

 inside front cover

 [image:]

 Product development life cycle—providing a feedback loop from product delivery back to the software development process

 [image:]

 Shipping Go

 Develop, deliver, discuss, design, and go again

 Joel Holmes

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Becky Whitney

 	
 Technical development editor:

 	
 Arthur Zubarev

 	
 Review editor:

 	
 Adriana Sabo

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Michele Mitchell

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Alex Rios

 	
 Typesetter and cover designer:

 	
 Marija Tudor

 ISBN: 9781617299506

 dedication

 To my wife, Chelsea,

 who encourages me to follow my dreams;

 and to my sons, Eli and Abel,

 for whom all of my dreams exist.

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 Part 1. Startup

 1 Delivering value

 1.1 Simple concepts

 1.2 Small pieces

 Continuous

 Process

 Quality

 Delivery

 1.3 Building your product

 Initial setup

 Basic validation

 Zero-cost deployment

 Code confidence

 Integrations

 Portability

 Adaptability

 User acceptance

 Scaled product

 End to end

 1.4 Feedback loop

 2 Introducing continuous integration

 2.1 Where to start?

 2.2 A greenfield project

 2.3 The assembly line

 2.4 Warehouses

 2.5 Material

 3 Introducing continuous testing

 3.1 What to test

 3.2 Writing unit tests

 3.3 Refactor, refactor, refactor

 3.4 Testing pyramid

 3.5 System testing

 3.6 Adding it to the pipeline

 3.7 Code coverage

 4 Introducing continuous deployment

 4.1 Delivery

 4.2 Developers as operators

 4.3 Setting up a deployment account

 4.4 As you like it

 4.5 Function as a Service (FaaS)

 4.6 Platform as a Service

 Part 2. Scaling

 5 Code quality enforcement

 5.1 Reviewing code

 Keep it small

 Keep an open mind

 Keep it moving

 Keep it interesting

 Keep it the same

 5.2 Constraints on development

 5.3 Standardizing our code through format and lint checks

 5.4 Static code analysis

 5.5 Code documentation

 5.6 Git hooks

 5.7 Flow

 6 Testing frameworks, mocking, and dependencies

 6.1 Dependency inversion principle

 6.2 Defining an interface

 6.3 Dependency injection

 6.4 Testing stubs

 6.5 Mocking

 Setting up our test suite

 Using our mocks in test

 6.6 Fake

 6.7 Just the base of the pyramid

 7 Containerized deployment

 7.1 What is a container?

 7.2 What is a Buildpack?

 7.3 Let’s build a container

 7.4 Adding a container build to your pipeline

 7.5 Deploying to a container runtime

 7.6 Writing your own image

 7.7 Local environment organization

 7.8 Containers, containers everywhere

 Part 3. Going public

 8 Configuration management and stable releases

 8.1 Configuration

 8.2 Advanced configuration

 Environmental variables

 File

 Flag

 8.3 Hiding features

 Updating the port

 External client

 8.4 Semantic versioning

 8.5 Change log

 8.6 Accountability and handling failure

 9 Integration testing

 9.1 Phasing out the old

 9.2 Behavior-driven design

 9.3 Writing BDD tests in Go

 9.4 Adding a database

 9.5 Releasing

 10 Advanced deployment

 10.1 Not quite IaaS

 10.2 Your first cluster

 10.3 Building blocks

 10.4 Scaling and health status

 10.5 Automatically deploying

 10.6 Deploying Redis using Helm

 10.7 Updating deployment configuration

 11 The loop

 11.1 Startup

 11.2 Acceleration

 11.3 Cruising

 11.4 Elements of development

 Process

 Testing

 Delivering

 11.5 The OODA loop

 11.6 Conclusion

 Appendix A. Using Kotlin

 Appendix B. Using Python

 Appendix C. Using JavaScript

 Appendix D. Using Terraform

 index

 front matter

preface

 I’ve been thinking for a very long time about writing this book. At the beginning of my software engineering career, I could not have cared less about processes and procedures for getting things done. It all seemed so boring. But given some inspiration from my managers, I started diving into API development, Agile processes, unit testing, continuous delivery, and integration, and I soon found myself drowning in resources, guides, and conference talks.

