

 [image: cover]

 Adobe AIR in Action

 Joseph Lott, Kathryn Rotondo, Samuel Ahn & Ashley Atkins

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 Sound View Court 3B fax: (609) 877-8256
 Greenwich, CT 06830 email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:]
 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without elemental chlorine.

 [image:]

 Manning Publications Co. Development editor: Nermina Miller
Sound View Court 3B Copyeditor: Benjamin Berg
Greenwich, CT 06830 Typesetter: Dottie Marsico
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09 08

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Introducing Adobe AIR

 Chapter 2. Applications, windows, and menus

 Chapter 3. File system integration

 Chapter 4. Copy-and-paste and drag-and-drop

 Chapter 5. Using local databases

 Chapter 6. Network communication

 Chapter 7. HTML in AIR

 Chapter 8. Distributing and updating AIR applications

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 Chapter 1. Introducing Adobe AIR

 1.1. Anatomy of Adobe AIR

 1.1.1. Developing for a runtime environment

 1.1.2. Why build desktop applications?

 1.1.3. Exploring AIR possibilities

 1.2. Running AIR applications

 1.3. AIR application security and authenticity

 1.3.1. Understanding AIR application security

 1.3.2. Ensuring application authenticity

 1.4. Building AIR applications

 1.5. Introducing AIR application descriptors

 1.5.1. The application element

 1.5.2. The id element

 1.5.3. The version element

 1.5.4. The filename element

 1.5.5. The initialWindow element

 1.5.6. The name element

 1.5.7. The title and description elements

 1.5.8. The installFolder element

 1.5.9. The programMenuFolder element

 1.5.10. The icon element

 1.5.11. The customUpdateUI element

 1.5.12. The fileTypes element

 1.6. Building AIR applications using Flex Builder

 1.6.1. Configuring a new AIR project

 1.6.2. Creating AIR project files

 1.6.3. Testing the AIR application

 1.6.4. Creating an installer

 1.7. Building AIR applications using Flash

 1.7.1. Configuring a new AIR project

 1.7.2. Creating AIR project files

 1.7.3. Testing the AIR application

 1.7.4. Creating an installer

 1.8. Building AIR applications using the Flex SDK

 1.8.1. Configuring a new AIR project

 1.8.2. Creating AIR project files

 1.8.3. Testing the AIR application

 1.8.4. Creating an installer

 1.9. Quick-start AIR application for Flex

 1.10. Quick-start AIR application for Flash

 1.11. Summary

 Chapter 2. Applications, windows, and menus

 2.1. Understanding applications and windows

 2.1.1. ActionScript application and windows

 2.1.2. Flex application and windows

 2.2. Managing windows

 2.2.1. Retrieving window references

 2.2.2. Positioning windows

 2.2.3. Closing windows

 2.2.4. Ordering windows

 2.2.5. Moving and resizing windows

 2.3. Managing applications

 2.3.1. Detecting idleness

 2.3.2. Launching applications on startup

 2.3.3. Setting file associations

 2.3.4. Alerting the user

 2.3.5. Full-screen mode

 2.4. Menus

 2.4.1. Creating menus

 2.4.2. Adding elements to menus

 2.4.3. Listening for menu selections

 2.4.4. Creating special menu items

 2.4.5. Using menus

 2.5. Starting the AirTube application

 2.5.1. Overview of AirTube

 2.5.2. Getting started

 2.5.3. Building the data model

 2.5.4. Building the AirTube service

 2.5.5. Retrieving .flv URLs

 2.5.6. Building the AirTube main window

 2.5.7. Adding the video and HTML windows

 2.6. Summary

 Chapter 3. File system integration

 3.1. Understanding synchronicity

 3.1.1. Canceling asynchronous file operations

 3.2. Getting references to files and directories

 3.2.1. Introducing the File class

 3.2.2. Referencing common directories

 3.2.3. Relative referencing

 3.2.4. Absolute referencing

 3.2.5. Accessing a full path

 3.2.6. User referencing

 3.2.7. Making paths display nicely

 3.3. Listing directory contents

 3.3.1. Getting directory listings synchronously

 3.3.2. Getting directory listings asynchronously

 3.4. Creating directories

 3.5. Removing directories and files

 3.6. Copying and moving files and directories

 3.7. Reading from and writing to files

 3.7.1. Reading from files

 3.7.2. Writing to files

 3.8. Reading and writing music playlists

 3.8.1. Building the data model

 3.8.2. Building the controller

 3.8.3. Building the user interface

 3.9. Storing data securely

 3.10. Writing to files with AirTube

 3.11. Summary

 Chapter 4. Copy-and-paste and drag-and-drop

 4.1. Using a clipboard to transfer data

 4.1.1. What’s a clipboard?

 4.1.2. Understanding data formats

 4.1.3. Reading and writing data

 4.1.4. Removing data from a clipboard

 4.1.5. Understanding transfer modes

 4.1.6. Deferred rendering

 4.2. Copy-and-paste

 4.2.1. Selecting a clipboard

 4.2.2. Copying content

 4.2.3. Pasting content

 4.2.4. Cutting content

 4.2.5. Using custom formats

 4.3. Drag-and-drop

 4.3.1. Understanding drag-and-drop

 4.3.2. Drag-and-drop events

 4.3.3. Using the drag manager

 4.3.4. Adding drag indicators

 4.3.5. Dragging out of an AIR application

 4.3.6. Dragging into an AIR application

 4.4. Adding drag-and-drop to AirTube

 4.5. Summary

 Chapter 5. Using local databases

 5.1. What is a database?

 5.2. Understanding SQL

 5.2.1. Creating and deleting tables

