

 [image: cover]

Get Programming: Learn to code with Python

 Ana Bell

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Elesha Hyde
Tecchnical development editor: Frances Buontempo
Review editor: Aleksandar Dragosavljević
Project editor: David Novak
Copy editor: Sharon Wilkey
Proofreader: Melody Dolab
Technical proofreader: Ignacio Beltran Torres
Typesetter: Dottie Marsico
Cover designer: Monica Kamsvaag

 ISBN 9781617293788

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

Dedication

 To my sons, James and Thomas

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the author

 Unit 0. Learning how to program

 Lesson 1. Why should you learn how to program?

 Lesson 2. Basic principles of learning a programming language

 Unit 1. Variables, types, expressions, and statements

 Lesson 3. Introducing Python: a programming language

 Lesson 4. Variables and expressions: giving names and values to things

 Lesson 5. Object types and statements of code

 Lesson 6. Capstone project: your first Python program—convert hours to minutes

 Unit 2. Strings, tuples, and interacting with the user

 Lesson 7. Introducing string objects: sequences of characters

 Lesson 8. Advanced string operations

 Lesson 9. Simple error messages

 Lesson 10. Tuple objects: sequences of any kind of object

 Lesson 11. Interacting with the user

 Lesson 12. Capstone project: name mashup

 Unit 3. Making decisions in your programs

 Lesson 13. Introducing decisions in programs

 Lesson 14. Making more-complicated decisions

 Lesson 15. Capstone project: choose your own adventure

 Unit 4. Repeating tasks

 Lesson 16. Repeating tasks with loops

 Lesson 17. Customizing loops

 Lesson 18. Repeating tasks while conditions hold

 Lesson 19. Capstone project: Scrabble, Art Edition

 Unit 5. Organizing your code into reusable blocks

 Lesson 20. Building programs to last

 Lesson 21. Achieving modularity and abstraction with functions

 Lesson 22. Advanced operations with functions

 Lesson 23. Capstone project: analyze your friends

 Unit 6. Working with mutable data types

 Lesson 24. Mutable and immutable objects

 Lesson 25. Working with lists

 Lesson 26. Advanced operations with lists

 Lesson 27. Dictionaries as maps between objects

 Lesson 28. Aliasing and copying lists and dictionaries

 Lesson 29. Capstone project: document similarity

 Unit 7. Making your own object types by using object-oriented programming

 Lesson 30. Making your own object types

 Lesson 31. Creating a class for an object type

 Lesson 32. Working with your own object types

 Lesson 33. Customizing classes

 Lesson 34. Capstone project: card game

 Unit 8. Using libraries to enhance your programs

 Lesson 35. Useful libraries

 Lesson 36. Testing and debugging your programs

 Lesson 37. A library for graphical user interfaces

 Lesson 38. Capstone project: game of tag

 Appendix A. Answers to lesson exercises

 Appendix B. Python cheat sheet

 Appendix C. Interesting Python libraries

 Thinking like a programmer: big ideas

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the author

 Unit 0. Learning how to program

 Lesson 1. Why should you learn how to program?