 It wasn’t until I read The Phoenix Project by Gene Kim, George Spafford, and Kevin Behr that it all clicked. Here was a story about a company struggling to develop and ship quality software products. Where was this book when I started out?! I paired The Phoenix Project with The Pragmatic Programmer, by Andy Hunt and Dave Thomas, and felt like I had gained a brand-new perspective on my career.

 Like all young idealists, I annoyed my colleagues with my newfound knowledge and sense of superiority, only to be brought back to earth by others who showed me where we had already implemented some of the concepts I learned. I interviewed coworkers and those who’d worked in the industry for many years and then used this information, along with books by Martin Fowler and Kent Beck, to help me understand areas where my company could improve.

 Soon, I sent write-ups and documents to my bosses and made suggestions during meetings--but there were too many ideas and too little time. Frustrated at my lack of progress internally and with a mountain of research material and sample code piling up, I decided to move onward in my career journey.

 It took me landing three additional positions to put many of these ideas into practice and experiment with others. As you’ll find out in this book, we developers need to not only deliver on ideas but also reflect on how we can make them better. I found this theme of the continuous feedback loop throughout all the books I read about writing, testing, and deploying software but never all in one book with examples. When Manning approached me to write this book, it was originally about a completely different topic, and then, over the course of various forms of feedback by editors, reviewers, early purchasers, and industry professionals, we arrived at the book you are now reading. The embodiment of the process described in this book went into making the book (deployments and CI were even used). Even the title was changed several times to nail down the one that best describes what the book is about!

 You’ll find that I’ve structured the book in a way that mirrors the complexity that arises with growth. Startups and preliminary projects need to be fast and light to find their market, whereas in the later stages, they need to consider code, architecture, and testing more broadly and at scale, so I focus on describing easy and inexpensive solutions at the beginning and introduce more advanced and complex solutions at the end. I also hope you see that the material I present here is modular. Languages, platforms, and deployment patterns don’t matter. What does matter is building a process. To emphasize this, I use many languages and deployment patterns throughout the book.

 I chose Go as the primary language because it is what I write code in daily. But I’ve worked in many languages, and many concepts described in this book are language agnostic, so we’ve selected a few other popular languages as examples in the appendices. Additionally, at the end of the book, I discuss a split in patterns in the industry, using infrastructure as code, as compared to container-based deployment strategies.

 In the spirit of The Phoenix Project (and its inspiration, The Goal, by Eliyahu Goldratt), this book is told in a semi-narrative format. My hope here is to have you, the reader, draw on your own experiences and struggles so that you can compare it to the ones I’m writing about. Did you encounter the same problem? How did you fix it? Would this strategy have helped? Or could it be adapted to help in the future?

 This book does not have to end when you close it.

acknowledgments

 When I started writing this book, I didn’t realize how many people would be involved. First and foremost, I would like to thank my wife, Chelsea, who supported me in this endeavor and all the other endeavors I’ve participated in. It wasn’t the best plan on paper to start a new job and write a book with two children to manage, but she helped me stick with it and push the book over the finish line.

 I’d also like to thank my two sons, Eli and Abel, who inspire and challenge me in all the best ways. Their curiosity and interest forced me to think about concepts that seemed self-explanatory and to find a way of explaining them, which is, in a technical sense, what most programming books try to do for people!

 This book could not have been written without the immense support of Manning’s publishing team. Thank you, Andy Waldron, for working with me on finding a theme (and the right title!) for this book, which I am truly proud to have written. Thank you also to Aliénor Latour, who advised me on the technical aspects of the content and on the overall tone and direction of the book.

 As a reviewer of many Manning books myself, I especially appreciate all those who provided feedback in the book reviews. To Alain Lompo, Alex Harrington, Alex Lucas, Amit Lamba, Arun Saha, Bhagvan Kommadi, Borko Đurković, Camal Cakar, Clifford Thurber, Diego Stamigni, Eldon Alameda, Jorge Ezequiel Bo, Katia Patkin, Kent Spillner, Laud Bentil, Manoj Reddy, Marleny Núñez Alba, Mattia Di Gangi, Michele Di Pede, Mihaela Barbu, Muneeb Shaikh, Nathan B Crocker, Philippe Vialatte, Roman Zhuzha, Ryan Quinn, Sergio Britos Arévalo, Sudeep Batra, Tiklu Ganguly, Tymoteusz Wolodzko, and Walter Alexander Mata López, your suggestions helped make this a better book. And I appreciate those who purchased this book early via MEAP and provided feedback and support.

