

 [image: cover]

 WPF in Action with Visual Studio 2008

 Arlen Feldman & Maxx Daymon

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
 Manning Publications Co.
 Sound View Court 3B Fax: (609) 877-8256
 Greenwich, CT 06830 Email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed elemental chlorine-free

 [image:]

 Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

 Development Editor: Jeff Bleiel
Copyeditor: Andrea Kaucher
Typesetter: Dennis Dalinnik
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 12 11 10 09 08

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the Cover Illustration

 1. Past, Present, and Future

 Chapter 1. The road to Avalon (WPF)

 Chapter 2. Getting started with WPF and Visual Studio 2008

 Chapter 3. WPF from 723 feet

 2. The basics

 Chapter 4. Working with Layouts

 Chapter 5. The Grid panel

 Chapter 6. Resources, styles, control templates, and themes

 Chapter 7. Events

 Chapter 8. Oooh, shiny!

 3. Application development

 Chapter 9. Laying out a more complex application

 Chapter 10. Commands

 Chapter 11. Data binding with WPF

 Chapter 12. Advanced data templates and binding

 Chapter 13. Custom controls

 Chapter 14. Drawing

 Chapter 15. Drawing in 3D

 4. The last mile

 Chapter 16. Building a navigation application

 Chapter 17. WPF and browsers: XBAP, ClickOnce, and Silverlight

 Chapter 18. Printing, documents, and XPS

 Chapter 19. Transition effects

 Chapter 20. Interoperability

 Chapter 21. Threading

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this book

 About the Cover Illustration

 1. Past, Present, and Future

 Chapter 1. The road to Avalon (WPF)

