

 [image: cover]

OCA Java SE 7 Programmer I Certification Guide: Prepare for the 1Z0-803 exam

 Mala Gupta

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2013 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Cynthia Kane
Technical editor: Brent Watson
Technical proofreader: Jeanne Boyarsky
Copyeditors: Tara Walsh, Bob Herbstman, Nancy Wolfe Kotary
Proofreader: Andy Carroll
Typesetter: Dennis Dalinnik
Illustrator: Martin Murtonen
Cover designer: Marija Tudor

 ISBN: 9781617291043

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 19 18 17 16 15 14 13

Dedication

 To my pillar of strength, my best friend, and my husband, Dheeraj Prakash

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter Introduction

 Chapter 1. Java basics

 Chapter 2. Working with Java data types

 Chapter 3. Methods and encapsulation

 Chapter 4. String, StringBuilder, Arrays, and ArrayList

 Chapter 5. Flow control

 Chapter 6. Working with inheritance

 Chapter 7. Exception handling

 Chapter 8. Full mock exam

 Answers to Twist in the Tale exercises

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 Chapter Introduction

 1. Disclaimer

 2. Introduction to OCA Java SE 7 Programmer certification

 2.1. The importance of OCA Java SE 7 Programmer certification

 2.2. Comparing OCA Java exam versions

 2.3. Comparing the OCA Java SE 7 Programmer I (1Z0-803) and OCP Java SE 7 Programmer II (1Z0-804) exams

 2.4. Complete exam objectives, mapped to book chapters, and readiness checklist

 3. FAQs

 3.1. FAQs on exam preparation

 3.2. FAQs on taking the exam

 4. The testing engine used in the exam

 Chapter 1. Java basics

 1.1. The structure of a Java class and source code file

 1.1.1. Structure of a Java class

 1.1.2. Structure and components of a Java source code file

 1.2. Executable Java applications

 1.2.1. Executable Java classes versus nonexecutable Java classes

 1.2.2. Main method

 1.3. Java packages

 1.3.1. The need for packages

 1.3.2. Defining classes in a package using the package statement

 1.3.3. Using simple names with import statements

 1.3.4. Using packaged classes without using the import statement

 1.3.5. Importing a single member versus all members of a package

 1.3.6. Can you recursively import subpackages?

 1.3.7. Importing classes from the default package

 1.3.8. Static imports

 1.4. Java access modifiers

 1.4.1. Access modifiers

 1.4.2. Public access modifier

 1.4.3. Protected access modifier

 1.4.4. Default access (package access)

 1.4.5. Private access modifier

 1.5. Nonaccess modifiers

 1.5.1. Abstract modifier

 1.5.2. Final modifier

 1.5.3. Static modifier

 1.6. Summary

 1.7. Review notes

 1.8. Sample exam questions

 1.9. Answers to sample exam questions

 Chapter 2. Working with Java data types

 2.1. Primitive variables

 2.1.1. Category: Boolean

 2.1.2. Category: Numeric

 2.1.3. Category: Character

 2.1.4. Confusion with the names of the primitive data types

 2.2. Identifiers

 2.2.1. Valid and invalid identifiers

 2.3. Object reference variables

 2.3.1. What are object reference variables?

 2.3.2. Differentiating between object reference variables and primitive variables

 2.4. Operators

 2.4.1. Assignment operators

 2.4.2. Arithmetic operators

 2.4.3. Relational operators

 2.4.4. Logical operators

 2.4.5. Operator precedence

 2.5. Summary

 2.6. Review notes

 2.7. Sample exam questions

 2.8. Answers to sample exam questions

 Chapter 3. Methods and encapsulation

 3.1. Scope of variables

 3.1.1. Local variables

 3.1.2. Method parameters

 3.1.3. Instance variables

 3.1.4. Class variables

 3.1.5. Overlapping variable scopes

 3.2. Object’s life cycle

 3.2.1. An object is born

 3.2.2. Object is accessible

 3.2.3. Object is inaccessible

 3.3. Create methods with arguments and return values

 3.3.1. Return type of a method

 3.3.2. Method parameters

 3.3.3. Return statement

 3.4. Create an overloaded method

 Rules to Remember for Defining Overloaded Methods

 3.4.1. Argument list

 3.4.2. Return type

 3.4.3. Access modifier

 3.5. Constructors of a class

 3.5.1. User-defined constructors

 3.5.2. Default constructor

 3.5.3. Overloaded constructors

 3.6. Accessing object fields

 3.6.1. What is an object field?

 3.6.2. Read and write object fields

 3.6.3. Calling methods on objects

 3.7. Apply encapsulation principles to a class

 3.7.1. Need for encapsulation

 3.7.2. Apply encapsulation

 3.8. Passing objects and primitives to methods

 3.8.1. Passing primitives to methods

 3.8.2. Passing object references to methods

 3.9. Summary

 3.10. Review notes

 3.11. Sample exam questions

 3.12. Answers to sample exam questions

 Chapter 4. String, StringBuilder, Arrays, and ArrayList

 4.1. Welcome to the world of the String class

 4.1.1. Creating String objects

 4.1.2. The class String is immutable

 4.1.3. Methods of the class String

 4.1.4. String objects and operators

 4.1.5. Determining equality of Strings

 4.2. Mutable strings: StringBuilder

 4.2.1. The StringBuilder class is mutable

 4.2.2. Creating StringBuilder objects

 4.2.3. Methods of class StringBuilder

 4.2.4. A quick note on the class StringBuffer

 4.3. Arrays

 4.3.1. What is an array?

 4.3.2. Array declaration

 4.3.3. Array allocation

 4.3.4. Array initialization

 4.3.5. Combining array declaration, allocation, and initialization

 4.3.6. Asymmetrical multidimensional arrays

 4.3.7. Arrays of type interface, abstract class, and class Object

 4.3.8. Members of an array

 4.4. ArrayList

 4.4.1. Creating an ArrayList

 4.4.2. Adding elements to an ArrayList

 4.4.3. Accessing elements of an ArrayList

 4.4.4. Modifying the elements of an ArrayList

 4.4.5. Deleting the elements of an ArrayList

 4.4.6. Other methods of ArrayList

 4.5. Comparing objects for equality

 4.5.1. The method equals in the class java.lang.Object

 4.5.2. Comparing objects of a user-defined class

 4.5.3. Incorrect method signature of the equals method

 4.5.4. Contract of the equals method

 4.6. Summary

 4.7. Review notes

 4.8. Sample exam questions

 4.9. Answers to sample exam questions

 Chapter 5. Flow control

 5.1. The if and if-else constructs

 5.1.1. The if construct and its flavors

 5.1.2. Missing else blocks

 5.1.3. Implications of the presence and absence of {} in if-else constructs

 5.1.4. Appropriate versus inappropriate expressions passed as arguments to an if statement

 5.1.5. Nested if constructs

 5.2. The switch statement

 5.2.1. Create and use a switch statement

 5.2.2. Comparing a switch statement with multiple if-else constructs

 5.2.3. Arguments passed to a switch statement

 5.2.4. Values passed to the label case of a switch statement

 5.2.5. Use of break statements within a switch statement

 5.3. The for loop

 5.3.1. Initialization block

 5.3.2. Termination condition

 5.3.3. The update clause

 5.3.4. Nested for loop

 5.4. The enhanced for loop

 5.4.1. Limitations of the enhanced for loop

 5.4.2. Nested enhanced for loop

 5.5. The while and do-while loops

 5.5.1. The while loop

 5.5.2. The do-while loop

 5.5.3. While and do-while block, expression, and nesting rules

 5.6. Comparing loop constructs

 5.6.1. Comparing do-while and while loops

 5.6.2. Comparing for and enhanced for loops

 5.6.3. Comparing for and while loops

 5.7. Loop statements: break and continue

 5.7.1. The break statement

 5.7.2. The continue statement

 5.7.3. Labeled statements

 5.8. Summary

 5.9. Review notes

 5.10. Sample exam questions

 5.11. Answers to sample exam questions

 Chapter 6. Working with inheritance

 6.1. Inheritance with classes

 6.1.1. Need to inherit classes

 6.1.2. A derived class contains within it an object of its base class

 6.1.3. Which base class members are inherited by a derived class?

 6.1.4. Which base class members aren’t inherited by a derived class?

 6.1.5. Derived classes can define additional properties and behaviors

 6.1.6. Abstract base class versus concrete base class

 6.2. Use interfaces

 6.2.1. Properties of members of an Interface

 6.2.2. Why a class can’t extend multiple classes

 6.2.3. Implementing multiple interfaces

 6.3. Reference variable and object types

 6.3.1. Using a variable of the derived class to access its own object

 6.3.2. Using a variable of the base class to access an object of a derived class

 6.3.3. Using a variable of an implemented interface to access a derived class object

 6.3.4. The need for accessing an object using the variables of its base class or implemented interfaces

 6.4. Casting

 6.4.1. How to cast a variable to another type

 6.4.2. Need for casting

 6.5. Use this and super to access objects and constructors

 6.5.1. Object reference: this

 6.5.2. Object reference: super

 6.6. Polymorphism

 6.6.1. Polymorphism with classes

 6.6.2. Binding of variables and methods at compile time and runtime

 6.6.3. Polymorphism with interfaces

 6.7. Summary

 6.8. Review notes

 6.9. Sample exam questions

 6.10. Answers to sample exam questions

 Chapter 7. Exception handling

 7.1. Exceptions in Java

 7.1.1. A taste of exceptions

 7.1.2. Why handle exceptions separately?

 7.1.3. Do exceptions offer any other benefits?

 7.2. What happens when an exception is thrown?

 7.2.1. Creating try-catch-finally blocks

 7.2.2. Will a finally block execute even if the catch block defines a return statement?

 7.2.3. What happens if both a catch and a finally block define return statements?

 7.2.4. What happens if a finally block modifies the value returned from a catch block?

 7.2.5. Does the order of the exceptions caught in the catch blocks matter?

 7.2.6. Can I rethrow an exception or the error I catch?

 7.2.7. Can I declare my methods to throw a checked exception, instead of handling it?

 7.2.8. I can create nested loops, so can I create nested try-catch blocks too?

 7.3. Categories of exceptions

 7.3.1. Identifying exception categories

 7.3.2. Checked exceptions

 7.3.3. Runtime exceptions (also known as unchecked exceptions)

 7.3.4. Errors

 7.4. Common exception classes and categories

 7.4.1. ArrayIndexOutOfBoundsException and IndexOutOfBoundsException

 7.4.2. ClassCastException

 7.4.3. IllegalArgumentException

 7.4.4. IllegalStateException

 7.4.5. NullPointerException

 7.4.6. NumberFormatException

 7.4.7. ExceptionInInitializerError

 7.4.8. StackOverflowError

 7.4.9. NoClassDefFoundError

 7.4.10. OutOfMemoryError

 7.5. Summary

 7.6. Review notes

 7.7. Sample exam questions

 7.8. Answers to sample exam questions

 Chapter 8. Full mock exam

 8.1. Mock exam

 8.2. Answers to mock exam questions

 Answers to Twist in the Tale exercises

 A.1. Chapter 1: Java basics

 A.1.1. Twist in the Tale 1.1

 A.1.2. Twist in the Tale 1.2

 A.1.3. Twist in the Tale 1.3

 A.1.4. Twist in the Tale 1.4

 A.2. Chapter 2—Working with Java data types

 A.2.1. Twist in the Tale 2.1 (part 1)

 A.2.2. Twist in the Tale 2.1 (part 2)

 A.2.3. Twist in the Tale 2.2

 A.2.4. Twist in the Tale 2.3

 A.2.5. Twist in the Tale 2.4

 A.3. Chapter 3—Methods and encapsulation

 A.3.1. Twist in the Tale 3.1

 A.3.2. Twist in the Tale 3.2

 A.3.3. Twist in the Tale 3.3

 A.4. Chapter 4—String, StringBuilder, Arrays, and ArrayList

 A.4.1. Twist in the Tale 4.1

 A.4.2. Twist in the Tale 4.2

 A.4.3. Twist in the Tale 4.3

 A.4.4. Twist in the Tale 4.4

 A.5. Chapter 5—Flow control

 A.5.1. Twist in the Tale 5.1

 A.5.2. Twist in the Tale 5.2

 A.5.3. Twist in the Tale 5.3

 A.5.4. Twist in the Tale 5.4

 A.6. Chapter 6—Working with inheritance

 A.6.1. Twist in the Tale 6.1

 A.6.2. Twist in the Tale 6.2

 A.6.3. Twist in the Tale 6.3

 A.6.4. Twist in the Tale 6.4

 A.7. Chapter 7—Exception handling

 A.7.1. Twist in the Tale 7.1

 A.7.2. Twist in the Tale 7.2

 A.7.3. Twist in the Tale 7.3

 A.7.4. Twist in the Tale 7.4

 A.7.5. Twist in the Tale 7.5

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Taking the OCA Java Programmer I exam is a bit like taking a driving test. First you learn the basics, like where the brakes
 are. Then you start driving, and then you get ready to take the driving test to get your license. The written test includes
 things everyone should know, things that you’ll never use after the road test, and some things that are tricky edge cases.
 While the programmer exam cares about breaks more than brakes, it certainly likes edge cases!