 I am very grateful for all the help, guidance, patience, and laughs that Becky Whitney provided. She was an amazing guide throughout the entire writing process and eased my mind about many of my decisions. Writing this book would have been overwhelming to me without her guidance and, instead, it was a well-organized journey.

 To Thoro.ai for giving me the freedom and encouragement to write this book.

 To Frank, who took me under his wing and received talks, papers, and a repository of experience in return.

 To Mike L., who discussed process and improvement first thing in the morning with me to come up with ideas for this book.

 To John M. and Verone, who gave me my first job and encouraged me to grow.

 To my parents, who encouraged me to grow and reach for new goals.

 To my high school English teachers, who encouraged my writing and helped me establish my voice.

 To Otto, who, with every walk we took, led me one step closer to the end of this book.

about this book

 Shipping Go is intended to walk you through building a product. Experimenting and hacking will require process and automation to help turn an idea into something other people use. Placing this book into a single category is difficult because it intentionally moves you into areas of testing and infrastructure along with creating process and automation. You’ll find yourself moving between Development, QA, and Ops worlds in developing an experimental project. Putting all these elements together is an automated pipeline that provides a feedback cycle that we enhance as we progress throughout.

Who should read this book?

 This book, which is intended for anyone who has a solid grasp on any programming language, was conceived and written as the first book you should read after you’ve learned Go, JavaScript, Python, or whatever other fun language you’re excited to build something in. Given this knowledge, you will be given a crash course in the software development process, continuous integration and deployment, and various infrastructure elements. This book was written using examples in a particular language and cloud infrastructure that is transferable to other languages, as demonstrated in the appendices.

 Managers and architects may find the concepts useful to help design teams around new projects. These concepts can be slowly introduced to existing development environments as well as new ones. Considering the advancements in both languages and architecture, you may fear that the book content will become outdated, yet the concepts should project forward toward new languages and infrastructure elements. What is written here is only a subset of what can be done but should serve as a solid foundation for you and your team to build on.

How this book is organized: A roadmap

 This book is organized into three parts, consisting of a chapter apiece on process, testing, and infrastructure that progress in complexity in each part. This way, you can hop into the book at the pertinent chapter or part related to your area of expertise (or lack thereof). Each concept should be transferable to other languages and pieces of infrastructure. In the appendices, you will find examples of the same pipeline in other languages.

About the code

 The code is basic-level Go code with the CI engine using GitHub actions. These actions use YAML as the primary language, which is easily transferable to other systems, though the libraries will be different. I chose (for no particular reason) Google Cloud as the cloud host throughout this book; you can swap it out with similar products in other cloud offerings. Additionally, I chose the route of container-based deployments rather than standing up individual servers as a matter of preference, as many greenfield projects tend to move in this direction. However, appendix D provides some basic infrastructure examples.

 This book contains many examples of source code both in numbered listings and inline with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/shipping-go. The complete code for the examples in the book is available for download from the Manning website at www.manning.com and from GitHub at https://github.com/holmes89/hello-api.

liveBook discussion forum

 Purchase of Shipping Go includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/shipping-go/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website for as long as the book is in print.

about the author

 [image:]

 Joel Holmes is a software developer who has focused on building cloud-native applications. He has worked at several startups and has helped to architect, design, and develop new products and services to help those companies develop and grow. Along the way, he has been able to help establish tools and processes that have helped development and increased quality. He lives in Pittsburgh with his family and currently works at Thoro.ai building cloud applications in the growing robotics industry.

 The technical editor on this book is Aliénor Latour, a Golang tech lead focused on quality and simplicity in her team’s software, and an advocate for diversity in development roles. Outside of work hours, she travels Europe for Scottish dance events, knits, sews skirts with pockets, and reads about linguistics and sociology.

about the cover illustration

 The figure on the cover of Shipping Go is captioned “Femme de Martavan en Sirie,” or “Woman of Martavan in Syria,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

Part 1. Startup

 The beginning of a new project is extremely exciting and at times a bit daunting. You aren’t encumbered by old code or bugs, but you are starting from scratch on an idea that you aren’t sure will work. You don’t know if the market will like it or if it will stand up to high loads of traffic. You definitely don’t want to paint yourself into a corner too quickly, nor do you want to make things so broad that it becomes impossible to reason about. This is the difference between having a narrow, unstable base and an expansive, cumbersome base.