 5.2.2. Adding data to tables

 5.2.3. Editing data in tables

 5.2.4. Deleting data from tables

 5.2.5. Retrieving data from tables

 5.3. Creating and opening databases

 5.4. Running SQL commands

 5.4.1. Creating SQL statements

 5.4.2. Running SQL statements

 5.4.3. Handling SELECT results

 5.4.4. Typing results

 5.4.5. Paging results

 5.4.6. Parameterizing SQL statements

 5.4.7. Using transactions

 5.5. Building a ToDo application

 5.5.1. Building the to-do item data model class

 5.5.2. Creating a to-do item component

 5.5.3. Creating the database

 5.5.4. Creating an input form

 5.5.5. Adding SQL statements

 5.6. Working with multiple databases

 5.7. Adding database support to AirTube

 5.7.1. Updating ApplicationData to support online/offline modes

 5.7.2. Adding a button to toggle online/offline modes

 5.7.3. Supporting offline saving and searching

 5.8. Summary

 Chapter 6. Network communication

 6.1. Monitoring network connectivity

 6.1.1. Monitoring HTTP connectivity

 6.1.2. Monitoring socket connectivity

 6.2. Adding network monitoring to AirTube

 6.3. Summary

 Chapter 7. HTML in AIR

 7.1. Displaying HTML in AIR

 7.1.1. Using native Flash HTML display objects

 7.1.2. Loading PDF content

 7.1.3. Using the Flex component

 7.2. Controlling how AIR loads HTML

 7.2.1. Controlling content caching

 7.2.2. Controlling authentication

 7.2.3. Specifying a user agent type

 7.2.4. Managing persistent data

 7.2.5. Setting defaults

 7.3. Scrolling HTML content

 7.3.1. Scrolling HTML in Flex

 7.3.2. Scrolling HTML content using ActionScript

 7.3.3. Creating autoscrolling windows

 7.4. Navigating HTML history

 7.5. Interacting with JavaScript

 7.5.1. Controlling HTML/JavaScript elements from ActionScript

 7.5.2. Handling JavaScript events from ActionScript

 7.5.3. Building a hybrid application

 7.5.4. Handling standard JavaScript commands

 7.5.5. Referencing ActionScript elements from JavaScript

 7.6. Managing security issues

 7.6.1. Sandboxes

 7.6.2. Sandbox bridges

 7.7. Adding HTML to AirTube

 7.8. Summary

 Chapter 8. Distributing and updating AIR applications

 8.1. Distributing applications

 8.1.1. Using the default badge

 8.1.2. Creating a custom badge

 8.2. Updating applications

 8.3. Launching AIR applications

 8.3.1. Handling invoke events

 8.3.2. Launching AirTube with a file

 8.3.3. Listening for browser events

 8.4. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 My friend Paul Newman (yes, that’s really his name, and no, not that Paul Newman) called me a year ago to ask if I’d like to help write a book about Apollo, which was the codename for Adobe
 AIR at that time. I was already overworked, but I hesitantly agreed. Although I’d known of Apollo in a general way prior to
 that, it was only at that point that I started to seriously take a look at the technology. Paul later had to bow out of the
 project due to other demands on his time, but I continued to look at Apollo and prepare to write this book.

 Previously, I’d held a few prejudices in regard to Apollo. I’ve worked with Flash and Flex for a decade, and the idea of using
 Flash or Flex to build desktop applications was hardly a new one. I’d been building executables from Flash for nearly as long
 as I’d worked with it. I’ve used programs such as FlashJester, Northcode SWF Studio, and Multidmedia Zinc with varying degrees
 of success to enable enhanced features for desktop applications built using Flash, and I’d previously seen Apollo as merely
 another alternative to these programs. Frankly, I felt a bit of resentment that Adobe, a huge corporation, would try to swoop
 in and crush these existing companies with a competing product. However, after working with Apollo, I saw that it was really
 quite different from these other products.

 Soon after, Adobe changed the name from Apollo to Adobe AIR. AIR allows developers to use existing Flash and Flex skills to
 build desktop applications. In that regard, it’s similar to the other products I previously mentioned. However, AIR doesn’t
 create system-specific executables. Instead, AIR applications require the AIR runtime. In this regard, AIR has less in common
 with programs such as Zinc, and more in common with runtime environments such as Java or .NET. This understanding changed
 how I looked at AIR.

 Nearly a year on and the manuscript is written, edited, and ready to go to print. During that time, the authors have learned
 a lot about AIR, and we’ve endeavored to share that with you in the pages of this book. We sincerely hope you find this book
 valuable and that we can provide you with useful understanding of how to work with AIR.

 JOEY LOTT

Acknowledgments

 The authors of this book would like to thank all of the people who have contributed to the printed version you’re reading.
 This includes a long list of people at Manning who helped shape the book. Michael Stephens had the initial vision to see the
 potential for an Adobe AIR title, and for that we thank him. Nermina Miller was the development editor for this book; without
 her, the book schedule and process would surely have deteriorated entirely. It’s thanks to Nermina that you have a complete
 and coherent manuscript to read! We’d also like to thank Benjamin Berg for copyediting the manuscript when it was final.