 1.1. Why programming matters

 1.1.1. Programming isn’t just for professionals

 1.1.2. Improve your life

 1.1.3. Challenge yourself

 1.2. Where you are now and where you’ll be

 1.3. Our plan for learning how to program

 1.3.1. First steps

 1.3.2. Practice, practice, practice, practice

 1.3.3. Think like a programmer

 Summary

 Lesson 2. Basic principles of learning a programming language

 2.1. Programming as a skill

 2.2. A parallel with baking

 2.2.1. Understand the task “bake a loaf of bread”

 2.2.2. Find a recipe

 2.2.3. Visualize the recipe with flowcharts

 2.2.4. Use an existing recipe or make one up?

 2.3. Think, code, test, debug, repeat

 2.3.1. Understanding the task

 2.3.2. Visualizing the task

 2.3.3. Writing pseudocode

 2.4. Writing readable code

 2.4.1. Using descriptive and meaningful names

 2.4.2. Commenting your code

 Summary

 Unit 1. Variables, types, expressions, and statements

 Lesson 3. Introducing Python: a programming language

 3.1. Installing Python

 3.1.1. What is Python?

 3.1.2. Downloading Python version 3.5

 3.1.3. Anaconda Python Distribution

 3.1.4. Integrated development environments

 3.2. Setting up your workspace

 3.2.1. The IPython console

 3.2.2. The file editor

 Summary

 Lesson 4. Variables and expressions: giving names and values to things

 4.1. Giving names to things

 4.1.1. Math vs. programming

 4.1.2. What the computer can and can’t do

 4.2. Introducing variables

 4.2.1. Objects are things that can be manipulated

 4.2.2. Objects have names

 4.2.3. What object names are allowed?

 4.2.4. Creating a variable

 4.2.5. Updating a variable

 Summary

 Lesson 5. Object types and statements of code

 5.1. Types of things

 5.2. Basic type of objects in programming

 5.2.1. Integers as whole numbers

 5.2.2. Floating point as decimal numbers

 5.2.3. Booleans as true/false data

 5.2.4. Strings as sequences of characters

 5.2.5. The absence of a value

 5.3. Working with basic types of data values

 5.3.1. Building blocks of expressions

 5.3.2. Converting between different types

 5.3.3. How arithmetic impacts object types

 Summary

 Lesson 6. Capstone project: your first Python program—convert hours to minutes

 6.1. Think-code-test-debug-repeat

 6.2. Divide your task

 Code to set up the input

 Code to set up the output

 6.3. Implement the conversion formula

 6.3.1. How many hours?

 6.3.2. How many minutes?

 6.4. Your first Python program: one solution

 6.5. Your first Python program: another solution

 Summary

 Unit 2. Strings, tuples, and interacting with the user

 Lesson 7. Introducing string objects: sequences of characters

 7.1. Strings as sequences of characters

 7.2. Basic operations on strings

 7.2.1. Creating a string object

 7.2.2. Understanding indexing into a string

 7.2.3. Understanding slicing a string

 7.3. Other operations on string objects

 7.3.1. Getting the number of characters in a string with len()

 7.3.2. Converting between letter cases with upper() and lower()

 Summary

 Lesson 8. Advanced string operations

 8.1. Operations related to substrings

 8.1.1. Find a specific substring in a string with find()

 8.1.2. Find out whether a substring is in the string with “in”

 8.1.3. Count the number of times a substring occurs with count()

 8.1.4. Replace substrings with replace()

 8.2. Mathematical operations

 Summary

 Lesson 9. Simple error messages

 9.1. Typing up statements and trying things out

 9.2. Understanding string error messages

 Summary

 Lesson 10. Tuple objects: sequences of any kind of object

 10.1. Tuples as sequences of data

 10.1.1. Creating tuple objects

 10.2. Understanding operations on tuples

 10.2.1. Getting the tuple length with len()

 10.2.2. Indexing into and slicing a tuple with []

 10.2.3. Performing mathematical operations

 10.2.4. Swapping objects inside tuples

 Summary

 Lesson 11. Interacting with the user

 11.1. Showing output

 11.1.1. Printing expressions

 11.1.2. Printing multiple objects

 11.2. Getting user input

 11.2.1. Prompting the user

 11.2.2. Reading the input

 11.2.3. Storing the input in a variable

 11.2.4. Converting the user input to a different type

 11.2.5. Asking for more input

 Summary

 Lesson 12. Capstone project: name mashup

 12.1. Understanding the problem statement

 12.1.1. Drawing a sketch of the problem

 12.1.2. Coming up with a few examples

 12.1.3. Abstracting the problem into pseudocode

 12.2. Splitting up first and last names

 12.2.1. Finding the space between the first and last name

 12.2.2. Using variables to save calculated values

 12.2.3. Testing what you have so far

 12.3. Storing the halves of all names

 12.3.1. Finding the midpoint of names

 12.4. Combining the halves

 Summary

 Unit 3. Making decisions in your programs

 Lesson 13. Introducing decisions in programs

 13.1. Making decisions with conditionals

 13.1.1. Yes/no questions and true/false statements

 13.1.2. Adding a condition to a statement

 13.2. Writing the code to make the decision

 13.2.1. Coding up a decision—an example

 13.2.2. Coding up a decision—a general way

 13.3. Structuring your programs

 13.3.1. Making many decisions

 13.3.2. Making decisions based on another decision’s outcomes

 13.3.3. A more complicated example with nested conditionals

 Summary

 Lesson 14. Making more-complicated decisions

 14.1. Combining multiple conditions

 14.1.1. Conditionals are made up of true/false expressions

 14.1.2. Operator precedence rules

 14.2. Choosing which lines to execute

 14.2.1. Do this or that

 14.2.2. Putting it all together

 14.2.3. Thinking in terms of code blocks

 Summary