 The goal is to be flexible at this stage. Build your product so that it can change and grow comfortably for both you and your team. In this section, we discuss how to start a project with documentation and a plan in chapter 2. We establish a simple and flexible way of writing tests in chapter 3 early on to help find bugs quickly. We release a product to production that will cost nothing until it is heavily used in chapter 4. Throughout this process, we build tools that automate a good portion of the process of moving your code through testing and delivery.

 1 Delivering value

 This chapter covers

 	
Using small chunks of work to increase workflow

 	
Establishing feedback loops for product and process improvement

 	
Outlining phases of product growth and development

 	
Iterating between various feedback cycles

 What you will find in this book has been gathered from past practices in Agile software development, lean startup ideals, and DevOps culture. This book is intended for those who want to take the language they’ve learned and build something with it. You know how to write code, and you want to ship it. The concepts and processes taught here should be agnostic to the technology or language you use, but I provide concrete examples using Go and GitHub Actions. By using their terminology, you should be able to easily adapt what I write here to Python and GitLab or JavaScript and CircleCI, but in this book, we will ship Go code.

 The book follows a semi-narrative format wherein I put you in the shoes of a developer at a company that wants to rapidly develop an enhanced product. While this project is simple, the intention is to give you an idea of the process of developing a product. Many of these elements are drawn in part from my personal experiences and hindsight. This pattern may also not fit your company’s culture or process, but hopefully you can find some elements that help your team move forward. The focus here is the process and mentality rather than the technology.

 Finally, each section is broken down so that you deliver a product at the end. Each chapter will build off of the existing chapters, but you can stop at any point if you are satisfied with the process. Each section brings your product to scale in different ways, such as by expanding teams or higher resource utilization. We explore integration with legacy systems and different deployment options based on cost.

1.1 Simple concepts

 This book brings together concepts and processes from across various industries to help with the quick creation of quality software. Some of these concepts predate the development of computers and the software development industry. Over the past few decades, software companies have looked to other industries to help them build products more efficiently to meet the demands of their customers. What they found were processes that created fast feedback from their customers. Based on that feedback, they were able to adapt their product. Adapting their products allowed them to grow into the Googles, Apples, and Facebooks of today, yet they are rooted in the assembly lines of the industrial revolution and the lean manufacturing techniques created in Japan.

 Let’s assume you are reading this book so that you can build a product. You have some idea that you think will change your company (or the world), and you want to see if it works. Is this what customers want? Does this help your company? It is hard to know. Projects may get started and eventually fail. They may pivot or change or just be left to the scrap heap of experience. If a project is almost predestined to change or be thrown out, then how much effort should you put in?

 It’s curious to think of putting in the least amount of effort as possible into something. It can seem lazy or uninspired. Instead, consider being told you need to build a device that takes someone from one location to another in the fastest way possible. With no additional details, you could spend years creating and designing an airplane only to find out your customer needs to travel 10 miles. Compare the two development processes in figure 1.1.

 In software, this happens all of the time. Companies pivot. They start small and evolve. They fail. They make millions. How do they do it? It comes from a notion of developing three key features: people, process, and product. People drive organizations and product development. A process helps us underline how the work should be done. Finally, the product opens us up to feedback from our customers. Once you’ve established your process, you can automate it as much as possible. This allows your team of people to sit at one end and a product to be delivered at the other end.

 [image:]

 Figure 1.1 Talk with customers to get an accurate idea of which product to build them.

 Your team will develop features or make changes that your customer wants. These changes will then be delivered to your customers, who in turn will create a discussion about the product or feature. This will trigger a design step, which will start the whole thing over. I like to refer to this loop as the four Ds: develop, deliver, discuss, and design. This is a feedback loop and becomes a key part of our value stream, as seen in figure 1.2.

 [image:]

 Figure 1.2 Develop, deliver, discuss, design loop

 The value stream is exactly as it sounds, the flow of work that creates value within the company. This means establishing a relationship with your customers and building a product that you think will be valuable to them. Yet your investment should be as small as possible until you can learn what your customer wants. How do you reduce your investment costs? Through automation. When your source code is committed, it should be treated as a raw resource, and the manufactured product should be delivered at the end.

