes run reliably, smoothly, and in a compliant way.

 For the past few years, I’ve had the privilege of being a software architect for Microsoft’s Customer Growth and Analytics team. Our team’s motto is “Using Azure to understand Azure.” We connect many datapoints across the Microsoft business to better understand our customers and to empower teams across the company. Privacy is important to us, so we never look at our customers’ data, but we do have access to telemetry from Azure, commercial transactions, and other operational pipelines. This gives us a unique perspective on Azure in understanding how customers can get the most value from our offerings.

 As a few examples, we help marketing, sales, support, finance, operations, and business planning with key insights, while simultaneously providing operational excellence recommendations to our customers through Azure Advisor. While our data science and machine learning (ML) teams focus on the insights, our data engineering teams ensure we can operate at the scale of an Azure business with high reliability because any outage in our platform can impact our customers or our business.

 Our data platform is fully built on Azure, and we are working closely with service teams to preview features and give product feedback. This book is inspired by some of our learnings over the years. The technologies presented are close to what my team uses on a day-to-day basis.

1.1 What is data engineering?

 This book is about practical data engineering in a production environment, so let’s start by defining data engineering. But to define data engineering, we first need to talk about data science.

 “Data is the new oil,” as the saying goes. In a connected world, more and more data is available for analysis, inference, and ML. The field of data science deals with extracting knowledge and insights from data. Many times, these insights prove invaluable to a business. Consider a scenario like the movies Netflix recommends to a customer. The better the recommendations, the more likely to retain a customer.

 While many data science projects start as exploratory, once these show real value, they need to be supported in an ongoing, reliable fashion. In the software engineering world, this is the equivalent of taking a research, proof-of-concept, or hackathon project and graduating it into a fully production-ready solution. While a hack or a prototype can take many shortcuts and focus on “the meat of the problem” it addresses, a production-ready system does not cut any corners. This is where the engineering part of software engineering comes into play, providing the rigor to build and run a reliable system. This includes a plethora of concerns like architecture and design, performance, security, accessibility, telemetry, debuggability, extensibility, and so on.

 Definition Data engineering is the part of data science that deals with the practical applications of collecting and analyzing data. It aims to bring engineering rigor to the process of building and supporting reliable data systems.

 The ML part of data science deals with building a model. In the Netflix scenario, the data model recommends, based on your viewing history, which movies you are likely to enjoy next. The data engineering part of the discipline deals with building a system that continuously gathers and cleans up the viewing history, then runs the model at scale on the data of all users and distributes the results to the recommendation user interface. All of this provided in an automated fashion with monitoring and alerting build around each step of the process.

 Data engineering deals with building and operating big data platforms to support all data science scenarios. There are various other terms used for some of these aspects: DataOps refers to moving data in a data system, MLOps refers to running ML at scale as in our Netflix example. (ML combined with DevOps is also known as MLOps.) Our definition of data engineering encompasses all of these and looks at how we can implement DevOps for data science.

1.2 Who this book is for

 This is a book for data scientists, software engineers, and software architects turned data engineers and tasked with building a data platform to support analytics and/or ML at scale. You should know what the cloud is, have some experience working with data and code, and not mind using a shell. We’ll touch on the basics of all of these, but the focus for this book will be on data platform building.

 Data engineering is surprisingly similar to software engineering and frustratingly different. While we can leverage a lot of the lessons from the software engineering world, as we will see in this book, there is a unique set of challenges we will have to address. Some of the common themes are making sure everything is tracked in source control, automatic deployments, monitoring, and alerting. A key difference between data and code is that code is static: once the bugs are worked out, a piece of code is expected to work consistently and reliably. On the other hand, data moves continuously into and out of a data platform, and it is likely failures will occur due to various external reasons. Governance is another major topic that is specific to data: access control, cataloguing, privacy, and regulatory concerns are a big part of a data platform.

 The main theme of the book is bringing some of the lessons learned from software engineering over the past few decades to the data space so you can build a data platform exhibiting the properties of a solid software solution: scale, reliability, security, and so on. This book tackles some of these challenges, goes over patterns and best practices, and provides examples of how these could be applied in the Azure cloud. For the examples, we will use the Azure CLI (CLI stands for command-line interface), KQL (the Kusto Query Language), and a little bit of Python. The focus won’t be on the services themselves though. Instead, we will focus on data engineering challenges (and solutions) in a production environment.

