

 [image: cover]

 OSGi in Action: Creating Modular Applications in Java

 Richard Hall, Karl Pauls, Stuart McCulloch & David Savage

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 180 Broad Street, Suite 1323
 Stamford, CT 06901
 Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	
 	Manning Publications Co.

	[image:]
 	180 Broad Street, Suite 1323

	
 	Stamford, CT 06901

lb?>Development editor: Cynthia Kane
Copyeditor: Tiffany Taylor
Typesetter: Gordan Salinovic
Illustrator: Martin Murtonen
Cover designer: Marija Tudor

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 1. Introducing OSGi: modularity, lifecycle, and services

 Chapter 1. OSGi revealed

 Chapter 2. Mastering modularity

 Chapter 3. Learning lifecycle

 Chapter 4. Studying services

 Chapter 5. Delving deeper into modularity

 2. OSGi in practice

 Chapter 6. Moving toward bundles

 Chapter 7. Testing applications

 Chapter 8. Debugging applications

 Chapter 9. Managing bundles

 Chapter 10. Managing applications

 3. Advanced topics

 Chapter 11. Component models and frameworks

 Chapter 12. Advanced component frameworks

 Chapter 13. Launching and embedding an OSGi framework

 Chapter 14. Securing your applications

 Chapter 15. Web applications and web services

 Appendix A. Building bundles

 Appendix B. OSGi standard services

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Authors

 1. Introducing OSGi: modularity, lifecycle, and services

 Chapter 1. OSGi revealed

 1.1. The what and why of OSGi

 1.1.1. Java’s modularity limitations

 Low-Level Code Visibility Control

 Error-Prone Class Path Concept

 Limited Deployment and Management Support

 1.1.2. Can OSGi help you?

 1.2. An architectural overview of OSGi

 1.2.1. The OSGi framework

 1.2.2. Putting it all together

 1.3. “Hello, world!” examples

 1.3.1. Module layer example

 1.3.2. Lifecycle layer example

 1.3.3. Service layer example

 1.3.4. Setting the stage

 1.4. Putting OSGi in context

 1.4.1. Java Enterprise Edition

 1.4.2. Jini

 1.4.3. NetBeans

 1.4.4. Java Management Extensions

 1.4.5. Lightweight containers

 1.4.6. Java Business Integration

 1.4.7. JSR 277

 1.4.8. JSR 294

 1.4.9. Service Component Architecture

 1.4.10. .NET

 1.5. Summary

 Chapter 2. Mastering modularity

 2.1. What is modularity?

 2.1.1. Modularity vs. object orientation

 2.2. Why modularize?

 2.3. Modularizing a simple paint program

 2.4. Introducing bundles

 2.4.1. The bundle’s role in physical modularity

 2.4.2. The bundle’s role in logical modularity

 2.5. Defining bundles with metadata

 2.5.1. Human-readable information

 2.5.2. Bundle identification

 2.5.3. Code visibility

 2.5.4. Class-search order

 2.6. Finalizing the paint program design

 2.6.1. Improving the paint program’s modularization

 2.6.2. Launching the new paint program

 2.7. OSGi dependency resolution

 2.7.1. Resolving dependencies automatically

 2.7.2. Ensuring consistency with uses constraints

 2.8. Reviewing the benefits of the modular paint program

 2.9. Summary

 Chapter 3. Learning lifecycle

 3.1. Introducing lifecycle management

 3.1.1. What is lifecycle management?

 3.1.2. Why lifecycle management?

 3.2. OSGi bundle lifecycle

 3.2.1. Introducing lifecycle to the paint program

 3.2.2. The OSGi framework’s role in the lifecycle

 3.2.3. The bundle activator manifest entry

 3.2.4. Introducing the lifecycle API

 3.2.5. Lifecycle state diagram

 3.2.6. Bundle cache and framework restarts

 3.3. Using the lifecycle API in your bundles

 3.3.1. Configuring bundles

 3.3.2. Deploying bundles

 3.3.3. Inspecting framework state

 3.3.4. Persisting bundle state

 3.3.5. Listening for events

 3.3.6. Bundle suicide

 3.4. Dynamically extending the paint program

 3.5. Lifecycle and modularity

 3.5.1. Resolving bundles

 3.5.2. Refreshing bundles

 3.5.3. When updating isn’t updated

 3.6. Summary

 Chapter 4. Studying services

 4.1. The what, why, and when of services

 4.1.1. What is a service?

 4.1.2. Why use services?

 4.1.3. When to use services

 4.1.4. When not to use services

 4.1.5. Still not sure?

 4.2. OSGi services in action

 4.2.1. Publishing a service

 4.2.2. Finding and binding services

 4.3. Dealing with dynamics

 4.3.1. Avoiding common pitfalls

 4.3.2. Listening for services

 4.3.3. Tracking services

 4.4. Using services in the paint example

 4.4.1. Defining a shape service

 4.4.2. Publishing a shape service

 4.4.3. Tracking shape services

 4.5. Relating services to modularity and lifecycle

 4.5.1. Why can’t I see my service?

 4.5.2. Can I provide a bundle-specific service?

 4.5.3. When should I unget a service?

 4.5.4. When should I unregister my service?

 4.5.5. Should I bundle interfaces separately?

 4.6. Standard services

 4.6.1. Core services

 4.6.2. Compendium services

 Http Service

 Event Admin Service

 4.7. Summary

 Chapter 5. Delving deeper into modularity

 5.1. Managing your exports

 5.1.1. Importing your exports

 5.1.2. Implicit export attributes

 5.1.3. Mandatory export attributes

 5.1.4. Export filtering

 5.1.5. Duplicate exports

 5.2. Loosening your imports

 5.2.1. Optional imports

 5.2.2. Dynamic imports

 5.2.3. Optional vs. dynamic imports

 5.2.4. Logging example

 5.3. Requiring bundles

 5.3.1. Declaring bundle dependencies

 5.3.2. Aggregating split packages

 5.3.3. Issues with bundle dependencies

 5.4. Dividing bundles into fragments

 5.4.1. Understanding fragments

 5.4.2. Using fragments for localization

 5.5. Dealing with your environment

 5.5.1. Requiring execution environments

 5.5.2. Bundling native libraries

 5.6. Summary

 2. OSGi in practice

 Chapter 6. Moving toward bundles

 6.1. Turning JARs into bundles

 6.1.1. Choosing an identity

 6.1.2. Exporting packages

 6.1.3. Discovering what to import

 6.1.4. Embedding vs. importing

 6.1.5. Adding lifecycle support

 6.1.6. JAR file to bundle cheat sheet

 6.2. Splitting an application into bundles

 6.2.1. Making a mega bundle

 6.2.2. Slicing code into bundles

 6.2.3. Loosening things up

 6.2.4. To bundle or not to bundle?

 6.3. Summary

 Chapter 7. Testing applications

 7.1. Migrating tests to OSGi

 7.1.1. In-container testing

 7.1.2. Bundling tests

 7.1.3. Covering all the bases

 7.2. Mocking OSGi

 7.2.1. Testing expected behavior

 7.2.2. Mocking in action

 7.2.3. Mocking unexpected situations

 7.2.4. Coping with multithreaded tests

 7.2.5. Exposing race conditions

 7.3. Advanced OSGi testing

 7.3.1. OSGi test tools

 7.3.2. Running tests on multiple frameworks

 7.3.3. Unit testing

 7.3.4. Integration testing

 7.3.5. Management testing

 7.4. Summary

 Chapter 8. Debugging applications

 8.1. Debugging bundles

 8.1.1. Debugging in action

 8.1.2. Making things right with HotSwap

 8.2. Solving class-loading issues

 8.2.1. ClassNotFoundException vs. NoClassDefFoundError

 8.2.2. Casting problems

 8.2.3. Using uses constraints

 8.2.4. Staying clear of Class.forName()

 8.2.5. Following the Thread Context Class Loader

 8.3. Tracking down memory leaks

 8.3.1. Analyzing OSGi heap dumps

 8.4. Dangling services

 8.4.1. Finding a dangling service

 8.4.2. Protecting against dangling services

 8.5. Summary

 Chapter 9. Managing bundles

 9.1. Versioning packages and bundles

 9.1.1. Meaningful versioning

 9.1.2. Package versioning

 9.1.3. Bundle versioning

 9.2. Configuring bundles

 9.2.1. Configuration Admin Service

 9.2.2. Metatype Service

 9.2.3. Preferences Service

 9.3. Starting bundles lazily

 9.3.1. Understanding activation policies

 9.3.2. Using activation policies

 9.4. Summary

 Chapter 10. Managing applications

 10.1. Deploying bundles

 10.1.1. Introducing management agents

 10.1.2. OSGi Bundle Repository

 10.1.3. Deployment Admin

 10.2. Ordering bundle activation

 10.2.1. Introducing the Start Level Service

 10.2.2. Using the Start Level Service

 10.3. Summary

 3. Advanced topics

 Chapter 11. Component models and frameworks

 11.1. Understanding component orientation

 11.1.1. What are components?

 11.1.2. Why do we want components?

 11.2. OSGi and components

 11.2.1. OSGi’s service-oriented component model

 11.2.2. Improving upon OSGi’s component model

 11.2.3. Painting with components

 11.3. Declarative Services

 11.3.1. Building Declarative Services components

 11.3.2. Providing services with Declarative Services

 11.3.3. Consuming services with Declarative Services

 11.3.4. Declarative Services component lifecycle

 11.4. Summary

 Chapter 12. Advanced component frameworks

 12.1. Blueprint Container

 12.1.1. Blueprint architecture

 12.1.2. Providing services with Blueprint

 12.1.3. Consuming services with Blueprint

 12.1.4. Blueprint component lifecycle

 12.1.5. Advanced Blueprint features

 12.2. Apache Felix iPOJO

 12.2.1. Building iPOJO components

 12.2.2. Providing services with iPOJO

 12.2.3. Consuming services with iPOJO

 12.2.4. iPOJO component lifecycle

 12.2.5. Instantiating components with iPOJO

 12.3. Mix and match

 12.4. Summary

 Chapter 13. Launching and embedding an OSGi framework

 13.1. Standard launching and embedding

 13.1.1. Framework API overview

 13.1.2. Creating a framework instance

 13.1.3. Configuring a framework

 13.1.4. Starting a framework instance

 13.1.5. Stopping a framework instance

 13.2. Launching the framework

 13.2.1. Determining which bundles to install

 13.2.2. Shutting down cleanly

 13.2.3. Configuring, creating, and starting the framework

 13.2.4. Installing the bundles

 13.2.5. Starting the bundles

 13.2.6. Starting the main bundle

 13.2.7. Waiting for shutdown

 13.3. Embedding the framework

 13.3.1. Inside vs. outside

 13.3.2. Who’s in control?

 13.3.3. Embedded framework example

 13.4. Summary

 Chapter 14. Securing your applications

 14.1. To secure or not to secure

 14.2. Security: just do it

 14.2.1. Java and OSGi security

 14.3. OSGi-specific permissions

 14.3.1. PackagePermission

 14.3.2. BundlePermission

 14.3.3. AdminPermission

 14.3.4. ServicePermission

 14.3.5. Relative file permissions

 14.4. Managing permissions with Conditional Permission Admin

 14.4.1. Conditional permissions

 14.4.2. Introducing the Conditional Permission Admin Service

 14.4.3. Bundle location condition

 14.4.4. Using ConditionalPermissionAdmin

 14.4.5. Implementing a policy-file reader

 14.5. Digitally signed bundles

 14.5.1. Learning the terminology

 14.5.2. Creating certificates and signing bundles

 14.5.3. BundleSignerCondition

 14.6. Local permissions

 14.7. Advanced permission management

 14.7.1. Custom conditions overview

 14.7.2. Date-based condition

 14.7.3. User-input condition

 14.8. Bringing it all back home

 14.9. Summary

 Chapter 15. Web applications and web services

 15.1. Creating web applications

 15.1.1. Using the HTTP Service specification

 15.1.2. Using the Web Applications specification

 15.1.3. Standard WARs: the Web URL Handler

 15.2. Providing and consuming web services

 15.2.1. Providing a web service

 15.2.2. Consuming a web service

 15.2.3. Distributing services

 15.3. Summary

 Appendix A. Building bundles

 A.1. Building with Ant

 A.1.1. Introducing the bnd tool

 A.1.2. Headers

 A.1.3. Directives

 A.1.4. Variables and macros

 A.1.5. Choosing a version policy

 A.1.6. Mending split packages

 A.2. Building with Maven

 A.2.1. Introducing the maven-bundle-plugin

 A.2.2. Going undercover

 A.2.3. Embedding dependencies

 A.2.4. Deploying artifacts to OBR

 A.2.5. Bundling non-JAR projects

 A.3. For your consideration

 A.3.1. Eclipse PDE

 A.3.2. Apache Felix Sigil

 A.3.3. Eclipse bndtools

 A.3.4. IDEA Osmorc

 A.3.5 NetBeans Netisgo

 A.3.6. Maven Tycho