 1.1. The past and the present

 1.1.1. Why Windows drawing is the way it is

 1.1.2. How we currently create Windows UIs

 1.1.3. Why the web is the way it is

 1.1.4. How UI is created on the web

 1.2. Why Avalon/WPF

 1.2.1. Taking advantage of modern hardware

 1.2.2. Using modern software design

 1.2.3. Separating presentation logic from presentation

 1.2.4. Making it simpler to code GUIs

 1.3. Creating UI using WPF

 1.3.1. Defining WPF UI with XAML

 1.3.2. Defining WPF UI through code

 1.3.3. Defining WPF UI with tools

 1.3.4. Who does the drawing

 1.3.5. Pixels versus vectors

 1.4. Summary

 Chapter 2. Getting started with WPF and Visual Studio 2008

 2.1. Your grandpa’s Hello, World!

 2.1.1. Adding a button and button-handler to the window

 2.1.2. Running Hello, World!

 2.1.3. The TextBlock control

 2.2. The application definition

 2.2.1. Defining application startup in XAML

 2.2.2. Why define the application in XAML?

 2.3. A tour of WPF in Visual Studio 2008

 2.3.1. The XAML designer

 2.3.2. The Properties grid

 2.3.3. Selection controls in Visual Studio

 2.3.4. The Document Outline

 2.4. Summary

 Chapter 3. WPF from 723 feet

 3.1. Where does WPF fit in Windows?

 3.1.1. Red bits and green bits

 3.1.2. Silverlight

 3.2. Framework services

 3.2.1. Base services

 3.2.2. Media services

 3.2.3. User interface services

 3.2.4. Document services

 3.3. Necessary and useful tools

 3.3.1. Microsoft Expression family

 3.3.2. Visual Studio

 3.3.3. Other tools

 3.4. Summary

 2. The basics

 Chapter 4. Working with Layouts

 4.1. The idea behind layout panels

 4.2. The Canvas layout

 4.2.1. Converting a Grid layout to a Canvas layout by modifying the XAML

 4.2.2. Adding a Canvas to an existing layout

 4.2.3. Using attached properties

 4.2.4. Setting up a Canvas programmatically

 4.3. The StackPanel layout

 4.3.1. Adding scrolling support

 4.3.2. The Expander control

 4.4. The DockPanel layout

 4.4.1. Defining a DockPanel in XAML

 4.4.2. Setting up a DockPanel programmatically

 4.5. The WrapPanel layout

 4.6. Other layout options

 4.6.1. Specialized layout panels

 4.6.2. The FlowDocument

 4.7. Summary

 Chapter 5. The Grid panel

 5.1. Getting started with the Grid layout panel

 5.1.1. Modifying the Grid

 5.1.2. Grid specific properties

 5.2. Using the Grid layout to build a calculator UI

 5.2.1. Planning the calculator

 5.2.2. Laying out the calculator

 5.2.3. Tweaking appearance

 5.3. The Grid and localization

 5.4. UniformGrid

 5.5. Making the calculator work

 5.5.1. Handling operations

 5.5.2. Genericizing the handlers

 5.6. Summary

 Chapter 6. Resources, styles, control templates, and themes

 6.1. Resources

 6.1.1. Using standalone resource dictionaries

 6.1.2. Using resources from code

 6.1.3. Dynamic resources

 6.2. Styles

 6.2.1. Styles based on other styles

 6.2.2. Implicitly applying styles

 6.3. Control templates

 6.3.1. Creating a control template

 6.3.2. ContentPresenters

 6.3.3. Template binding

 6.3.4. Triggers

 6.4. Themes

 6.4.1. Using a specific theme

 6.4.2. Changing themes from code

 6.5. Summary

 Chapter 7. Events

 7.1. Routed events

 7.1.1. Bubbling events

 7.1.2. Tunneling events

 7.2. Events from code

 7.2.1. handledEventsToo

 7.2.2. Class events

 7.3. Summary

 Chapter 8. Oooh, shiny!