 Lesson 15. Capstone project: choose your own adventure

 15.1. Outlining the game rules

 15.2. Creating different paths

 15.3. More choices? Yes, please!

 Summary

 Unit 4. Repeating tasks

 Lesson 16. Repeating tasks with loops

 16.1. Repeating a task

 16.1.1. Adding nonlinearity to programs

 16.1.2. Infinite repetitions

 16.2. Looping a certain number of times

 16.2.1. for loops

 16.3. Looping N times

 16.3.1. Loops over the common sequence 0 to N – 1

 16.3.2. Unrolling loops

 Summary

 Lesson 17. Customizing loops

 17.1. Customizing loops

 17.2. Looping over strings

 Summary

 Lesson 18. Repeating tasks while conditions hold

 18.1. Looping while a condition is true

 18.1.1. Looping to make a guess

 18.1.2. while loops

 18.1.3. Infinite loop

 18.2. Using for loops vs. while loops

 18.3. Manipulating loops

 18.3.1. Exiting early out of a loop

 18.3.2. Going to the beginning of a loop

 Summary

 Lesson 19. Capstone project: Scrabble, Art Edition

 19.1. Understanding the problem statement

 19.1.1. Change the representation of all valid words

 19.1.2. Making a valid word with the given tiles

 19.2. Dividing your code into pieces

 Summary

 Unit 5. Organizing your code into reusable blocks

 Lesson 20. Building programs to last

 20.1. Breaking a big task into smaller tasks

 20.1.1. Ordering an item online

 20.1.2. Understanding the main points

 20.2. Introducing black boxes of code in programming

 20.2.1. Using code modules

 20.2.2. Abstracting code

 20.2.3. Reusing code

 20.3. Subtasks exist in their own environments

 Summary

 Lesson 21. Achieving modularity and abstraction with functions

 21.1. Writing a function

 21.1.1. Function basics: what the function takes in

 21.1.2. Function basics: what the function does

 21.1.3. Function basics: what the function returns

 21.2. Using functions

 21.2.1. Returning more than one value

 21.2.2. Functions without a return statement

 21.3. Documenting your functions

 Summary

 Lesson 22. Advanced operations with functions

 22.1. Thinking about functions with two hats

 22.1.1. Writer hat

 22.1.2. User hat

 22.2. Function scope

 22.2.1. Simple scoping example

 22.2.2. Scoping rules

 22.3. Nesting functions

 22.4. Passing functions as parameters

 22.5. Returning a function

 22.6. Summary

 Lesson 23. Capstone project: analyze your friends

 23.1. Reading a file

 23.1.1. File format

 23.1.2. The newline character

 23.1.3. Remove the newline character

 23.1.4. Using tuples to store information

 23.1.5. What to return

 23.2. Sanitizing user inputs

 23.3. Testing and debugging what you have so far

 23.3.1. File objects

 23.3.2. Writing a text file with names and phone numbers

 23.3.3. Opening files for reading

 23.4. Reusing functions

 23.5. Analyzing the information

 23.5.1. The specification

 23.5.2. Helper functions

 Summary

 Unit 6. Working with mutable data types

 Lesson 24. Mutable and immutable objects

 24.1. Immutable objects

 24.2. The need for mutability

 Summary

 Lesson 25. Working with lists

 25.1. Lists vs. tuples

 25.2. Creating lists and getting elements at specific positions

 25.3. Counting and getting positions of elements

 25.4. Adding items to lists: append, insert, and extend

 25.4.1. Using append

 25.4.2. Using insert

 25.4.3. Using extend

 25.5. Removing items from a list: pop

 25.6. Changing an element value

 Summary

 Lesson 26. Advanced operations with lists

 26.1. Sorting and reversing lists

 26.2. Lists of lists

 26.3. Converting a string to a list

 26.4. Applications of lists

 26.4.1. Stacks

 26.4.2. Queues

 Summary

 Lesson 27. Dictionaries as maps between objects

 27.1. Creating dictionaries, keys, and values

 27.2. Adding key-value pairs to a dictionary

 27.2.1. Short diversion into restrictions on keys

 27.3. Removing key-value pairs from a dictionary

 27.4. Getting all the keys and values in a dictionary

 27.4.1. No ordering to dictionary pairs

 27.5. Why should you use a dictionary?

 27.5.1. Keeping count with frequency dictionaries

 27.5.2. Building unconventional dictionaries

 Summary

 Lesson 28. Aliasing and copying lists and dictionaries

 28.1. Using object aliases

 28.1.1. Aliases of immutable objects

 28.1.2. Aliases of mutable objects

 28.1.3. Mutable objects as function parameters

 28.2. Making copies of mutable objects

 28.2.1. Commands to copy mutable objects

 28.2.2. Getting copies of sorted lists

 28.2.3. A word of caution when iterating over mutable objects

 28.2.4. Why does aliasing exist?

 Summary

 Lesson 29. Capstone project: document similarity

 29.1. Breaking the problem into tasks

 29.2. Reading file information

 29.3. Saving all words from the file

 29.4. Mapping words to their frequency

 29.5. Comparing two documents by using a similarity score

 29.6. Putting it all together

 29.7. One possible extension

 Summary

 Unit 7. Making your own object types by using object-oriented programming

 Lesson 30. Making your own object types

 30.1. Why do you need new object types?

 30.2. What makes up an object?

 30.2.1. Object properties

 30.2.2. Object behaviors

 30.3. Using dot notation

 Summary

 Lesson 31. Creating a class for an object type

 31.1. Implementing a new object type by using a class

 31.2. Data attributes as object properties

 31.2.1. Initializing an object with __init__

 31.2.2. Creating an object property inside __init__

 31.3. Methods as object operations and behaviors

 31.4. Using an object type you defined

 31.5. Creating a class with parameters in __init__

 31.6. Dot notation on the class name, not on an object

 Summary

 Lesson 32. Working with your own object types

 32.1. Defining a stack object