 We’d like to thank Karen Tegtmeyer for coordinating the reviews of the manuscript, which helped us to improve the content
 and writing in response to the comments of early access readers as well as of peer reviewers. Their feedback, as we continued
 to write and revise, was invaluable. Special thanks to our peer reviewers, Bernard Farrell, Ryan Stewart, Dusty Jewett, Christopher
 Haupt, Tim O’Hare, Robi Sen, Mike Clymer, Sean Moore, Clint Tredway, Jeremy Anderson, Patrick Peak, Oliver Goldman, Jack D.
 Herrington, Nathan Levesque, Bruno Lowagie, Daniel Todd, and Brendan Murray.

 Robert Glover was the technical editor for this book, which means he went through every chapter and every line of code to
 ensure its technical accuracy. As you can imagine, this is a very important role, and we offer our sincere thanks to Robert
 for his fine work.

 Thanks are also due to the following production staff who contributed to the book in various ways such as book design, cover
 design, typesetting, and proofreading: Dottie Marsico, Tiffany Taylor, Anna Welles, Leslie Haimes, Gabriel Dobrescu, Ron Tomich,
 and Mary Piergies.

 We’d also like to thank the AIR team at Adobe for building a great product, for providing excellent documentation, and for
 making themselves available to address our queries. Special thanks to Oliver Goldman, who not only reviewed several chapters
 in detail, but also took time to personally respond to emails regarding technical details of AIR and digital signing.

 Without you, our readers, colleagues, and peers, there would be no need or demand for this book—so we’d like to thank you
 too for your interest and enthusiasm.

About this Book

 This is a book about Adobe AIR for Flash and Flex developers. Although it’s entirely possible to create AIR applications using
 HTML and JavaScript, this book focuses exclusively on using Flash and Flex to build AIR applications. The AIR APIs are remarkably
 similar in ActionScript and JavaScript. However, we found that trying to address all the JavaScript nuances at the same time
 as the Flash and Flex nuances would have resulted in an unfocused book. We opted instead to hone in on just Flash and Flex.

 It’s possible that some readers will still feel that we’ve tried to cover too much territory by including both Flash and Flex
 coverage in one book. That is a fair critique. By including both, we necessarily had to compromise at certain points, opting
 to show code examples more suitable for Flash at some times and code examples more suitable for Flex at other times. Although
 this can be seen as a weakness, we also see it as a strength. We think this provides a greater context for understanding AIR,
 and it allows you to make better decisions about how best to solve a problem when building AIR applications. Ultimately, you’ll
 make up your own mind about whether our approach works well or not, but we certainly encourage you to view the book from our
 perspective.

Audience

 It’s no surprise that this book is intended for Flash and Flex developers who want to use their existing skills to build AIR
 applications. There are tens, if not hundreds, of books in the market that provide detailed introductions to Flash, ActionScript,
 and Flex development. We don’t attempt to provide any such introductory material in this volume. Therefore, if you aren’t
 already familiar with Flash, Flex, or common ActionScript APIs, you’ll probably struggle with this book. We’d encourage you
 to first learn the basics of Flash and Flex before attempting to build AIR applications. Everything in this book builds upon
 what we assume is a preexisting foundation in Flash and/or Flex.

Organization

 This book is remarkably straightforward. It’s a relatively thin volume of only eight chapters. Therefore, we didn’t think
 it necessary to break the book into parts thematically. Chapter 1 provides an introduction to what AIR is, as well as the necessary basics for getting started. Chapter 8 ties everything together by covering how to actually build, deploy, and update AIR applications. Each of the remaining six
 chapters focuses on one logical grouping of AIR APIs. For example, chapter 2 covers local file system access such as reading and writing files.

Code conventions

 This book is rife with code, ranging from short snippets to full applications. You’ll find that all code is shown in monospaced font to help it stand out from the rest of the text. Additionally, many of the longer blocks of code are presented in the form
 of numbered code listings with headers. These code listings are always referenced in the surrounding text, and are frequently
 annotated.

Code downloads

 Almost all of the code listings in this book are available for download from the book’s web site at www.manning.com/AdobeAIRinAction.

Author Online

 The purchase of Adobe AIR in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/AdobeAIRinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between
 readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s web site as long
 as the book is in print.

About the authors

 JOEY LOTT has extensive professional experience using Adobe technologies like Flex, Flash, and ActionScript. He is the author, or coauthor,
 of ActionScript Cookbook, Programming Flash Communication Server, The Flash 8 Cookbook, and several other related books. With Sam Ahn, he is a partner and founder of The Morphic Group.

 KATHRYN ROTONDO is a software developer at Schematic. She received a graduate certificate in software engineering from the Harvard Extension
 School and a certificate in Flash from the Rhode Island School of Design.

 SAM AHN has architected and built RIAs over the past several years for clients including Pfizer, Wyeth, MINIUSA, and Puma. Along
 with Joey Lott, he is a partner and founder of The Morphic Group, an interactive development company focusing on Flash/Flex
 application development.

 ASHLEY ATKINS is a senior software developer at Six Red Marbles, and has over six years of experience developing in ActionScript. His range
 of work extends from creating simple educational interactions to architecting and developing applications in Flex and AIR.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to facilitate learning and remembering. According to research in cognitive science, the things people
 remember are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action guide is that it is example-driven. It encourages the reader to try things out, to play with new code, and to explore new
 ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or to
 solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they
 want it. They need books that aid them in action. The books in this series are designed for such readers.