 We can look to another profession for the answers. Industrial engineers have been dealing with how to deliver products for a long time. We can look at innovations such as the assembly line, which showed us the benefits of automated handoffs between workstations. We can look at lean manufacturing techniques to help us understand the importance of reducing work in progress and just-in-time delivery to reduce waste. The technology world has watched and adopted many of these principles to help design and build delivery pipelines, which automate the flow of work from a single idea to a feature in your application. These ideas and features are created when a customer asks for them just in time for development rather than by guessing the customer’s desires and spending time and money upfront developing something that may not be what they want. This pipeline can be seen in figure 1.3, wherein a raw resource goes in one end, a product is shipped, and customer feedback is given to design a new feature. This cycle is pivotal to the success of companies and is a concept we will explore throughout this book.

 [image:]

 Figure 1.3 Code is moved along a pipeline where it is analyzed, built, and then shipped as a library to a device or a server.

 We can see that the code goes through a series of automated steps to verify quality before a product is built and shipped to the end customer. This can be through a library package that is used in another project, a device out in the field for an update, or a server running in the cloud. All move along with little to no human interaction, making the timeline dependable between when the code is written and when the customer gets to use the product.

1.2 Small pieces

 A key theme you will find in this book is creating small, iterative steps to invite feedback into your process. So, as we build our product, we will take small, iterative steps so that you can see how a product grows. You may find the steps in section 1 too simple for your needs and choose to skip them. Or you may find that you only need up to the end of part 2 to take your product to market.

 Imagine you have spent three weeks developing a feature that hasn’t been looked at or tested by anyone. How long do you think it will take for someone to test all of the different pieces of your feature? How many bugs do you think they’ll find? How quickly can you turn around on those bugs? How much change has accrued while you developed this feature?

 Creating small pieces of work allows us to decrease our work in progress (WIP) and speed up delivery. In Eliyah Goldratt’s book The Goal (Routledge, 2014), the author points out that WIP ties up revenue. You invest time and money in something that is not getting to the customer. This is a loss of value until it is delivered. Creating smaller amounts of work ties up less revenue in your value stream, so we will focus on smaller chunks of work to deliver value early and often.

 While each chapter is important to building a complete pipeline, in the end you will find that your pipeline will be different because each product and company is different. What stays the same is the process. Ideas go in, code gets written, and products ship out. Figure 1.4 demonstrates this loop.

 [image:]

 Figure 1.4 Product development goes through a life cycle that starts with raw materials and results in a product that customers provide feedback on, resulting in improvements and changes to the product.

 Collaboration becomes key in this step because you are tearing down the walls between different groups. It used to be that tribes existed in companies that were constantly at war with each other. Testers blamed developers for poor-quality code. Developers blamed operations for slow deployments. Operations blamed testers for the number of deployments that happened because of missed bugs. This is unhealthy and harmful to our customers, so instead of putting up walls, we tear them down, put lines of communication between them, and collaborate on building a tool that takes in ideas and delivers value.

 You will be given a holistic view of product development so that you can turn your ideas into products. What does this view look like from a distance? What steps do we need to build our pipeline? Let’s take a look.

1.2.1 Continuous

 There are so many continuous things: continuous integration, continuous testing, continuous delivery, continuous improvement. What do they all have in common? They are . . . continuous—a cycle, a full rotation, a circle. All of these “continuous” things tell us that they all need to connect at the beginning. Toyota incorporated this model to build its famous Toyota Production System (TPS). The company is constantly evaluating each phase of its development process, from the way the assembly line runs, to manual assembly, to experimentation. Each phase has a feedback cycle where any employee can seek ways of improving the company.

 From a development perspective, being continuous allows you to write code without much concern about doing a lot of manual work after that. If a pipeline is assembled correctly, checking in a piece of code should trigger a list of automated processes that will give you feedback about the code. It may fail a quality assessment or not compile, but the developer is notified and can fix it, creating a loop. If the deployment was successful, the developer can move on to the next task, continuing the process of improvement.

 This book is written in a way that tries to follow this pattern. The TPS has many steps and hits a very broad market, so it would be too theoretical for this book. What we will do instead is break it down into three broad categories: process, quality, and delivery.