 Consider Mala Gupta your driving instructor to get you ready for the programmer exam. Mala points out what you’ll need to
 know when programming in the real world—on your first job.

 And consider this book your driver’s manual. It gives you the rules of the road of Java, plus the gotchas that show up on
 that pesky written test. But don’t worry, it is much more fun to read this book than the driver’s manual. Just like the driver’s
 manual won’t teach you everything about driving, this book won’t teach you everything there is to know about Java. If you
 haven’t yet, read an intro to a Java book first. Start with a book like Head First Java or Thinking in Java and then come back to this book to study for the exam.

 As the technical proofreader of this book, I got to see it evolve and get better as Mala worked on it. Through the conversations
 we had on little things, I learned that Mala knows her stuff and is a great teacher of Java. While I’ve only technical proofread
 a handful of books, I’ve posted reviews of over 150 technical books on Amazon, which makes it easy to spot a book that isn’t
 clear or helpful. I’m happy to say that Mala’s explanations are all very clear, and the pointers are great.

 I also got to read Mala’s posts in the certification forums at coderanch.com. She’s been sharing updates about the exam as
 it comes out and posting fairly regularly for over a year. As a senior moderator at coderanch.com, it is great to see an author
 sharing her wisdom. It’s also nice to see the similarity in writing style between the forum posts and the book. This shows
 the book is readable and written in an easy-to-understand, casual style.

 I particularly liked the diagrams, flow charts, and cartoons in this book. And, of course, the annotated code examples I’ve
 come to expect from any Manning book. Each chapter ends with sample mock exam questions and there is a full mock exam at the
 end. This gives you good practice in getting ready for the exam. Wrong answers are well explained so you don’t make the same
 mistakes over and over.

 My favorite part of the book is the “Twist in the Tale” exercises. Mala gives a number of examples of how making a seemingly
 minor change to the code can have major consequences. These exercises develop your attention to detail so you are more observant
 for the mock exam questions and the exam itself.

 I had already passed the OCA Java Programmer exam with a score of 98% before reading this book. If I hadn’t, the questions
 would have prepared me for the exam. Studying from this book will give you the skills and confidence you need to become an
 Oracle Certified Associate Java Programmer. Happy coding and good luck on the exam!

 JEANNE BOYARSKY

 SENIOR DEVELOPER & MODERATOR

 CODERANCH

Preface

 Java programmer certifications are designed to tell would-be employers whether you really know your stuff, and cracking the
 OCA Java SE 7 Programmer Certification is not an easy task. Thorough preparation is crucial if you want to pass the exam the
 first time with a score that you can be proud of. You need to know Java inside and out, and you need to understand the certification
 process so that you’re ready for the challenging questions you’ll face in the exam.

 This book is a comprehensive guide to the 1Z0-803 exam. You’ll explore a wide range of important Java topics as you systematically
 learn how to pass the certification exam. Each chapter starts with a list of the exam objectives covered in that chapter.
 Throughout the book you’ll find sample questions and exercises designed to reinforce key concepts and prepare you for what
 you’ll see in the real exam, along with numerous tips, notes, and visual aids.

 Unlike many other exam guides, this book provides multiple ways to digest important techniques and concepts, including comic
 conversations, analogies, pictorial representations, flowcharts, UML diagrams, and, naturally, lots of well-commented code.
 The book also gives insight into typical exam question mistakes and guides you in avoiding traps and pitfalls. It provides

 	100% coverage of exam topics, all mapped to chapter and section numbers

 	Hands-on coding exercises, including particularly challenging ones that throw in a twist

 	Instruction on what’s happening behind the scenes using the actual code from the Java API source

 	Mastery of both the concepts and the exam

 This book is written for developers with a working knowledge of Java. My hope is that the book will deepen your knowledge,
 prepare you well for the exam, and that you will pass it with flying colors!

Acknowledgments

 First and foremost, I thank Dheeraj Prakash—my pillar of strength, my best friend and my husband. This book wouldn’t exist
 without his efforts. His constant guidance, encouragement, and love kept me going. He helped me to get started with this book
 and got me over the goal line.

 My sincere gratitude to Marjan Bace, publisher at Manning, for giving me the opportunity to author this book. The Manning
 team has been wonderful—Scott Meyers ensured that it was worth it for Manning to have a book on this subject. Cynthia Kane,
 my development editor, played a major role in shaping the organization of individual chapters and the overall book. It has
 been a real pleasure to work with her. Copyeditors Tara Walsh, Bob Herbstman, and Nancy Wolfe Kotary not only applied their
 magic to sentence and language constructions but also supplemented their editing with valuable suggestions on technical content.

 Technical Editor Brent Watson did a brilliant job of reviewing the complete book contents in a limited time, catching even
 the smallest errors in the book. Technical Proofreader Jeanne Boyarsky was outstanding and an amazing person to work with.
 She was very quick at reviewing the book, with an eye for detail. Proofreader Andy Carroll was extremely capable and talented.
 He reviewed the final manuscript with great precision.

 The technical reviewers on this book did an awesome job of reviewing the contents and sharing their valuable feedback and
 comments: Roel De Nijs, Ivan Todorovic, Michael Piscatello, Javier Valverde, Anayonkar Shivalkar, Kyle Smith, Niklas Rosencrantz,
 Ashwin Mhatre, Janki Shah, Dmitriy Andrushko, Nitesh Nandwana, and Priyanka Manchanda. I would also like to thank Ozren Harlovic,
 Review Editor, for managing the whole review process and meticulously funneling the feedback to make this book better.

 Martin Murtonen did an outstanding job of converting the black and white hand-drawn illustrations into glorious images. It
 was amazing to scrutinize the page proofs. I thank Dennis Dalinnik for adjusting the images in the final page proofs, which
 was a lot of work. Janet Vail and Mary Piergies were awesome in their expertise at turning all text, code, and images into
 publishable form. I am also grateful to Candace Gillhoolley and Nermina Miller for their efforts in promoting the book.

 I thank the MEAP readers for buying the book while it was being developed and for their suggestions, corrections, and encouragement:
 Samuel Prette, David C., Diego Poggioli, Baptize, Jayagopi Jagadeesan, David Vonka, Joel Rainey, Steve Breese, and Jörgen
 Persson.

 I would also like to thank my former colleagues Harry Mantheakis, Paul Rosenthal, and Selvan Rajan, whose names I use in coding
 examples throughout the book. I have always looked up to them.

 I thank my nine-year-old daughter, Shreya, an artist, who often advised me on the images that I created for the book. I’m
 also grateful to my younger daughter, Pavni, who patiently waited for my attention all these months when my focus was on the
 book. I thank my family for their unconditional support. The book would have been not been possible without their love and
 encouragement.

About this Book

 This book is written for developers with a working knowledge of Java who want to earn the OCA Java SE 7 Programmer certification.
 It uses powerful tools and features to make reaching your goal of certification a quick, smooth, and enjoyable experience.
 This section will explain the features used in the book and tell you how to use the book to get the most out of it as you
 prepare for the certification exam. More information on the exam and on how the book is organized is available in the Introduction.

Start your preparation with the chapter-based exam objective map

 I strongly recommend a structured approach to preparing for this exam. To help you with this task, I’ve developed a chapter-based
 exam objective map, as shown in figure 1. The full version is in the Introduction (table I.3).

 Figure 1. The Introduction to this book provides a list of all exam objectives and the corresponding chapter and section numbers where
 they are covered. See the full table in the Introduction (table I.3).

 [image:]

 As you go through your preparation, mark your readiness score for each section. Self-assessment is an important tool that
 will help you determine when you are ready to take the exam.

 The map in the Introduction shows the complete exam objective list mapped to the relevant chapter and section numbers. You
 can jump to the relevant section number to work on a particular exam topic.

Chapter-based objectives

 Each chapter starts with a list of the exam objectives covered in that chapter, as shown in figure 2. This list is followed by a quick comparison of the major concepts and topics covered in the chapter with real-world objects
 and scenarios.

 Figure 2. An example of the list of exam objectives and brief explanations at the beginning of each chapter

 [image:]

Section-based objectives

 Each main section in a chapter starts by identifying the exam objective(s) that it covers. Each listed exam topic starts with
 the exam objective and its subobjective number.

 In figure 3, the number 4.4 refers to section 4.4 in chapter 4 (the complete list of chapters and sections can be found in the table of contents). The 4.3 preceding the exam objective
 refers to the objective’s numbering in the list of exam objectives on Oracle’s website (the complete numbered list of exam
 objectives is given in table I.3 in the Introduction).

 Figure 3. An example of the beginning of a section, identifying the exam objective that it covers

 [image:]

Exam tips

 Each chapter provides multiple exam tips to re-emphasize the points that are the most confusing, overlooked, or frequently answered incorrectly by candidates and
 that therefore require special attention for the exam. Figure 4 shows an example.

 Figure 4. Example of an exam tip; they occur multiple times in a chapter

 [image:]

Notes

 All chapters also include multiple notes, which draw your attention to points that should be noted while you’re preparing
 for the exam. Figure 5 shows an example.

 Figure 5. Example note

 [image:]

Sidebars

 Sidebars contain information that may not be directly relevant to the exam but that is related to it. Figure 6 shows an example.

 Figure 6. Example sidebar

 [image:]

Images

 I’ve used a lot of images in the chapters for an immersive learning experience. I believe that a simple image can help you
 understand a concept quickly, and a little humor can help you to retain information longer.

 Simple images are used to draw your attention to a particular line of code (as shown in figure 7).

 Figure 7. An example image that draws your attention to a particular line of code

 [image:]

 I’ve used pictorial representation of data in arrays (figure 8) and other data types to aid visualization and understanding.

 Figure 8. An example pictorial representation of data in an array

 [image:]

 To reinforce important points and help you retain them longer, a little humor has been added using comic strips (as in figure 9).

 Figure 9. An example of a little humor to help you remember that the finally block always executes

 [image:]

 I’ve also used images to group and represent information for quick reference. Figure 10 shows an example of the protected members that can be accessed by derived or unrelated classes in the same or separate packages.
 I strongly recommend that you try to create a few of your own figures like these.

 Figure 10. An example of grouping and representing information for quick reference

 [image:]

 An image can also add more meaning to a sequence of steps also explained in the text. For example, figure 11 seems to bring the Java compiler to life by allowing it to talk with you and convey what it does when it gets to compile
 a class that doesn’t define a constructor. Again, try a few of your own! It’ll be fun!

 Figure 11. An example pictorial representation of steps executed by the Java compiler when it compiles a class without a constructor

 [image:]

 The exam requires that you know multiple methods from classes such as String, StringBuilder, ArrayList, and others. The number of these methods can be overwhelming, but grouping these methods according to their functionality
 can make this task a lot more manageable. Figure 12 shows an example of an image that groups methods of the String class according to their functionality.

 Figure 12. An example image used to group methods of the String class according to their functionality.

 [image:]

 Expressions that involve multiple operands can be hard to comprehend. Figure 13 is an example of an image that can save you from the mayhem of unary increment and decrement operators used in prefix and
 postfix notation.

 Figure 13. Example of values taken by the operands during execution of an expression

 [image:]

 Code snippets that define multiple points and that may result in the nonlinear execution of code can be very difficult to
 comprehend. These may include selection statements, loops, or exception-handling code. Figure 14 is an example of an image that clearly outlines the lines of code that will execute.

 Figure 14. An example of flow of control in a code snippet that may define multiple points of nonlinear execution of code

 [image:]

Twist in the Tale exercises

 Each chapter includes a few Twist in the Tale exercises. For these exercises, I’ve tried to use modified code from the examples
 already covered in a chapter, and the “Twist in the Tale” title refers to modified or tweaked code. These exercises highlight
 how even small code modifications can change the behavior of your code. They should encourage you to carefully examine all
 of the code in the exam.

 My main reason for including these exercises is that on the real exam, you may get to answer more than one question that seems
 to define exactly the same question and answer options. But upon closer inspection, you’ll realize that these questions differ
 slightly, and that these differences change the behavior of the code and the correct answer option.

 The answers to all of the Twist in the Tale exercises are given in the appendix.

Code Indentation

 Some of the examples in this book show incorrect indentation of code. This has been done on purpose because on the real exam
 you can’t expect to see perfectly indented code. You should be able to comprehend incorrectly indented code to answer an exam
 question correctly.

Review notes

 When you’re ready to take your exam, don’t forget to reread the review notes a day before or on the morning of the exam. These
 notes contain important points from each chapter as a quick refresher.

Exam questions

 Each chapter concludes with a set of 10 to 11 exam questions. These follow the same pattern as the real exam questions. Attempt
 these exam questions after completing a chapter.