 8.1. Glass buttons

 8.1.1. Styling the text

 8.1.2. Adding glow when over buttons

 8.1.3. Handling the button click

 8.2. Adding some simple animation

 8.2.1. Animating button glow

 8.2.2. Animating a color

 8.3. Reflections

 8.4. Transforms

 8.5. Summary

 3. Application development

 Chapter 9. Laying out a more complex application

 9.1. Creating the Desktop Wiki Project

 9.2. Nesting layouts

 9.2.1. Preparing the layout for menus and toolbars

 9.2.2. Adding menubars, statusbars, and toolbars...

 9.3. Nested layouts

 9.3.1. Adding the first Grid

 9.3.2. Adding the second Grid

 9.3.3. Using a StackPanel and Expander as navigation aids

 9.4. Summary

 Chapter 10. Commands

 10.1. A brief history of commands

 10.1.1. Windows Forms and simple event handlers

 10.1.2. Son of MFC

 10.2. The WPF approach

 10.2.1. The Command pattern

 10.2.2. WPF commands

 10.3. Using the built-in system commands

 10.3.1. ApplicationCommands

 10.3.2. NavigationCommands

 10.3.3. EditingCommands

 10.3.4. Component and media commands

 10.4. Handling commands

 10.4.1. Handling a built-in command

 10.4.2. Creating a custom command

 10.4.3. Shortcuts and gestures

 10.5. Command routing

 10.6. A cleaner custom command implementation

 10.6.1. Implementing a RoutedUICommand

 10.6.2. Adding a CommandBinding

 10.7. Summary

 Chapter 11. Data binding with WPF

 11.1. WPF data binding

 Binding Sources

 Binding Modes

 11.2. ProcessMonitor: A simple binding example

 11.2.1. Binding Data with XAML

 11.2.2. Binding in code

 11.2.3. Binding notation and options

 11.3. Binding to XML

 11.3.1. Creating the CVE Viewer application

 11.3.2. Binding controls to XML

 11.3.3. XPath binding notation

 11.3.4. Path versus XPath

 11.3.5. Understanding and using DataContexts

 11.3.6. Master-Detail Binding

 11.4. Binding to ADO.NET database objects

 11.4.1. Creating a bookmark utility

 11.4.2. Creating the simple DAL

 11.4.3. Laying out the UI and creating data bindings

 11.5. Binding to business objects

 11.5.1. Creating a WikiPage business object

 11.5.2. ObservableCollection

 11.5.3. Create a model façade

 11.5.4. Wiring business objects to presentation objects

 11.6. Binding to LINQ data

 11.7. Summary

 Chapter 12. Advanced data templates and binding

 12.1. Data converters

 12.1.1. Formatting bound data with StringFormat

 12.1.2. A number to formatted string data converter

 12.1.3. Converter parameters

 12.2. DataTriggers

 12.3. CollectionViewSource

 12.3.1. Sorting with CollectionViewSource

 12.3.2. Programatically sorting with CollectionViewSource

 12.3.3. Filtering with CollectionViewSource

 12.4. Conditional templates

 12.4.1. A more involved template

 12.4.2. Conditionally using a template

 12.4.3. Templates based on type

 12.5. Validators

 12.5.1. The ExceptionValidationRule

 12.5.2. Custom ErrorTemplates

 12.5.3. Custom validation rules

 12.6. Model-View-ViewModel

 12.7. Advanced binding capabilities

 12.7.1. Hierarchical binding

 12.7.2. MultiBinding

 12.7.3. PriorityBinding

 12.8. Summary

 Chapter 13. Custom controls

 13.1. Composing new user controls

 13.1.1. Building a LinkLabel control

 13.1.2. Testing the LinkLabel UserControl

 13.2. Building custom controls

 13.2.1. Building a control library

 13.2.2. Create the new custom control

 13.2.3. Create the default template for the control

 13.2.4. Testing the control

 13.2.5. Customizing a custom control with a template

 13.3. Summary

 Chapter 14. Drawing

 14.1. Drawing with Shapes

 14.1.1. Shapes in XAML

 14.1.2. Stupid shape tricks

 14.2. Creating the graphing control

 14.2.1. Building the GraphHolder control

 14.2.2. Graphing using shapes

 14.2.3. Catching clicks

 14.2.4. The downside of Shapes

 14.3. Drawing with direct rendering

 14.3.1. Recreating the graph control

 14.3.2. Pluses and minuses of direct rendering

 14.4. Drawing with Visuals

 14.4.1. Control for display Visuals

 14.4.2. Hit testing with Visuals

 14.4.3. Adding labels to our graph

 14.5. Drawings and Geometries

 14.5.1. GeometryDrawing

 14.5.2. Using Drawings

 14.6. Summary

 Chapter 15. Drawing in 3D

 15.1. Lights, camera...

 15.1.1. Models

 15.1.2. Lights

 15.1.3. Cameras

 15.2. Graphing in 3D

 15.3. 3D Transforms

 15.3.1. A 3D Transform in XAML

 15.3.2. A 3D Transform in code

 15.4. Summary

 4. The last mile

 Chapter 16. Building a navigation application

 16.1. When and where to use navigation applications

 16.2. Creating a basic navigation application

 16.2.1. Adding some navigation

 16.2.2. Implementing dictionary lookup

 16.2.3. Navigating programmatically

 16.3. Page functions

 16.3.1. Creating a Page function

 16.3.2. Calling a page function

 16.4. Summary

 Chapter 17. WPF and browsers: XBAP, ClickOnce, and Silverlight

 XBAP

 ClickOnce

 Silverlight

 17.1. Building an XBAP

 17.1.1. XBAP security

 17.1.2. Deploying an XBAP

 17.1.3. When to use XBAP

 17.2. Using ClickOnce

 17.2.1. Deploying a WPF application via ClickOnce

 17.2.2. When to use ClickOnce

 17.3. Using Silverlight

 17.4. Summary

 Chapter 18. Printing, documents, and XPS

 18.1. Printing flow documents

 18.1.1. Setting up to print

 18.1.2. Customizing the output

 18.1.3. Printing asynchronously

 18.2. Printing FixedDocuments

 18.2.1. Adding some FlowDocument content to our FixedDocument

 18.2.2. Matching resolution

 18.2.3. Printing Visuals

 18.3. XPS

 18.3.1. Saving an XPS document to a file