 Each phase can be simple or complicated depending on your needs and where you are in your product development. What is provided is not a prescription but guidelines to help you implement these various techniques.

1.2.2 Process

 Humans are still an essential element of software engineering. They come up with designs. They write the code. They verify the results. But humans aren’t needed for everything. In fact, the more you can invest in less human time, the greater benefits you will get from your team.

 This isn’t to say that you automate away your development team. Instead, consider this: Would you rather spend an hour deploying an application or developing a new feature? We adopt an approach that is found in TPS: “automation with a human touch.” This means we try to automate as much as possible, which increases how efficiently we work. But this is not a black box or a set of corporate commands. Instead, the developers create and add the necessary tools to help them in their development.

 What does this look like? Well, it becomes a set of documents, scripts, and tools that help make development go quickly. What format should my code be in? Use a formatter tool. How do I create a new feature? Use a code generator. How can we improve our deployment process? Use a pipeline.

 This process is going to be fragile at first but will evolve into something essential to your team. You will find that the flow of work through your company will become easier and you will be able to meet demands quickly and efficiently.

1.2.3 Quality

 Quality is a tricky word and the basis for some philosophical discussion. Robert Pirsig, in his book Zen and the Art of Motorcycle Maintenance (Mariner Books, 2005), put it this way:

 “Quality . . . you know what it is, yet you don’t know what it is. But that’s self-contradictory. But some things are better than others, that is, they have more quality. But when you try to say what the quality is, apart from the things that have it, it all goes poof! There’s nothing to talk about. But if you can’t say what Quality is, how do you know what it is, or how do you know that it even exists? If no one knows what it is, then for all practical purposes it doesn’t exist at all. But for all practical purposes it really does exist.”

 So when people say “delivering a quality product,” what does that mean? For our purposes, we’ll say that first and foremost quality does not mean perfect. No code or product will ever be perfect. Quality, therefore, becomes an approximation of perfection.

 Perfection can be approximated by putting additional quality measurements into your development process. What you, your team, and your company must do is determine your definition of quality for your customers. Your code may be beautiful, but in most cases, it gets compiled and is never seen by a customer. If that beautiful code has bugs, is it quality code? Or if you have code that works and has worked for years but is difficult to read or debug, is that quality code?

 Our quality checks will mostly be through various types of test code. Different patterns and strategies will be used to ensure that our product is functioning as expected by the developer and the customer. This step reduces waste in our system, which occurs through rework (bugs) and delays (missed requirements). We use tests in a variety of ways to give ourselves confidence that our product works before we ship it. This will not address everything we need for quality code. Things such as code clarity and maintainability also help with the quality of our code and will be additional steps we add. In the end, though, it is the writers and maintainers of the code who are the stewards of quality.

1.2.4 Delivery

 Delivery is the last step needed before we can loop back to the beginning. This is where the value comes into our pipeline. After the code has been written and pushed, we validate what we wrote by how our customers react to it. Changes may be requested, or the user may be satisfied or dissatisfied. This feedback loop only happens once a product is delivered.

 Delivery is the act of shipping an artifact. An artifact can be a version of a library, an executable binary, a container image, or something else that can be used by another person. Artifacts can be delivered privately and publicly. In some cases, a company will build what’s called a release candidate, which is a product that is almost ready to be given out to the general public. This candidate can be run through another set of automated tests to check for performance problems (load testing), usability problems (UI testing), or if it even works (smoke testing). The manual tests can be run to explore the product, get a stamp of approval, and be released to the public, as shown in figure 1.5.

 [image:]

 Figure 1.5 Code is built into an executable file or wrapped in a universal runtime, such as a container.

 The process of making an artifact run is known as a deployment. In some cases, this can range from installing an application on a server, setting up a new function on a serverless environment, running a new container on a container-run engine, or simply doing an over-the-air update to the customer’s machine (e.g., operating system updates). It is at this point that we begin to see the full value in what we have built, as shown in figure 1.6.

 [image:]

 Figure 1.6 The output is shipped to a customer as a library onto an embedded device or a server.

 Throughout this process, we continue to learn what customers want and need and how they use the product, which provides information back to our development team. If an application doesn’t start, we know we broke something that needs to be repaired. If it falls over when too many people use it, we know something needs to be changed. If only a small set of users finds the feature unhelpful or not of value, we may need to go back to the drawing board.