 32.1.1. Choosing data attributes

 32.1.2. Implementing methods

 32.2. Using a Stack object

 32.2.1. Make a stack of pancakes

 32.2.2. Make a stack of circles

 Summary

 Lesson 33. Customizing classes

 33.1. Overriding a special method

 33.2. Overriding print() to work with your class

 33.3. Behind the scenes

 33.4. What can you do with classes?

 33.4.1. Scheduling events

 Summary

 Lesson 34. Capstone project: card game

 34.1. Using classes that already exist

 34.2. Detailing the game rules

 34.3. Defining the Player class

 34.4. Defining the CardDeck class

 34.5. Simulate the card game

 34.5.1. Setting up the objects

 34.5.2. Simulating rounds in the game

 34.6. Modularity and abstraction with classes

 Summary

 Unit 8. Using libraries to enhance your programs

 Lesson 35. Useful libraries

 35.1. Importing libraries

 35.2. Doing mathematical operations with the math library

 35.3. Random numbers with the random library

 35.3.1. Randomizing lists

 35.3.2. Simulating games of chance

 35.3.3. Replicating results by using a seed

 35.4. Timing programs with the time library

 35.4.1. Using the clock

 35.4.2. Pausing your program

 Summary

 Lesson 36. Testing and debugging your programs

 36.1. Working with the unittest library

 36.2. Separating the program from the tests

 36.2.1. Types of tests

 36.3. Debugging your code

 36.3.1. Using tools to help you step through code

 Summary

 Lesson 37. A library for graphical user interfaces

 37.1. A library for graphical user interfaces

 37.2. Setting up a program using the tkinter library

 37.3. Adding widgets

 37.4. Adding event handlers

 Summary

 Lesson 38. Capstone project: game of tag

 38.1. Identifying the parts to the problem

 38.2. Creating two shapes in a window

 38.3. Moving shapes inside the canvas

 38.4. Detecting a collision between shapes

 38.5. Possible extensions

 Summary

 Appendix A. Answers to lesson exercises

 Lesson 2

 Answers to quick checks

 Lesson 3

 Answers to quick checks

 Lesson 4

 Answers to quick checks

 Answers to summary questions

 Lesson 5

 Answers to quick checks

 Lesson 6

 Answers to quick checks

 Answers to summary questions

 Lesson 7

 Answers to quick checks

 Answers to summary questions

 Lesson 8

 Answers to quick checks

 Answers to summary questions

 Lesson 9

 Answers to summary questions

 Lesson 10

 Answers to quick checks

 Answers to summary questions

 Lesson 11

 Answers to quick checks

 Answers to summary questions

 Lesson 13

 Answers to quick checks

 Answers to summary questions

 Lesson 14

 Answers to quick checks

 Answers to summary questions

 Lesson 16

 Answers to quick checks

 Answers to summary questions

 Lesson 17

 Answers to quick checks

 Answers to summary questions

 Lesson 18

 Answers to quick checks

 Answers to summary questions

 Lesson 20

 Answers to quick checks

 Answers to summary questions

 Lesson 21

 Answers to quick checks

 Answers to summary questions

 Lesson 22

 Answers to quick checks

 Answers to summary questions

 Lesson 24

 Answers to quick checks

 Answers to summary questions

 Lesson 25

 Answers to quick checks

 Answers to summary questions

 Lesson 26

 Answers to quick checks

 Answers to summary questions

 Lesson 27

 Answers to quick checks

 Answers to summary questions

 Lesson 28

 Answers to quick checks

 Answers to summary questions

 Lesson 30

 Answers to quick checks

 Lesson 31

 Answers to quick checks

 Answers to summary questions

 Lesson 32

 Answers to quick checks

 Answers to summary questions

 Lesson 33

 Answers to quick checks

 Answers to summary questions

 Lesson 35

 Answers to quick checks

 Answers to summary questions

 Lesson 36

 Answers to quick checks

 Answers to summary questions

 Lesson 37

 Answers to quick checks

 Answer to summary questions

 Appendix B. Python cheat sheet

 Variable names

 Mutable vs. immutable

 Dictionaries

 Appendix C. Interesting Python libraries

 Thinking like a programmer: big ideas

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 I wanted to write this book for two main reasons. I aimed to fill a need for a book that truly taught programming from scratch,
 and that presented programming as an activity that can help you with daily tasks.

 A common misconception people have is that programing has to be a big endeavor every time you do it, where you’re trying to
 write a program that can solve a world problem. But that’s not so. Learning to program can improve your day-to-day life! I
 write short programs all the time, whether it’s to solve puzzles or to help me make decisions. I wanted to capture this sentiment
 in this book by making programming as accessible to everyone as I can, showing how with even a little bit of programming knowledge,
 you can write useful programs customized to your needs.

 I teach an introductory Python computer science course for undergraduates. For the most part, many students taking the class
 have no prior programming experience, in any language. The course is fast-paced, and many students ask if there are any resources
 online for people who have never programmed before. Almost all the resources I point them to require prior knowledge of programming,
 which adds another level of indirection to their learning: they have to first grasp the idea of programming and then understand
 how to apply that to Python. I try not to forget what it’s like to start learning to program from scratch, no matter how many
 times I teach the course. I want this book to be a gentle introduction to programming in one of the most popular languages
 at this time, that also shows how approachable coding can be.