1.3 What is a data platform?

 Just as many data science projects start as an exploration of a data space and what insights can be derived from the data, many data science teams start in a similar exploratory fashion. A small team comes up with some good insights at first, and then as the team grows, so do the needs of the underlying platform supporting the team.

 What first used to be an ad hoc process now requires automation. Once there were just two data scientists on the team, so who got to see which data was not as much of a concern as it is now, when there are 100 data scientists, some interns, and some external vendors. What used to be a monthly email is now a live system integrated with the company’s website. Different scenarios that used to be achieved through different means must now be supported by a robust data platform.

 definition A data platform is a software solution for collecting, processing, managing, and sharing data for strategic business purposes.

 Let’s look at an analogy to software engineering. You can write code on your laptop (for example, a web service like GIPHY) that, when given some keywords, returns a set of topical animations. Even if the code does exactly what it is meant to, that doesn’t mean it can scale to a production environment. If you want to host the same service at web scale and expect that anyone around the world can access it at any time, there is an additional set of concerns to consider: performance, scaling to millions of users, low latency, a failover solution in case things go wrong, a way to deploy an update without downtime, and so on. We can call the first part, writing code on your laptop, software development or coding. The second part, operating a production service, we can call software engineering.

 The same applies to data engineering. Running a data platform at scale comes with a unique set of challenges to consider and address. Data science deals with writing queries and developing ML models. Data engineering takes these and scales them to millions of rows of data, provides automation and monitoring, ensures security and compliance, and so on. These aspects are the main focus of this book.

1.3.1 Anatomy of a data platform

 The data platform grows to support all these new production scenarios, converting ad hoc processing into automated workflows and applying best practices. At this scale, certain patterns emerge. Figure 1.1 shows the anatomy of such a platform. Because we are dealing with data, many of the visuals focus on data flows.

 [image:]

 Figure 1.1 On the left, data is ingested into the system and persisted in a storage layer. Processing aggregates and reshapes the data to enable analytics and ML scenarios. Orchestration and governance are cross-cutting concerns that cover all the components of the platform. Once processed, data is distributed to other downstream systems. All components are tracked by and deployed from source control.

 Part 1 of the book focuses on infrastructure, the core services of a data platform. These include storage and analytics services, automatic deployment and monitoring, and an orchestration solution.

 We’ll start with storage—the backbone of any data platform. Chapter 2 covers the requirements and common patterns for storing data in a data platform. Because our focus is on production systems, in chapter 3, we’ll discuss DevOps and what DevOps means for data. Data is ingested into the system from multiple sources. Data flows into and out of the platform, and various workflows are executed. All of this needs an orchestration layer to keep things running. We’ll talk about orchestration in chapter 4.

 Part 2 focuses on the three main workloads that a data platform must support. These are

 	
 Processing—Encompasses aggregating and reshaping the data, standardizing schema, and any other processing of the raw input data. This makes the data easier to consume by the other two main processes: analytics and machine learning. We’ll talk about data processing in chapter 5.

 	
 Analytics—Covers all data analysis and reporting, thereby deriving knowledge and insights on the data. We’ll look at ways to support this in production in chapter 6.

 	
 Machine learning—Includes all ML models training on the data. We’ll cover running ML at scale in chapter 7.

 Part 3 covers governance, a major topic with many aspects. Chapters 8, 9, and 10 touch on these key topics:

 	
 Metadata—Cataloguing and inventorying the data, tracking lineage, definitions, and documentation is the subject of chapter 8.

 	
 Data quality—How to test data and assess its quality is the topic of chapter 9.

 	
 Compliance—Honoring compliance requirements like the General Data Protection Regulation (GDPR), handling sensitive data, and controlling access is covered in chapter 10.

 After all the processing steps, data eventually leaves the platform to be consumed by other systems. We’ll cover the various patterns for distributing data in chapter 11. Data governance is a pretty loose term, so let’s work with the following definition:

 Definition Governance is the process of managing the availability, usability, integrity, regulatory compliance, and security of the data in a data system. Effective data governance ensures that data is consistent and trustworthy and doesn't get misused.