Answers to exam questions

 The answers to all exam questions provide detailed explanations, including why options are correct or incorrect. Mark your
 incorrect answers and identify the sections that you need to reread. If possible, draw a few diagrams—you’ll be amazed at
 how much they can help you retain the concepts. Give it a try—it’ll be fun!

Author Online

 The purchase of OCA Java SE 7 Programmer I Certification Guide includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. You can access and subscribe to the forum at www.manning.com/OCAJavaSE7ProgrammerICertification-Guide. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest her interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Author

 Mala Gupta has a Master’s degree in Computer Applications (MCA). She is an Oracle Certified Associate-Java SE 7 Programmer,
 Java Sun Certified Web Component Developer (SCWCD), and Sun Certified Java 2 Programmer (SCJP).

 She has more than 12 years of experience in software design and development and training. Her work experience is in Java technologies,
 primarily as an analyst, programmer, and mentor.

 Mala has worked with international training and software services organizations in Europe and development centers in India
 on various Java-based portals and web applications. She has experience in mentoring and ramping up teams’ technical and process
 skills.

 She is the founder and lead mentor of a portal (http://ejavaguru.com) that has offered an online Java course in Java Programmer certification since 2006.

About the Cover Illustration

 The figure on the cover of the OCA Java SE 7 Programmer I Certification Guide is captioned a “Morlach.” This illustration is taken from a recent reprint of Balthasar Hacquet’s Images and Descriptions of Southwestern and Eastern Wenda, Illyrians, and Slavs published by the Ethnographic Museum in Split, Croatia, in 2008. Hacquet (1739–1815) was an Austrian physician and scientist
 who spent many years studying the botany, geology, and ethnography of many parts of the Austrian Empire, as well as the Veneto,
 the Julian Alps, and the western Balkans, inhabited in the past by peoples of many different tribes and nationalities. Hand-drawn
 illustrations accompany the many scientific papers and books that Hacquet published.

 Morlachs were a rural population that lived in the Dinaric Alps in the western Balkans hundreds of years ago. Many of them
 were shepherds who migrated in search of better pastures for their flocks, alternating between the mountains in the summer
 and the seashore in the winter. They were also called “Vlachs” in Serbian and Croatian. The rich diversity of the drawings
 in Hacquet’s publications speaks vividly of the uniqueness and individuality of Alpine and Balkan regions just 200 years ago.
 This was a time when the dress codes of two villages separated by a few miles identified people uniquely as belonging to one
 or the other, and when members of an ethnic tribe, social class, or trade could be easily distinguished by what they were
 wearing.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another and the residents of the picturesque towns and villages in the Balkans
 are not readily distinguishable from people who live in other parts of the world.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 costumes from two centuries ago brought back to life by illustrations such as this one.

Introduction

 This introduction covers

 	Introduction to the Oracle Certified Associate (OCA) Java SE 7 Programmer certification (exam number 1Z0-803)

 	Importance of OCA Java SE 7 Programmer certification

 	Comparison of the OCA Java SE 7 Programmer I exam with OCA Java SE 5/6 exam

 	Comparison of the OCA Java SE 7 Programmer I exam (1Z0-803) with OCP Java SE 7 Programmer II exam (1Z0-804)

 	Detailed exam objectives, mapped to book chapters

 	Readiness checklist to determine your readiness level for writing the exam

 	FAQ on exam preparation and on taking the exam

 	Introduction to the testing engine used for the exam

 This book is intended specifically for individuals who wish to earn the Oracle Certified Associate (OCA) Java SE 7 Programmer
 certification (exam number 1Z0-803). It assumes that you are familiar with Java and have some experience working with it.
 If you are completely new to Java or to object-oriented languages, I suggest that you start your journey with an entry-level
 book and then come back to this one.

1. Disclaimer

 The information in this chapter is sourced from Oracle.com, public websites, and user forums. Input has been taken from real
 people who have earned Java certification, including the author. All efforts have been made to maintain the accuracy of the
 content, but the details of the exam—including the exam objectives, pricing, exam pass score, total number of questions, maximum
 exam duration, and others—are subject to change per Oracle’s policies. The author and publisher of the book shall not be held
 responsible for any loss or damage accrued due to any information contained in this book or due to any direct or indirect
 use of this information.

2. Introduction to OCA Java SE 7 Programmer certification

 The Oracle Certified Associate (OCA) Java SE 7 Programmer I exam (1Z0-803) covers the fundamentals of Java SE 7 programming,
 such as the importance of object-oriented programming, its implementation in code, and using flow control, arrays, and other
 constructs.

 This exam is the first of the two steps in earning the title of Oracle Certified Professional (OCP) Java SE 7 Programmer.
 It certifies that an individual possesses a strong foundation in the Java programming language. Table 1 lists the details of this exam.

 Table 1. Details for OCA Java SE 7 Programmer I exam (1Z0-803)

 	Exam number
 	1Z0-803

 	Java version
 	Based on Java version 7

 	Number of questions
 	90

 	Passing score
 	77%

 	Time duration
 	140 minutes

 	Pricing
 	US$300

 	Type of questions
 	Multiple-choice questions

 2.1. The importance of OCA Java SE 7 Programmer certification

 The OCA Java SE 7 Programmer I exam (1Z0-803) is an entry-level exam in your Java certification roadmap, as shown in figure 1. This exam is a prerequisite for the OCP Java SE 7 Programmer II exam (1Z0-804), which is itself a prerequisite for most
 of the other Oracle certifications in Java. The dashed lines and arrows in figure 1 depict the prerequisites for a certification.

 Figure 1. OCA Java SE 7 Programmer certification is the entry-level certification in the Java certification roadmap. It’s a prerequisite
 for the OCP Java SE 7 Programmer II exam (1Z0-804), which is a prerequisite for most of the other certifications in Java.

 [image:]

 As shown in figure 1, the Java certification tracks are offered under the categories Associate, Professional, Expert, and Master.

 2.2. Comparing OCA Java exam versions

 This section will clear up any confusion surrounding the different versions of the OCA Java exam. As of now, Oracle offers
 two versions of the OCA certification in Java:

 	OCA Java SE 7 Programmer I (exam number: 1Z0-803)

 	OCA Java SE 5/SE 6 (exam number: 1Z0-850)

 These two exam versions are quite different as far target audience, total number of questions, passing score, and exam duration
 are concerned, as listed in table 2.

 Table 2. Comparing exams: OCA Java SE 7 Programmer I and OCA Java SE 5/6

 	
 	
 OCA Java SE 7 Programmer I (1Z0-803)

 	
 OCA Java SE 5/SE 6 (1Z0-850)

 	Target audience
 	Java programmers
 	Java programmers and IT managers

 	Java version
 	Based on Java version 7
 	Based on Java version 5/6

 	Total number of questions
 	90
 	51

 	Exam duration
 	140 minutes
 	115 minutes

 	Passing score
 	77%
 	68%

 	Pricing
 	US$300
 	US$300

 Figure 2 shows a detailed comparison of the exam objectives of OCA Java SE 5/6 (1Z0-850) and OCA Java SE 7 Programmer I (1Z0-803).
 It shows objectives that are exclusive to each of these exam versions and those that are common to both. The first column
 shows the objectives that are included only in OCA Java SE 5/6 (1Z0-850), the middle column shows common exam objectives,
 and the right column shows exam objectives covered only in OCA Java SE 7 Programmer I (1Z0-803).

 Figure 2. Comparing objectives of exams OCA Java SE 5/6 and OCA Java SE 7 Programmer I

 [image:]

 2.3. Comparing the OCA Java SE 7 Programmer I (1Z0-803) and OCP Java S- SE 7 Programmer II (1Z0-804) exams

 The confusion between these two exams is due to the similarity in their names, but these are two separate exams. Starting
 with Java 7, Oracle has raised the bar to earn the title of Oracle Certified Professional Java SE 7 Programmer, which now
 requires successfully completing the following two exams:

 	OCA Java SE 7 Programmer I (exam number: 1Z0-803)

 	OCP Java SE 7 Programmer II (exam number: 1Z0-804)

 The OCP Java SE 7 Programmer certification is designed for individuals who possess advanced skills in the Java programming
 language. This certification covers comparatively advanced Java features, such as threads, concurrency, Java file I/O, inner
 classes, localization, and others.

 2.4. Complete exam objectives, mapped to book chapters, and readiness checklist

 Table 3 includes a complete list of exam objectives for the OCA Java SE 7 Programmer I exam, which was taken from Oracle’s website.
 All the objectives are mapped to the book’s chapters and the section numbers that cover them. You can also check your readiness
 to take the exam by selecting the appropriate stars. Here’s the legend:

 	[image:]
 	Basic knowledge

 	[image:]
 	Intermediate (you can use it in code)

 	[image:]
 	Advanced (you can answer all questions about it)

 Table 3. Exam objectives and subobjectives mapped to chapter and section numbers, with readiness score

 	
 	
 Exam objectives

 	
 Covered in chapter/section

 	
 Your readiness score

 	1
 	Java basics
 	Chapters 1 and 3
 	[image:]

 	1.1
 	Define the scope of variables
 	Section 3.1
 	[image:]

 	1.2
 	Define the structure of a Java class
 	Section 1.1
 	[image:]

 	1.3
 	Create executable Java applications with a main method
 	Section 1.2
 	[image:]

 	1.4
 	Import other Java packages to make them accessible in your code
 	Section 1.3
 	[image:]

 	2
 	Working with Java data types
 	Chapters 2, 3, and 4
 	

 	2.1
 	Declare and initialize variables
 	
Sections 2.1 and 2.3

 	[image:]

 	2.2
 	Differentiate between object reference variables and primitive variables
 	
Sections 2.1 and 2.3

 	[image:]

 	2.3
 	Read or write to object fields
 	Section 3.6
 	[image:]

 	2.4
 	Explain an object’s life cycle
 	Section 3.2
 	[image:]

 	2.5
 	Call methods on objects
 	Section 3.6
 	[image:]

 	2.6
 	Manipulate data using the StringBuilder class and its methods
 	Section 4.2
 	[image:]

 	2.7
 	Create and manipulate strings
 	Section 4.1
 	[image:]

 	3
 	Using operators and decision constructs
 	Chapters 2, 4, and 5
 	

 	3.1
 	Use Java operators
 	Section 2.4
 	[image:]

 	3.2
 	Use parentheses to override operator precedence
 	Section 2.4
 	[image:]

 	3.3
 	Test equality between strings and other objects using == and equals()
 	Section 4.1
 	[image:]

 	3.4
 	Create if and if-else constructs
 	Section 5.1
 	[image:]

 	3.5
 	Use a switch statement
 	Section 5.2
 	[image:]

 	4
 	Creating and using arrays
 	Chapter 4
 	

 	4.1
 	Declare, instantiate, initialize, and use a one-dimensional array
 	Section 4.3
 	[image:]

 	4.2
 	Declare, instantiate, initialize, and use a multidimensional array
 	Section 4.3
 	[image:]

 	4.3
 	Declare and use an ArrayList
 	Section 4.4
 	[image:]

 	5
 	Using loop constructs
 	Chapter 5
 	

 	5.1
 	Create and use while loops
 	Section 5.5
 	[image:]

 	5.2
 	Create and use for loops, including the enhanced for loop
 	
Sections 5.3 and 5.4

 	[image:]

 	5.3
 	Create and use do-while loops
 	Section 5.5
 	[image:]

 	5.4
 	Compare loop constructs
 	Section 5.6
 	[image:]

 	5.5
 	Use break and continue
 	Section 5.7
 	[image:]

 	6
 	Working with methods and encapsulation
 	Chapters 1 and 3
 	

 	6.1
 	Create methods with arguments and return values
 	Section 3.3
 	[image:]

 	6.2
 	Apply the static keyword to methods and fields
 	Section 1.5
 	[image:]

 	6.3
 	Create an overloaded method
 	Section 3.4
 	[image:]

 	6.4
 	Differentiate between default and user-defined constructors
 	Section 3.5
 	[image:]

 	6.5
 	Create and overload constructors
 	Section 3.5
 	[image:]

 	6.6
 	Apply access modifiers
 	Section 1.4
 	[image:]

 	6.7
 	Apply encapsulation principles to a class
 	Section 3.7
 	[image:]

 	6.8
 	Determine the effect upon object references and primitive values when they are passed into methods that change the values
 	Section 3.8
 	[image:]

 	7
 	Working with inheritance
 	Chapters 1 and 6
 	

 	7.1
 	Implement inheritance
 	Section 6.1
 	[image:]

 	7.2
 	Develop code that demonstrates the use of polymorphism
 	Section 6.6
 	[image:]

 	7.3
 	Differentiate between the type of a reference and the type of an object
 	Section 6.3
 	[image:]

 	7.4
 	Determine when casting is necessary
 	Section 6.4
 	[image:]

 	7.5
 	Use super and this to access objects and constructors
 	Section 6.5
 	[image:]

 	7.6
 	Use abstract classes and interfaces
 	
Sections 1.5, 6.2, and 6.6

 	[image:]

 	
8

 	Handling exceptions
 	Chapter 7
 	

 	8.1
 	Differentiate among checked exceptions, RuntimeExceptions, and Errors
 	Section 7.3
 	[image:]

 	8.2
 	Create a try-catch block and determine how exceptions alter normal program flow
 	Section 7.2
 	[image:]

 	8.3
 	Describe what exceptions are used for in Java
 	Section 7.1
 	[image:]

 	8.4
 	Invoke a method that throws an exception
 	Section 7.2
 	[image:]

 	8.5
 	Recognize common exception classes and categories
 	Section 7.4
 	[image:]

 When you are ready to take the exam, you should ideally be able to select three stars for each item in the table. But let’s
 define a better way to evaluate your exam readiness. Once you have marked all the stars in the previous chart, calculate your
 total points using the following values:

 	[image:]
 	1 point

 	[image:]
 	2 points

 	[image:]
 	4 points

 As the maximum number of points is 172 (43 objectives × 4), a score in the range of 150–172 is considered a good score.