Acknowledgments

 I’m so glad I had the opportunity to write this book, so I can help others who are just starting out in the wide world of
 programming.

 First, I’d like to thank my husband, CJ. His support throughout the writing of this book was unwavering, from offering suggestions
 to watching our son while I wrote on weekends.

 Next, I’d like to thank my parents and sister. My dad taught me programming when I was 12, and I’ll never forget how many
 times he had to explain object-oriented programming to me before it finally clicked. My sister and mom travelled across the
 country a few times a year to help watch my sons while I got more writing done. My mom, especially, was my “secret weapon.”
 She has never programmed before and was the perfect target audience, working through the exercises and reviewing the chapters
 as I was writing them.

 I’d also like to thank my development editors at Manning: Kristen Watterson, Dan Maharry, and Elesha Hyde. The book underwent
 many transformations to become what it is, and I thank them all for their patience while I wrote and rewrote lessons. Their
 suggestions were much appreciated and made the book that much stronger. A big thanks also goes to my technical development
 editor, Frances Buontempo, and technical proofreader, Ignacio Beltran Torres, who carefully read the lessons and pointed out
 corrections and had wonderful suggestions on how to improve the book. Also thanks to everyone else at Manning who helped produce
 and promote the book. Of course, thank you to all the reviewers who offered their time to read and comment on the book at
 all stages of development. They are Alexandria Webb, Ana Pop, Andru Estes, Angelo Costa, Ariana Duncan, Artiom Plugachev,
 Carlie Cornell, David Heller, David Moravec, Adnan Masood, Drew Leon, George Joseph, Gerald Mack, Grace Kacenjar, Ivo Stimac,
 James Gwaltney, Jeon-Young Kang, Jim Arthur, John Lehto, Joseph M. Morgan, Juston Lantrip, Keith Donaldson, Marci Kenneda,
 Matt Lemke, Mike Cuddy, Nestor Narvaez, Nicole E. Kogan, Nigel John, Pavol Kráľ, Potito Colluccelli, Prabhuti Prakash, Randy
 Coffland, R. Udendhran Mudaliyar, Rob Morrison, Rujiraporn Pitaksalee, Sam Johnson, Shawn Bolan, Sowmy Vajjala-Balakrishna,
 Steven Parr, Thomas Ballinger, Tom Northwood, Vester Thacker, Warren Rust, Yan Guo, and Yves Dorfsman.

About this Book

Who should read this book

 Get Programming: Learn to Code with Python is intended for anyone who is curious about programming but doesn’t necessarily want to pursue a career in it. It doesn’t
 assume any programming experience. You should be familiar with the following ideas:

 	
Variables—Readers who have taken a math course that deals with introductory algebra know what a variable is. This book explains how
 variables in a programming setting are different.

 	
Assigning truth values (true/false) to statements—Statements are sentences that can be determined as true or false. For example, “It is raining” is a statement that’s either
 true or false. You should know how to invert statements to take the opposite truth value by using the word not. For example, if “It is raining” is true, then “It is not raining” is false.

 	
Connecting statements—When there’s more than one statement, they can be connected by using the words and or or. For example, “It’s raining” and “I’m happy” can become “It’s raining and I’m happy.”

 	
Making decisions—With multiple statements, you can make a decision based on whether one statement is true by using “if...then....” For example,
 “If it is raining then the ground is wet” is made up of two statements: “It is raining” and “the ground is wet.” The statement
 “the ground is wet” is a consequence of the statement “it is raining.”

 	
Following instructions by doing any of the following activities or similar—Playing a game of 20 Questions, following a recipe, completing a read-your-own-adventure book or understanding an algorithm
 (following a set of instructions and making branching decisions).

How this book is organized: a roadmap

 This book has eight units that cover 38 lessons. Every unit ends with a capstone project. Each unit is meant to teach you
 about one important concept in programming, through a series of short lessons:

 	
Unit 0 provides a bit of motivation to nudge you into the world of computer programming. You’ll see how programming can be compared
 to other tasks that you might sometimes do.

 	
Unit 1 introduces you to the basics behind programming and the building blocks of every computer program. You’ll download a programming
 environment and set it up so you can write programs.

 	
Unit 2 gets you to start writing code that interacts with the user by getting input from them and showing them results.

 	
Unit 3 shows you how to write programs that make decisions for you. You’ll write code that branches off into different directions.
 When run, programs will decide which branches to take, depending on values at decision points.

 	
Unit 4 builds on the idea that computers are good at doing tasks quickly. You’ll write code that takes advantage of the power of
 computers by repeating certain commands many times by writing code that automatically repeats a set of commands many times.

 	
Unit 5 introduces you to one way to write organized code: using functions as modules that can contain reusable code.