 A.3.7. Spring Bundlor

 Appendix B. OSGi standard services

 B.1. Core OSGi services

 B.2. Compendium OSGi services

 B.3. Enterprise OSGi services

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 It was during the very hot summer of 2003 that I first heard of Richard S. Hall. During a coffee break, a colleague from Deutsche
 Telekom told me that the local university had a teacher who was very much into OSGi. This teacher was the author of Oscar,
 one of the first open source OSGi frameworks. In 2003, wholeheartedly adopting OSGi was rare, so I was intrigued. Also around
 that time, Eclipse was investigating moving to a new module system, and I was asked to participate as an OSGi expert. I thought
 Richard could be valuable for this, so I asked him to join the Equinox committee. That innocent invitation started an enormously
 long email thread that hasn’t ended yet and, I hope, never will. Richard is often abrasive when specifications aren’t clear,
 or worse, when we attempt to violate modular purity. Sometimes I think he physically feels pain if we have to compromise on
 a dirty feature. As an invited OSGi researcher, he has became one of the key people behind the specifications, making sure
 we don’t bloat the framework and always follow our principles.

 When Manning sent a flattering email proposing an OSGi in Action book to the key OSGi people, Richard was among them. This email triggered intense discussions about collectively writing
 this book; the idea to write a book had been discussed many times before. We went into negotiations with Manning, but in the
 end I withdrew from the group, urging the others to continue. Why did I bail out? As the editor of the OSGi specifications,
 I was aware of how much work it is to write a book in collaboration with other opinionated people. To extend my day job into
 the night and weekends for free wasn’t something I was looking forward to, regardless of how much I liked and appreciated
 these guys. Unfortunately, my desertion deflated the effort, and it faltered.

 Until the day Richard told me he had picked up the book effort again from where we had stopped, now with a better team: Karl
 Pauls, Stuart McCulloch, and David Savage. Each of these authors is a great contributor to the open source world as well as
 to the OSGi specifications: Karl for his work on Felix and his testimony to modularity by doing Felix security as a separate
 bundle, proving that even the framework architecture is modular; Stuart for his work on the Maven bundle plugin, the popular
 Ops4J work, and the Peaberry extension to Guice; and David for the excellent work he is doing with Sigil at Apache and his
 work at Paremus. It would be hard to come up with a team that knows more about how OSGi is used in the real world. All this
 experience radiates from the chapters they’ve written in this impressive book.

 While this team undertook the Herculean effort to write this book, I was in close contact with them all along the way—not
 only because of our work in the OSGi Alliance, but also because authoring a book about OSGi is likely to expose weakness or
 deficiencies in the specifications, which then obviously results in another, often heated argument over Skype or email. Unfortunately,
 to my chagrin, the team was too often right.

 They also asked me to provide the text about the history of OSGi, an effort that resulted in probably the highest compression
 rate ever achieved. Of the 4,356 words I wrote, I think the word OSGi remained. But this is exactly what I like: the quest for quality drove this book, not only in its details but also in its
 form. It isn’t like many books today, full of listings outlining in minute steps how to achieve a result. No, this is a book
 exactly the way I like it: not only showing in detail how to use OSGi, but also going to great length to point out the rationale.
 It’s a book that explains.

 And such a book is needed today. I understand that OSGi isn’t easy. Although it builds on an object-oriented foundation, it
 adds a new set of design primitives to address the shortcomings of object-oriented design that were uncovered when applications
 became humongous assemblies of multiple open source projects and proprietary code. Objects remain an invaluable technique
 for building software, but the object-oriented paradigm isn’t well suited to allowing large building blocks (components) collaborate
 without causing too much coupling. We desperately fight objects with patterns like factories and class-loading hacks, but
 at a certain scale the work to prevent coupling becomes a significant part of our efforts. Dependency injection alleviated
 much of the coding pain but moved a lot of the code into XML, a language that has the most ill-suited syntax imaginable for
 human programming tasks. Annotations provide another level of support for dealing with coupling-—but cause a coupling problem
 in themselves. Many of the painkillers we use to alleviate coupling are largely cosmetic because boundaries aren’t enforced
 at execution time in traditional Java.

 OSGi is different. It treats an application as a collaboration of peer modules: modules that can adapt themselves to the environment
 instead of assuming that the environment is adapted to them. Adapting to the environment requires a reification of that environment,
 and this is where OSGi has its biggest innovation: µServices. µServices are the oil between modules that allows modules to
 evolve over time without affecting other modules. During a recent OSGi community event, David Savage used the term spiky to describe modules, to indicate how a set of modules causes friction that makes it hard to change each module. µServices
 are a design primitive in OSGi that is so powerful, it’s even possible to update or install modules on the fly without bringing
 down the application. They palliate the spikes of modules by reifying the interconnection between modules.

 µServices are a new paradigm that requires a way of thinking that is different from what is prevalent in Java today. In many
 ways, OSGi is where object-oriented programming was 25 years ago, providing new design primitives that were ill understood
 by the mainstream. Objects required a generation to grow up thinking in terms of design primitives like polymorphism, inheritance,
 classes, and objects. OSGi is on the verge of making a new paradigm shift happen with its bundles and µServices. I believe
 that these design primitives will be the next software paradigm after object orientation. This book is an excellent way to
 become part of the generation that can really think in OSGi and reap its full benefits.

 PETER KRIENS

 OSGI TECHNICAL DIRECTOR

Preface

 When I started working with OSGi technology back in 2000, I would’ve never guessed I’d still be working with it a decade later.
 Back then, OSGi was targeting the embedded market niche, but that wasn’t my area of interest. I wanted to create highly dynamic,
 modular applications, and OSGi gave me the possibility of doing so. At the time, there weren’t any freely available OSGi framework
 implementations; so I started working on my own open source implementation, called Oscar, back in December 2000 while I was working at Free University Berlin. Oscar moved with me when I moved to Grenoble to work
 at Josef Fourier University, where the work really started to flourish.

 As OSGi technology began to gain traction, Oscar moved to the ObjectWeb open source consortium in 2004, and later it evolved
 into Felix at the Apache Software Foundation in 2005. I was fortunate enough to be invited by the OSGi Alliance to work directly
 on the OSGi specifications for the R4 release cycle in 2004. I’ve been involved in the OSGi specification process ever since,
 initially as an academic researcher and most recently in industry, when I took a position on the GlassFish team at Sun Microsystems
 (now Oracle Corp.) in 2008. A lot has changed over the last 10 years.

 OSGi technology has moved beyond the embedded market into a full-blown module system for Java. This transformation was significantly
 helped along in 2004 when the Eclipse IDE refactored its plugin system to run on top of OSGi, and it has continued with the
 adoption of the technology in enterprise circles by Spring and all the major application servers. Although the future of Java
 modularity is still evolving, OSGi technology looks to play a role for a long time to come. Which brings us back to this book.

 I’d been kicking around the idea of writing an OSGi book for a couple of years, but given the enormity of the task and my
 life-long time deficit, I never got around to it. In the summer of 2008, I finally got serious and began writing, only to
 find myself quickly bogged down. It wasn’t until Karl and Stuart offered to help, and later David, that we were finally able
 to slay the beast. Our varied OSGi experience provided just the right mix. Even then, it’s taken us two years, a few career
 changes, and the birth of several children to see it to an end. We hope you’ll find our efforts helpful.

 RICHARD S. HALL

Acknowledgments

 We thank Peter Kriens for his in-depth feedback that improved the book and for writing the foreword. Thanks also to all the
 early readers of the manuscript and the book forum posters who provided valuable feedback throughout the writing process.

 The following peer reviewers who read the manuscript at various stages of its development deserve special thanks for their
 time and effort: Cheryl Jeroza, David Kemper, Gabor Paller, Jason Lee, Massimo Perga, Joseph Ottinger, Jeroen Benckhuijsen,
 Ted Neward, Denis Kurilenko, Robert “Kebernet” Cooper, Ken Chien, Jason Kolter, Jeremy Flowers, Paul King, Erik van Oosten,
 Jeff Davis, Doug Warren, Peter Johnson, Costantino Cerbo, Dmitry Sklyut, David Dossot, Mykel Alvis, Eric Swanson, Patrick
 Steger, Jeff Addison, Chad Davis, Peter Pavlovich, Ramarao Kanneganti, Steve Gutz, Tijs Rademakers, John Griffin, and Sivakumar
 Thyagarajan. Their suggestions made this a better book. We’d also like to single out Norman Richards for his technical proofreading
 of the final manuscript during production.

 The staff at Manning have been supportive throughout this lengthy ordeal; we’d especially like to thank our development editor
 Cynthia Kane for putting up with us; also Marjan Bace, Michael Stephens, and the production team of Tiffany Taylor, Katie
 Tennant, and Gordan Salinovic.

 Last, we’d like to thank the Apache Felix community for their contributions to all the code and discussions over the years.

 Individually, Richard thanks his wife and daughter and apologizes for the many distractions this book caused. Karl thanks
 his wife Doreen and his children Elisabeth and Holger for all the love, support, and understanding. Stuart thanks his dear
 wife Hayfa for the motivation to finish this book. David thanks his wonderful family, and especially his wife Imogen, for
 the support and encouragement to finish this book.

About this Book

 The OSGi specifications are well written and elaborate, so if you need to know details about OSGi technology, the specifications
 are the place to look. If you do, you’ll discover that they were written for someone who is going to implement the specifications,
 not use them. This book started out as an attempt to remedy this situation by creating a user-oriented companion guide for
 the specifications. Our goal wasn’t to create an OSGi cookbook but to thoroughly describe the important aspects of OSGi and
 show how to use them. Our main idea was to more simply explain the OSGi specifications by ignoring the implementation details
 and including additional usage information.