 On one hand, governance is needed to reduce liability, making sure data complies with regulations, is secure, and so on. On the other hand, governance also includes making data discoverable, ensuring it is high-quality and, in general, increasing the usability of the platform.

 Infrastructure-wise, the topics discussed apply to any data platform, regardless of whether it is implemented on premises, in the Azure cloud, in AWS (Amazon Web Services), and so on. We need to work with some concrete examples, though, so this book covers the implementation of a data platform in the Azure cloud.

 Even within Azure, there are multiple services that support analytics, ML, and so on. For example, we can use Azure Databricks, Azure Machine Learning (AML), or Azure HDInsight/Spark to train ML models, and we can use Azure Synapse, Azure Data Explorer (ADX), or Azure Databricks to perform analytics. This book covers one possible implementation but, as every software architect knows, there are always trade-offs. Depending on your scenario, you might pick a different technology to implement your data platform. There is no right way.

 Many factors inform the technology choice: existing assets, what the users of the platform are familiar with, portability, performance for various workloads, and so on. We will look at some of these key differences and zoom in on one possible implementation. As you read, keep in mind that the underlying patterns are more important than the particular technology choice, and you might choose to materialize these on a different technology stack.

1.3.2 Infrastructure as code, codeless infrastructure

 Because we are dealing with production systems, we’ll focus a lot on DevOps and best practices. This includes avoiding interactive configuration tools and automating everything via scripts and machine-readable configurations, also known as infrastructure as code.

 definition Infrastructure as code is the process of managing and provisioning infrastructure through automation by relying on configuration files and automation scripts as opposed to manual and interactive configurations.

 Surprisingly, focusing on infrastructure as code doesn’t mean we will have to write thousands of lines of code to build a data platform. In fact, most of the components we need are readily available and only need to be configured and stitched together to support our scenarios. Such an infrastructure using mostly off-the-shelf components and a little glue is called a codeless infrastructure.

 definition Codeless infrastructure is an infrastructure built by configuring existing services and connecting them to achieve the required scenarios. This is done with as little custom code as possible.

 In general, code is not an asset; rather, it is a liability. What the code does, the scenarios it enables, is the real asset. The code itself needs maintenance, has bugs, requires updates, and in general, consumes engineering time and resources. When possible, it’s better to let others worry about this maintenance. Today, most of the infrastructure we need is offered as services by cloud providers like Microsoft and Amazon. We will use Azure, Microsoft’s cloud offering, to implement the examples in this book.

 With these services, a small engineering team can achieve a (surprising) lot. Focus moves from developing infrastructure to configuring, deploying, and monitoring it, and then focusing on solving some of the higher-level challenges of the domain. In our case, these challenges are around scaling out data workloads and governance concerns.

1.4 Building in the cloud

 Big data comes from operating at scale. The amount of data grows with the number of people and devices connected to the internet and the information these generate. As infrastructure becomes commoditized in the cloud, data platforms are built in the cloud too. We used to run analytics on SQL Servers hosted on premises with over hundreds of megabytes, maybe even gigabytes, of data. Now we can run analytics on hundreds of gigabytes or even terabytes of data in the cloud, using specialized storage and distributed querying solutions. We can rent these solutions from multiple cloud providers like Microsoft, Amazon, or Google.

1.4.1 IaaS, PaaS, SaaS

 Cloud solutions are usually categorized into infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS). IaaS provides virtualized computing resources like networking, storage, and virtual machines (VMs). Instead of buying computers, networking equipment, and ensuring that these are properly set up and running, we can rent them from a cloud provider. If we suddenly need more capacity, we can easily request more. If we need less capacity, we can free that up almost instantly. This ends up being much cheaper than building and maintaining a small data center. But it doesn’t stop here.

 PaaS provides higher-level abstractions than just the basic computing resources. Instead of renting infrastructure on which we install an SQL Server, we can rent a fully managed Azure SQL instance. This is a database handled by Azure that includes high availability, automatic installation of software updates, threat detection, and many other features that we otherwise would’ve had to handle ourselves.

 Finally, SaaS goes one step beyond that and offers full applications in the cloud. An example of SaaS is Power BI, an interactive data visualization and business intelligence solution. We can just sign in and start working, nothing to configure, nothing to manage.