 You can download a PDF version of the form from the book’s web page at http://manning.com/gupta/ if you wish to mark yourself more than once.

3. FAQs

 You might be anxious when you start your exam preparation or even think about getting certified. This section can help calm
 your nerves by answering frequently asked questions on exam preparation and on writing the exam.

 3.1. FAQs on exam preparation

 This sections answers frequently asked questions on how to prepare for the exam, including the best approach, study material,
 preparation duration, how to test self-readiness, and more.

Will the Exam Details Ever Change for the OCA Java SE 7 Programmer I Exam?

 Oracle can change the exam details for a certification even after the certification is made live. The changes can be to the
 exam objectives, pricing, exam duration, exam questions, and other parts. In the past, Oracle has made similar changes to
 certification exams. Such changes may not be major, but it is always advisable to check Oracle’s website for the latest exam information
 when you start your exam preparation.

What is the Best Way to Prepare for This Exam?

 At the time of writing this book, there weren’t many resources available to prepare for this exam. Apart from this book, Oracle
 offers an online course on this exam.

 Generally, candidates use a combination of resources, such as books, online study materials, articles on the exam, free and
 paid mock exams, and training to prepare for the exam. Different combinations work best for different people, and there is
 no one perfect formula to prepare. Depending on whether training or self-study works best for you, you can select the method
 that is most appropriate for you. Combine it with a lot of code practice and mock exams.

How do I Know When I am Ready for the Exam?

 You can be sure about your exam readiness by consistently getting a good score in the mock exams. Generally, a score of 80% and above in approximately seven mock exams (the more the
 better) attempted consecutively will assure you of a similar score in the real exam. You can also test your exam readiness
 using table 3. This table contains exam objectives and subobjectives with multiple stars representing different levels of expertise.

How Many Mock Tests should I Attempt Before the Real Exam?

 Ideally, you should attempt at least 10 mock exams before you attempt the real exam. The more the better!

I have Two Years’ Experience Working with Java. Do I Still Need t- to Prepare for this Certification?

 It is important to understand that there is a difference between the practical knowledge of having worked with Java and the
 knowledge required to pass this certification exam. The authors of the Java certification exams employ multiple tricks to
 test your knowledge. Hence, you need a structured preparation and approach to succeed in the certification exam.

What is the Ideal Time Required to Prepare for the Exam?

 The preparation time frame mainly depends on your experience with Java and the amount of time that you can spend to prepare
 yourself. On average, you will require approximately 150 hours of study over two or three months to prepare for this exam.
 Again, the number of study hours required depends on individual learning curves and backgrounds.

 It’s important to be consistent with your exam preparation. You cannot study for a month and then restart after, say, a gap
 of a month or more.

Does this Exam Include Any Unscored Questions?

 A few of the questions that you write in any Oracle exam may be marked unscored. Oracle’s policy states that while writing
 an exam, you won’t be informed whether a question will be scored. You may be surprised to learn that as many as 10 questions
 out of the 90 questions in the OCA Java SE 7 Programmer I exam may be unscored. Even if you answer a few questions incorrectly,
 you stand a chance of scoring 100%.

 Oracle regularly updates its question bank for all its certification exams. These unscored questions may be used for research
 and to evaluate new questions that can be added to an exam.

Can I Start My Exam Preparation with the Mock Exams?

 If you are quite comfortable with the Java language features, then yes, you can start your exam preparation with the mock
 exams. This will also help you to understand the types of questions to expect in the real certification exam. But if you have
 little or no experience working with Java, or if you are not quite comfortable with the language features of Java, I don’t
 advise you to start with the mock exams. The exam authors often use a lot of tricks to evaluate a candidate in the real certification
 exam. Starting your exam preparation with mock exams will only leave you confused about the Java concepts.

Should I Really Bother Getting Certified?

 Yes, you should, for the simple reason that employers bother about the certification of employees. Organizations prefer a
 certified Java developer over a noncertified Java developer with similar IT skills and experience. The certification can also
 get you a higher paycheck than uncertified peers with comparable skills.

 3.2. FAQs on taking the exam

 This section contains a list of frequently asked questions related to the exam registration, exam coupon, do’s and don’ts
 while taking the exam, and exam retakes.

Where and How do I Write this Exam?

 You can write this exam at an Oracle Testing Center or Pearson VUE Authorized Testing Center. To sit for the exam, you must
 register for the exam and purchase an exam voucher. The following options are available:

 	Register for the exam and pay Pearson VUE directly.

 	Purchase an exam voucher from Oracle and register at Pearson VUE to take the exam.

 	Register at an Oracle Testing Center.

 Look for the nearest testing centers in your area, register yourself, and schedule an exam date and time. Most of the popular
 computer training institutes also have a testing center on their premises. You can locate a Pearson VUE testing site at www.pearsonvue.com/oracle/, which contains detailed information on locating testing centers and scheduling or rescheduling an exam. At the time of registration,
 you’ll need to provide the following details along with your name, address, and contact numbers:

 	Exam title and number (OCA Java SE 7 Programmer I, 1Z0-803)

 	Any discount code that should be applied during registration

 	Oracle Testing ID/Candidate ID, if you have written any other Oracle/Sun certification exam

 	Your OPN Company ID (if your employer is in the Oracle Partner Network, you can find out the company ID and use any available
 discounts on the exam fee)

How Long is the Exam Coupon Valid for?

 Each exam coupon is printed with an expiry date. Beware of any discounted coupons that come with an assurance that they can
 be used past the expiration date.

Can I Refer to Notes or Books while Writing this Exam?

 You can’t refer to any books or notes while writing this exam. You are not allowed to carry any blank paper for rough work
 or even your mobile phone inside the testing cubicle.

What is the Purpose of Marking a Question while Writing the Exam?

 By marking a question, you can manage your time efficiently. Don’t spend a lot of time on a single question. You can mark
 a difficult question to defer answering it while writing your exam. The exam gives you an option to review answers to the
 marked questions at the end of the exam. Also, navigating from one question to another using the Back and Next buttons is
 usually time consuming. If you are unsure of an answer, mark it and review it at the end.

Can I Write Down the Exam Questions and Bring them Back with Me?

 No. The exam centers no longer provide sheets of paper for the rough work that you may need to do while taking the exam. The
 testing center will provide you with either erasable or nonerasable boards. If you’re provided with a nonerasable board, you
 may request another one if you need it.

 Oracle is quite particular about certification candidates distributing or circulating the memorized questions in any form.
 If Oracle finds out that this is happening, it may cancel a candidate’s certificate, bar that candidate forever from writing
 any Oracle certification, inform the employer, or take legal action.

What Happens if I Complete the Exam Before or After the Total Time?

 If you complete the exam before the total exam time has elapsed, revise your answers and click the Submit or Finish button.
 The screen will display your score within 10 seconds of clicking the Submit button!

 If you have not clicked the Submit button and you use up all the exam time, the exam engine will no longer allow you to modify
 any of the exam answers and will present the screen with the Submit button.

Will I Receive My Score Immediately After the Exam?

 Yes, you will. When you click the Submit button, the screen will show your total score. It will also show what you scored
 on each objective. The testing center will also give you hard copies of your certification score. The certificate itself will
 arrive via post within six to eight weeks.

What Happens if I Fail? Can I Retake the Exam?

 It’s not the end of the world. Don’t worry if you fail. You can retake the exam after 14 days (and the world will not know
 it’s a retake).

 However, you cannot retake a passed exam to improve your score. Also, you cannot retake a beta exam.

4. The testing engine used in the exam

 The user interface of the testing engine used for the certification exam is quite simple. (You could even call it primitive,
 compared to today’s web, desktop, and smart-phone applications.)

 Before you can start the exam, you will be required to accept the terms and conditions of the Oracle Certification Candidate
 Agreement. Your computer screen will display all these conditions and give you an option to accept the conditions. You can
 proceed with writing the exam only if you accept these conditions.

 Here are the features of the testing engine used by Oracle:

 	
Engine UI is divided into three sections— The UI of the testing engine is divided into the following three segments:

 	
Static upper section— Displays question number, time remaining, and a checkbox to mark a question for review.

 	
Scrollable middle section— Displays the question text and the answer options.

 	
Static bottom section— Displays buttons to display the previous question, display the next question, end the exam, and review marked questions.

 	
Each question is displayed on a separate screen— The exam engine displays one question on the screen at a time. It does not display multiple questions on a single screen,
 like a scrollable web page. All effort is made to display the complete question and answer options without scrolling, or with
 little scrolling.

 	
Code Exhibit button— Many questions include code. Such questions, together with their answers, may require significant scrolling to be viewed.
 As this can be quite inconvenient, such questions include a Code Exhibit button that displays the code in a separate window.

 	
Mark questions to be reviewed— The question screen displays a checkbox with the text “Mark for review” at the top-left corner. A question can be marked using
 this option. The marked questions can be quickly reviewed at the end of the exam.

 	
Buttons to display the previous and next questions— The test includes buttons to display the previous and next questions within the bottom section of the testing engine.

 	
Buttons to end the exam and review marked questions— The engine displays buttons to end the exam and to review the marked questions in the bottom section of the testing engine.

 	
Remaining time— The engine displays the time remaining for the exam at the top right of the screen.

 	
Question number— Each question displays its serial number.

 	
Correct number of answer options— Each question displays the correct number of options that should be selected from multiple options.

 On behalf of all at Manning Publications, I wish you good luck and hope that you score very well on your exam.

Chapter 1. Java basics

 	
 Exam objectives covered in this chapter

 	
 What you need to know

 	[1.2] Define the structure of a Java class.
 	Structure of a Java class, with its components: package and import statements, class declarations, comments, variables, and
 methods.
 Difference between the components of a Java class and that of a Java source code file.

 	[1.3] Create executable Java applications with a main method.
 	The right method signature for the main method to create an executable Java application.
 The arguments that are passed to the main method.

 	[1.4] Import other Java packages to make them accessible in your code.
 	Understand packages and import statements. Get the right syntax and semantics to import classes from packages and interfaces
 in your own classes.

 	[6.6] Apply access modifiers.
 	Application of access modifiers (public, protected, default, and private) to a class and its members. Determine the accessibility
 of code with these modifiers.

 	[7.6] Use abstract classes and interfaces.
 	The implication of defining classes, interfaces, and methods as abstract entities.

 	[6.2] Apply the static keyword to methods and fields.
 	The implication of defining fields and methods as static members.

 Imagine you’ve set up a new IT organization that works with multiple developers. To ensure a smooth and efficient workflow,
 you’ll define a structure for your organization and a set of departments with separate assigned responsibilities. These departments
 will interact with each other whenever required. Also, depending on confidentiality requirements, your organization’s data will be available to employees on an as-needed basis, or you may assign
 special privileges to only some employees of the organization. This is an example of how organizations work with a well-defined
 structure and a set of rules to deliver the best results.

 Similarly, Java has organized its workflow. The organization’s structure and components can be compared with Java’s class
 structure and components, and the organization’s departments can be compared with Java packages. Restricting access to all
 data in the organization can be compared to Java’s access modifiers. An organization’s special privileges can be compared
 to nonaccess modifiers in Java.

 In the OCA Java SE 7 Programmer I exam, you’ll be asked questions on the structure of a Java class, packages, importing classes,
 and applying access and nonaccess modifiers. Given that information, this chapter will cover the following:

 	Understanding the structure and components of a Java class

 	Understanding executable Java applications

 	Understanding Java packages

 	Importing Java packages into your code

 	Applying access and nonaccess modifiers

1.1. The structure of a Java class and source code file

 	

 [image:][1.2] Define the structure of a Java class

 	

 	

 Note

 [image:]

 When you see a certification objective callout such as the preceding one, it means that in this section, we’ll cover this
 objective. The same objective may be covered in more than one section in this chapter or in other chapters.

 	

 This section covers the structure and components of both a Java source code file (.java file) and a Java class (defined using
 the keyword class). It also covers the differences between a Java source code file and a Java class.