About the cover illustration

 The figure on the cover of Adobe AIR in Action is a “Backwoods Legislator, a Deputy from the Provinces.” The illustration is taken from an early 19th century travel book, L’Encyclopedie des Voyages, published in France. Travel for pleasure was a relatively new phenomenon at the time and travel guides such as this one
 were popular, introducing both the tourist and the armchair traveler to the inhabitants of other regions of France, to its
 soldiers, civil servants, and aristocracy—as well as to people from foreign lands.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the uniqueness and individuality of the world’s towns and provinces just 200 years ago. This was a time
 when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or the other.
 The travel guide brings to life a sense of isolation and distance of that period and of every other historic period except
 our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the computer business with book covers based on
 the rich diversity of regional life two centuries ago brought back to life by the pictures from this travel guide.

Chapter 1. Introducing Adobe AIR

	

 This chapter covers

	Learning about the elements of Adobe AIR

 	Understanding AIR application descriptors

 	Creating new AIR projects

 	Compiling AIR applications

	

Whether you’re using HTML, Flash, Flex, or any of the other myriad technologies, there’s one common thread among them: all
 these applications are built using technologies that are designed for the Web. That’s fantastic if your goal is to build a
 web application, but it’s a real bummer if you want to build a desktop application. Adobe integrated runtime (AIR) solves
 this problem for you. Using Adobe AIR, you can leverage your existing web application skills with Flash and Flex (and HTML
 and JavaScript) to create desktop applications. This is an exciting prospect.

 Every flight starts with a preparation for takeoff. Your journey through Adobe AIR is no different. We’ll start you off with
 a review of AIR and then delve into how you can use Flex and Flash to build AIR applications. Specifically, we’ll look at
 necessary introductory concepts for creating a solid foundation with AIR, such as these:

	
The different parts of Adobe AIR—including the runtime environment, installers, and AIR applications—and the relationships
 among all these parts.

 	Application security and authenticity issues, including digital signing. You’ll learn what digital signing is, different types
 of digital signing, and why and when to choose which.

 	Basic steps for creating AIR applications using Flex Builder, Flash CS3, or the Flex 3 SDK.

Without any further ado, let’s go ahead and jump to understanding what this whole AIR thing is about.

1.1. Anatomy of Adobe AIR

 Adobe AIR allows web application developers to use their existing skill sets to build desktop applications. You can use your
 HTML, JavaScript, Flash, and Flex skills to create applications that can run on desktop systems with runtime environment without
 the need to compile them for running natively on specific operating systems.

 In this section, we’ll define runtime environment and talk about why you might want to build desktop applications. On top
 of that, we’ll tell you why you’d want to use your existing skills to do that.

 1.1.1. Developing for a runtime environment

 If you use a Windows computer, you’ve undoubtedly run many .exe files. An .exe file is a compiled application that’s capable
 of issuing commands directly to the system on which it’s running. That means that an .exe file (or the equivalent) has the
 advantage of being relatively self-contained. However, there’s a setback as well, because this approach requires that you
 compile the application to a platform-specific format. That means that you must create a Windows-only or an OS X–only version
 of an application using this approach. The steps for the traditional approach to building applications are as follows:

 1. Write the code in a preferred language.

 2. Compile the code to a format that can be run natively on a specific operating system.

 3. Run the compiled application.

 A more flexible way is to use a runtime environment rather than targeting a specific operating system. This runtime environment
 approach is used by many popular application platforms, including Java and .NET, and it’s the approach used by Adobe AIR as
 well. When using a runtime environment, the application creation process is as follows:

 1. Write the code in a preferred language.

 2. Compile the code to an intermediate format.

 3. Run the compiled intermediate format in a runtime environment.

 Runtime environments give developers the freedom to write code once and run it from any computer regardless of the operating
 system, as long as the runtime environment is installed. A runtime environment is itself a library that runs natively on an
 operating system. The runtime environment is responsible for acting as a proxy for the programs that it runs. Because the
 runtime environment provides this level of abstraction between the programs that it runs and the system on which it’s running,
 it’s theoretically possible to create runtime environments on many different types of computer systems that can all run the
 exact same application files without any differences among the platforms.

 What does all this have to do with Adobe AIR? As we mentioned earlier, AIR is a runtime environment. When you create an AIR
 application, you compile it and then package it to an intermediate format called an .air file. An .air file and its contents
 won’t install or run on a computer unless the user has previously installed the AIR runtime environment. If the AIR runtime
 is installed, the .air file enables running the application on both a Windows machine and an OS X machine. That is a huge
 boon to you as an application developer.

 Web applications have advantages over traditional desktop applications, to be certain. So why would you even want to create
 desktop applications in the first place? Presumably, if you’re reading this book, you already have a few reasons, but it’s
 worth discussing some of the important motivations.

 1.1.2. Why build desktop applications?

 A web-based email client allows you to read your email from any computer connected to the internet. This illustrates one of
 the primary advantages of web applications, which is that they aren’t restricted to one machine. Consider that web applications

	Allow you to easily deploy updates and new versions of your software.

 	Generally provide a level of security for users because they’re subject to the security limitations of the browser and player
 (Flash Player, for example) used.

 	Allow you to distribute computing by running some behaviors on the client machine and some behaviors on the server.

However, web applications aren’t without disadvantages. The two really big ones are that they

	Don’t have access to operating system–level features and functionality like desktop applications do.

 	Require that the computer be connected to the internet to work. This is disadvantageous if you want to use the application
 when you’re not online, such as when you’re on an airplane or in the park.