 When building a data platform, we mostly operate at the PaaS level; we leverage the data solutions offered by our cloud, in this case Azure, to enable all of our scenarios with as little custom code as possible. This aligns with our principle of codeless infrastructure—the less time we need to spend maintaining infrastructure, the more time we can spend adding value to the business.

1.4.2 Network, storage, compute

 Another common way to categorize services is by their function: network, storage, and compute. Network resources deal with connectivity and security, connecting on-prem networks to the cloud, and so on. While not a major focus of this book, network is important for a data platform from the perspective of data movement. Copying gigabytes or terabytes of data from one storage solution to another incurs network costs, and moving data across regions increases latency. On the other hand, in some cases, we do need to move data from one service to another because different services are built for different workloads, and there is no single service that can efficiently support all of our needs. We need to keep in mind these aspects while building our data platform.

 Storage resources are concerned with data. Services like Azure Blob Storage and Azure Data Lake Storage (ADLS) can store virtually infinite amounts of data. Capacity, access times, and security features are some of the relevant properties of storage solutions. For example, a question we might want to ask ourselves when making a technology choice is, how fast can we scan/retrieve the data from our storage solution?

 Compute resources are services that handle processing; VMs, containers, Azure Functions, and Azure Web Apps are all compute resources. Environments that run ML training and analytics are also compute resources. Scaling is a key aspect for compute resources in a data platform. Can our compute handle millions of rows of data? Can our ML infrastructure train dozens of models in parallel? These are questions we need to ask ourselves to make informed technology choices.

 Some Azure services cover both storage and compute. For example, Azure Data Explorer provides an integrated environment to both ingest data and perform analytics on it. Other services cover a single aspect; we can put data in a data lake, but we need to connect some compute resource like Azure Machine Learning to it in order to use the data.

1.4.3 Getting started with Azure

 If you are new to Azure, you can sign up for a free account at https://azure.microsoft .com/en-us/free/. An Azure free account gives you access to the Azure platform, including 12 months free for several services and $200 in credit to explore paid services for 30 days. This should be more than enough to work through the examples in this book.

 Do keep in mind that some services are charged on a per-use or consumption basis, although others incur costs for as long as they are running. For example, Azure Functions, the serverless compute offering, allows 1 million free invocations per month. Additional invocations are charged based on the number of executions and resources used. That means that a function that doesn’t get called doesn’t cost anything. On the other hand, if we provision a virtual machine and leave it running, it incurs costs even if we don’t touch it.

 Note When you are done with the examples in this book, make sure to clean things up to avoid unnecessary charges.

1.4.4 Interacting with Azure

 There are three main ways to interact with Azure. These include

 	
 Using the Azure portal UI at https://azure.microsoft.com/

 	
 Using the Azure REST API

 	
 Using the command line

 Because we are focusing on DevOps and automation, we will avoid UI interaction as much as possible and instead rely on scripting, which we can more easily transition from ad hoc to automated. In most cases, this means using the command line. It should also make working through the examples in the book easier. Instead of pages of screenshots, you can clone the GitHub repo with the examples and copy and paste them into your shell. We will fall back to UI screenshots for the few places where automation doesn’t work; for example, signing up to new services like Azure DevOps (ADO).

 To interact with Azure using the command line, we will use PowerShell Core and the Azure CLI.1 You can use a different shell if you prefer, but using PowerShell makes it easier to run the code samples in this book without modification.

 In many cases, Azure resources have a URL that needs to be unique. If we name such a resource AzureDataEngineering, the first reader to run the example will create the URL and it will be unavailable for others. To avoid this issue, for this type of resources, we will use a unique suffix. We will store this suffix in a PowerShell variable in your profile.

 In PowerShell, $PROFILE should show you the path of the PowerShell profile script that runs when you start the shell. Open it in your favorite text editor by calling, for example, notepad $PROFILE and adding the line from the following listing. Replace <unique suffix> with your nickname.

 Listing 1.1 Setting up $suffix in your PowerShell profile

 ...$suffix = "<unique suffix>"

 We will append this string to Azure resources that need to be unique. Now, when we launch the shell, we’ll have this handy in the $suffix variable.