 First things first. Start your exam preparation with a clear understanding of what is required from you in the certification
 exam. For example, try to answer the following query from a certification aspirant: “I come across the term ’class’ with different
 meanings—class Person, the Java source code file—Person.java, and Java bytecode stored in Person.class. Which of these structures is on the exam?”
 To answer this question, take a look at figure 1.1, which includes the class Person, the files Person.java and Person.class, and the relationship between them.

 Figure 1.1. Relationship between the class Person, the files Person.java and Person.class, and how one transforms into another

 [image:]

 As you can see in figure 1.1, a person can be defined as a class Person. This class should reside in a Java source code file (Person.java). Using this Java source code file, the Java compiler (javac.exe
 on Windows or javac on Mac OS X/Linux/UNIX) generates bytecode (compiled code for the Java Virtual Machine) and stores it
 in Person.class. The scope of this exam objective is limited to Java classes (class Person) and Java source code files (Person.java).

 1.1.1. Structure of a Java class

 The OCA Java SE 7 Programmer I exam will question you on your understanding of the structure and components of a Java class
 defined using the keyword class. A class can define multiple components. All the Java components that you’ve heard of can be defined within a Java class.
 Figure 1.2 defines the components and structure of a Java class.

 Figure 1.2. Components of a Java class

 [image:]

 Here’s a quick list of the components of a class (the ones that are on this exam), which we’ll discuss in detail in this section:

 	The package statement

 	The import statement

 	Comments

 	Class declarations and definitions

 	Variables

 	Methods

 	Constructors

Package Statement

 All Java classes are part of a package. A Java class can be explicitly defined in a named package; otherwise it becomes part
 of a default package, which doesn’t have a name.

 A package statement is used to explicitly define which package a class is in. If a class includes a package statement, it must be the first statement in the class definition:

 [image:]

 	

 Note

 [image:]

 Packages are covered in detail in section 1.3 of this chapter.

 	

 The package statement cannot appear within a class declaration or after the class declaration. The following code will fail to compile:

 [image:]

 The following code will also fail to compile, because it places the package statement within the class definition:

 [image:]

 Also, if present, the package statement must appear exactly once in a class. The following code won’t compile:

 [image:]

Import Statement

 Classes and interfaces in the same package can use each other without prefixing their names with the package name. But to
 use a class or an interface from another package, you must use its fully qualified name. Because this can be tedious and can
 make your code difficult to read, you can use the import statement to use the simple name of a class or interface in your code.

 Let’s look at this using an example class, AnnualExam, which is defined in the package university. Class AnnualExam is associated with the class certification.ExamQuestion, as shown using the Unified Modeling Language (UML) in figure 1.3.

 Figure 1.3. UML representation of the relationship between class AnnualExam and ExamQuestion

 [image:]

 Here’s the code for class AnnualExam:

 [image:]

 Note that the import statement follows the package statement but precedes the class declaration. What happens if the class AnnualExam isn’t defined in a package? Will there be any change in the code if the class AnnualExam and ExamQuestion are related, as depicted in figure 1.4?

 Figure 1.4. A UML representation of the relationship between the unpackaged class AnnualExam and ExamQuestion

 [image:]

 In this case, the class AnnualExam isn’t part of an explicit package, but the class ExamQuestion is part of package certification. Here’s the code for class AnnualExam:

 [image:]

 As you can see in the previous example code, the class AnnualExam doesn’t define the package statement, but it defines the import statement to import the class certification.ExamQuestion.

 If a package statement is present in a class, the import statement must follow the package statement. It’s important to maintain the order of the occurrence of the package and import statements. Reversing this order will result in your code failing to compile:

 [image:]

 We’ll discuss import statements in detail in section 1.3 of this chapter.

Comments

 You can also add comments to your Java code. Comments can appear at multiple places in a class. A comment can appear before
 and after a package statement, before and after the class definition, before and within and after a method definition. Comments come in two flavors:
 multiline comments and end-of-line comments.

 Multiline comments span multiple lines of code. They start with /* and end with */. Here’s an example:

 [image:]

 Multiline comments can contain any special characters (including Unicode characters). Here’s an example:

 [image:]

 Most of the time, when you see a multiline comment in a Java source code file (.java file), you’ll notice that it uses an
 asterisk (*) to start the comment in the next line. Please note that this isn’t required—it’s done more for aesthetic reasons. Here’s
 an example:

 [image:]

 End-of-line comments start with // and, as evident by their name, they are placed at the end of a line of code. The text between // and the end of the line is treated as a comment, which you would normally use to briefly describe the line of code. Here’s
 an example:

 [image:]

 In the earlier section on the package statement, you read that a package statement, if present, should be the first line of code in a class. The only exception to this rule is the presence of comments.
 A comment can precede a package statement. The following code defines a package statement, with multiline and end-of-line comments:

 [image:]

 Line [image:] defines an end-of-line code comment within multiline code. This is acceptable. The end-of-line code comment is treated as
 part of the multiline comment, not as a separate end-of-line comment. Lines [image:] and [image:] define end-of-line code comments. Line [image:] defines an end-of-line code comment at the start of a line, after the class definition.

 The multiline comment is placed before the package statement, which is acceptable because comments can appear anywhere in your code.

Class Declaration

 The class declaration marks the start of a class. It can be as simple as the keyword class followed by the name of a class:

 [image:]

 Time to get more details. The declaration of a class is composed of the following parts:

 	Access modifiers

 	Nonaccess modifiers

 	Class name

 	Name of the base class, if the class is extending another class

 	All implemented interfaces, if the class is implementing any interfaces

 	Class body (class fields, methods, constructors), included within a pair of curly braces, {}

 Don’t worry if you don’t understand this material at this point. I’ll cover these details as we move through the exam preparation.

 Let’s look at the components of a class declaration using an example:

 public final class Runner extends Person implements Athlete {}

 The components of the preceding class can be pictorially depicted, as shown in figure 1.5. The following list summarizes the optional and compulsory components.

 Figure 1.5. Components of a class declaration

 [image:]

 	
 Compulsory

 	
 Optional

 	Keyword class
 	Access modifier, such as public

 	Name of the class
 	Nonaccess modifier, such as final

 	Class body, marked by the opening
 	Keyword extends together with the name and closing curly braces, {} of the base class

 	
 	Keyword implements together with the name of the interfaces being implemented

 We’ll discuss the access and nonaccess modifiers in detail in sections 1.4 and 1.5 in this chapter.

Class Definition

 A class is a design used to specify the properties and behavior of an object. The properties of an object are implemented
 using variables, and the behavior is implemented using methods.

 For example, consider a class as being like the design or specification of a mobile phone, and a mobile phone as being an
 object of that design. The same design can be used to create multiple mobile phones, just as the Java Virtual Machine (JVM)
 uses a class to create its objects. You can also consider a class as being like a mold that you can use to create meaningful
 and useful objects. A class is a design from which an object can be created.

 Let’s define a simple class to represent a mobile phone:

 class Phone {
 String model;
 String company;
 Phone(String model) {
 this.model = model;
 }
 double weight;
 void makeCall(String number) {
 // code
 }
 void receiveCall() {
 // code
 }
}

 Points to remember:

 	A class name starts with the keyword class. Watch out for the case of the keyword class. Java is case sEnSiTivE. class (lowercase c) isn’t the same as Class(uppercase C). You can’t use the word Class (capital C) to define a class.

 	The state of a class is defined using attributes or instance variables.

 	
The behavior is defined using methods. The methods will include the argument list (if any). Don’t worry if you don’t understand
 these methods. The methods are covered in detail later in this chapter.

 	A class definition may also include comments and constructors.

 	

 Note

 [image:]

 A class is a design from which an object can be created.

 	

Variables

 Revisit the previous example. Because the variables model, company, and weight are used to store the state of an object (also called an instance), they are called instance variables or instance attributes. Each object has its own copy of the instance variables. If you change the value of an instance variable for an object, the
 value for the same named instance variable won’t change for another object. The instance variables are defined within a class
 but outside all methods in a class.

 A single copy of a class variable or static variable is shared by all the objects of a class. The static variables are covered in section 1.5.3 with a detailed discussion of the nonaccess modifier static.

Methods

 Again, revisit the previous example. The methods makeCall and receiveCall are instance methods, which are generally used to manipulate the instance variables.

 A class method or static method is used to work with the static variables, as discussed in detail in section 1.5.3.

Constructors

 Class Phone in the previous example defines a single constructor. A class constructor is used to create and initialize the objects of
 a class. A class can define multiple constructors that accept different sets of method parameters.

 1.1.2. Structure and components of a Java source code file

 A Java source code file is used to define classes and interfaces. All your Java code should be defined in Java source code
 files (text files whose names end with .java). The exam covers the following aspects of the structure of a Java source code
 file:

 	Definition of a class and an interface in a Java source code file

 	Definition of single or multiple classes and interfaces within the same Java source code file

 	Application of import and package statements to all the classes in a Java source code file

 We’ve already covered the detailed structure and definition of classes in section 1.1.1. Let’s get started with the definition of an interface.

Definition of Interfaces in a Java Source Code File

 An interface is a grouping of related methods and constants, but the methods in an interface cannot define any implementation.
 An interface specifies a contract for the classes to implement.

 Here’s a quick example to help you to understand the essence of interfaces. No matter which brand of television each one of
 us has, every television provides the common functionality of changing the channel and adjusting the volume. You can compare
 the controls of a television set to an interface, and the design of a television set to a class that implements the interface
 controls.

 Let’s define this interface:

 interface Controls {
 void changeChannel(int channelNumber);
 void increaseVolume();
 void decreaseVolume();
}

 The definition of an interface starts with the keyword interface. An interface can define constants and methods. Remember, Java is case-sensitive, so you can’t use the word Interface (with a capital I) to define an interface.

Definition of Single and Multiple Classes in a Single Java Source Code File

 You can define either a single class or an interface in a single Java source code file, or many such files. Let’s start with
 a simple example: a Java source code file called Single-Class.java that defines a single class SingleClass:

 [image:]

 Here’s an example of a Java source code file, Multiple1.java, that defines multiple interfaces:

 [image:]

 You can also define a combination of classes and interfaces in the same Java source code file. Here’s an example:

 [image:]

 There is no required order for the multiple classes or interfaces that can be defined in a single Java source code file.

 	

 Exam Tip

 [image:]

 The classes and interfaces can be defined in any order of occurrence in a Java source code file.

 	

 If you define a public class or an interface in a class, its name should match the name of the Java source code file. Also, a source code file can’t
 define more than one public class or interface. If you try to do so, your code won’t compile, which leads to a small hands-on exercise for you that I
 call Twist in the Tale, as mentioned in the Preface. The answers to all these exercises are provided in the appendix.

 	

 About the Twist in the Tale exercises
 For these exercises, I’ve tried to use modified code from the examples already covered in the chapter. The Twist in the Tale title refers to modified or tweaked code.

 These exercises will help you understand how even small code modifications can change the behavior of your code. They should
 also encourage you to carefully examine all of the code in the exam. The reason for these exercises is that in the exam, you
 may be asked more than one question that seems to require the same answer. But on closer inspection, you’ll realize that the
 questions differ slightly, and this will change the behavior of the code and the correct answer option!

 	

 Twist in the Tale 1.1

 Modify the contents of the Java source code file Multiple.java, and define a public interface in it. Execute the code and
 see how it affects your code.

 Question: Examine the following content of Java source code file Multiple.java and select the correct answers:

 // Contents of Multiple.java
public interface Printable {
 //.. we are not detailing this part
}
interface Movable {
 //.. we are not detailing this part
}

 Options:

 	A Java source code file cannot define multiple interfaces.

 	A Java source code file can only define multiple classes.

 	A Java source code file can define multiple interfaces and classes.

 	The previous class will fail to compile.

 If you need help getting your system set up to write Java, refer to Oracle’s “Getting Started” tutorial, http://docs.oracle.com/javase/tutorial/getStarted/.

 Twist in the Tale 1.2

 Question: Examine the content of the following Java source code file, Multiple2.java, and select the correct option.

 // contents of Multiple2.java
interface Printable {
 //.. we are not detailing this part
}
class MyClass {
 //.. we are not detailing this part
}
interface Movable {
 //.. we are not detailing this part
}
public class Car {
 //.. we are not detailing this part
}
public interface Multiple2 {}

 Options:

 	The code fails to compile.

 	The code compiles successfully.

 	Removing the definition of class Car will compile the code.

 	Changing class Car to a non-public class will compile the code.

 	Changing class Multiple2 to a non-public class will compile the code.

Application of Package and Import Statements in Java Source Code Files

 In the previous section, I mentioned that you can define multiple classes and interfaces in the same Java source code file.
 When you use a package or import statement within such Java files, both the package and import statements apply to all of the classes and interfaces defined in that source code file.