 	
Unit 6 shows you advanced types of objects that you can program with. After this unit, you’ll be able to write some incredibly useful
 and versatile programs.

 	
Unit 7 introduces you to making your own types of objects. This is a capability that not all programming languages have, but most
 of the ones being used today do have.

 	
Unit 8 wraps up the book by showing you code libraries written by others that you can use in your own programs. This lesson brings
 together abstract ideas that show you how to organize your code and take advantage of previously written code.

About the code

 The content and code in this book are presented using Python version 3.5, the most up-to-date version at the time of writing.

 The code examples in this book show how to apply the concepts learned in each lesson to perform a task you may have to do
 in your day-to-day life. Toward the end of the book, the code becomes a bit longer, and the same task is revisited in a couple
 of different scenarios.

 At the end of each unit, a capstone project summarizes key ideas learned in the lessons. A problem is described, and you’ll
 be walked through one possible solution. You’ll discover how to “translate” the English description of the task outlined into
 code.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also set in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line
 of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate
 the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers
 ([image:]). Additionally, comments in the source code have often been removed from the listings when the code is described in the text.
 Code annotations accompany many of the listings, highlighting important concepts.

Book forum

 Purchase of Get Programming: Learn to Code with Python includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/get-programming. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest her interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the author

 [image:]

 Dr. Ana Bell is a lecturer at the Massachusetts Institute of Technology in the Electrical Engineering and Computer Science
 department. She has co-lectured two introductory computer science courses in Python for the past five years: one aimed at
 students who have no prior programming experience, and one intended to expand on what students learn in the first course.
 She enjoys introducing others to programming and watching them gain confidence in themselves as they progress. It’s an extremely
 rewarding feeling to explain the same concept in different ways and watch it suddenly click with a student.

 She was first introduced to Python in graduate school at Princeton University, where she started using it to parse and reformat
 large files in her research and found it to be an intuitive language to learn and use.

Unit 0. Learning how to program

 This unit begins with a bit of motivation on why learning to program is beneficial no matter who you are; you can even use
 programming in your daily life to make certain tasks easier. You’ll briefly be introduced to ideas you should be familiar
 with before starting to program, and you’ll get an idea of the kinds of things you’ll be able to do by the end of this book.

 The unit ends by drawing a parallel with baking so that you can see programming as a skill requiring practice and creativity.
 This unit also serves as an overview of what you should expect as you go through this journey: lots and lots of practice!
 Learning to program seems like a big undertaking, but it’s best to take small steps every day rather than giant occasional
 leaps. It’s a challenging but rewarding path.

 Let’s begin!

Lesson 1. Why should you learn how to program?

 After reading lesson 1, you’ll be able to

 	Understand why programming matters

 	Set up a plan for learning how to program

1.1. Why programming matters

 Programming is universal. No matter who you are or what you do, you can learn to write programs that can help make your life
 easier.

 1.1.1. Programming isn’t just for professionals

 A misconception, both for veteran programmers and for people who have never programmed before, is that after you start to
 learn how to program, you’ll have to continue until you become a professional programmer. Likely, this misconception stems
 from associating programming with incredibly complex systems: your operating system, car/aviation software, artificial intelligence
 that learns, and many others.

 I think of programming as a skill, like reading/writing, math, or cooking. You don’t have to become a best-selling author,
 a world-class mathematician, or a Michelin star chef. Your life significantly improves with a little bit of knowledge in each of those subjects: if you know how to read and write,
 you can communicate with others; if you know how to do basic calculations, you can tip appropriately at a restaurant; if you
 know how to follow a recipe, you can make a meal in a pinch. Knowing a little bit of programming will enable you to avoid
 having to rely on others to help you and will enable you to finish tasks you may want to do in a specific way more efficiently.

 1.1.2. Improve your life

 If you learn to program, your skill can be used as you effectively build your own personal toolbox of utilities. The more
 you try to integrate programming into your daily life, the more you’ll be able to solve personal tasks more efficiently.

 To keep up with your skill, you can write custom programs that fit your daily needs. The benefit of writing your own programs
 instead of using ones that already exist is that you can customize them to your exact needs. For example:

 	Do you keep track of the checks that you write in the paper logbook that came with your checkbook? Consider typing them in
 a file and writing a program that reads the file and organizes the information. With programming, after the data is read,
 you can calculate sums, separate the checks by date ranges, or whatever else you want.

 	Have you taken pictures and downloaded them to your computer, but the names given by the camera software aren’t what you want?
 Instead of manually renaming everything by hand for a thousand pictures, you can write a short program that renames all files
 automatically.

 	Are you a student preparing for the SAT and want to make sure your solution for the quadratic equation is correct? You can
 write a program that takes in missing parameters and solves the equation for you, so that when you do it by hand, you can
 be sure that the calculations were done correctly.

 	Are you a teacher who would like to send a personalized email to each student with that student’s grade for a test? Instead
 of copying and pasting text and filling in the values manually, you can write a program that reads the student name, email
 address, and score from a file, and then effectively fills in the blank automatically for each student, and sends out the
 email.