 To that end, we’ve tried to limit ourselves to discussing the most common concepts, features, and mechanisms needed to work
 with OSGi technology throughout the book. That doesn’t mean we were able to avoid all the esoteric details. As you’ll find
 when you begin working with OSGi, it enforces a new level of strictness when it comes to modularity, which will likely break
 some of your old practices. In the end, you need to understand what’s going on under the covers in some places to be able
 to effectively debug and diagnose the situations in which you find yourself.

 As our writing progressed, the book chapters began to separate naturally into three parts:

	Explaining the core OSGi specification

 	Describing how to work with the specification in practice

 	Introducing advanced OSGi-related topics

In part 1 of the book, we focus on explaining the most common aspects of the OSGi core specification from the user’s perspective. We
 introduce OSGi according to its three-layer architecture: module, lifecycle, and services. This isn’t the only approach to
 take in explaining OSGi; most explanations of OSGi start out with a simple bundle implementing a simple service. The downside
 of this type of approach, in our view, is that it cuts across all three OSGi layers at once, which would require us to explain all three layers at once.

 The advantage of following a layered approach is that doing so creates a clear division among the concepts we need to discuss.
 For example, the modularity chapter focuses on modularity concepts and can largely ignore lifecycle and services. This approach
 also creates a natural progression, because modularity is the foundation of OSGi, lifecycle builds on it, and services are
 on top of lifecycle. We can also highlight how to use lower layers of the OSGi architecture without using the upper layers,
 which is sometimes worthwhile.

 Part 2 of the book takes the knowledge about the OSGi core specification from part 1 and shows how you can use the technology from a more pragmatic viewpoint. We look into converting existing JAR files to bundles
 as well as testing, debugging, and managing bundles. These first two parts of the book should be of general interest to anyone
 wanting to learn more about using OSGi.

 Part 3 covers various advanced topics, such as service-oriented component models, framework launching, security, and distributed
 computing technologies. This last part serves as a springboard to the world of possibilities available to you in the OSGi
 universe.

Roadmap

 Chapter 1 presents a high-level view of OSGi technology and the issues it’s intended to address. To keep the chapter from being totally
 abstract, we present a few “Hello, world!” examples to illustrate the different layers of the OSGi framework, but the real
 meat of our OSGi discussion is in the following chapters. We also look at the state of modularity support in Java as well
 as in some related technologies.

 Chapter 2 explores the module layer of the OSGi framework. We start with a general discussion of modularity in computing and then continue
 by describing OSGi’s module concept, called a bundle. We present OSGi’s declarative metadata-based approach for creating modules and show how to use it to modularize a simple
 paint program. We also investigate one of the key OSGi tasks: bundle dependency resolution.

 Chapter 3 looks at the lifecycle layer of the OSGi framework. We discuss lifecycle management in general and describe how OSGi provides
 dynamic lifecycle management of bundles. We present OSGi’s lifecycle-related APIs by creating a simple OSGi shell and also
 adapt our paint program to make it lifecycle aware.

 Chapter 4 examines the services layer of the OSGi framework. We describe what services are and discuss why and when you need them.
 We walk you through providing and using services with some toy examples and then take an iterative approach to describing
 how to deal with the unique aspect of service dynamism. We finish our service discussion by adapting the paint program, this
 time to use dynamic services.

 Chapter 5 returns to the module layer and examines its more advanced or nuanced capabilities. We describe additional ways for bundles
 to deal with dependencies and content using bundle-level dependencies and bundle fragments. You also learn how bundles can
 deal with execution environments and native libraries.

 Chapter 6 gives practical advice for converting JAR files into bundles, including how to define bundle metadata, package your bundle
 content, and add lifecycle support. We also describe how to go about dividing an application into bundles, demonstrating techniques
 on an existing open source project.

 Chapter 7 shows how to test bundles and OSGi-based applications. We look into running your existing tests in OSGi and mocking OSGi
 APIs. In addition to unit and integration testing, we discuss management testing and explore some tools to help you along
 the way.

 Chapter 8 follows testing by describing how to debug your bundles. We look into simple, command-line debugging as well as debugging
 with the Eclipse IDE. We show how to set up your development environment to get you up to speed quickly. We also explain some
 of the typical issues you encounter when working with OSGi and how to deal with them.

 Chapter 9 switches gears and discusses how to manage your bundles. We explain how to meaningfully define version numbers for packages
 and bundles. We look into managing bundle configuration data and in the process describe a handful of related OSGi services.
 We also cover an option for triggering automatic bundle startup and initialization.

 Chapter 10 continues investigating management topics, but moves from single-bundle issues to multi-bundle ones. We look at a couple
 of approaches for deploying bundles and their dependencies. We also explain how you can control bundle startup order.

 Chapter 11 describes how component-oriented programming relates to OSGi. As a concrete example, we look at a standard OSGi component
 framework called Declarative Services. We show how Declarative Services allows you to work with POJOs and simplifies some aspects of dealing with service dynamism.

 Chapter 12 continues investigating more advanced component frameworks for OSGi. We look at Blueprint, which is targeted toward enterprise
 developers familiar with Spring technology. We also examine the Apache Felix iPOJO component framework. We show that one of
 the benefits of OSGi-based component frameworks is they can all work together via services.

 Chapter 13 turns away from developing bundles and looks at launching the OSGi framework. We describe the standard approach for configuring
 and creating OSGi frameworks. We also show how you can use the standard API to embed an OSGi framework into an existing application.

 Chapter 14 delves into operating OSGi in a secure environment. We describe the issues involved and approaches to alleviating them. We
 explain how OSGi extends the standard Java security architecture to make it more flexible and easier to manage. And we show
 how to set up an OSGi framework with security enabled and create a secure example application.

 Chapter 15 closes the book with a quick look at using web-related technologies in OSGi. We discuss using some common web applications
 technologies, such as servlets, JSPs, and WAR files. We also look into how to publish and consume web services.

Code

 The companion code for the examples in this book is freely available from Manning’s website, www.manning.com/OSGiinAction.

 In the text, Courier typeface is used to denote code as well as JAR file manifest headers. References to methods generally don’t include the signature,
 except when it’s necessary to differentiate. The coding style adopts two-space indents and same-line braces to keep everything
 condensed and isn’t otherwise recommended. When presenting command or shell interaction, normal Courier typeface is used to indicate program output, while bold is used to indicate user input.

 Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered bullets link to
 explanations that follow the listing.

Author Online

 Purchase of OSGi in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/OSGiinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking them some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember are things they discover during self-motivated
 exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, re-telling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it is example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want, just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The figure on the cover of OSGi in Action is a “Soldier.” The illustration is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802,
 by William Miller of Old Bond Street, London. The title page is missing from the collection and we have been unable to track
 it down to date. The book’s table of contents identifies the figures in both English and French, and each illustration bears
 the names of two artists who worked on it, both of whom would no doubt be surprised to find their art gracing the front cover
 of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present. Dress codes have changed since then and the diversity by region,
 so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying
 to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied
 and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

About the Authors

 RICHARD S. HALL is an active member of the Apache Felix framework development team as well as other Felix subprojects. He has been
 involved in open source OSGi work since 2000 and directly involved in the OSGi Alliance since 2004. Richard is a member of
 the Apache Software Foundation and works for Oracle on the GlassFish team, helping out out on OSGi issues or anything else,
 if he can.

 KARL PAULS implemented the Apache Felix Framework Security Provider and is an active member of the Apache Felix framework development
 team as well as other Felix subprojects. He is a member of the Apache Software Foundation and is involved in various Apache
 and other open source projects. Karl is a fellow at Luminis.

 STUART MCCULLOCH is responsible for the maven-bundle-plugin at Apache Felix and the Pax-Construct tools for rapid OSGi development from OPS4j.
 He is also the author of Peaberry, a Guice extension for injecting dynamic services. Stuart is a consultant at Sonatype, working
 on dependency injection and modularization.

 DAVID SAVAGE works for Paremus and has been designing and building OSGi applications since 2005 in many different areas including build
 tools, component models, data persistence, desktop UIs, management, messaging, provisioning, resolvers, and RPC. He contributes
 to the Apache Felix project especially in the area of development tooling via the Sigil subproject. He is also directly involved
 in developing specifications for the OSGi Alliance.

Part 1. Introducing OSGi: modularity, lifecycle, and services

 The OSGi framework defines a dynamic module system for Java. It gives you better control over the structure of your code,
 the ability to dynamically manage your code’s lifecycle, and a loosely coupled approach for code collaboration. Even better,
 it’s fully documented in a very elaborate specification. Unfortunately, the specification was written for people who are going
 to implement it rather than use it. In the first part of this book, we’ll remedy this situation by effectively creating a
 user-oriented companion guide to the OSGi framework specification. We’ll delve into its details by breaking it into three
 layers: module, lifecycle, and services. We’ll explain what you need to understand from the specification to effectively use
 OSGi technology.

Chapter 1. OSGi revealed

	

 This chapter covers

	
Understanding Java’s built-in support for modularity

 	Introducing OSGi technology and how it improves Java modularity

 	Positioning OSGi with respect to other technologies

	

The Java platform is an unqualified success story. It’s used to develop applications for everything from small mobile devices
 to massive enterprise endeavors. This is a testament to its well-thought-out design and continued evolution. But this success
 has come in spite of the fact that Java doesn’t have explicit support for building modular systems beyond ordinary object-oriented
 data encapsulation.

 What does this mean to you? If Java is a success despite its lack of advanced modularization support, then you may wonder
 if that absence is a problem. Most well-managed projects have to build up a repertoire of project-specific techniques to compensate
 for the lack of modularization in Java. These include the following:

	Programming practices to capture logical structure

 	Tricks with multiple class loaders

 	Serialization between in-process components

But these techniques are inherently brittle and error prone because they aren’t enforceable via any compile-time or execution-time
 checks. The end result has detrimental impacts on multiple stages of an application’s lifecycle:

	
Development —You’re unable to clearly and explicitly partition development into independent pieces.

 	
Deployment —You’re unable to easily analyze, understand, and resolve requirements imposed by the independently developed pieces composing
 a complete system.

 	
Execution —You’re unable to manage and evolve the constituent pieces of a running system, nor minimize the impact of doing so.

It’s possible to manage these issues in Java, and lots of projects do so using the custom techniques mentioned earlier, but
 it’s much more difficult than it should be. We’re tying ourselves in knots to work around the lack of a fundamental feature.
 If Java had explicit support for modularity, then you’d be freed from such issues and could concentrate on what you really
 want to do, which is developing the functionality of your application.

 Welcome to the OSGi Service Platform. The OSGi Service Platform is an industry standard defined by the OSGi Alliance to specifically
 address the lack of support for modularity in the Java platform. As a continuation of its modularity support, it introduces
 a service-oriented programming model, referred to by some as SOA in a VM, to help you clearly separate interface from implementation. This chapter will give you an overview of the OSGi Service Platform
 and how it helps you create modular and manageable applications using an interface-based development model.

 When we’ve finished this chapter, you’ll understand what role OSGi technology plays among the arsenal of Java technologies
 and why Java and/or other Java-related technologies don’t address the specific features provided by OSGi technology.