 For example, if you include a package and an import statement in Java source code file Multiple.java (as in the following code), Car, Movable, and Printable will be become part of the same package com.manning.code:

 [image:]

 	

 Exam Tip

 [image:]

 Classes and interfaces defined in the same Java source code file can’t be defined in separate packages. Classes and interfaces imported using the import statement are available to all the classes and interfaces defined in the same Java source code file.

 	

 In the next section, you’ll create executable Java applications—classes that are used to define an entry point of execution
 for a Java application.

1.2. Executable Java applications

 	

 [image:][1.3] Create executable Java applications with a main method

 	

 The OCA Java SE 7 Programmer I exam requires that you understand the meaning of an executable Java application and its requirements,
 that is, what makes a regular Java class an executable Java class.

 1.2.1. Executable Java classes versus nonexecutable Java classes

 “Doesn’t the Java Virtual Machine execute all the Java classes when they are used? If so, what is a nonexecutable Java class?”

 An executable Java class is a class which, when handed over to the JVM, starts its execution at a particular point in the
 class—the main method, defined in the class. The JVM starts executing the code that is defined in the main method. You cannot hand over a nonexecutable Java class to the JVM and ask it to start executing the class. In this case,
 the JVM won’t know how to execute it because no entry point is marked, for the JVM, in a nonexecutable class.

 Typically, an application consists of a number of classes and interfaces that are defined in multiple Java source code files.
 Of all these files, a programmer designates one of the classes as an executable class. The programmer can define the steps
 that the JVM should execute as soon as it launches the application. For example, a programmer can define an executable Java
 class that includes code to display the appropriate GUI window to a user and to open a database connection.

 In figure 1.6, the classes Window, UserData, ServerConnection, and UserPreferences don’t define a main method. Class LaunchApplication defines a main method and is an executable class.

 Figure 1.6. Class LaunchApplication is an executable Java class, but the rest of the classes—Window, UserData, ServerConnection, and UserPreferences—aren’t.

 [image:]

 1.2.2. Main method

 The first requirement in creating an executable Java application is to create a class with a method whose signature (name
 and method arguments) match the main method, defined as follows:

 public class HelloExam {
 public static void main(String args[]) {
 System.out.println("Hello exam");
 }
}

 This main method should comply with the following rules:

 	The method must be marked as a public method.

 	The method must be marked as a static method.

 	The name of the method must be main.

 	The return type of this method must be void.

 	The method must accept a method argument of a String array or a variable argument of type String.

 Figure 1.7 illustrates the previous code and its related set of rules.

 Figure 1.7. Ingredients of a correct main method

 [image:]

 It’s valid to define the method parameter passed to the main method as a variable argument (varargs) of type String:

 [image:]

 To define a variable argument variable, the ellipsis (...) should follow the type of the variable and not the variable itself (a mistake made by lot of new programmers):

 [image:]

 As mentioned previously, the name of the String array passed to the main method need not be args to qualify it as the correct main method. Thus, the following examples are also correct definitions of the main method:

 [image:]

 To define an array, the square brackets, [], can follow either the variable name or its type. The following is a correct method declaration of the main method:

 [image:]

 It’s interesting to note that the placement of the keywords public and static can be interchanged, which means that the following are both correct method declarations of the main method:

 [image:]

 On execution, the code shown in figure 1.7 outputs the following:

 Hello exam

 Almost all Java developers work with an Integrated Development Environment (IDE). The OCA Java SE 7 Programmer I exam, however,
 expects you to understand how to execute a Java application, or an executable Java class, using the command prompt. If you
 need help getting your system set up to compile or execute Java applications using the command prompt, refer to Oracle’s detailed
 instructions at http://docs.oracle.com/javase/tutorial/getStarted/cupojava/index.html.

 To execute the code shown in figure 1.7, issue the command java HelloExam, as shown in figure 1.8.

 Figure 1.8. Using a command prompt to execute a Java application

 [image:]

 We discussed how the main method accepts an array of String as the method parameter. But how and where do you pass the array to the main method? Let’s modify the previous code to access and output values from this array. Here’s the relevant code:

 public class HelloExamWithParameters {
 public static void main(String args[]) {
 System.out.println(args[0]);
 System.out.println(args[1]);
 }
}

 Execute the class in the preceding code at a command prompt, as shown in figure 1.9.

 Figure 1.9. Passing command parameters to a main method

 [image:]

 As you can see from the output shown in figure 1.9, the keyword java and the name of the class aren’t passed on as command parameters to the main method. The OCA Java SE 7 Programmer I exam will test you on your knowledge of whether the keyword java and the class name are passed on to the main method.

 	

 Exam Tip

 [image:]

 The method parameters that are passed on to the main method are also called command-line parameters or command-line values. As the name implies, these values are passed on to
 a method from the command line.

 	

 If you weren’t able to follow the code with respect to the arrays and class String, don’t worry; we’ll cover the class String and arrays in detail in chapter 4.

 Here’s the next Twist in the Tale exercise for you. In this exercise, and in the rest of the book, you’ll see the names Shreya,
 Harry, Paul, and Selvan, who are hypothetical programmers also studying for this certification exam. The answer is provided
 in the appendix.

 Twist in the Tale 1.3

 One of the programmers, Harry, executed a program that gave the output “java one”. Now he’s trying to figure out which of
 the following classes outputs these results. Given that he executed the class using the command java EJava java one one, can you help him figure out the correct option(s)?

 	
 class EJava { public static void main(String sun[]) { System.out.println(sun[0] + " " + sun[2]); }}

 	
 class EJava { static public void main(String phone[]) { System.out.println(phone[0] + " " + phone[1]); }}

 	
 class EJava { static public void main(String[] arguments[]) { System.out.println(arguments[0] + " " + arguments[1]); }}

 	

 class EJava { static void public main(String args[]) { System.out.println(args[0] + " " + args[1]); }}

 	

 Confusion with command-line parameters
 Programming languages like C pass on the name of a class as a command-line argument to the main method. Java doesn’t do so. This is a simple but important point.

 	

1.3. Java packages

 	

 [image:][1.4] Import other Java packages to make them accessible in your code

 	

 In this section, you’ll learn what Java packages are and how to create them. You’ll use the import statement, which enables you to use simple names for classes and interfaces defined in separate packages.

 1.3.1. The need for packages

 Why do you think we need packages? First, answer this question: do you remember having known more than one Amit, Paul, Anu,
 or John to date? Harry knows more than one Paul (six, to be precise), whom he categorizes as managers, friends, and cousins.
 These are subcategorized by their location and relation, as shown in figure 1.10.

 Figure 1.10. Harry knows six Pauls!

 [image:]

 Similarly, you can use packages to group together a related set of classes and interfaces (I will not discuss enums here because
 they aren’t covered on this exam). Packages also provide access protection and namespace management. You can create separate
 packages to define classes for separate projects, such as android games and online health-care systems. Further, you can create
 subpackages within these packages, such as separate subpackages for GUIs, database access, networking, and so on.

 	

 Practical Tip

 In real-life projects, you will never work with an unpackaged class or interface. Almost all organizations that develop software
 have strict package-naming rules, which are often documented.

 	

 The OCA Java SE 7 Programmer I exam covers importing packaged classes into other classes. But after 12 years of experience,
 I’ve learned that before starting to import other classes into your own code, it’s important to understand what the packaged classes are, how packaged and nonpackaged
 classes differ, and why you need to import the packaged classes.

 Packaged classes are part of a named package—a namespace—and they’re defined as being part of a package by including a package statement in a class. All classes and interfaces are packaged. If you don’t include an explicit package statement in a class or an interface, it’s part of a default package.

 1.3.2. Defining classes in a package using the package statement

 You can define which classes and interfaces are in a package by using the package statement as the first statement in your class or interface. Here’s an example:

 [image:]

 The class in the previous code defines an ExamQuestion class in the certification package. You can define an interface, MultipleChoice, in a similar manner:

 package certification;
interface MultipleChoice {
 void choice1();
 void choice2();
}

 Figure 1.11 shows the UML representation of the package certification, with the class ExamQuestion and the interface MultipleChoice:

 Figure 1.11. A UML representation of the package certification, class ExamQuestion, and interface MultipleChoice

 [image:]

 The name of the package in the previous examples is certification. You may use such names for small projects that contain only a few classes and interfaces, but it’s common for organizations
 to use subpackages to define all their classes. For example, if folks at Oracle define a class to store exam questions for a Java Associate exam, they might
 use the package name com.oracle.javacert.associate. Figure 1.12 shows its UML representation, together with the corresponding class definition:

 Figure 1.12. A subpackage and its corresponding class definition

 [image:]

 The package name com.oracle.javacert.associate follows a package-naming convention recommended by Oracle and shown in table 1.1.

 Table 1.1. Package-naming conventions used in the package name com.oracle.javacert.associate

 	
 Package or subpackage name

 	
 Its meaning

 	com
 	Commercial. A couple of the commonly used three-letter package abbreviations are gov—for government bodies edu—for educational
 institutions

 	oracle
 	Name of the organization

 	javacert
 	Further categorization of the project at Oracle

 	associate
 	Further subcategorization of Java certification

Rules to Remember

 A few of important rules about packages:

 	Per Java naming conventions, package names should all be in lowercase.

 	The package and subpackage names are separated using a dot (.).

 	Package names follow the rules defined for valid identifiers in Java.

 	For packaged classes and interfaces, the package statement is the first statement in a Java source file (a .java file). The exception is that comments can appear before or
 after a package statement.

 	There can be a maximum of one package statement per Java source code file (.java file).

 	All the classes and interfaces defined in a Java source code file will be defined in the same package. There is no way to
 package classes and interfaces defined within the same Java source code file in different packages.

 	

 Note

 [image:]

 A fully qualified name for a class or interface is formed by prefixing its package name with its name (separated by a period).
 The fully qualified name of class ExamQuestion is certification.ExamQuestion in figure 1.11 and com.oracle.javacert.associate.ExamQuestion in figure 1.12.

 	

Directory Structure and Package Hierarchy

 The hierarchy of the packaged classes should match the hierarchy of the directories in which these classes and interfaces
 are defined in the code. For example, the class ExamQuestion in the certification package should be defined in a directory with the name “certification.”

 The name of the directory “certification” and its location are governed by the following rules:

 [image:]

 For the package example shown in figure 1.12, note that there isn’t any constraint on the location of the base directory in which the directory structure is defined.
 Examine the following image:

 [image:]

Setting the Classpath for Packaged Classes

 To enable the Java Runtime Environment (JRE) to find your classes, add the base directory that contains your packaged Java
 code to the classpath.

 For example, to enable the JRE to locate the certification.ExamQuestion class from the previous examples, add the directory C:\MyCode to the classpath. To enable the JRE to locate the class com.oracle.javacert.associate.ExamQuestion, add the directory C:\ProjectCode to the classpath.

 You don’t need to bother setting the classpath if you’re working with an IDE. But I strongly encourage you to learn how to
 work with a simple text editor and how to set a classpath. This can be particularly helpful with your projects at work. I
 have also witnessed many interviewers querying candidates on the need for classpaths.

 1.3.3. Using simple names with import statements

 The import statement enables you to use simple names instead of using fully qualified names for classes and interfaces defined in separate packages.

 Let’s work with a real-life example. Imagine your Home and your neighbor’s Office. “LivingRoom” and “Kitchen” within your
 home can refer to each other without mentioning that they exist within the same home. Similarly, in an office, a Cubicle and
 a ConferenceHall can refer to each other without explicitly mentioning that they exist within the same office. But “Home”
 and “Office” can’t access each other’s rooms or cubicles without stating that they exist in a separate home or office. This
 situation is represented in figure 1.13.

 Figure 1.13. To refer to each other’s members, Home and Office should specify that they exist in separate places.

 [image:]

 To refer to the LivingRoom in Cubicle, you must specify its complete location, as shown in left part of the figure 1.14. As you can see in this figure, repeated references to the location of LivingRoom make the description of LivingRoom look
 tedious and redundant. To avoid this, you can display a notice in Cubicle that all occurrences of LivingRoom refer to LivingRoom
 in Home, and thereafter use its simple name. Home and Office are like Java packages, and this notice is the equivalent of the import statement. Figure 1.14 shows the difference in using fully qualified names and simple names for Home in Cubicle.

 Figure 1.14. LivingRoom can be accessed in Cubicle by using its fully qualified name. It can also be accessed using its simple name if
 you also use the import statement.

 [image:]

 Let’s implement the previous example in code, where classes LivingRoom and Kitchen are defined in the package home and classes Cubicle and ConferenceHall are defined in the package office. The class Cubicle uses (is associated to) the class LivingRoom in the package home, as shown in figure 1.15.

 Figure 1.15. A UML representation of classes LivingRoom and Cubicle, defined in separate packages, with their associations

 [image:]

 Class Cubicle can refer to class LivingRoom without using an import statement:

 [image:]

 Class Cubicle can use the simple name for class LivingRoom by using the import statement:

 [image:]

 	

 Note

 [image:]

 The import statement doesn’t embed the contents of the imported class in your class, which means that importing more classes doesn’t increase the size of your own class. It lets you use the simple name for a class or interface defined
 in a separate package.