AIR applications bring together the best of both web applications and desktop applications. Because AIR applications are based
 on web application technologies, you (as the developer) have extraordinarily easy ways to access web resources and integrate
 existing web applications in part or whole. However, because AIR applications run on the desktop, they have access to system resources normally not accessible to web applications. That means you can do things such
 as drag-and-drop between AIR applications and the file system, access local databases, and, perhaps most importantly, create
 effective sometimes-connected user experiences that allow the user to work with the application both online and off. AIR applications
 also have features that allow you to enable seamless updates, so that users can always be assured they’re working with the
 latest version of the application (a topic discussed in chapter 8).

 The other question we’d like to answer is why you’d want to create desktop applications using web technologies. The most obvious
 reason for this is that you have existing skills with web technologies that you’d like to leverage in different ways. If you
 can create desktop applications using skills you already have, that’s an advantage over having to learn a new language and
 new technologies just to create an application for the desktop. But there are more reasons why you might want to create desktop
 applications using web technologies. Web technologies are uniquely suited for creating applications that connect to and use
 web resources. In a world that increasingly demands online and networked experiences in desktop software, it’s advantageous
 to create those desktop applications using languages that are designed specifically for online experiences. Yet another reason
 to use HTML, JavaScript, Flash, and Flex to create desktop applications is that these languages tend to be vastly superior
 to other, more traditional desktop application languages when you want to create compelling, engaging, and interesting user
 interfaces.

 1.1.3. Exploring AIR possibilities

 AIR represents all sorts of exciting possibilities for web application developers to create desktop applications. But what
 exactly can you expect? Here we’ll give you the basics of what you can do with AIR. Throughout the book, you’ll learn all
 the details.

 Everything you can do when building web applications you can do when building AIR applications. That’s because AIR includes
 the WebKit engine (the same engine used in the Safari browser) and Flash Player. Therefore, you can still use the same core
 ActionScript and JavaScript features that you would use when deploying to the Web. In addition, you have access to an AIR-specific
 API. This includes the features outlined in table 1.1.

 Table 1.1. Understanding AIR-specific API feature categories

	
 Feature

 	
 Description

	File system integration
 	AIR enables reading, writing, deleting, and all basic file system operations.

	Drag-and-drop
 	Users can drag-and-drop files and directories from the operating system to the AIR application.

	Copy-and-paste
 	Users can use operating system–level copy-and-paste features to copy data between AIR applications and the operating system.

	Local databases
 	AIR applications have the ability to create and connect to local databases.

	Audio
 	HTML-based AIR applications can utilize audio easily.

	Embedded HTML
 	Flex- and Flash-based AIR applications can render HTML and JavaScript within display objects.

You have access to all these behaviors in AIR applications. In order to use them, however, AIR applications need to run in
 a runtime environment that supports them. In the next section, we’ll look at how to run AIR applications.

1.2. Running AIR applications

 When you create an AIR application, you use the AIR toolset, whether Flex Builder 3, the AIR SDK, or whatever other AIR tool
 is appropriate, and package up the files for your application in an .air file. You’ll learn more about the specifics of how
 to package the files in an .air file later in this chapter, in section 1.4. For now, you only need to know that an .air file is the one file you distribute when you want someone to install your application.
 You’ll likely hear the term installer file used interchangeably with the term .air file.

 Once you have an .air file, you can distribute that file to anyone who already has the AIR environment installed on her computer,
 and she will be able to easily install it. If that user already has AIR installed, all she’ll have to do to install your application
 is double-click on the .air file you’ve sent her or that she’s downloaded.

 On the other hand, if a user doesn’t already have AIR installed on her computer, she’ll have to install it before she can
 install your application. There are two ways that users can install AIR:

	
Manual install— A manual install is achieved by downloading the platform-specific (Windows or OS X) installer from Adobe and running that.

 	
Seamless install— The seamless install feature requires that you publish an .swf file (called a badge) to the Web, and users must click on that
 .swf in order to install your application. If they already have AIR installed, they’ll immediately be able to install your
 application. On the other hand, if they don’t have AIR installed, they’ll be able to install it first.

	

Note

 Cross-reference— You can learn more about distributing AIR applications, including the seamless install feature, in chapter 8.

	

However a user goes about installing an AIR application, whether by double-clicking an .air file you’ve emailed him or by
 clicking on an install badge in a web page, once he’s started the installation, he’ll be prompted through several standard
 install wizard steps. Figure 1.1 shows an example of what the first step looks like.

 Figure 1.1. Installing an AIR application brings up the AIR install screen with information about the publisher and application.

 [image:]

 After an AIR application is installed on a user’s system, he can run it at any time just as he can any other application:
 by double-clicking on a desktop icon or selecting the application from a menu.

 Now that you know how to run AIR applications, we’re ready to look at how you can begin building applications.

1.3. AIR application security and authenticity

 Our introduction to Adobe AIR would be remiss without a discussion of two related issues: security and authenticity. These
 two issues are important for you to consider as an application developer, because any breaches or violations would reflect
 poorly on you. Therefore it’s important that you have a good understanding of what AIR does and doesn’t enforce in the way
 of application security and authenticity, and what steps you need to take to protect users of your applications.