1.1. The what and why of OSGi

 The $64,000 question is, “What is OSGi?” The simplest answer to this question is that it’s a modularity layer for the Java
 platform. Of course, the next question that may spring to mind is, “What do you mean by modularity?” Here we use modularity more or less in the traditional computer-science sense, where the code of your software application is divided into logical
 parts representing separate concerns, as shown in figure 1.1. If your software is modular, you can simplify development and improve maintainability by enforcing the logical module boundaries; we’ll discuss more modularity details in chapter 2.

 Figure 1.1. Modularity refers to the logical decomposition of a large system into smaller collaborating pieces.

 [image:]

 The notion of modularity isn’t new. The concept became fashionable back in the 1970s. OSGi technology is cropping up all over
 the place—for example, as the runtime for the Eclipse IDE and the GlassFish application server. Why is it gaining popularity
 now? To better understand why OSGi is an increasingly important Java technology, it’s worthwhile to understand some of Java’s
 limitations with respect to creating modular applications. When you understand that, then you can see why OSGi technology
 is important and how it can help.

 1.1.1. Java’s modularity limitations

 Java provides some aspects of modularity in the form of object orientation, but it was never intended to support coarse-grained
 modular programming. Although it’s not fair to criticize Java for something it wasn’t intended to address, the success of
 Java has resulted in difficulty for developers who ultimately have to deal with their need for better modularity support.

 Java is promoted as a platform for building all sorts of applications for domains ranging from mobile phone to enterprise
 applications. Most of these endeavors require, or could at least benefit from, broader support for modularity. Let’s look
 at some of Java’s modularity limitations.

Low-Level Code Visibility Control

 Although Java provides a fair complement of access modifiers to control visibility (such as public, protected, private, and package private), these tend to address low-level object-oriented encapsulation and not logical system partitioning.
 Java has the notion of a package, which is typically used for partitioning code. For code to be visible from one Java package to another, the code must be
 declared public (or protected if using inheritance). Sometimes, the logical structure of your application calls for specific code to belong in different
 packages; but this means any dependencies among the packages must be exposed as public, which makes them accessible to everyone else, too. Often, this can expose implementation details, which makes future evolution
 more difficult because users may end up with dependencies on your nonpublic API.

 To illustrate, let’s consider a trivial “Hello, world!” application that provides a public interface in one package, a private
 implementation in another, and a main class in yet another.

 Listing 1.1. Example of the limitations of Java’s object-orientated encapsulation

 [image:]

 Listing 1.1’s author may have intended a third party to only interact with the application via the Greeting interface [image:]. They may mention this in Javadoc, tutorials, blogs, or even email rants, but nothing stops a third party from constructing
 a new GreetingImpl using its public constructor [image:] as is done at [image:].

 You may argue that the constructor shouldn’t be public and that there is no need to split the application into multiple packages,
 which could well be true in this trivial example. But in real-world applications, class-level visibility when combined with
 packaging turns out to be a crude tool for ensuring API coherency. Because supposedly private implementation details can be
 accessed by third-party developers, you need to worry about changes to private implementation signatures as well as to public
 interfaces when making updates.

 This problem stems from the fact that although Java packages appear to have a logical relationship via nested packages, they
 don’t. A common misconception for people first learning Java is to assume that the parent-child package relationship bestows
 special visibility privileges on the involved packages. Two packages involved in a nested relationship are equivalent to two
 packages that aren’t. Nested packages are largely useful for avoiding name clashes, but they provide only partial support
 for the logical code partitioning.

 What this all means is that, in Java, you’re regularly forced to decide between the following:

	Impairing your application’s logical structure by lumping unrelated classes into the same package to avoid exposing nonpublic
 APIs

 	Keeping your application’s logical structure by using multiple packages at the expense of exposing nonpublic APIs so they
 can be accessed by classes in different packages

Neither choice is particularly palatable.

Error-Prone Class Path Concept

 The Java platform also inhibits good modularity practices. The main culprit is the Java class path. Why does the class path
 pose problems for modularity? Largely due to all the issues it hides, such as code versions, dependencies, and consistency.
 Applications are generally composed of various versions of libraries and components. The class path pays no attention to code
 versions—it returns the first version it finds. Even if it did pay attention, there is no way to explicitly specify dependencies.
 The process of setting up your class path is largely trial and error; you just keep adding libraries until the VM stops complaining
 about missing classes.

 Figure 1.2 shows the sort of “class path hell” often found when more than one JAR file provides a given set of classes. Even though
 each JAR file may have been compiled to work as a unit, when they’re merged at execution time, the Java class path pays no
 attention to the logical partitioning of the components. This tends to lead to hard-to-predict errors, such as NoSuchMethodError, when a class from one JAR file interacts with an incompatible class version from another.

 Figure 1.2. Multiple JARs containing overlapping classes and/or packages are merged based on their order of appearance in the class path,
 with no regard to logical coherency among archives.

 [image:]

 In large applications created from independently developed components, it isn’t uncommon to have dependencies on different
 versions of the same component, such as logging or XML parsing mechanisms. The class path forces you to choose one version
 in such situations, which may not always be possible. Worse, if you have multiple versions of the same package on the class
 path, either on purpose or accidentally, they’re treated as split packages by Java and are implicitly merged based on order
 of appearance.

 Overall, the class path approach lacks any form of consistency checking. You get whatever classes have been made available
 by the system administrator, which is likely only an approximation of what the developer expected.

Limited Deployment and Management Support

 Java also lacks support when it comes to deploying and managing your application. There is no easy way in Java to deploy the
 proper transitive set of versioned code dependencies and execute your application. The same is true for evolving your application
 and its components after deployment.

 Consider the common requirement of wanting to support a dynamic plugin mechanism. The only way to achieve such a benign request
 is to use class loaders, which are low level and error prone. Class loaders were never intended to be a common tool for application
 developers, but many of today’s systems require their use. A properly defined modularity layer for Java can deal with these
 issues by making the module concept explicit and raising the level of abstraction for code partitioning.

 With this better understanding of Java’s limitations when it comes to modularity, we can ponder whether OSGi is the right
 solution for your projects.

 1.1.2. Can OSGi help you?

 Nearly all but the simplest of applications can benefit from the modularity features OSGi provides, so if you’re wondering
 if OSGi is something you should be interested in, the answer is most likely, “Yes!” Still not convinced? Here are some common
 scenarios you may have encountered where OSGi can be helpful:

	
ClassNotFoundExceptions when starting your application because the class path wasn’t correct. OSGi can help by ensuring that code dependencies are
 satisfied before allowing the code to execute.

 	Execution-time errors from your application due to the wrong version of a dependent library on the class path. OSGi verifies
 that the set of dependencies are consistent with respect to required versions and other constraints.

 	Type inconsistencies when sharing classes among modules: put more concretely, the dreaded appearance of foo instanceof Foo == false. With OSGi, you don’t have to worry about the constraints implied by hierarchical class-loading schemes.

 	Packaging an application as logically independent JAR files and deploying only those pieces you need for a given installation.
 This pretty much describes the purpose of OSGi.

 	Packaging an application as logically independent JAR files, declaring which code is accessible from each JAR file, and having
 this visibility enforced. OSGi enables a new level of code visibility for JAR files that allows you to specify what is and
 what isn’t visible externally.

 	Defining an extensibility mechanism for an application, like a plugin mechanism. OSGi modularity is particularly suited to
 providing a powerful extensibility mechanism, including support for execution-time dynamism.

As you can see, these scenarios cover a lot of use cases, but they’re by no means exhaustive. The simple and non-intrusive
 nature of OSGi tends to make you discover more ways to apply it the more you use it. Having explored some of the limitations
 of the standard Java class path, we’ll now properly introduce you to OSGi.

1.2. An architectural overview of OSGi

 The OSGi Service Platform is composed of two parts: the OSGi framework and OSGi standard services (depicted in figure 1.3). The framework is the runtime that implements and provides OSGi functionality. The standard services define reusable APIs
 for common tasks, such as Logging and Preferences.

 Figure 1.3. The OSGi Service Platform specification is divided into halves, one for the OSGi framework and one for standard services.

 [image:]

 The OSGi specifications for the framework and standard services are managed by the OSGi Alliance (www.osgi.org/). The OSGi Alliance is an industry-backed nonprofit corporation founded in March 1999. The framework specification is now
 on its fourth major revision and is stable. Technology based on this specification is in use in a range of large-scale industry
 applications, including (but not limited to) automotive, mobile devices, desktop applications, and more recently enterprise
 application servers.

	

Note

 Once upon a time, the letters OSGi were an acronym that stood for the Open Services Gateway Initiative. This acronym highlights the lineage of the technology
 but has fallen out of favor. After the third specification release, the OSGi Alliance officially dropped the acronym, and
 OSGi is now a trademark for the technology.

	

In the bulk of this book, we’ll discuss the OSGi framework, its capabilities, and how to use these capabilities. Because there
 are so many standard services, we’ll discuss only the most relevant and useful services, where appropriate. For any service
 we miss, you can get more information from the OSGi specifications. For now, we’ll continue our overview of OSGi by introducing
 the broad features of the OSGi framework.

 1.2.1. The OSGi framework

 The OSGi framework plays a central role when you create OSGi-based applications, because it’s the application’s execution
 environment. The OSGi Alliance’s framework specification defines the proper behavior of the framework, which gives you a well-defined
 API to program against. The specification also enables the creation of multiple implementations of the core framework to give
 you some freedom of choice; there are a handful of well-known open source projects, such as Apache Felix (http://felix.apache.org/), Eclipse Equinox (www.eclipse.org/equinox/), and Knopflerfish (www.knopflerfish.org/). This ultimately benefits you, because you aren’t tied to a particular vendor and can program against the behavior defined
 in the specification. It’s sort of like the reassuring feeling you get by knowing you can go into any McDonald’s anywhere
 in the world and get the same meal!

 OSGi technology is starting to pop up everywhere. You may not know it, but if you use an IDE to do your Java development,
 it’s possible you already have experience with OSGi. The Equinox OSGi framework implementation is the underlying runtime for
 the Eclipse IDE. Likewise, if you use the GlassFish v3 application server, you’re also using OSGi, because the Apache Felix
 OSGi framework implementation is its runtime. The diversity of use cases attests to the value and flexibility provided by
 the OSGi framework through three conceptual layers defined in the OSGi specification (see figure 1.4):

 Figure 1.4. OSGi layered architecture

 [image:]

	
Module layer —Concerned with packaging and sharing code

 	
Lifecycle layer —Concerned with providing execution-time module management and access to the underlying OSGi framework

 	
Service layer —Concerned with interaction and communication among modules, specifically the components contained in them

Like typical layered architectures, each layer is dependent on the layers beneath it. Therefore, it’s possible for you to
 use lower OSGi layers without using upper ones, but not vice versa. The next three chapters discuss these layers in detail,
 but we’ll give an overview of each here.

Module Layer

 The module layer defines the OSGi module concept, called a bundle, which is a JAR file with extra metadata (data about data). A bundle contains your class files and their related resources, as depicted in figure 1.5. Bundles typically aren’t an entire application packaged into a single JAR file; rather, they’re the logical modules that
 combine to form a given application. Bundles are more powerful than standard JAR files, because you can explicitly declare
 which contained packages are externally visible (that is, exported packages). In this sense, bundles extend the normal access modifiers (public, private, and protected) associated with the Java language.