 Note Remember to set $suffix in your profile; otherwise, many examples in this book that rely on this won’t work.

 The $suffix variable should be unique but fairly short, and it should contain only alphanumeric characters. Various services have restrictions on what characters are allowed in their names. For example, I used my alias, "vladris". With that out of the way, let’s go ahead and install Azure CLI.

 Azure CLI is a multiplatform command line for interacting with Azure. It’s used for configuration and task automation. For the types of automation in this book, like provisioning resources and configuring services, this is easier to work with than going to the REST API. For programmatic access, we should get the Azure SDK for our particular language (C#, Python, and so on), which will call into the REST API, but let’s just get the command-line tools for now.

 You can get Azure CLI for any platform by following the instructions here: https://docs.microsoft.com/en-us/cli/azure/install-azure-cli. For Windows, run the command in the following listing from PowerShell launched in Administrator mode.

 Listing 1.2 Installing Azure CLI from PowerShell

 Invoke-WebRequest -Uri https://aka.ms/installazurecliwindows -OutFile
➥ .\AzureCLI.msi; Start-Process msiexec.exe -Wait -ArgumentList
➥ '/I AzureCLI.msi /quiet'; rm .\AzureCLI.msi

 This command downloads and installs the Azure CLI tools that you can then access on any shell by invoking az. After running the installer, you might need to run refreshenv for the environment to pick up the Azure CLI tools. The first step before using Azure CLI is logging into Azure. From the shell, call az login as shown in the next listing.

 Listing 1.3 Logging into Azure using Azure CLI

 az login

 You should be prompted to log in, after which you can interact with Azure by using the command line. The general format of an az command is

 az <group> [<subgroup>] <command> <arguments>

 For example, to create a new resource group, which is a container for Azure resources, we would invoke the command in the following listing.

 Listing 1.4 Creating an Azure resource group

 az group create ` ❶
--location "Central US" ` ❷
--name "MyResourceGroup" ❸

 ❶ The <group> in this case is group (Azure CLI short for Azure Resource Group); the command is create.

 ❷ A new resource group needs a location. For this example, we use Central US.

 ❸ A new resource group also needs a name. We’ll call this one MyResourceGroup.

 The listing can actually be a one-liner, but here we use a backtick (`), which is the PowerShell way to split a command across multiple lines. This will make the command easier to read and annotate. If you are using a different shell, you might need to use a different separator or, better yet, just make it a one liner.

 A couple of notes on the examples in this book: at the time of writing, some of the Azure CLI extensions that we will use are in an experimental stage. You might get a warning saying the same. You can ignore this. The latest code examples can be found in the book’s GitHub repository here: https://github.com/vladris/azure-data-engineering. Also, see appendix C for some troubleshooting steps in case you get stuck when running any of the examples in the book.

1.5 Implementing an Azure data platform

 As we work through the topics in this book, we will look into implementing a data platform. Figure 1.2 shows this implementation.

 [image:]

 Figure 1.2 Implementation of a data platform. Here we use Azure Data Explorer and Azure Data Lake Storage as the main data stores. We then run processing and analytics on Azure Data Explorer and ML on Azure Machine Learning. Data distribution is from storage and through an API implemented via Cosmos DB and Azure Functions. Orchestration is handled by Azure Data Factory, and we implement monitoring using Azure Monitor. We use Azure Purview for metadata management, Azure DevOps Repos for source control, and Azure DevOps Pipelines for deployment.

 The large boxes in figure 1.2 are the same as in figure 1.1, just slightly rearranged to better fit the services used. Don’t worry if you are not familiar with these services; we’ll go over a quick rundown in this section and then focus on each in the following chapters.

 In part 1, we discuss storage, DevOps, and orchestration. For storage, we will use Azure Data Explorer and Azure Data Lake Storage. Azure Data Explorer excels at ingesting data with high throughput and can query millions of rows of data within seconds, making it ideal for analytics and exploration scenarios. Azure Data Lake Storage provides virtually infinite storage space. Unlike Azure Data Explorer, which is an integrated storage and analytics solution, Azure Data Lake Storage is a purely storage solution. Other compute services, like Azure Data Lake Analytics, Azure Databricks, or Azure Machine Learning can connect to Azure Data Lake Storage and provide processing for it. We will go over more of the details in chapter 2.