1.3 Building your product

 What happens in the product development cycle is very similar to the scientific method. You have a hypothesis, and you do experiments to see if your hypothesis is correct. Sometimes you may need to change the parameters of your experiments or explore a different direction. Products can be similar. Your idea (hypothesis) may not meet the market needs, so you make a change (experiment) and ultimately find if it is successful. In either case, you learn something.

 As part of building your product, there will be various stages. As you progress, each part can become more complicated and will outline the mature stages of a product.

1.3.1 Initial setup

 What goes into starting a new project? Is it just a great idea, or is it more? When you are starting a project, as we do in chapter 2, you need to gather information about what the system is supposed to do and how you expect it to work. As you progress, you need instructions and scripts to set up the project for others. When working in an organization or on a larger project, you will not be the only one doing the work. Someone at some point will want to contribute, and it’s easier to document the steps now than worry about it later.

 Documentation and scripts will help you scale team members and contributors. Building a basic pipeline also becomes important at the onset because retrofitting one can often be tricky. In this section, we start down our path toward industrial programming instead of hacking. There is a time and place for both types of programming, but in this instance, we worry about building a product and not vetting an idea. Once we’ve established some basic installation and a process, we will add to it as we go.

1.3.2 Basic validation

 Validating that your code works as expected is another step along the path to developing a great product. Teams often push items like testing toward the bottom of their priority lists because they feel their product is too volatile at the beginning, but tests are more than just security blankets for developers. Instead, they tell developers about the business rules they are writing and steer the product toward their intended goal. These guard rails can help developers in the long term, and establishing them as basic validation in a pipeline helps accelerate the growth of a product and gives autonomy to developers by documenting the business expectations through code. We explore this process in chapter 3 by setting up a basic unit testing process.

1.3.3 Zero-cost deployment

 Without shipping, you have a product that sits on a shelf. Deployment is taking your product and putting it out there on a server so that someone can use it. Yet when you look at all of the options, there are tons of things to consider. The biggest of these is cost. That is why there is such a large focus on low-cost technologies to get products deployed.

 Starting in chapter 4, we will walk through various options that are free and scale with your company as your user base grows. I like to call this “zero cost” because early on, it should not cost you anything to run a product to get market validation. To do this, we will explore serverless technologies such as deployed functions and hosted platforms.

1.3.4 Code confidence

 The standardization of work is a core tenant of industrialized production. In the same way, developers have created techniques to standardize how software is written. As a team grows, coding standards and formatting will become important. By using these techniques, we can catch bugs earlier and continue to check the quality of the product automatically before it even gets tested.

 Additionally, in chapter 5, we will explore a code review process and see how this can aid in creating a quality product and how it can be used as a teaching mechanism for team members. We will also use documentation to help our team understand the code we write and work toward creating code that is easy to understand.

1.3.5 Integrations

 Systems rarely work in a vacuum. They either interact with a database, a file system, or another application. This is known as integration, which becomes a critical part of testing our systems. In chapter 6, we will explore different techniques for testing integrations with other systems. We will interact with simple stubbed systems as well as more advanced mocking techniques. To do this, we will need to create a layer that allows us to invert the dependencies so that we develop against an abstraction instead of a concrete system. In doing this, we will give ourselves higher flexibility.

1.3.6 Portability

 “It worked on my machine” is a trope that occurs often in software development circles. You spend months creating a system, and you know all of the ins and outs of it. Suddenly, someone else wants to run it and it won’t work. They follow your setup, but you missed a dependency. You developed it on Linux, but they are using Windows.

 How do we resolve this? In chapter 7, we will explore abstraction tools that help us with virtualization and packaging our product so that it can run on a universal runtime. This will be done using Buildpacks and containers. Ultimately, we will integrate this into a system that is portable for everyone, including our various cloud deployment options.

1.3.7 Adaptability

 As you ship your product, you will find yourself building incomplete features or turning features off. Typically, companies create a separate product to test before releasing it to a customer “once it is stable,” but this has been found to reduce teams' productivity and can often cause delays in shipping. Instead, the industry has moved toward changing the way our applications work through the use of configuration. By configuring our applications, as we will do in chapter 8, we can change the functionality without changing the code itself. This means that experimental features can be tested by setting a variable or changing an endpoint by changing a flag. Configuration means you can adapt your applications so that they can move as quickly as you do.