 Figure 1.5. A bundle contains code, resources, and metadata.

 [image:]

 Another important advantage of bundles over standard JAR files is the fact that you can explicitly declare on which external
 packages the bundles depend (that is, imported packages). The main benefit of explicitly declaring your bundles’ exported and imported packages is that the OSGi framework can manage
 and verify their consistency automatically; this process is called bundle resolution and involves matching exported packages to imported packages. Bundle resolution ensures consistency among bundles with respect
 to versions and other constraints, which we’ll discuss in detail in chapter 2.

Lifecycle Layer

 The lifecycle layer defines how bundles are dynamically installed and managed in the OSGi framework. If you were building
 a house, the module layer would provide the foundation and structure, and the lifecycle layer would be the electrical wiring.
 It makes everything run.

 The lifecycle layer serves two different purposes. External to your application, the lifecycle layer precisely defines the
 bundle lifecycle operations (install, update, start, stop, and uninstall). These lifecycle operations allow you to dynamically
 administer, manage, and evolve your application in a well-defined way. This means bundles can be safely added to and removed
 from the framework without restarting the application process.

 Internal to your application, the lifecycle layer defines how your bundles gain access to their execution context, which provides
 them with a way to interact with the OSGi framework and the facilities it provides during execution. This overall approach
 to the lifecycle layer is powerful because it lets you create externally (and remotely) managed applications or completely
 self-managed applications (or any combination).

Service Layer

 Finally, the service layer supports and promotes a flexible application programming model incorporating concepts popularized
 by service-oriented computing (although these concepts were part of the OSGi framework before service-oriented computing became
 popular). The main concepts revolve around the service-oriented publish, find, and bind interaction pattern: service providers
 publish their services into a service registry, while service clients search the registry to find available services to use
 (see figure 1.6). Nowadays, this service-oriented architecture (SOA) is largely associated with web services; but OSGi services are local
 to a single VM, which is why some people refer to it as SOA in a VM.

 Figure 1.6. The service-oriented interaction pattern. Providers publish services into a registry where requesters can discover which services
 are available for use.

 [image:]

 The OSGi service layer is intuitive, because it promotes an interface-based development approach, which is generally considered
 good practice. Specifically, it promotes the separation of interface and implementation. OSGi services are Java interfaces representing a conceptual contract between service providers and service clients. This makes the service
 layer lightweight, because service providers are just Java objects accessed via direct method invocation. Additionally, the
 service layer expands the bundle-based dynamism of the lifecycle layer with service-based dynamism—services can appear or disappear at any time.
 The result is a programming model eschewing the monolithic and brittle approaches of the past, in favor of being modular and
 flexible.

 This sounds well and good, but you may still be wondering how these three layers fit together and how you go about using them
 to create an application on top of them. In the next couple of sections, we’ll explore how these layers fit together using
 some small example programs.

 1.2.2. Putting it all together

 The OSGi framework is made up of layers, but how do you use these layers in application development? We’ll make it clearer
 by outlining the general approach you’ll use when creating an OSGi-based application:

	Design your application by breaking it down into service interfaces (normal interface-based programming) and clients of those
 interfaces.

 	Implement your service provider and client components using your preferred tools and practices.

 	Package your service provider and client components into (usually) separate JAR files, augmenting each JAR file with the appropriate
 OSGi metadata.

 	Start the OSGi framework.

 	Install and start all your component JAR files from step 3.

If you’re already following an interface-based approach, the OSGi approach will feel familiar. The main difference will be
 how you locate your interface implementations (that is, your services). Normally, you might instantiate implementations and
 pass around references to initialize clients. In the OSGi world, your services will publish themselves in the service registry,
 and your clients will look up available services in the registry. After your bundles are installed and started, your application
 will start and execute as normal, but with several advantages. Underneath, the OSGi framework provides more rigid modularity
 and consistency checking, and its dynamic nature opens up a world of possibilities.

 Don’t fret if you don’t or can’t use an interfaced-based approach for your development. The first two layers of the OSGi framework
 still provide a lot of functionality; in truth, the bulk of OSGi framework functionality lies in these first two layers, so
 keep reading. Enough talk: let’s look at some code.

1.3. “Hello, world!” examples

 Because OSGi functionality is divided over the three layers mentioned previously (modularity, lifecycle, and service), we’ll
 show you three different “Hello, world!” examples that illustrate each of these layers.

 1.3.1. Module layer example

 The module layer isn’t related to code creation as such; rather, it’s related to the packaging of your code into bundles.
 You need to be aware of certain code-related issues when developing, but by and large you prepare code for the module layer by adding packaging metadata to your project’s generated
 JAR files. For example, suppose you want to share the following class.

 Listing 1.2. Basic greeting implementation

 package org.foo.hello;

public class Greeting {
 final String m_name;

 public Greeting(String name) {
 m_name = name;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

 During the build process, you compile the source code and put the generated class file into a JAR file. To use the OSGi module
 layer, you must add some metadata into your JAR file’s META-INF/MANIFEST.MF file, such as the following:

 Bundle-ManifestVersion: 2
Bundle-Name: Greeting API
Bundle-SymbolicName: org.foo.hello
Bundle-Version: 1.0
Export-Package: org.foo.hello;version="1.0"

 The first line indicates the OSGi metadata syntax version. Next is the human-readable name, which isn’t strictly necessary.
 This is followed by the symbolic name and version bundle identifier. The last line shares packages with other bundles.

 In this example, the bulk of the metadata is related to bundle identification. The important part is the Export-Package statement, because it extends the functionality of a typical JAR file with the ability for you to explicitly declare which
 packages contained in the JAR are visible to its users. In this example, only the contents of the org.foo.hello package are externally visible; if the example included other packages, they wouldn’t be externally visible. This means that
 when you run your application, other modules won’t be able to accidentally (or intentionally) depend on packages your module
 doesn’t explicitly expose.

 To use this shared code in another module, you again add metadata. This time, you use the Import-Package statement to explicitly declare which external packages are required by the code contained in the client JAR. The following
 snippet illustrates:

 Bundle-ManifestVersion: 2
Bundle-Name: Greeting Client
Bundle-SymbolicName: org.foo.hello.client
Bundle-Version: 1.0
Import-Package: org.foo.hello;version="[1.0,2.0)"

 In this case, the last line specifies a dependency on an external package.

 To see this example in action, go in the chapter01/greeting-example/modularity/ directory in the book’s companion code, and
 type ant to build it and java -jar main.jar to run it. Although the example is simple, it illustrates that creating OSGi bundles out of existing JAR files is a reasonably
 non-intrusive process. In addition, there are tools that can help you create your bundle metadata, which we’ll discuss in
 appendix A; but in reality, no special tools are required to create a bundle other than what you normally use to create a JAR file.
 Chapter 2 will go into all the juicy details of OSGi modularity.

 1.3.2. Lifecycle layer example

 In the last subsection, you saw that it’s possible to take advantage of OSGi functionality in a non-invasive way by adding
 metadata to your existing JAR files. Such a simple approach is sufficient for most reusable libraries, but sometimes you need
 or want to go further to meet specific requirements or to use additional OSGi features. The life-cycle layer moves you deeper
 into the OSGi world.

 Perhaps you want to create a module that performs some initialization task, such as starting a background thread or initializing
 a driver; the lifecycle layer makes this possible. Bundles may declare a given class as an activator, which is the bundle’s hook into its own lifecycle management. We’ll discuss the full lifecycle of a bundle in chapter 3, but first let’s look at a simple example to give you an idea of what we’re talking about. The following listing extends
 the previous Greeting class to provide a singleton instance.

 Listing 1.3. Extended greeting implementation

 [image:]

 Listing 1.4 implements a bundle activator to initialize the Greeting class singleton when the bundle is started and clear it when it’s stopped. The client can now use the preconfigured singleton
 instead of creating its own instance.

 Listing 1.4. OSGi bundle activator for our greeting implementation

 package org.foo.hello;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {

 public void start(BundleContext ctx) {
 Greeting.instance = new Greeting("lifecycle");
 }

 public void stop(BundleContext ctx) {
 Greeting.instance = null;
 }
}

 A bundle activator must implement a simple OSGi interface, which in this case is composed of the two methods start() and stop(). At execution time, the framework constructs an instance of this class and invokes the start() method when the bundle is started and the stop() method when the bundle is stopped. (What we mean by starting and stopping a bundle will become clearer in chapter 3.) Because the framework uses the same activator instance while the bundle is active, you can share member variables between
 the start() and stop() methods.

 You may wonder what the single parameter of type BundleContext in the start() and stop() methods is all about. This is how the bundle gets access to the OSGi framework in which it’s executing. From this context
 object, the module has access to all the OSGi functionality for modularity, lifecycle, and services. In short, it’s a fairly
 important object for most bundles, but we’ll defer a detailed introduction of it until later when we discuss the lifecycle
 layer. The important point to take away from this example is that bundles have a simple way to hook into their lifecycle and
 gain access to the underlying OSGi framework.

 Of course, it isn’t sufficient to just create this bundle activator implementation; you have to tell the framework about it.
 Luckily, this is simple. If you have an existing JAR file you’re converting to be a module, you must add the activator implementation
 to the existing project so the class is included in the resulting JAR file. If you’re creating a bundle from scratch, you
 need to compile the class and put the result in a JAR file. You must also tell the OSGi framework about the bundle activator
 by adding another piece of metadata to the JAR file manifest. For this section’s example, you add the following metadata to
 the JAR manifest:

 Bundle-Activator: org.foo.hello.Activator
Import-Package: org.osgi.framework

 Notice that you also need to import the org.osgi.framework package, because the bundle activator has a dependency on it. To see this example in action, go to the chapter01/greeting-example/lifecycle/
 directory in the companion code and type ant to build the example and java -jar main.jar to run it.

 We’ve now introduced how to create OSGi bundles out of existing JAR files using the module layer and how to make your bundles
 lifecycle aware so they can use framework functionality. The last example in this section demonstrates the service-oriented
 programming approach promoted by OSGi.

 1.3.3. Service layer example

 If you follow an interfaced-based approach in your development, the OSGi service approach will feel natural to you. To illustrate,
 consider the following Greeting interface:

 package org.foo.hello;
public interface Greeting {
 void sayHello();
}

 For any given implementation of the Greeting interface, when the sayHello() method is invoked, a greeting will be displayed. In general, a service represents a contract between a provider and prospective
 clients; the semantics of the contract are typically described in a separate, human-readable document, like a specification.
 The previous service interface represents the syntactic contract of all Greeting implementations. The notion of a contract is necessary so that clients can be assured of getting the functionality they expect
 when using a Greeting service.

 The precise details of how any given Greeting implementation performs its task aren’t known to the client. For example, one implementation may print its greeting textually,
 whereas another may display its greeting in a GUI dialog box. The following code depicts a simple text-based implementation.

 Listing 1.5. Implementation of the Greeting interface

 package org.foo.hello.impl;

import org.foo.hello.Greeting;

public class GreetingImpl implements Greeting {
 final String m_name;

 GreetingImpl(String name) {
 m_name = name;
 }

 public void sayHello() {
 System.out.println("Hello, " + m_name + "!");
 }
}

 Your may be thinking that nothing in the service interface or listing 1.5 indicates that you’re defining an OSGi service. You’re correct. That’s what makes the OSGi’s service approach so natural
 if you’re already following an interface-based approach; your code will largely stay the same. Your development will be a
 little different in two places: how you make a service instance available to the rest of your application, and how the rest
 of your application discovers the available service.