 We will rely on Azure DevOps Repos and Azure DevOps Pipelines, both part of the Azure DevOps offerings, for source control, code flow processes, and automated deployments. Chapter 3 focuses on DevOps. For orchestration, we will use Azure Data Factory (ADF). Azure Data Factory is the main Azure serverless ETL solution.

 definition ETL (short for extract, transform, load) is the general process of copying data from one or more sources into a destination, while applying any required transformation.

 Moving data around and running various processes on a schedule is a complex topic, which we will cover in chapter 4. We will also cover monitoring and introduce Azure Monitor, a service that provides real-time alerts if any issues are encountered.

 Part 2 of the book focuses on the three main workloads we need to run on a data platform: modeling, analytics, and machine learning. Modeling focuses on reshaping and curating the data such that users of the data platform can more easily consume it in their processes. Analytics includes all reporting and insights derived from the data. For both topics, we will rely on the compute capabilities of Azure Data Explorer with orchestration provided by Azure Data Factory, monitoring through Azure Monitor, and other DevOps concerns covered by Azure DevOps. We will cover these topics in chapters 5 and 6.

 ML is a bit different. Although both processing and analytics focus on directly shaping and querying the data, ML workloads focus on training models that can automatically provide classifications, predictions, and so on. For these types of workloads, we will look at Azure Machine Learning (AML). Azure Machine Learning is Azure’s fully managed platform for ML model management, which we will discuss in chapter 7.

 Part 3 of the book focuses on governance. First, we will look at metadata management, which helps us explore our data space. We will see how we can inventory our data, term definitions in our business domain, lineage, and other such concerns. Chapter 8 is all about metadata, or data about our data. Azure Purview is the metadata-as-a-service solution offered by Azure.

 Data quality is another important aspect that ensures data is available on time, is complete, is not corrupted, and so on. Unfortunately, we currently don’t have an out-of-the-box solution for data quality, so we will look at how we can implement something on Azure. This is the subject of chapter 9.

 Chapter 10 is all about governance, so we will leverage the capabilities of our storage layer to properly secure data and implement requirements like GDPR compliance. We’ll also talk about data classification and proper data handling.

 Chapter 11 covers data distribution. We will look at different ways of sharing data from our data platform. We will look at sharing data via an API, instead of directly at the storage layer, and discuss the benefits of this. To build a low-latency, scalable API, we will leverage Cosmos DB as our serving-layer storage and Azure Functions for building a REST API over this storage. We’ll also look at sharing data for bulk copy directly from the storage layer using Azure Data Share.

 You might have noticed some technologies are missing from this picture. For example, we haven’t mentioned Azure SQL, Azure Synapse Analytics, or Azure Databricks. Each of these services, much like the ones we are going to use in this book, deserve their own book if you want to deep-dive and understand all the pros, cons, and nuances. Appendix A provides a quick overview, but again, this is not a book about Azure services. This is a book about implementing a data platform, so the main focus is the scenarios we want to achieve and the workloads we want to support.

 We can think of the set of services we pick for the job as an implementation detail. Of course, we want to make an informed decision about our implementation. As mentioned earlier, everyone’s particular scenario will bring different decision points, so the platform covered in this book is just one possible implementation out of many. The underlying concepts are the same. In part 1 we will look at the core infrastructure of our data platform, starting with our storage layer in chapter 2.

Summary

 	
 Data engineering aims to bring engineering rigor to the process of building and supporting data systems.

 	
 Data governance deals with availability, usability, integrity, regulatory compliance, and security of a data system.

 	
 Cloud providers enable us to rent their services, which frees us from having to manage infrastructure.

 	
 Infrastructure as code is the practice of managing and provisioning infrastructure through automation.

 	
 Codeless infrastructure refers to the use of existing services to implement an infrastructure as opposed to custom code.

 	
 Cloud services can be categorized as infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS).

 	
 Cloud services can also be categorized as network, storage, and compute with some solutions providing integrated storage and analytics.

 	
 You can interact with Azure in three ways: through the web UI, through REST APIs, and through command-line tools.

 1.PowerShell Core is a cross-platform shell you can get from https://github.com/PowerShell/Powershell.