 These are just a few situations in which programming can help you to be more organized and self-reliant.

 1.1.3. Challenge yourself

 At first glance, programming feels technical. At the beginning, it is, especially as you’re learning all the basic concepts.
 Perhaps unintuitively, programming is also creative. After you become familiar with a few ways to do one task in programming,
 you get to make decisions about which way would be best to apply. For example, if you’re reading a file, do you want to read
 all the data at once, store it, and then do some analysis, or do you want to read the data one piece at a time and analyze
 as you go along?

 By making these kinds of decisions with the knowledge you gain, you challenge yourself to think critically about what you
 want to achieve and how to do it most efficiently.

1.2. Where you are now and where you’ll be

 This book doesn’t assume that you’ve programmed before. Having said that, you should be familiar with the following:

 	
Understanding a variable—If you took a math course that covers introductory algebra, you should know what a variable is. In the next unit, you’ll
 see how variables in a programming setting are different.

 	
Understanding true/false statements—You can think of statements as sentences that can be determined to be true or false. For example, “it is raining” is a statement
 that’s either true or false. You can also invert statements to take the opposite truth value by using the word not. For example, if “it is raining” is true, then “it is not raining” is false.

 	
Connecting statements—When you have more than one statement, you can connect them by using the words and or or. For example, if “it is raining” is true and “I am hungry” is false, then “it is raining and I am hungry” is false because
 both parts need to be true. But “it is raining or I am hungry” is true because at least one of the parts is true.

 	
Making decisions—When you have multiple statements, you can make decisions based on whether one statement is true by using if...then. For example, “if it is raining, then the ground is wet” is made up of two statements: “it is raining” and “the ground is
 wet.” The statement “the ground is wet” is a consequence of the statement “it is raining.”

 	
Following flowcharts—You won’t need to know flowcharts to understand this book, but understanding them requires the same skills as understanding
 basic programming. Other ideas that use the same skill set are playing the game of 20 Questions, following a recipe, reading
 a choose-your-own-adventure book, or understanding algorithms. You should be familiar with following a set of instructions
 and making branching decisions. Flowcharts show a list of instructions that flow from one to the next and allow you to make
 decisions, which lead to different paths. In a flowchart, you’re asked a series of questions, whose answer is one of two choices:
 yes or no. Depending on your answer, you follow certain paths through the flowchart and will eventually end up at a final
 answer. Figure 1.1 is an example of a flowchart.

 Figure 1.1. Flowchart for deciding whether to take an umbrella today

 [image:]

 Knowing the preceding skills is all you need to begin your programming journey. After reading this book, you’ll know the basics
 of programming. The basic concepts you’ll learn that can apply to any programming language are as follows:

 	Using variables, expressions, and statements in programming

 	Getting the program to make decisions based on conditions

 	Getting the program to automatically repeat tasks under some conditions

 	Reusing operations built into the language to help you be more efficient

 	Making your code more readable and easy to maintain by breaking a larger task into smaller ones

 	Knowing which data structure (a structure already created that can store information in a certain format) is appropriate to
 use in different situations

 You’ll be learning how to program by using a language called Python (version 3.5). Any knowledge gained about programming
 concepts will be easily translatable to any other programming language; the basics are going to be the same between different
 languages. More specifically, at the end of this book, you’ll be familiar with the details of the Python programming language.
 You’ll know the following:

 	How to use the syntax of the language (in English, the equivalent is how to form valid sentences).

 	How to write more-complex programs with different blocks of code working together in harmony (in English, the equivalent is
 writing a short story).

 	How to use code that other programmers wrote (in English, the equivalent is referencing someone else’s work so you don’t have
 to rewrite it).

 	How to effectively check that your program works, including testing and debugging (in English, the equivalent is checking
 for spelling and grammar errors).

 	How to write programs that interact with the keyboard and mouse.

 	How to write more data-centric or mathematical programs.

1.3. Our plan for learning how to program

 Individual motivation is one of the greatest make-or-break factors when learning a programming language. Taking things slow,
 getting a lot of practice, and allowing time to absorb the material will make the road to success less bumpy.

 1.3.1. First steps

 If you’ve never programmed before, this book is for you. This book is separated into units. A unit is a set of lessons that all deal with one particular concept in programming. The first lesson in the unit is usually a motivating
 lesson. The last lesson in a unit is a capstone project, which introduces a real-life problem or task. You can attempt the
 capstone on your own or you can read the walk-through of the solution; it’s intended to make sure that you’re on track with
 understanding the concepts.

 You’ll have many opportunities to practice what you read. At the beginning of each lesson, you’ll see a simple exercise, called
 Consider this, that will get you thinking about the world around you and the way you interact with it; this exercise introduces you to
 the main idea of the lesson. It’s described without code jargon and hints at the kinds of programming ideas you’ll learn in
 the lesson. Throughout the lesson, you’ll discover how to “translate” the English description of the outlined exercise into
 code. Each lesson contains many exercises to help you understand the concepts; doing all the exercises will help the concepts
 click. Answers to these exercises will be found in Appendix A so that you can check your work.