 All service implementations are ultimately packaged into a bundle, and that bundle must be lifecycle aware in order to register
 the service. This means you need to create a bundle activator for the example service, as shown next.

 Listing 1.6. OSGi bundle activator with service registration

 package org.foo.hello.impl;

import org.foo.hello.Greeting;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {

 public void start(BundleContext ctx) {
 ctx.registerService(Greeting.class.getName(),
 new GreetingImpl("service"), null);
 }

 public void stop(BundleContext ctx) {}
}

 This time, in the start() method, instead of storing the Greeting implementation as a singleton, you use the provided bundle context to register it as a service in the service registry. The
 first parameter you need to provide is the interface name(s) that the service implements, followed by the actual service instance,
 and finally the service properties. In the stop() method, you could unregister the service implementation before stopping the bundle; but in practice, you don’t need to do
 this. The OSGi framework automatically unregisters any registered services when a bundle stops.

 You’ve seen how to register a service, but what about discovering a service? The following listing shows a simplistic client
 that doesn’t handle missing services and that suffers from potential race conditions. We’ll discuss a more robust way to access
 services in chapter 4.

 Listing 1.7. OSGi bundle activator with service discovery

 [image:]

 Notice that accessing a service in OSGi is a two-step process. First, an indirect reference is retrieved from the service
 registry [image:]. Second, this indirect reference is used to access the service object instance [image:]. The service reference can be safely stored in a member variable; but in general it isn’t a good idea to hold on to references
 to service object instances, because services may be unregistered dynamically, resulting in stale references that prevent
 garbage collection of uninstalled bundles.

 Both the service implementation and the client should be packaged into separate bundle JAR files. The metadata for each bundle
 declares its corresponding activator, but the service implementation exports the org.foo.hello package, whereas the client imports it. Note that the client bundle’s metadata only needs to declare an import for the Greeting interface package—it has no direct dependency on the service implementation. This makes it easy to swap service implementations
 dynamically without restarting the client bundle. To see this example in action, go to the chapter01/ greeting-example/service/
 directory in the companion code and type ant to build the example and java -jar main.jar to run it.

 Now that you’ve seen some examples, you can better understand how each layer of the OSGi framework builds on the previous
 one. Each layer gives you additional capabilities when building your application, but OSGi technology is flexible enough for
 you to adopt it according to your specific needs. If you only want better modularity in your project, use the module layer.
 If you want a way to initialize modules and interact with the module layer, use both the module and lifecycle layers. If you
 want a dynamic, interface-based development approach, use all three layers. The choice is yours.

 1.3.4. Setting the stage

 To help introduce the concepts of each layer in the OSGi framework in the next three chapters, we’ll use a simple paint program;
 its user interface is shown in figure 1.7. The paint program isn’t intended to be independently useful; rather, it’s used to demonstrate common issues and best practices.

 Figure 1.7. Simple paint program user interface

 [image:]

 From a functionality perspective, the paint program only allows the user to paint various shapes, such as circles, squares,
 and triangles. The shapes are painted in predefined colors. Available shapes are displayed as buttons in the main window’s
 toolbar. To draw a shape, the user selects it in the toolbar and then clicks anywhere in the canvas to draw it. The same shape
 can be drawn repeatedly by clicking in the canvas numerous times. The user can drag drawn shapes to reposition them. This
 sounds simple enough. The real value of using a visual program for demonstrating these concepts will become evident when we
 start introducing execution-time dynamism.

 We’ve finished our overview of the OSGi framework and are ready to delve into the details; but before we do, we’ll put OSGi
 in context by discussing similar or related technologies. Although no Java technology fills the exact same niche as OSGi,
 several tread similar ground, and it’s worth understanding their relevance before moving forward.

1.4. Putting OSGi in context

 OSGi is often mentioned in the same breath with many other technologies, but it’s in a fairly unique position in the Java
 world. Over the years, no single technology has addressed OSGi’s exact problem space, but there have been overlaps, complements,
 and offshoots. Although it isn’t possible to cover how OSGi relates to every conceivable technology, we’ll address some of
 the most relevant in roughly chronological order. After reading this section, you should have a good idea whether OSGi replaces
 your familiar technologies or is complementary to them.

 1.4.1. Java Enterprise Edition

 Java Enterprise Edition (Java EE, formerly J2EE) has roots dating back to 1997. Java EE and OSGi began targeting opposite
 ends of the computing spectrum (the enterprise vs. embedded markets, respectively). Only within the last couple of years has
 OSGi technology begun to take root in the enterprise space.

 In total, the Java EE API stack isn’t related to OSGi. The Enterprise JavaBeans (EJB) specification is probably the closest
 comparable technology from the Java EE space, because it defines a component model and packaging format. But its component
 model focuses on providing a standard way to implement enterprise applications that must regularly handle issues of persistence,
 transactions, and security. The EJB deployment descriptors and packaging formats are relatively simplistic and don’t address
 the full component lifecycle, nor do they support clean modularity concepts.

 OSGi is also used in the Java EE domain to provide a more sophisticated module layer beneath these existing technologies.
 Because the two ignored each other for so long, there are some challenges in moving existing Java EE concepts to OSGi, largely
 due to different assumptions about how class loading is performed. Still, progress is being made, and today OSGi plays a role
 in all major application servers, such as IBM’s WebSphere, Red Hat’s JBoss, Oracle’s GlassFish, ObjectWeb’s JOnAS, and Apache’s
 Geronimo.

 1.4.2. Jini

 An often-overlooked Java technology is Jini, which is definitely a conceptual sibling of OSGi. Jini targets OSGi’s original
 problem space of networked environments with a variety of connected devices.

 Sun began developing Jini in 1998. The goal of Jini is to make it possible to administer a networked environment as a flexible,
 dynamic group of services. Jini introduces the concepts of service providers, service consumers, and a service lookup registry.
 All of this sounds completely isomorphic to OSGi; where Jini differs is its focus on distributed systems. Consumers access
 clients through some form of proxy using a remote procedure call mechanism, such as Remote Method Invocation (RMI). The service-lookup
 registry is also a remotely accessible, federated service. The Jini model assumes remote access across multiple VM processes,
 whereas OSGi assumes everything occurs in a single VM process. But in stark contrast to OSGi, Jini doesn’t define any modularity
 mechanisms and relies on the execution-time code-loading features of RMI. The open source project Newton is an example of
 combining OSGi and Jini technologies in a single framework.

 1.4.3. NetBeans

 NetBeans, an IDE and application platform for Java, has a long history of having a modular design. Sun purchased NetBeans
 in 1999 and has continued to evolve it.

 The NetBeans platform has a lot in common with OSGi. It defines a fairly sophisticated module layer and also promotes interface-based
 programming using a lookup pattern that is similar to the OSGi service registry. Whereas OSGi focused on embedded devices
 and dynamism, the NetBeans platform was originally an implementation layer for the IDE. Eventually, the platform was promoted
 as a separate tool in its own right, but it focused on being a complete GUI application platform with abstractions for file
 systems, windowing systems, and much more. NetBeans has never been seen as comparable to OSGi, even though it is; perhaps
 OSGi’s more narrow focus is an asset in this case.

 1.4.4. Java Management Extensions

 Java Management Extensions (JMX), released in 2000 through the Java Community Process (JCP) as JSR 3, was compared to OSGi
 in the early days. JMX is a technology for remotely managing and monitoring applications, system objects, and devices; it
 defines a server and a component model for this purpose.

 JMX isn’t comparable to OSGi; it’s complementary, because it can be used to manage and monitor an OSGi framework and its bundles
 and services. Why did the comparisons arise in the first place? There are probably three reasons: the JMX component model
 was sufficiently generic that it was possible to use it for building applications; the specification defined a mechanism for
 dynamically loading code into its server; and certain early adopters pushed JMX in this direction. One major perpetrator was
 JBoss, which adopted and extended JMX for use as a module layer in its application server (since eliminated in JBoss 5). Nowadays, JMX isn’t (and shouldn’t be) confused with a module system.

 1.4.5. Lightweight containers

 Around 2003, lightweight or inversion of control (IoC) containers started to appear, such as PicoContainer, Spring, and Apache
 Avalon. The main idea behind this crop of IoC containers was to simplify component configuration and assembly by eliminating
 the use of concrete types in favor of interfaces. This was combined with dependency injection techniques, where components
 depend on interface types and implementations of the interfaces are injected into the component instance. OSGi services promote
 a similar interface-based approach but employ a service-locator pattern to break a component’s dependency on component implementations,
 similar to Apache Avalon.

 At the same time, the Service Binder project was creating a dependency injection framework for OSGi components. It’s fairly
 easy to see why the comparisons arose. Regardless, OSGi’s use of interface-based services and the service-locator pattern
 long predated this trend, and none of these technologies offer a sophisticated dynamic module layer like OSGi. There is now
 significant movement from IoC vendors to port their infrastructures to the OSGi framework, such as the work by VMware (formerly
 SpringSource) on the OSGi Blueprint specification (discussed in chapter 12).

 1.4.6. Java Business Integration

 Java Business Integration (JBI) was developed in the JCP and released in 2005. Its goal was to create a standard SOA platform
 for creating enterprise application integration (EAI) and business-to-business (B2B) integration solutions.

 In JBI, plugin components provide and consume services after they’re plugged in to the JBI framework. Components don’t directly
 interact with services, as in OSGi; instead, they communicate indirectly using normalized Web Services Description Language
 (WSDL)-based messages.

 JBI uses a JMX-based approach to manage component installation and lifecycle and defines a packaging format for its components.
 Due to the inherent similarities to OSGi’s architecture, it was easy to think JBI was competing for a similar role. On the
 contrary, its fairly simplistic modularity mechanisms mainly addressed basic component integration into the framework. It
 made more sense for JBI to use OSGi’s more sophisticated modularity, which is ultimately what happened in Project Fuji from
 Sun and ServiceMix from Apache.

 1.4.7. JSR 277

 In 2005, Sun announced JSR 277 (“Java Module System”) to define a module system for Java. JSR 277 was intended to define a
 module framework, packaging format, and repository system for the Java platform. From the perspective of the OSGi Alliance,
 this was a major case of reinventing the wheel, because the effort was starting from scratch rather than building on the experience
 gained from OSGi.

 In 2006, many OSGi supporters pushed for the introduction of JSR 291 (titled “Dynamic Component Support for Java”), which
 was an effort to bring OSGi technology properly into JCP standardization. The goal was twofold: to create a bridge between
 the two communities and to ensure OSGi technology integration was considered by JSR 277. The completion of JSR 291 was fairly
 quick because it started from the OSGi R4 specification and resulted in the R4.1 specification release. During this period,
 OSGi technology continued to gain momentum. JSR 277 continued to make slow progress through 2008 until it was put on hold
 indefinitely.

 1.4.8. JSR 294

 During this time in 2006, JSR 294 (titled “Improved Modularity Support in the Java Programming Language”) was introduced as
 an offshoot of JSR 277. Its goal was to focus on necessary language changes for modularity. The original idea was to introduce
 the notion of a superpackage into the Java language—a package of packages.