Part 1 Infrastructure

 In part 1, we’ll set up the core infrastructure of our data platform. All other topics discussed in the book (running various workloads, aspects of governance) will be built on top of this infrastructure.

 	
 Chapter 2 discusses storage and various patterns of ingesting and storing data. We’ll look at two Azure services: Azure Data Explorer and Azure Data Lake Storage.

 	
 Chapter 3 covers DevOps and introduces Azure DevOps, as this is a book about data engineering and bringing engineering rigor to data. We’ll see how we can store everything in Git and use automated pipelines for deployment.

 	
 Chapter 4 describes orchestration: how data moves through our platform and how we can schedule various processes. For orchestration and data movement, we’ll use Azure Data Factory. For monitoring, we’ll use Azure Monitor.

2 Storage

 This chapter covers

 	
Storing data in a data platform

 	
Using Azure Data Explorer for ingestion and analytics

 	
Using Azure Data Lake Storage for big data storage

 	
Applying data ingestion patterns

 Data storage is the core piece of a data platform around which everything else is built. The focus of this chapter is storage solutions and trade-offs. We’ll also introduce two Azure services that we will use and discuss how these integrate. Figure 2.1 recaps the high-level view from chapter 1, highlighting the component discussed in this chapter.

 [image:]

 Figure 2.1 Storage is the core piece of a data platform around which everything else is built. Data gets ingested into the storage layer and is distributed from there. All workloads (data processing, analytics, and machine learning) access this layer.

 Because data moves continuously in and out of the data platform, this chapter focuses on storage and the need to accommodate multiple storage solutions, both external and inside the data platform. We will sketch out the storage layer of our data platform, then stand up the corresponding Azure services.

 In this chapter, we will deploy an Azure Data Explorer (ADX) cluster, Microsoft’s big data analytics platform. We will create a table, ingest some data into it, and then we’ll look at a few basics KQL queries, the Kusto Query Language used by Azure Data Explorer. Kusto was the code name of Azure Data Explorer before it launched as a public service. You sometimes might encounter “Kusto” instead of “Azure Data Explorer,” but know these are the same service.

 Next, we’ll configure an Azure Data Lake Storage (ADLS) instance, the highly scalable data lake solution. We’ll see how we can upload data to the data lake and look at some of the integration options with Azure Data Explorer. We’ll export data from Azure Data Explorer into Azure Data Lake Storage and then read it back as an external table.

 Finally, we will talk about data ingestion patterns. We’ll see how data can be ingested at various frequencies, and how it can be fully or incrementally loaded into our platform. We will also look at what happens if the data gets corrupted and we need to reload it to fix the issues.

2.1 Storing data in a data platform

 Let’s say we are building a data platform for a website that sells data engineering books. We want to pull together website traffic logs from our website team, sales from our payments team, and customer support data from our customer success team. This allows us to correlate, for example, how different website features impact customer retention and customer satisfaction. Web telemetry data, sales data, and customer issues data are datasets that we’ll bring into our platform.

 Definition A dataset is a collection of data. In the case of tabular data, a dataset corresponds to one or more tables.

 The website is quite popular, so our website team collects a lot of telemetry datapoints. To scale to the incoming traffic, it uses Azure Data Explorer to quickly store and query the website visits. (We will talk more about Azure Data Explorer later in this chapter.) On the other hand, our payments team deals with a smaller scale and uses an SQL database to store payments data. The customer success team uses a third-party solution, and the developers suggest calling an API to retrieve the data in that system. Figure 2.2 shows how all these teams provide data to our data platform.

 [image:]

 Figure 2.2 Different teams in the organization use different technologies to store data. The website team uses Azure Data Explorer, the payments team uses Azure SQL, while the customer success team uses a third-party solution from which we can get data via an API.

 Let’s define each of these environments that store data (website, payments, customer success) as a data fabric.

 Definition A data fabric is an environment for storing and managing data. From a consumer perspective, it represents a single storage technology—the “fabric” on which the data persists. Examples of data fabrics in Azure are SQL, Azure Data Explorer, Blob Storage, and so forth.