 	

 1.3.4. Using packaged classes without using the import statement

 It is possible to use a packaged class or interface without using the import statement, by using its fully qualified name:

 [image:]

 This approach can clutter your code if you create multiple variables of interfaces and classes defined in other packages.
 Use this approach sparingly in actual projects.

 For the exam, it’s important to note that you can’t use the import statement to access multiple classes or interfaces with the same names from different packages. For example, the Java API
 defines the class Date in two commonly used packages: java.util and java.sql. To define variables of these classes in a class, use their fully qualified names with the variable declaration:

 [image:]

 An attempt to use an import statement to import both these classes in the same class will not compile:

 [image:]

 1.3.5. Importing a single member versus all members of a package

 You can import either a single member or all members (classes and interfaces) of a package using the import statement. First, revisit the UML notation of the certification package, as shown in figure 1.16.

 Figure 1.16. A UML representation of the certification package

 [image:]

 Examine the following code for class AnnualExam:

 [image:]

 By using the wildcard character, an asterisk (*), you can import all of the public members, classes, and interfaces of a package. Compare the previous class definition with the following definition of the
 class AnnualExam:

 [image:]

 Unlike in C or C++, importing a class doesn’t add to the size of a Java .class file. An import statement enables Java to refer to the imported classes without embedding their source code in the target .class file.

 When you work with an IDE, it may automatically add import statements for classes and interfaces that you reference in your code.

 1.3.6. Can you recursively import subpackages?

 You can’t import classes from a subpackage by using an asterisk in the import statement.

 For example, the following UML notation depicts the package com.oracle.javacert with the class Schedule, and two subpackages, associate and webdeveloper. Package associate contains class ExamQuestion, and package webdeveloper contains class MarkSheet, as shown in figure 1.17.

 Figure 1.17. A UML representation of package com.oracle.javacert and its subpackages

 [image:]

 The following import statement will import only the class Schedule. It won’t import the classes ExamQuestion and MarkSheet:

 [image:]

 Similarly, the following import statement will import all the classes from the packages associate and webdeveloper:

 [image:]

 1.3.7. Importing classes from the default package

 What happens if you don’t explicitly package your classes or interfaces? In that case, they’re packaged in a default, no-name package. This default package is automatically imported in the Java classes and interfaces defined within the same directory
 on your system.

 For example, the classes Person and Office, which are not defined in an explicit package, can use each other if they are defined in the same directory:

 [image:]

 A class from a default package can’t be used in any named packaged class, regardless of whether they are defined within the
 same directory or not.

 1.3.8. Static imports

 You can import an individual static member of a class or all its static members by using the import static statement.

 In the following code, the class ExamQuestion defines a public static variable named marks and a public static method named print:

 [image:]

 The variable marks can be accessed in the class AnnualExam using the import static statement. The order of the keywords import and static can’t be reversed:

 [image:]

 To access all public static members of class ExamQuestion in class AnnualExam, you can use an asterisk with the import static statement:

 [image:]

 Because the variable marks and method print are defined as public members, they are accessible to the class AnnualExam using the import static statement. These wouldn’t be accessible to the class AnnualExam if they were defined using any other access modifiers. The accessibility of a class, an interface, and their methods and
 variables are determined by their access modifiers, which are covered in the next section.

1.4. Java access modifiers

 	

 [image:][6.6] Apply access modifiers

 	

 In this section, we’ll cover all of the access modifiers—public, protected, and private—as well as default access, which is the result when you don’t use an access modifier. We’ll also look at how you can use
 access modifiers to restrict the visibility of a class and its members in the same and separate packages.

 1.4.1. Access modifiers

 Let’s start with an example. Examine the definitions of the classes House and Book in the following code and the UML representation shown in figure 1.18.

 Figure 1.18. The nonpublic class Book cannot be accessed outside the package library.

 [image:]

 package building;
class House {}
package library;
class Book {}

 With the current class definitions, the class House cannot access the class Book. Can you make the necessary changes (in terms of the access modifiers) to make the class Book accessible to the class House?

 This one shouldn’t be difficult. From the discussion of class declarations in section 1.1, you know that a top-level class can be defined only using the public or default access modifiers. If you declare the class Book using the access modifier public, it’ll be accessible outside the package in which it is defined.

 	

 Note

 [image:]

 A top-level class is a class that isn’t defined within any other class. A class that is defined within another class is called
 a nested or inner class. Nested and inner classes aren’t on the OCA Java SE 7 Programmer I exam.

 	

What do They Control?

 Access modifiers control the accessibility of a class or an interface, including its members (methods and variables), by other
 classes and interfaces. For example, you can’t access the private variables and methods of another class. By using the appropriate access modifiers, you can limit access to your class or
 interface, and their members, by other classes and interfaces.

Can Access Modifiers be Applied to All Types of Java Entities?

 Access modifiers can be applied to classes, interfaces, and their members (instance and class variables and methods). Local
 variables and method parameters can’t be defined using access modifiers. An attempt to do so will prevent the code from compiling.

How Many Access Modifiers are There: Three or Four?

 Programmers are frequently confused about the number of access modifiers in Java because the default access isn’t defined using an explicit keyword. If a Java entity (class, interface, method, or variable) isn’t defined using an
 explicit access modifier, it is said to be defined using the default access, also called package access.

 Java defines four access modifiers:

 	
public (least restrictive)

 	
protected

 	
default

 	
private (most restrictive)

 To understand all of these access modifiers, we’ll use the same set of classes: Book, CourseBook, Librarian, StoryBook, and House. Figure 1.19 depicts these classes using UML notation.

 Figure 1.19. A set of classes and their relationships to help understand access modifiers

 [image:]

 The classes Book, CourseBook, and Librarian are defined in the package library. The classes StoryBook and House are defined in the package building. Further, classes StoryBook and CourseBook (defined in separate packages) extend class Book. Using these classes, I’ll show how the accessibility of a class and its members varies with different access modifiers,
 from unrelated to derived classes, across packages.

 As we cover each of the access modifiers, we’ll add a set of instance variables and a method to the class Book with the relevant access modifier. We’ll then define code for the other classes that try to access class Book and its members.

 1.4.2. Public access modifier

 This is the least restrictive access modifier. Classes and interfaces defined using the public access modifier are accessible across all packages, from derived to unrelated classes.

 To understand the public access modifier, let’s define the class Book as a public class and add a public instance variable (isbn) and a public method (printBook) to it. Figure 1.20 shows the UML notation.

 Figure 1.20. Understanding the public access modifier

 [image:]

 Definition of class Book:

 [image:]

 The public access modifier is said to be the least restrictive, so let’s try to access the public class Book and its public members from class House. We’ll use class House because House and Book are defined in separate packages and they’re unrelated. Class House doesn’t enjoy any advantages by being defined in the same package or being a derived class.

 Here’s the code for class House:

 [image:]

 As you may notice in the previous example, the class Book and its public members—instance variable isbn and method printBook—are accessible to the class House. They are also accessible to the other classes: StoryBook, Librarian, House, and Course-Book. Figure 1.21 shows the classes that can access a public class and its members.

 Figure 1.21. Classes that can access a public class and its members

 [image:]

 1.4.3. Protected access modifier

 The members of a class defined using the protected access modifier are accessible to

 	Classes and interfaces defined in the same package

 	All derived classes, even if they’re defined in separate packages

 Let’s add a protected instance variable author and method modifyTemplate to the class Book. Figure 1.22 shows the class representation.

 Figure 1.22. Understanding the protected access modifier

 [image:]

 Here’s the code for the class Book (I’ve deliberately left out its public members because they aren’t required in this section):

OEBPS/xxvfig01_alt.jpg
EXAM TIP An ArrayList preserves the order of insertion of its elements.
ﬁ Iterator, ListIterator, and the enhanced for loop will return the ele-
ments in the order in which they were added to the ArrayList.

OEBPS/xxvfig02_alt.jpg
NOTE Though the terms method parameters and method arguments are not the
same, you may have noticed that they are used interchangeably by many pro-
grammers. Method parameters are the variables that appear in the definition of
a method. Method arguments are the actual values that are passed to 2 method
while executing it. In figure 3.13, variables phium and nsg are method param-
eters. If you execute this method as sendisg ("123456" , "Hello"), then the
String values "123456" and "Hel1o" are method arguments.

OEBPS/xxivfig01_alt.jpg
Exam objectives covered in this chapter ‘What you need to know

[3.4] Create i and £ -else construots. | Howto use if, if-clse, if-else-if-else,
and nested i f constructs.

The differences between using these if constructs
With and withm ~y braces { }.

OEBPS/xxivfig02_alt.jpg
4.4 ArrayList

In this section, I'll cover how to use ArrayList, its commonly used methods, and the
advantages it offers over an array.

OEBPS/common-02.jpg

OEBPS/xxiiifig01_alt.jpg
Exam objectives. Covered in chapter/section | Your readiness score
1 | Javabasics Chapters 1.and 3

1.1 Define the scope of variables Section 3.1 Fodeke

1.2 Define the structure of a Java class. Section 1.1 etk

1.3 Create executable Java applications with | Section 1.2 Sodeke

~ main mathnd

OEBPS/common-01.jpg

OEBPS/024fig01_alt.jpg
// contents of Multiple.java Printable, Movable, and Car are
package com.manning.code; part of package com.manning.code
import com.manning.®;

Al classes and interfaces defined in
interface Printable {} Package commanning are accessble

interface Movable {} to Printable, Movable, and Car
class Car {}

OEBPS/01fig07_alt.jpg
The method should not ‘The:nams o he mefhod
return a value; ts retum must be ran. The method must accept a
type must be array. The name of

: / S AT
PT— 7 ben i

e T ebic static veid main(String args (1) {
oder Syeten. oot printin (“Helle sxan’)s
must be }

The nonaccess modifier
ity

OEBPS/01fig06_alt.jpg
The main method
© makes a Java dass.
executable.

o
Classes in an /
:

displayaur

unchapplication o openbatabaseConnection();

e

] [Gorvercammesior

OEBPS/026fig02_alt.jpg
This won’t compile. Ellipses should
follow the data type, String.

public static void main(String args.

OEBPS/xxvfig03_alt.jpg
Static classes and interfaces

Certification aspirants frequently ask questions about static classes and interfaces,
01l quickly cover these in this section to ward off any confusion related to them. But
note that static classes and interfaces are types of nested classes and interfaces
that aren't covered by the OCA Java 7 Programmer | exam.

You can't prefix the definition of a topevel class or an interface with the keyword
static. Atoplevel class or interface is one that isn't defined within another class or
interface. The following code will fail to compile:

aratic class Person (1

OEBPS/026fig01_alt.jpg
void m It is valid to define args
public static void main(String... args) a—{ i

OEBPS/xxvifig01_alt.jpg
public String replace(char oldchar, char newChar) {

if (oldChar
// code to create a new char array and

newchar)

// replace the desired char with the new char

)
return this; eplace creates and
retums a new Scring

object. It doesn't modify
the existing array value.

OEBPS/cover.jpg
CERTIFICATION GUIDE

Prepare for the 1Z0-803 exam

Mala Gupta

Jeanne Boyarsky

OEBPS/01fig05_alt.jpg
(1ass declaralion componants

optional

Optionsl optsonsl Eomputsor)) @mpulsor)) Optional Optsonsl ptional

OEBPS/019fig01_alt.jpg
implest class declaration: keyword
o i | clas folowed by the class name

Jsx Aclass can define a lot of things here, but we don't
e need these details to show the class declaration

}

OEBPS/022fig02_alt.jpg
interface Printable {
//.. we are not detailing this part
} Contents of Java source

interface Movable { code file Multiple1 java
//.. we are not detailing this part

}

OEBPS/022fig01_alt.jpg
class SingleClass {

//.. we are not detailing this part Contents of Java source

; code file SingleClass java

OEBPS/common3.jpg

OEBPS/022fig03_alt.jpg
interface Printable
//.. we are not
]

class MyClass {
//.. we are not
}

interface Movable {
//.. we are not
!

class Car {
//.. we are not
}

{

detailing this

detailing this

detailing this

detailing this

part

part

part

part

Contents of Java
source code file
Multiple2.java

OEBPS/030fig01.jpg
pacikage oarl.L cationy

class ExamQuestion { Variables and
/7. .code methods
}

OEBPS/01fig10.jpg
Manager, Manager,
Germany USA

Friend,
Friend,

Cousin, Cousin,
materal patemal

Harry

OEBPS/01fig12_alt.jpg
package com.oracle.javacert.associate;
class ExamQuestion |
// variables and methods

com.oracle.javacert.associate|

ExanQuestion

OEBPS/01fig11.jpg
certification

ExamQuestion

O

MultipleChoice

OEBPS/032fig02_alt.jpg
 JThiscanbeanydirectory

“This structure should match the
package hierarchy—
con.oracle. javacert .associate

OEBPS/032fig01_alt.jpg
“This structure should match the

ige hierarchy —certification

| JExamQuestion.class ——

OEBPS/027fig02_alt.jpg
public static void main(String(] args) The square brackets, [}, can follow
blic sbakie vold wain(Bteine: sinalatsaaaty) cither the varisble name or its type

OEBPS/027fig01_alt.jpg
public static void main(String(] arguments)
Rl SEAELE ol aainteteina i Saltamasid)

The names of the method
arguments are arguments and
HelloWorld, which is acceptable

OEBPS/01fig08_alt.jpg
Jjava HelloExan Command
JFie1to" oxan
Output

oo

OEBPS/027fig03_alt.jpg
public static void main(String{] args) The placement of the keyworas
static public void main(String(] args) public and static is interchangeable

OEBPS/01fig09_alt.jpg
parameter

Ii\xmm
.