1.3.8 User acceptance

 Simple tests are great at testing how functions and methods work within your application. They help you hone in on the technical aspects but do little to tie your work to what the user wants. A user may want an API that expects a specific format or a business rule that has specific expectations. In this instance, our testing shifts from technical to something a little more “squishy.” In chapter 9, we explore other techniques. We are not interested in how it is done but rather whether we are meeting the specifications set out for us. “If my balance is less than the amount to withdrawal, then I should get an error” is an example of a specification we would want to test.

1.3.9 Scaled product

 Using various abstractions in our deployment environments will help us build a customer base. Over time, these abstractions will cost you and your company either money or performance, so you start ripping apart these abstractions, which requires more technical expertise about the servers and systems you are building, for a reduced cost and the ability to scale servers as you see fit. In chapter 10, we will explore creating and delivering products on visualized server instances and how to maintain these products through code.

1.3.10 End to end

 The final step in any product, once it has reached a critical mass, is to test it for quality. By this point, we will have created several ways of testing quality through testing and linting. But as the product rolls to production, we will want to assert what the customer will experience. Often this is done through a quality assurance team, but we want to automate as much of this as possible so that our team can explore more nuanced bugs or search for areas of improvement. In chapter 11, we will add our final capstone to our pipeline, which will give us a sense of whether our entire system works as expected from the stance of a customer. We focus on pushing the quality checks throughout the system, but we should, in the end, have a final check to see if everything works as a whole. Since this is an expensive operation (in terms of time and upkeep), we save it for last, as it is often the last piece to be implemented once a product has matured. In chapter 11, we will demonstrate some tests to allow your team to explore other areas of improvement.

1.4 Feedback loop

 I guess it’s easy to ask what the point of all of this is. The answer is simply to allow you to create fast and tight feedback loops throughout the growth of your product, team, and company. These principles are also easily transferable to other businesses and projects.

 Agility is a term thrown around a lot in software development, and it aims to capture the idea of being nimble and quick to change direction. Yet I feel that this is an inadequate term because it can often feel like you are playing a game of dodgeball trying to deflect or dodge feedback rather than embrace it. Instead, our development process should be like driving a race car where you need to make split-second decisions to keep moving toward the finish line. As we move through this book, I hope you can find some guidance for your project and your team on how to move forward and win the race.

Summary

 	
 Product development is a process that constantly changes.

 	
 Focusing on feedback loops will help guide areas of improvement.

 	
 Automation is key to establishing faster feedback loops.

 2 Introducing continuous integration

 This chapter covers

 	
Documenting requirements in your source code

 	
Establishing a central code repository as the starting point for your pipeline

 	
Automating the steps needed to build your product by using a continuous integration system

OEBPS/OEBPS/Images/Holmes4_author.png

OEBPS/OEBPS/Images/CH01_F01_Holmes4.png
How not to build a product
O
il 2 3

How to find what the customer needs

©e &

OEBPS/OEBPS/Images/CH01_F02_Holmes4.png
P o
Design
Create a product or feature

based on an idea or feedback
from the customer.

(22 5T 'S

e -

Discuss
Develop

—_— Write the code for the feature
based on the design.

Receive feedback from the
customer on the feature and
learn ways to improve or
enhance your product.

Deliver

Send your product out for
someone to use.

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/cover.jpeg
Develop, deliver, discuss, design, and qo again

Joel Holmes

/'l MANNING

OEBPS/OEBPS/Images/CH01_F06_Holmes4.png
Library

Container ﬁ

Binary Device

\ Server

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/CH01_F04_Holmes4.png
Assembly

Quality

assessment Testing

~
Al

Raw L e Y K i

resource Gustomer

Design Review

OEBPS/OEBPS/Images/CH01_F03_Holmes4.png
Library

Container
Static analysis Automated tests Build
Code Code

Code
07701 01101 01101
10100 10100

10100}
11011 11011 11011

Binary Device

fg__))
[N}

OEBPS/OEBPS/Images/CH01_F05_Holmes4.png
Container

Static analysis Automated tests Build
Binary Device

Server

OEBPS/OEBPS/Images/IFC_F01_Holmes4.png
Assembly

Quality

assessment Testing

Ship

1‘

Raw =

resource Customer

Il

T

>
R

Design Review