 The specification of superpackages got bogged down in details until it was scrapped in favor of adding a module-access modifier
 keyword to the language. This simplification ultimately led to JSR 294 being dropped and merged back into JSR 277 in 2007.
 But when it became apparent in 2008 that JSR 277 would be put on hold, JSR 294 was pulled back out to address a module-level
 access modifier.

 With JSR 277 on hold, Sun introduced an internal project, called Project Jigsaw, to modularize the JDK. The details of Jigsaw are still evolving after the acquisition of Sun by Oracle.

 1.4.9. Service Component Architecture

 Service Component Architecture (SCA) began as an industry collaboration in 2004 and ultimately resulted in final specifications
 in 2007. SCA defines a service-oriented component model similar to OSGi’s, where components provide and require services.
 Its component model is more advanced because it defines composite components (components made of other components) for a fully recursive component model.

 SCA is intended to be a component model for declaratively composing components implemented using various technologies (such
 as Java, Business Process Execution Language [BPEL], EJB, and C++) and integrated using various bindings (such as SOAP/HTTP,
 Java Message Service [JMS], Java EE Connector Architecture [JCA], and Internet Inter-Orb Protocol [IIOP]). SCA does define
 a standard packaging format, but it doesn’t define a sophisticated module layer like OSGi provides. The SCA specification
 leaves open the possibility of other packaging formats, which makes it possible to use OSGi as a packaging and module layer
 for Java-based SCA implementations; Apache Tuscany and Newton are examples of an SCA implementation that use OSGi. In addition,
 bundles could be used to implement SCA component types, and SCA could be used as a mechanism to provide remote access to OSGi
 services.

 1.4.10. .NET

 Although Microsoft’s .NET (released in 2002) isn’t a Java technology, it deserves mention because it was largely inspired
 by Java and did improve on it in ways that are similar to how OSGi improves Java. Microsoft not only learned from Java’s example but also learned from the company’s own history
 of dealing with DLL hell. As a result, .NET includes the notion of an assembly, which has modularity aspects similar to an OSGi bundle. All .NET code is packaged into an assembly, which takes the form
 of a DLL or EXE file. Assemblies provide an encapsulation mechanism for the code contained inside of them; an access modifier,
 called internal, is used to indicate visibility within an assembly but not external to it. Assemblies also contain metadata describing dependencies
 on other assemblies, but the overall model isn’t as flexible as OSGi’s. Because dependencies are on specific assembly versions,
 the OSGi notion of provider substitutability isn’t attainable.

 At execution time, assemblies are loaded into application domains and can only be unloaded by unloading the entire application
 domain. This makes the highly dynamic and lightweight nature of OSGi hard to achieve, because multiple assemblies loaded into
 the same application domain must be unloaded at the same time. It’s possible to load assemblies into separate domains; but
 then communication across domains must use interprocess communication to collaborate, and type sharing is greatly complicated.
 There have been research efforts to create OSGi-like environments for the .NET platform, but the innate differences between
 the .NET and Java platforms results in the two not having much in common. Regardless, .NET deserves credit for improving on
 standard Java in this area.

1.5. Summary

 In this chapter, we’ve laid the foundation for everything we’ll cover in the rest of the book. What you’ve learned includes
 the following:

	The Java platform is great for developing applications, but its support for modularity is largely limited to fine-grained
 object-oriented mechanisms, rather than more coarse-grained modularity features needed for project management.

 	The OSGi Service Platform, through the OSGi framework, addresses the modularity shortcomings of Java to create a powerful
 and flexible solution.

 	The declarative, metadata-based approach employed by OSGi provides a non-invasive way to take advantage of its sophisticated
 modularity capabilities by modifying how projects are packaged with few, if any, changes to the code.

 	The OSGi framework defines a controlled, dynamic module lifecycle to simplify management.

 	Following good design principles, OSGi promotes an interface-based programming approach to separate interfaces from implementations.

With this high-level understanding of Java’s limitations and OSGi’s capabilities, we can start our adventure by diving into
 the details of the module layer in chapter 2. This is the foundation of everything else in the OSGi world.

Chapter 2. Mastering modularity

	

 This chapter covers

	Understanding modularity and why it’s desirable

 	Using metadata to describe OSGi bundles (aka modules)

 	Explaining how bundle metadata is used to manage code visibility

 	Illustrating how bundles are used to create an application

	

In the previous chapter, we took a whistle-stop tour of the OSGi landscape. We made a number of observations about how standard
 Java is broken with respect to modularity and gave you examples where OSGi can help. We also introduced you to some OSGi concepts,
 including the core layers of the OSGi framework: module, life-cycle, and service.

 In this chapter, we’ll deal specifically with the module layer, because its features are the initial attraction for most Java
 developers to OSGi. The module layer is the foundation on which everything else rests in the OSGi world. We’ll provide you
 with a full understanding of what OSGi modularity is, why modularity is important in a general sense, and how it can help
 you in designing, building, and maintaining Java applications in the future.

 The goal of this chapter is to get you thinking in terms of modules rather than JAR files. We’ll teach you about OSGi module
 metadata, and you’ll learn how to describe your application’s modularity characteristics with it. To illustrate these concepts,
 we’ll continue the simple paint program example that we introduced in chapter 1; you’ll convert it from a monolithic application into a modular one. Let’s get started with modularity.

2.1. What is modularity?

 Modularity encompasses so many aspects of programming that we often take it for granted. The more experience you have with
 system design, the more you know good designs tend to be modular—but what precisely does that mean? In short, it means designing
 a complete system from a set of logically independent pieces; these logically independent pieces are called modules. You may be thinking, “Is that it?” In the abstract, yes, that is it; but of course there are a lot of details underneath
 these simple concepts.

 A module defines an enforceable logical boundary: code either is part of a module (it’s on the inside) or it isn’t part of
 a module (it’s on the outside). The internal (implementation) details of a module are visible only to code that is part of
 a module. For all other code, the only visible details of a module are those that it explicitly exposes (the public API),
 as depicted in figure 2.1. This aspect of modules makes them an integral part of designing the logical structure of an application.

 Figure 2.1. A module defines a logical boundary. The module itself is explicitly in control of which classes are completely encapsulated
 and which are exposed for external use.

 [image:]

 2.1.1. Modularity vs. object orientation

 You may wonder, “Hey, doesn’t object orientation give you these things?” That’s correct: object orientation is intended to
 address these issues too. You’ll find that modularity provides many of the same benefits as object orientation. One reason
 these two programming concepts are similar is because both are forms of separation of concerns. The idea behind separation of concerns is you should break down a system into minimally overlapping functionality or concerns, so that each concern can be independently reasoned about, designed, implemented, and used. Modularity is one of the earliest
 forms of separation of concerns. It gained popularity in the early 1970s, whereas object orientation gained popularity in
 the early 1980s.

 With that said, you may now be wondering, “If I already have object orientation in Java, why do I need modularity too?” Another
 good question. The need for both arises due to granularity.

 Assume you need some functionality for your application. You sit down and start writing Java classes to implement the desired
 functionality. Do you typically implement all your functionality in a single class? No. If the functionality is even remotely
 complicated, you implement it as a set of classes. You may also use existing classes from other parts of your project or from
 the JRE. When you’re done, a logical relationship exists among the classes you created—but where is this relationship captured?
 Certainly it’s captured in the low-level details of the code, because there are compilation dependencies that won’t be satisfied
 if all classes aren’t available at compilation time. Likewise, at execution time, these dependencies will fail if all classes
 aren’t present on the class path when you try to execute your application.

 Unfortunately, these relationships among classes can only be known through low-level source code inspection or trial and error.
 Classes allow you to encapsulate the state and behavior of a single, logical concept. But numerous classes are generally necessary
 to create a well-designed application. Modules encapsulate classes, allowing you to express the logical relationship among
 the classes—or concepts—in your application. Figure 2.2 illustrates how modules encapsulate classes, and the resulting inter-module relationships. You may think that Java packages
 allow you to capture such logical code relationships. Well, you’re right. Packages are a form of built-in modularity provided
 by Java, but they have some limitations, as discussed in section 1.1.1. So packages are a good starting point in understanding how modularity helps you encapsulate code, but you need a mechanism
 that goes further. In the end, object orientation and modularity serve different but complementary purposes (see figure 2.3).

 Figure 2.2. Classes have explicit dependencies due to the references contained in the code. Modules have implicit dependencies due to
 the code they contain.

 [image:]

 Figure 2.3. Even though object orientation and modularity provide similar capabilities, they address them at different levels of granularity.

 [image:]

 When you’re developing in Java, you can view object orientation as the implementation approach for modules. As such, when
 you’re developing classes, you’re programming in the small, which means you aren’t thinking about the overall structure of your application, but instead are thinking in terms of specific
 functionality. After you begin to logically organize related classes into modules, then you start to concern yourself with
 programming in the large, which means you’re focusing on the larger logical pieces of your system and the relationships among those pieces.

 In addition to capturing relationships among classes via module membership, modules also capture logical system structure
 by explicitly declaring dependencies on external code. With this in mind, we now have all the pieces in place to more concretely define what we mean by the term module in the context of this book.

	

Module

 A set of logically encapsulated implementation classes, an optional public API based on a subset of the implementation classes,
 and a set of dependencies on external code.

	

Although this definition implies that modules contain classes, at this point this sense of containment is purely logical.
 Another aspect of modularity worth understanding is physical modularity, which refers to the container of module code.

	

 Logical vs. physical modularity

 A module defines a logical boundary in your application, which impacts code visibility in a fashion similar to access modifiers
 in object-oriented programming. Logical modularity refers to this form of code visibility. Physical modularity refers to how code is packaged and/or made available for deployment.

 In OSGi, these two concepts are largely conflated; a logical module is referred to as a bundle, and so is the physical module (that is, the JAR file). Even though these two concepts are nearly synonymous in OSGi, for
 modularity in general they aren’t, because it’s possible to have logical modularity without physical modularity or to package
 multiple logical modules into a single physical module. Physical modules are sometimes also referred to as deployment modules or deployment units.

	

The OSGi module layer allows you to properly express the modularity characteristics of applications, but it’s not free. Let’s
 look in more depth at why you should modularize your applications, so you can make up your own mind.

2.2. Why modularize?

 We’ve talked about what modularity is, but we haven’t gone into great depth about why you might want to modularize your own
 applications. In fact, you may be thinking, “If modularity has been around for almost 40 years and it’s so important, why
 isn’t everyone already doing it?” That’s a great question, and one that probably doesn’t have any single answer. The computer
 industry is driven by the next best thing, so we tend to throw out the old when the new comes along. And in fairness, as we
 discussed in the last section, the new technologies and approaches (such as object orientation and component orientation)
 do provide some of the same benefits that modularity was intended to address.

 Java also provides another important reason why modularity is once again an important concern. Traditionally, programming
 languages were the domain of logical modularity mechanisms, and operating systems and/or deployment packaging systems were
 the domain of physical modularity. Java blurs this distinction because it’s both a language and a platform. To compare to
 a similar situation, look at the .NET platform. Microsoft, given its history of operating system development and the pain
 of DLL hell, recognized this connection early in .NET, which is why it has a module concept called an assembly. Finally, the size of applications continues to grow, which makes modularity an important part of managing their complexity—divide
 and conquer!