 Being hands-on with the exercises is important in the first few lessons, as you’ll be learning the basics of programming using
 Python. In the last few lessons, you’ll see packages that other programmers wrote, and you’ll have an opportunity to learn
 how to use those packages to build more-complex programs. One of the packages will get you to build programs that you can
 interact with visually, by mouse click or keyboard input, and you’ll see your program update an image on the screen. Another
 package will show you how to deal with data as input. You’ll learn how to read files that have a certain structure, how to
 analyze the data gathered, and how to write data to another file.

 1.3.2. Practice, practice, practice, practice

 Each lesson has short exercises with solutions. With Python, and programming in general, lots of practice is essential to
 truly understand the concepts—this is especially true if you’ve never programmed before. Don’t be frustrated by errors when
 writing a program; you’ll improve your understanding by correcting unexpected mistakes.

 You can think of these exercises as checkpoints to help you understand how much you understand. Programming isn’t a passive
 activity. You should be actively engaged with the material presented and the concepts shown by constantly trying things out
 on your own. The checkpoint exercises touch upon the important ideas presented in the lesson, and you should attempt them
 all to cover the breadth of the material. If you feel adventurous, you can even come up with variations on the exercises presented
 and attempt to write new programs for problems you come up with!

 1.3.3. Think like a programmer

 This book is intended to be a unique learning experience. I don’t just want to teach you programming in Python. I also want
 to teach you how to think like a programmer.

 To understand this, consider the following metaphor. There are two people: an author of fiction and a journalist. The author
 of fiction is someone who comes up with a plot, characters, dialogue, and interactions and then puts these ideas together
 in interesting ways by using the rules of the English language. The author writes a story for people to enjoy. The journalist
 doesn’t need to employ their creative side but rather hunts down stories based on fact. The journalist then puts the facts
 on paper, also using the rules of the English language, for people to be informed.

 I compare an author of fiction and a journalist to demonstrate the difference between a computer scientist and a programmer,
 respectively. Both a computer scientist and a programmer know how to write computer code, and both adhere to the rules of
 a programming language in order to create programs that do certain tasks. In the same way that an author thinks about a unique
 story and how to best pace it, a computer scientist may put more effort into coming up with ideas rather than putting their
 ideas into words. A computer scientist thinks about brand-new algorithms or studies theoretical questions, such as what a
 computer can and can’t do. On the other hand, a programmer implements programs based on preexisting algorithms or a set of
 requirements to which they must adhere. A programmer knows the details of a language well and can implement code quickly,
 efficiently, and correctly. In practice, the roles of a programmer and computer scientist often overlap, and there isn’t always
 a clear distinction.

 This book will show you how to implement tasks on a computer by giving the computer detailed instructions and will help you
 become proficient at doing this.

 	

 Thinking like a programmer

 Be on the lookout throughout the rest of the book for this box.

 You’ll get useful tips on which principles of thinking like a computer programmer apply to the ideas being discussed. These
 principles tie the book together, and I hope that revisiting these ideas will help you get into the mindset of a programmer.

 	

 The next lesson outlines several principles that get at what it means to think like a programmer. Throughout each lesson,
 you’ll be reminded of these principles whenever possible, and I hope that you’ll start to think about these principles on
 your own as you progress through the book.

Summary

 In this lesson, my objective was to inspire you to learn to program. You don’t have to become a professional programmer. Use
 basic programming ideas and concepts to improve your personal life, even in simple ways. Programming is a skill, and you’ll
 get better at it the more you practice. As you read this book, try to think of tedious tasks that you’re doing manually that
 can be solved more effectively with programming, and try to do it.

 Let’s begin!

Lesson 2. Basic principles of learning a programming language

 After reading lesson 2, you’ll be able to

 	Understand the process of writing a computer program

 	Get a big-picture view of the think-code-test-debug-repeat paradigm

 	Understand how to approach a programming problem

 	Understand what it means to write readable code

2.1. Programming as a skill

 Like reading, counting, playing piano, or playing tennis, programming is a skill. As with any skill, you have to nurture it
 through lots of practice. Practice requires dedication, perseverance, and self-discipline on your part. At the beginning of
 your programming career, I highly recommend that you write out as much code as possible. Open your code editor and type up
 every piece of code that you see. Try to type it out instead of relying on copying and pasting. At this point, the goal is
 to make programming become second nature, not to program quickly.

 This lesson serves as motivation to get you in the mindset of a programmer. The first lesson introduced you to the “Thinking
 like a programmer” boxes that will be scattered throughout this book. The following sections offer a big-picture view encapsulating
 the main ideas of those boxes.

OEBPS/xiifig01.jpg

OEBPS/01fig01_alt.jpg

OEBPS/common2.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg

OEBPS/common1.jpg

OEBPS/cover.jpg