 If all the data that your data platform needs resides on the same data fabric, you can count yourself lucky. In most cases, as in our previous example, a data platform needs to stitch together data from multiple fabrics. Different teams across the enterprise might be using different storage solutions, or maybe we are ingesting data from an external company. A large data platform needs to accommodate heterogenous data storage. By heterogenous data storage, we mean data spread across multiple data fabrics.

2.1.1 Storing data across multiple data fabrics

 We need to embrace having data across multiple storage solutions, not only for ingestion. Different workloads might perform better on different data fabrics as we will see throughout this book. For example, Azure Data Explorer excels at querying millions of rows in a matter of seconds, which identifies anomalies or produces aggregates. Suppose we want to keep a large amount of data for historical reasons or simply to allow other teams within our enterprise to copy the data to their systems. In this case, Azure Data Explorer with its high-performance indexing and caching capabilities might be overkill, so we can park the data in a cheap storage like Azure Data Lake Storage. We will cover these two data fabrics in this chapter.

 On the other hand, Cosmos DB, the Azure globally distributed NoSQL solution, provides turnkey geo-replication (meaning data can be replicated across different worldwide data centers with a simple configuration change) and retrieves one particular document in milliseconds. This makes it ideal as a storage layer behind a data API (more on this in chapter 11). Figure 2.3 expands on figure 2.2 to show the different data fabrics within our data platform.

 [image:]

 Figure 2.3 Different teams use different data fabrics, even within one data platform. In our data platform, we use different data fabrics for different workloads: Azure Data Explorer for analytics, Azure Data Lake Storage for long-term storage, and Cosmos DB as an API backend.

 Again, this is a reference implementation for a data platform storage, but keep in mind, it is one option out of many. Depending on your scenario, your team’s needs, skill sets, data volumes, and latency requirements, other solutions might be better suited. For example, Azure Stream Analytics can perform real-time analysis on streaming data, while Azure Databricks can run big data analytics on top of Azure Data Lake Storage.

2.1.2 Having a single source of truth

 While we should embrace supporting multiple data fabrics, there is value in having a “single source of truth”—one storage solution through which all data in the system flows. Figure 2.4 shows Azure Data Explorer as such a single source of truth for our data platform.

 [image:]

 Figure 2.4 Data flows into the data platform to Azure Data Explorer. From there, certain datasets are copied to Azure Data Lake Storage and Cosmos DB. Azure Data Explorer becomes the “single source of truth” for our data platform.

 One reason for flowing everything through Azure Data Explorer is that we have all data in our platform in one place, where we can perform analysis across multiple datasets coming from different upstream teams. If data is spread around different services, it becomes harder to build comprehensive views.

 Definition Upstream and downstream are data flow terms that help us understand where a system stands in relation to our data platform. Upstream systems are systems from which we ingest data into our platform. Downstream systems are systems that consume data from our data platform.

 Another advantage of such a setup is that it makes it easier to repair data. In many situations, data will need to be fixed. An example of this might be a data issue upstream. Once the issue is identified and corrected, we need to re-ingest the data. The single source of truth helps because once we know the data has been updated there, the updates flow seamlessly throughout the system. Contrast this with a setup in which various datasets land in different data fabrics. We would have to track the data flow of a single dataset to make sure a fix is propagated correctly.

 The trade-off to be aware of is that the more data we move around, the more latency and costs we incur and the more failure points we introduce into the system. For example, if we ingest data from the payments team into Azure Data Explorer, then we copy it to Azure Data Lake Storage, either of the steps could fail; we might run into an issue ingesting into Azure Data Explorer, or we might run into an issue copying into Azure Data Lake Storage. If we ingest the data directly into Azure Data Lake Storage, we have just one failure point, although it will be harder to tie this data together with the data available in Azure Data Explorer. We need to find the right balance between placing the data in the optimal storage solution for the processing we are trying to do and for keeping things at a reasonable cost and complexity level.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/CH02_F04_Riscutia2.png

OEBPS/OEBPS/Images/CH02_F03_Riscutia2.png

OEBPS/OEBPS/Images/CH02_F01_Riscutia2.png

OEBPS/OEBPS/Images/CH02_F02_Riscutia2.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/CH01_F01_Riscutia2.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F02_Riscutia2.png

OEBPS/OEBPS/Images/IFC_F01_Riscutia2.png