 1.3.1. Understanding AIR application security

 One of Adobe’s flagship products is Flash Player, a product that has been so successful, in part, because of the extraordinary
 measures taken by Adobe (and previously Macromedia) to ensure that Flash developers can’t intentionally or unintentionally
 harm a user’s computer system. Flash Player has a lot of security features to protect users. This gives them peace of mind
 when viewing Flash content on the Web. Users know that the Flash content won’t cause problems for their computer systems.

 AIR applications are desktop applications, and as such it’s essential that they have greater access to the user’s computer
 system than web-based Flash applications. Even though AIR applications can run Flash content, that Flash content has more
 opportunities to harm the user’s system than web-based Flash content. It’s a trade-off: a vastly greater feature set, but
 increased risk as well.

 AIR applications still run through a mediator—the runtime environment itself. Therefore, Adobe has a great deal of control
 over what an AIR application can and can’t do. However, while many risks are mitigated by the runtime environment, AIR still allows applications many more privileges
 than their web counterparts might have.

 The first thing that you as an AIR developer must be aware of is that it’s incumbent on you to treat the users of your application
 with great respect by taking security matters seriously. For example, it’s important that you closely manage all parameters
 to code that might run in your application. Don’t allow users to arbitrarily enter values, and don’t use dynamic, network-originating
 values as parameters for code that can do things such as access the file system. You can read a more detailed security whitepaper
 from Adobe at download.macromedia.com/pub/labs/air/air_security.pdf.

 1.3.2. Ensuring application authenticity

 In order to give users of your application peace of mind, Adobe requires that all AIR applications be digitally signed. (Note
 that signing is only necessary to build the installer, and you can still build and test your AIR applications without a signature
 of any sort.) A digital signature helps to potentially verify two things to the user: authenticity and integrity. A digital
 signature is meant to mimic a traditional handwritten signature of ink on paper in that it verifies the publisher of the application
 (authenticity) and that it hasn’t been altered since it was published (integrity).

 You can prove that AIR enforces integrity if you’d like with a simple test. What you can do is verify that the AIR runtime
 will refuse to install a modified .air file. All that you need is an .air file and zip utility. The .air format is an archive
 format that any zip utility can read. Do the following:

 1. Run the .air file to verify that the AIR runtime will initially prompt you to run the installation. You don’t need to actually
 click the Install button on the wizard once it appears. All you need to verify is that the AIR runtime will give you the option
 to install.

 2. Click the Cancel button to exit the install wizard.

 3. Use a zip utility to add a file to the archive. Any file will work. For the purposes of this exercise, you can create a
 new blank text file and add it to the archive. If you’re on a Windows computer, the simplest way to achieve this is to change
 the .air file extension to .zip, drag the text file into the .zip archive, and then change the file extension back to .air.

 4. Run the .air file. This time you’ll receive an error message saying that the .air file is damaged and can’t be installed.

 For AIR applications, digital signatures appear together with digital certificates. There are two basic types of certificates:
 self-signed certificates and those issued by certification authorities. There are advantages and disadvantages to each.

 Self-signed certificates are advantageous in that they’re the easiest to procure. The Flash CS3 AIR update and the Flex 3
 SDK (and subsequently Flex Builder 3) provide mechanisms for creating self-signed certificates for your AIR applications.
 You can read the details of how to create these types of certificates later in this chapter.

 Self-signed certificates provide a level of security to users, in that they verify the integrity of the application. However,
 they do little or nothing to assure users about the authenticity of the publisher. It’s a bit like acting as a notary for
 your own documents. As a result, Adobe displays the publisher identity as unknown in the installation wizard for self-signed
 certificates. This is clearly disadvantageous, because it doesn’t create a feeling of security for users, and they’re less
 likely to opt to install an application from an unknown publisher than they would be if the identity of the publisher could
 be verified.

 A certification authority is an organization that issues certificates and acts as a third party to verify your identity. A
 certification authority issues certificates only after it has verified your identity, usually by requesting documents such
 as government-issued IDs. The advantage of a certificate issued by a certification authority is that it gives more assurance
 of your actual identity than a self-signed certificate. When a certificate is issued by a certification authority, Adobe displays
 the identity listed in the certificate as the publisher identity in the installation wizard. On the other hand, some of the
 disadvantages might be obvious: obtaining a certificate from a certification authority is more difficult and requires more
 time than a self-signed certificate. Also, be aware that most certification authorities charge a fee for certificates. (At
 the time of this writing, the largest issuer charges $299 USD for a code-signing certificate for an AIR application.)

 Two of the best-known certificate issuers are VeriSign (www.verisign.com) and thawte (www.thawte.com), though technically thawte is now owned by VeriSign. If you want to provide the highest level of certification for your
 AIR application, you’ll need to purchase a certificate from one of these issuers. You’ll need what’s called a code-signing certificate. You can find more information about purchasing a certificate from the web sites of the issuers.

	

Note

 There are certification authorities other than VeriSign and thawte, and there are even noncommercial certification authorities
 such as CAcert.org that grant code-signing certificates. You should do your research before purchasing or otherwise acquiring
 a certificate (CAcert.org still requires that you do a fair amount of legwork to obtain a code-signing certificate) to make
 sure that the certificate will be trusted on the majority of computers. If the certificate isn’t trusted, the publisher of
 the AIR application will still show up as unknown. Speak to someone at the organization that grants the certificates and ask
 questions if you’re in doubt.

	

When getting started building AIR applications, you’ll probably be hesitant to invest in purchasing a certificate just to
 put together a few examples and send the installers to your friends. Again, remember that the certificate is only necessary
 when you want to create the installer. You can always test AIR applications without a certificate.