Namdofclass Firstethod
parameter
Command java

output

OEBPS/034fig02_alt.jpg
package office;
import home.LivingRoom;

e L vingabons Mo es e the lyqulie
i ! o name of class LivingRoom

OEBPS/034fig04_alt.jpg
Missing import

statement
class AnnualExam {
java.util.Date datel; <— Variable of type java.util.Date
java.sql.Date date2; Variable of type

} java.sql.Date

OEBPS/034fig03_alt.jpg
Missing import.
statement.
class AnnualExam {

certification.ExamQuestion eq; Define a variable of ExamQuestion
} by using its fully qualified name

OEBPS/01fig16.jpg
certification

ExanQuestion

©)

MultipleChoice

OEBPS/034fig05.jpg
import java.util.Date; | Code to import classes with the same name
import java.sql.Date; from different packages won't compile
Eimas Annualrai & §

OEBPS/035fig02_alt.jpg
Imports all dasses and

import certification.t; interfaces from certification
class AnnualBxam {
ExanQuestion eq; <— Compiles 0K

MultipleChoice mc;

y 7 This also compiles OK

OEBPS/035fig01.jpg
Imports only the

import certification.ExamQuestion; class ExamQuestion
class AnnualExam {
ExanQuestion eq; <— Compiles OK

MultipleChoice me;

) “"] Will not compile

OEBPS/01fig14_alt.jpg
No import = use fully qualified names. i Import = use simple names

Import LivingRoom
in Cubicle,

LivingRoom i stil in
Home. Its not
‘embedded in
Cubicle.

OEBPS/01fig13_alt.jpg
‘Home, Gffice.

== [C == Cubideand
LivingRoom - ConferenceHall
canaocess chon e | contemconan et winou
lyeron spoching ot
vinout ey e panol
Speching at b S s

ey are part of To access each other's
the same Home. members, Home and Office
should specify that they exist in
sarate Homs: o OMce:

OEBPS/034fig01_alt.jpg
package office;

class Cubicle { In the absence of an import
home. LivingRoom 1ivingRoom; statement, use the fully qualified

} name to access class LivingRoom

OEBPS/01fig15.jpg
home oftice

oo K i

Kitchen ConferenceHal

OEBPS/036fig03_alt.jpg
package certification;

public class ExamQuestion { QJ static
static public int marks; variable marks
public static void print() { <7 public static
System.out.println(100); v

}

OEBPS/036fig02.jpg
class Person &
! Not defined in an

) /s explicit package
class Office {
person ps Class Person acce

class Office

}

OEBPS/036fig05_alt.jpg
package university; Imports all static members
import static certification.ExamQuestion.*; < of class ExamQuestion
class AnnualBxam {
Annualexam() {
marks = 20; Accesses variable marks and method print
print (); ‘without prefixing them with their class names

OEBPS/036fig04_alt.jpg
FRCHADS unsverssey:
import static certification.ExamQuestion.marks;
class AnnualBxam {

AnnualExam()

i marks = 20; Access variable marks without

: prefixing it with its class name

Correct statement is import
static, not static import

OEBPS/01fig19_alt.jpg
library

building

Book

A

«extends»
'
'

Librarian

CourseBook

StoryBook

House

OEBPS/01fig18.jpg
Access not

building
Z allowed

library

OEBPS/039fig01_alt.jpg
public class
package library; Book
public class Book (

public String isbn; s
public void printBook() {} <1 public method

} printBook

OEBPS/01fig20_alt.jpg
library building
«extendsy
Book ---{storyeook
+isbn:String House
+printBook() | [Librari.
T

«extendsn

CourseBook

OEBPS/035fig03_alt.jpg
Imports the class
Schedule only

Emscirts o o Es L ragRrts

OEBPS/01fig17.jpg
com.oracle.javacert

Schedule

associate

webdeveloper

ExamQuestion

Marksheet

OEBPS/036fig01_alt.jpg
Imports class
import com.oracle.javacert.associate.*; ExamQuestion only
import com.oracle.javacert .webdeveloper.®; PEN -

MarkSheet only

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/01fig22_alt.jpg
Library

building

Book

#author:String

#modifyTenplate ()

T
«wextiondan

CourseBook

Librarian

StoryBook

House

OEBPS/xxvifig02.jpg
null

@

OEBPS/01fig21.jpg
Same package Separate package

Derived classes v v

Unrelated classes v v

OEBPS/039fig02_alt.jpg
PEETINN. DS AN
import 1ibrary.Book;

public class House { Class Book is accessible
House () { to class House
Book book = new Book () ; Variable Isbn fs
sEEtey e = moak i accessible in House
) S PER A 7| Method printBook is

. accessible in House

OEBPS/star.jpg

OEBPS/star-2.jpg

OEBPS/xxviifig01.jpg
Same package Separate package

Dervodcasses| /' 7

Unrelated classes v v

OEBPS/xxivfig03_alt.jpg
T il bug
dismonds For
ou and treat you,

But uhat happens
7 you ercourter an
exception while buging
the diemonds?

OEBPS/xxviifig03_alt.jpg

OEBPS/xxviifig02_alt.jpg
Poor class.
Enployee doesn't
have a constructor.

Default

name = null;
| I constructor

f
i

i

i

i

i s
I age =
i

i

L,

5 > 1 Let me create
| class Employee { | one for i,

| String name; | class Employee { H
| int age; String name; |
| int age; o |
L. [Empioyecn (1,1
swper0: [T
I
|
|
|

i
|
|
|

-

OEBPS/xxviiifig02_alt.jpg
2>

=
-
s

=
[
>
10
s
12>
13>

>)

RiverRafting riverk: 1. Execute code on ine 3.

ey {
riverRafting.crossRapid(11)
riverRafting. rowRatt ("happy

System.out.println("Enjoy River Rafting");

ing = new RiverRafting();

exception.

)
cateh (FallingRiverException el) {
System.out.println("Get back in the raft~

2. Combat exception thrown by
code on lne 3. Execute exception
handler for
FalllnRiverException.

)
cateh (DropoarException e2) (
System.out.printin("Do not panic®);

)
finally (
system.out..printin(

3. finally block always

ay for the sport”);

4. Control transfers to the.
statement following the
PR RR Bs Y

System.out.println("Atter the try block");

OEBPS/xxviiifig01_alt.jpg
Value of a increments to 11 due) @ Value of a decrements to 10 due to
o postlix ++ used prior (o this. l postix — used pror 0 this.

a = at+t + a + a-- - a-- + ++a;

Valve o « il increment afer i) @ @ The value of = decrements to &

this current value is used. due 10 a-- here, but again
Since this i again a postfx notation oo 0 e .
value 11 is used before the decrement,

OEBPS/005fig01_alt.jpg
OCA Java SE 516
120.850

Aigorithm design and
implementation

«Aigorthm
+Pseudocode

~Enums

Java dovelopment fundamentals
+Use of avac command
~Use of java command

+Purpose and type ofcasses
in packages

Java platforns and
intogration technologies

+ Comparo and contrast
J2SE, J2ME, J2EE

RMI

+JDBC, QL ROMS.

+ INDI, messaging, and JMS
Gilent technologies

*HTML, JavaScript

- J2ME MiDiets

- Applts

+Swing

Server tochnologies
+EJB, series, ISP, JMS, SHTP,

JAX.RBC, WebServices, Javalai
~ Sorvet and JSP for HTML.

+EJB session, eniy and
message-diiven beans

+ Wb tr business tr, EIS i

0P concepts
- UML diagrams
«Assodition

+ Compositon

- Associaion navigation

1 Common objectives.

Java basics

Variable scope
« Structuro of Java class

Working with Java data types.
- Primitves, objec references
|+ Readwte to objec fields
 Call methods on abjects

rings
 Oporators and docision constructs
i+ Java operators.
+ i and i £-c1s0 consiucts
statoment

Creating and using arays.
« One-cimensional arays.
 Multdimensionalarrays

i Loop constructs
* fox and enhanced cox loops

+ni1e and do-un 1c 1oops
+break and cont ine statoments

i Methods and encapsuiaton

 Greale mothods with rguments
and roum typos

Apply access modifors

when they are passed (o methods

Inherttanco.

«Implement nheriance

« Polymorphism

* Difrentiate between type of
aroference varable and object

« Effect on objectreferences and primilives | * Defaul and user-defined constructors.

+Use abstractclasses and intefacos

i OCAJava SE 7 Programmer |
120803

| - Pareniheses o override
operatorprecedence.

«Tost oqualty betweon 5t and
ather objects using-- and equats ()

aytise

< keyword (0 methods

| + Overoaded constructors and methods

|~ Determine when casiing i necessary
.+ Use supos and this to access objects
and consiructors ‘

Handing exceptons.

} + Excaptions and arors
I » blocks :
« Use of xcaptions.

« Mathods tha throw exceplons.

 + Common excepton casses and

| categories

OEBPS/003fig01_alt.jpg
Java EE

Incressing dillicully level

OEBPS/star-1.jpg

OEBPS/01fig03.jpg
university

certification

@)

MultipleChoice

OEBPS/01fig04.jpg
certification

MultipleChoice

OEBPS/017fig01.jpg
package university;
import certification.ExamQuestion;

class AnnualExam { Define a variable
ExamQuestion eq; of ExamQuestion
}

OEBPS/common2.jpg

OEBPS/common1.jpg

OEBPS/01fig02.jpg
Java class components

Package statement —i
Import statements —2
Comments — %
Class declaration { —a
Variables —s
Comments i
Constructors =
Methods —
Nested dasses Not included in OCA Java
Nested interfaces Brograri 2
grammer | exam
Enum

OEBPS/01fig01_alt.jpg
I s in
SN

class person
String nane;
String gethane() {
return nane;

)

t t

Abarson Class ot Javil soiiron code Sie Java bylecode

OEBPS/016fig02_alt.jpg
class Course {

b

package certification;

| The rest of the code for class Course

1 you place the package statement after
the dass definition, the code won't compile

OEBPS/016fig01_alt.jpg
PRCHAES ORCCALLONELONR). -—

class Course (The package statement
The rest of the code Shioukd be the fiest

. o s G statement in a class

OEBPS/016fig04.jpg
package com.cert; A class can’t define multiple

package com. exams; package statements
class Course (

}

OEBPS/016fig03_alt.jpg
class Course { A package statement can’t be placed within the curly
package com.cert; braces that mark the start and end of class definition

}

OEBPS/2.jpg

OEBPS/1.jpg

OEBPS/4.jpg

OEBPS/3.jpg

OEBPS/017fig03_alt.jpg
import certification.ExamQuestion;

package university; The code won't compile because an
o " import statement can’t be placed
claasyhnmuad B | before a package statement

ExamQuestion eq;

1

OEBPS/017fig02.jpg
MPOTE PR S0 MO KRS T o)
class Annualfxam {

ExanQuestion eq; et il
} Exan

OEBPS/018fig02_alt.jpg
class MyClass {
7
Multi-line comments with
special characters s3%+(}]\|:
?/>.<, 1aHSE &* ()

Multiline comment with
special characters i it

*/

OEBPS/018fig01_alt.jpg
class MyClass {
7

comments that span multiple Multiline comments start
lines of code with /* and end with */
*/

OEBPS/018fig04_alt.jpg
Brief comment to describe variable fName
class Person {
String fName; // variable to store Person's first name a
string id; // a 6 letter id gemerated by the database T

Brief comment to describe variable

OEBPS/018fig03_alt.jpg
class MyClass {
* Multiline comments that start with * on a

+ comments that span multiple new line—don't they look well organized?
The usage of * isn't mandatory; its done

* lines of code
for aesthetic reasons.

/

OEBPS/018fig05_alt.jpg
+ @author MGupta /1 first name initial + last name End-oldine
* @version 0.1

comment within a
g multiline comment
* Class to store the details of a monument
o
package uni; // package uni <) End-of-line comment

class Monument {
int startvear;

String builtsy; // individual/ architect <—@) End-of-ine comment
b

37 andiher: nomment il Bkl commpnt ot th Sagllaning 2 4 lloe