 This discussion provides some potential explanations for why modularity is coming back in vogue, but it doesn’t answer this
 section’s original question: Why should you modularize your applications? Modularity allows you to reason about the logical
 structure of applications. Two key concepts arose from modularity decades ago:

	
Cohesion measures how closely aligned a module’s classes are with each other and with achieving the module’s intended functionality.
 You should strive for high cohesion in your modules. For example, a module shouldn’t address many different concerns (network
 communication, persistence, XML parsing, and so on): it should focus on a single concern.

 	
Coupling, on the other hand, refers to how tightly bound or dependent different modules are on each other. You should strive for low
 coupling among your modules. For example, you don’t want every module to depend on all other modules.

As you start to use OSGi to modularize your applications, you can’t avoid these issues. Modularizing your application will
 help you see your application in a way that you couldn’t before.

 By keeping these principles of cohesion and coupling in mind, you’ll create more reusable code, because it’s easier to reuse
 a module that performs a single function and doesn’t have a lot of dependencies on other code.

 More specifically, by using OSGi to modularize your applications, you’ll be able to address the Java limitations discussed
 in section 1.1.1. Additionally, because the modules you’ll create will explicitly declare their external code dependencies, reuse is further
 simplified because you’ll no longer have to scrounge documentation or resort to trial and error to figure out what to put
 on the class path. This results in code that more readily fits into collaborative, independent development approaches, such
 as in multiteam, multilocation projects or in large-scale open source projects.

 Now you know what modularity is and why you want it, so let’s begin to focus on how OSGi provides it and what you need to
 do to use it in your own applications. The example paint program will help you understand the concepts.

2.3. Modularizing a simple paint program

 The functionality provided by OSGi’s module layer is sophisticated and can seem overwhelming when taken in total. You’ll use
 a simple paint program, as discussed in chapter 1, to learn how to use OSGi’s module layer. You’ll start from an existing paint program, rather than creating one from scratch.
 The existing implementation follows an interfaced-based approach with logical package structuring, so it’s amenable to modularization,
 but it’s currently packaged as a single JAR file. The following listing shows the contents of the paint program’s JAR file.

 Listing 2.1. Contents of existing paint program’s JAR file

 META-INF/
META-INF/MANIFEST.MF
org/
org/foo/
org/foo/paint/
org/foo/paint/PaintFrame$1$1.class
org/foo/paint/PaintFrame$1.class
org/foo/paint/PaintFrame$ShapeActionListener.class
org/foo/paint/PaintFrame.class
org/foo/paint/SimpleShape.class
org/foo/paint/ShapeComponent.class
org/foo/shape/
org/foo/shape/Circle.class
org/foo/shape/circle.png
org/foo/shape/Square.class
org/foo/shape/square.png
org/foo/shape/Triangle.class
org/foo/shape/triangle.png

 The listing begins with a standard manifest file. Then come the application classes, followed by various shape implementations.

 The main classes composing the paint program are described in table 2.1.

 Table 2.1. Overview of the classes in the paint program

	
 Class

 	
 Description

	org.foo.paint.PaintFrame
 	The main window of the paint program, which contains the toolbar and drawing canvas. It also has a static main() method to
 launch the program.

	org.foo.paint.SimpleShape
 	An interface representing an abstract shape for painting.

	org.foo.paint.ShapeComponent
 	A GUI component responsible for drawing shapes onto the drawing canvas.

	org.foo.shape.Circle
 	An implementation of SimpleShape for drawing circles.

	org.foo.shape.Square
 	An implementation of SimpleShape for drawing squares.

	org.foo.shape.Triangle
 	An implementation of SimpleShape for drawing triangles.

For those familiar with Swing, PaintFrame extends JFrame and contains a JToolBar and a JPanel canvas. PaintFrame maintains a list of available SimpleShape implementations, which it displays in the toolbar. When the user selects a shape in the toolbar and clicks in the canvas
 to draw the shape, a ShapeComponent (which extends JComponent) is added to the canvas at the location where the user clicked. A ShapeComponent is associated with a specific SimpleShape implementation by name, which it retrieves from a reference to its PaintFrame. Figure 2.4 highlights some of the UI elements in the paint program GUI.

 Figure 2.4. The paint program is a simple Swing application.

 [image:]

 A static main() method on PaintFrame launches the paint program, which creates an instance of the PaintFrame and each shape implementation, adding each shape instance to the created PaintFrame instance. For further explanation, figure 2.5 captures the paint program classes and their interrelationships.

 Figure 2.5. Paint program class relationships

 [image:]

 To run this nonmodular version of the paint program, go into the chapter02/ paint-nonmodular/ directory of the companion code.
 Type ant to build the program, and then type java -jar main.jar to run it. Feel free to click around and see how it works; we won’t go into any more details of the program’s implementation,
 because GUI programming is beyond the scope of this book. The important point is to understand the structure of the program.
 Using this understanding, you’ll divide the program into bundles so you can enhance and enforce its modularity.

 Currently, the paint program is packaged as a single JAR file, which we’ll call version 1.0.0 of the program. Because everything
 is in a single JAR file, this implies that the program isn’t already modularized. Of course, single-JAR-file applications
 can still be implemented in a modular way—just because an application is composed of multiple JAR files, that doesn’t mean
 it’s modular. The paint program example could have both its logical and physical modularity improved. First, we’ll examine
 the program’s logical structure and define modules to enhance this structure. Where do you start?

 One low-hanging fruit you can look for is public APIs. It’s good practice in OSGi (you’ll see why later) to separate your
 public APIs into packages so they can be easily shared without worrying about exposing implementation details. The paint program
 has a good example of a public API: its SimpleShape interface. This interface makes it easy to implement new, possibly third-party shapes for use with the program. Unfortunately, SimpleShape is in the same package as the program’s implementation classes. To remedy this situation, you’ll shuffle the package structure
 slightly. You’ll move SimpleShape into the org.foo.shape package and move all shape implementations into a new package called org.foo.shape.impl. These changes divide the paint program into three logical pieces according to the package structure:

	
org.foo.shape—The public API for creating shapes

 	
org.foo.shape.impl—Various shape implementations

 	
org.foo.paint—The application implementation

Given this structure (logical modularity), you could package each of these packages as separate JAR files (physical modularity).
 To have OSGi verify and enforce the modularity, it isn’t sufficient to package the code as JAR files: you must package them
 as bundles. To do this, you need to understand OSGi’s bundle concept, which is its logical and physical unit of modularity.
 Let’s introduce bundles.

2.4. Introducing bundles

 If you’re going to use OSGi technology, you may as well start getting familiar with the term bundle, because you’ll hear and say it a lot. Bundle is how OSGi refers to its specific realization of the module concept.

 Throughout the remainder of this book, the terms module and bundle will be used interchangeably; but in most cases we’re specifically referring to bundles and not modularity in general, unless
 otherwise noted. Enough fuss about how we’ll use the term bundle—let’s define it.

	

Bundle

 A physical unit of modularity in the form of a JAR file containing code, resources, and metadata, where the boundary of the
 JAR file also serves as the encapsulation boundary for logical modularity at execution time.

	

The contents of a bundle are graphically depicted in figure 2.6. The main thing that makes a bundle JAR file different than a normal JAR file is its module metadata, which is used by the
 OSGi framework to manage its modularity characteristics. All JAR files, even if they aren’t bundles, have a place for metadata,
 which is in their manifest file or, more specifically, in the META-INF/MANIFEST.MF entry of the JAR file. This is where OSGi places its module metadata. Whenever we refer to a bundle’s manifest file, we’re specifically referring to the module-related metadata in this standard JAR manifest file.

 Figure 2.6. A bundle can contain all the usual artifacts you expect in a standard JAR file. The only major difference is that the manifest
 file contains information describing the bundle’s modular characteristics.

 [image:]

 Note that this definition of a bundle is similar to the definition of a module, except that it combines both the physical
 and logical aspects of modularity into one concept. So before we get into the meat of this chapter, which is defining bundle
 metadata, let’s discuss the bundle’s role in physical and logical modularity in more detail.

 2.4.1. The bundle’s role in physical modularity

 The main function of a bundle with respect to physical modularity is to determine module membership. No metadata is associated
 with making a class a member of a bundle. A given class is a member of a bundle if it’s contained in the bundle JAR file.
 The benefit for you is that you don’t need to do anything special to make a class a member of a bundle: just put it in the
 bundle JAR file.

 This physical containment of classes leads to another important function of bundle JAR files as a deployment unit. The bundle
 JAR file is tangible, and it’s the artifact you share, deploy, and use when working with OSGi. The final important role of
 the bundle JAR file is as the container of bundle metadata, because, as we mentioned, the JAR manifest file is used to store
 it. These aspects of the bundle are shown in figure 2.7. The issue of metadata placement is part of an ongoing debate, which we address in the sidebar for those interested in the
 issue.

 Figure 2.7. A class is a member of a bundle if it’s packaged in it, the bundle carries its module metadata inside it as part of its manifest
 data, and the bundle can be deployed as a unit into a runtime environment.

 [image:]

	

 Where should metadata go?

 Is it a good thing to store the module metadata in the physical module and not in the classes themselves? There are two schools
 of thought on this subject. One says it’s better to include the metadata alongside the code it’s describing (in the source
 file itself), rather than in a separate file where it’s more difficult to see the connection to the code. This approach is
 possible with various techniques, such as doclets or the annotations mechanism introduced in Java 5.

 Annotations are the choice du jour today. Unfortunately, when OSGi work started back in 1999, annotations weren’t an option
 because they didn’t exist yet. Besides, there are some good reasons to keep the metadata in a separate file, which brings
 us to the second school of thought.

 This school of thought argues that it’s better to not bake metadata into the source code, because it becomes harder to change.
 Having metadata in a separate file offers you greater flexibility. Consider the following benefits of having separate module
 metadata:

	You don’t need to recompile your bundle to make changes to its metadata.

 	You don’t need access to the source code to add or modify metadata, which is sometimes necessary when dealing with legacy
 or third-party libraries.

 	You don’t need to load classes into the JVM to access the associated metadata.

 	Your code doesn’t get a compile-time dependency on OSGi API.

 	You can use the same code in multiple modules, which is convenient or even necessary in some situations when packaging your
 modules.

 	You can easily use your code on older or smaller JVMs that don’t support annotations.

Regardless of whether your preferred approach is annotations, you can see that you gain a good deal of flexibility by maintaining
 the module metadata in the manifest file.

	

2.4.2. The bundle’s role in logical modularity

 Similar to how the bundle JAR file physically encapsulates the member classes, the bundle’s role in logical modularity is
 to logically encapsulate member classes. What precisely does this mean? It specifically relates to code visibility. Imagine
 that you have a utility class in a util package that isn’t part of your project’s public API. To use this utility class from different packages in your project,
 it must be public. Unfortunately, this means anyone can use the utility class, even though it’s not part of your public API.

 The logical boundary created by a bundle changes this, giving classes inside the bundle different visibility rules to external
 code, as shown in figure 2.8. This means public classes inside your bundle JAR file aren’t necessarily externally visible. You may be thinking, “What?” This isn’t a misstatement:
 it’s a major differentiator between bundles and standard JAR files. Only code explicitly exposed via bundle metadata is visible
 externally. This logical boundary effectively extends standard Java access modifiers (public