 However, when you’re ready to create an .air file for your application, you’ll need to give careful consideration to how you
 want to digitally sign the application. You can only associate a certificate with an application once. That means you can’t
 use a self-signed certificate initially and change to a certificate from a certification authority later on. If you re-sign with
 a different certificate, users of earlier versions of the application won’t be able to upgrade.

1.4. Building AIR applications

 Now that you’ve learned about what AIR is, the various pieces of AIR, how to run AIR applications, and AIR security and authenticity
 issues, you’re almost ready to learn how to build an AIR application. In fact, in the next few sections of this chapter, that’s
 exactly what you’ll learn. You’ll even have a chance to build a few simple AIR applications to wet your feet in preparation
 for the rest of the book. Before rushing into uncharted territory, we’ll take a few moments to map the terrain so that you
 can get a sense of what’s in store.

 There are many ways you can create AIR applications. Table 1.2 provides a quick guide to the toolsets.

 Table 1.2. The Adobe AIR toolsets

	
 Name

 	
 AIR application source type

 	
 Free

 	
 Description

	Flex Builder 3
 	Flex/ActionScript
 	No
 	Commercial tool for building Flex-based web and AIR applications. The tool itself is built on Eclipse. Flex Builder 3 automates
 and simplifies building AIR applications.

	Flex 3 SDK
 	Flex/ActionScript
 	Yes
 	The Flex 3 SDK is the free SDK that includes all the compilers and tools that power Flex Builder 3, but doesn’t include the
 automation and graphic user interface of Flex Builder.

	Flash CS3 with AIR update
 	Flash/ActionScript
 	No
 	Flash CS3 doesn’t ship with AIR capabilities. However, with the free update for Flash CS3, you can build AIR applications
 directly from Flash authoring.

	Dreamweaver CS3 with AIR extension
 	HTML/JavaScript
 	No
 	A commercial HTML editor with an AIR extension that automates much of the building of an AIR application.

	AIR SDK
 	HTML/JavaScript
 	Yes
 	The free SDK that includes all the necessary command-line tools for building HTML/ JavaScript-based AIR applications.

We’ve included HTML/JavaScript toolsets for creating AIR applications in table 1.2 in order to provide a complete picture of AIR toolsets. However, in this book we focus exclusively on using Flex and Flash
 to create AIR applications. In sections 1.6, 1.7, and 1.8, you can read more about how to build AIR applications using Flex Builder, Flash, and the Flex SDK, respectively.

	

Note

 All the AIR toolsets are available from the Adobe web site (www.adobe.com/go/air).

	

In section 1.5, you’ll first learn about application descriptors. An understanding of application descriptors is essential to a full picture
 of how to create AIR applications. Even though many of the AIR tools (Flex Builder and Flash CS3 with the AIR update) will
 automatically create the descriptor file for a project, it’s still a good idea to familiarize yourself with what a descriptor
 looks like and what data it contains. You’re encouraged to read all of section 1.5 before jumping to 1.6, 1.7, or 1.8. However, if you’re anxious to start building an application and you do jump ahead, we won’t tell on you.

 We’ll next continue with application descriptors. Once you’ve read the next section, go ahead and jump to the section that
 discusses the toolset you’ll be using to build AIR applications.

1.5. Introducing AIR application descriptors

 Regardless of which toolset you use to create an AIR application, you’ll need to create an application descriptor. Some of
 the toolsets will autogenerate a basic application descriptor for you, but it’s important to understand what an application
 descriptor is and how you can use it.

 AIR application descriptors are XML files, which describe AIR applications. When you package an AIR application to distribute,
 you’ll need the descriptor to provide some information that the AIR toolset can use to correctly assemble the application
 for distribution. This information includes, but is not limited to, a unique identifier for the application, a version, and
 information that gets displayed during install.

 To give you an idea of what a basic descriptor file looks like, here’s an example. Note that all descriptor files should begin
 with an XML declaration (<?xml version="1.0" encoding="utf-8" ?>).

 <?xml version="1.0" encoding="utf-8" ?>
<application xmlns="http://ns.adobe.com/air/application/1.0.M4">
 <id>com.manning.books.airinaction.Example</id>
 <version>1.0</version>
 <filename>ExampleApplication</filename>
 <initialWindow>
 <content>ExampleMain.swf</content>
 </initialWindow>
</application>

 If you want to jump ahead to get started building AIR applications, you can do so. The preceding example descriptor file provides
 what you’ll need in a descriptor file for a basic AIR application. If you do choose to jump ahead, you’ll want to revisit
 this section later to learn more about descriptors in greater depth.

 In the following sections, you’ll learn the details of the elements of a descriptor file.

 1.5.1. The application element

 The application element is always required, and it’s the root element of the descriptor file. The application element requires an xmlns attribute. The xmlns attribute defines the namespace for the descriptor. The namespace value is always predefined, and, for every application
 you build for a version of AIR, the namespace value will always be the same. For AIR 1.0, the value should be http://ns.adobe.com/air/application/1.0.M4. The namespace indicates which version of AIR is required to run the application. Each new version of AIR will use a new
 namespace.

 Additionally, you can specify a minimumPatchLevel attribute. Use the minimum-PatchLevel attribute if you want to require the user to have an AIR (the runtime) patch applied in order to run the application. This
 attribute is optional. You should only use it if you know that your application requires a particular patch to run correctly.

 Because the application element is the root element of the descriptor file, all the elements that follow are nested as children within the application element. The next four elements (id, version, filename, and initialWindow) are the only required elements.

 1.5.2. The id element

 The id element should be a unique identifier for the application. Only one application with a given identifier can be installed
 on a system at a time. The application identifier is a combination of the publisher identifier (gathered from the certificate
 used to publish the .air file) and the value of the id element. That means that, strictly speaking, the value of the id element needs to be unique only within the scope of all applications for the publisher. Although it’s not absolutely necessary,
 we find it convenient to create a globally unique id by using the existing convention of reverse domain names. The example used in the earlier simple descriptor example is com.manning.books.air.Example. This uses com.manning, which is the reverse of manning.com, to ensure global uniqueness. The id value must be between 1 and 212 characters, and only alphanumeric characters plus dots and hyphens are permitted.

 1.5.3. The version element

 The version element is a way you can specify the version number of your application. AIR won’t interpret the version value in any way,
 but you can use the value to program-matically test that the user has the latest version of your application. Because AIR
 doesn’t try to interpret the version value in a particular way, you can use any string value. Versions are typically numeric,
 such as 1.0 or 2.5.1, or they might include alphabetical characters denoting revisions, such as 4.0a.

 1.5.4. The filename element

 The filename element is how you specify the name of the .air file. The filename value is also used for the application name (in the installer) if no name element is specified.

 A filename value must include only valid filename characters, and it shouldn’t include a file extension. Furthermore, a filename value may not end with a dot.

 1.5.5. The initialWindow element

 The initialWindow element provides information about the actual content (either an .swf or .html file) that should be used to build the application.
 The initialWindow element is a container for additional elements. The only required child element is the content element, which specifies the .swf (or .html) file to use. The following illustrates a basic initialWindow element:

 <initialWindow>
 <content>ExampleMain.swf</content>
</initialWindow>

 Additionally, the initialWindow element allows for the following optional elements:

	
systemChrome— This value indicates whether the window containing the application should use the chrome (frame and title bar) provided
 by the operating system. If you set this to standard, the standard operating system chrome is applied. If you set the attribute to none, the system chrome is not applied. For Flex-based AIR applications, the Flex components apply a custom chrome when the systemChrome attribute is set to none.

 	
transparent— This Boolean value indicates whether the application window should support alpha blending with the rest of the desktop (meaning
 you can see through the application). If you set this to true, you can create alpha effects, but be aware that setting transparent to true requires more system resources and can cause the application to render more slowly. Additionally, you must set systemChrome to none if you want to set transparent to true.

 	
visible— This Boolean value indicates whether or not the application window should be visible initially. Typically you set this attribute
 to false only when you want to hide the window until you can programmatically position and resize it from within the application code
 itself. You can then use code within the application to toggle the visibility of the application window.

 	
height— The height of the application window in pixels.

 	
width— The width of the application window in pixels.

 	
minimizable, maximizable, resizable— These elements allow you to specify Boolean values indicating whether or not the application is minimizable, maximizable,
 or resizable when running. The default values are all true.

 	
x, y— The x and y coordinates of the initial placement of the application.

 	
minSize, maxSize— The minimum and maximum sizes of the window when resized.

The following is an example of an initialWindow element with most of these values set:

 <initialWindow>
 <content>ExampleMain.swf</content>
 <systemChrome>none</systemChrome>
 <transparent>true</transparent>
 <height>500</height>
 <width>500</width>
 <minimizable>false</minimizable>
 <maximizable>false</maximizable>
 <resizable>false</resizable>
 <x>0</x>
 <y>0</y>
</initialWindow>

 As you saw earlier in this section, the only required value for initialWindow is the content value. If you omit the others, the default values are used.

 1.5.6. The name element

 The name element is a sibling of initialWindow, meaning it should be nested as a child of the application tag. The name value is used to determine the default installation directory. The name value is also displayed in the title bar when the application is running. Additionally, the name appears on the first screen
 of the installer, as seen in figure 1.1. If no name value is specified, the value of filename is used instead.

 1.5.7. The title and description elements

 The title and description elements are all siblings of initialWindow, meaning they should be nested as children of the application tag. Each of these elements is optional, and these elements control what values are displayed in the installer.

 The title element determines what appears in the headers in the installer, as shown in figures 1.1 and 1.2. The description is shown on the second screen of the installer, as shown in figure 1.2.

 Figure 1.2. The second screen of the installer for an AIR application, allowing the user to specify installation settings

 [image:]

 The title and description are only used during the installation, and they never appear while the application itself is running.

 1.5.8. The installFolder element

 The installFolder element is an optional element that determines the name of the subdirectory used as the default install directory. The user
 always has the option to change the install directory during installation of the AIR application. However, using the installFolder element, you can specify a subdirectory that should appear as part of the default value as seen in figure 1.2.

	

Note

 You cannot change the main directory of the default installation directory used by AIR applications.

	

On Windows, that directory is always the Program Files directory of the primary disk; on OS X, that directory is always /Applications.
 However, using the installFolder element, you can change the subdirectory. For example, if you use an installFolder value of ExampleInc/ExampleApplication, on a Windows machine the application will be installed in Program Files\ExampleInc\ExampleApplication, and on an OS X machine the application will be installed to /Applications/ExampleInc/ExampleApplication.app.

OEBPS/01fig02.jpg

OEBPS/manning.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/cover.jpg