 18.3.2. The problem with images...

 18.4. Summary

 Chapter 19. Transition effects

 19.1. Building the World Browser application

 19.1.1. The DictionaryLookup class

 19.1.2. Working with the Application object

 19.1.3. Our WorldListView user control

 19.1.4. Populating the country list

 19.2. Adding a simple transition

 19.3. Building a generic transition control

 19.3.1. Creating the transition control

 19.3.2. Using the transition control

 19.3.3. Defining a ControlTemplate for our control

 19.3.4. Using the ABSwitcher

 19.4. Adding some interesting transition effects

 19.4.1. The fade effect

 19.4.2. Wipe effect

 19.4.3. Adding a selector for effects

 19.5. Summary

 Chapter 20. Interoperability

 20.1. Using Windows Forms controls in WPF

 20.1.1. Using the Windows Forms DateTimePicker in WPF

 20.1.2. Enabling Windows themes for Windows Forms control

 20.1.3. What you can’t do with embedded Windows Forms controls

 20.1.4. Using your own Windows Forms controls

 20.1.5. Popping up Windows Forms dialogs

 20.2. Embedding ActiveX and C++ in WPF

 20.2.1. Embedding ActiveX controls in WPF

 20.2.2. Embedding C++ controls in WPF

 20.3. Using WPF in Windows Forms

 20.3.1. Using a WPF control inside of Windows Forms

 20.3.2. Popping up WPF dialogs

 20.4. Summary

 Chapter 21. Threading

 21.1. Moving slow work into a background thread

 21.2. Asynchronous calls

 21.3. Timers

 21.4. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 A number of years ago, the two of us worked at the same company and had to design a new form definition language for an entirely
 definitionally-driven system. The definitions were to be stored in XML. They had to be loosely bound to data definitions,
 and allow for complex behavior changes based on data. The individual elements of a form had their own properties, but also
 had to store properties that they didn’t care about but that were relevant to higher-level layout mechanisms. We built this
 long before WPF was even a glimmer of a concept at Microsoft.

 We’d like to pretend that Microsoft saw our brilliant design and decided to copy it when creating WPF, but that would be a
 lie, and we only lie when we’re fairly sure that our facts can’t be verified elsewhere.

 Nonetheless, WPF does encapsulate all the basic design principles that we had for our form definition language, and then goes
 soaring off to leave our pitiful efforts in the dust. When we first started playing around with (extremely) early versions
 of what was then called Avalon, we had a lot of “duh, why didn’t we do it that way” moments as well as, to be kind to our
 battered egos, a few “yeah, that’s how we did it” moments.

 We’re both extremely comfortable in the Windows Forms (and the Windows SDK) world, so moving to WPF was both a happy and sad
 experience—sad in that we watched a lot of our hard-won knowledge become obsolete, but happy in that WPF made us way more
 productive, and let us do things quickly and easily that we would have just skipped with Windows Forms because they would
 have taken entirely too much effort.

 Not that everything was a bowl of things that you like to keep in bowls—particularly with early betas and lack of documentation;
 we definitely spent time whining and banging our heads into walls. Overall, though, we are pretty happy with WPF, and are
 looking forward to where it’s going to go in the future.

 Fast forward a year or two, and one of us foolishly answered a phone call from Mike Stephens at Manning, asking about a completely
 different project. After many abject refusals, the conversation turned to WPF and the fact that there weren’t many/ any books
 out there that covered both WPF and Visual Studio 2008. Some slightly less abject refusals later, we suddenly discovered that we’d signed a contract to produce
 said book and have it ready in time for the release of Visual Studio 2008.

 The astute reader might check when VS 2008 came out and the published date on this book and realize that we didn’t quite make
 our original deadline. But, rather than laziness on our part, this really speaks to our timing genius—we managed to completely
 revise the book to take into account the many changes in Visual Studio 2008 SP1, which was released not long before these
 words were typed.

 The goal of this book is to provide a practical guide to building WPF applications using Visual Studio 2008 SP1. It isn’t
 intended to replace the MSDN reference material, but to provide guidance on how to get started and what you need to know to
 be productive in WPF. Productive is a relative term, of course—WPF has a lot of cool capabilities that can enhance your apps
 in many ways—and suck up all your available time with tweaking. It’s up to you whether you can really ship your application
 without that flaming drop-shadow...

Acknowledgments

 This book wouldn’t exist if it were not for a conversation many months (years? decades?) ago with Mike Stephens at Manning
 on an entirely different topic. Whether this warrants thanks or not remains to be seen, but we do have to thank him for being
 a great person to work with and for being incredibly patient with us as we watched deadlines sail majestically by (and for
 having a great sense of humor).

 We also have to thank our fantastic editor Jeff Bleiel, and our original editor Douglas Pundick who left for reasons entirely
 unrelated to us (we hope). Also, thanks to the rest of the production team at Manning: Andrea Kaucher, Mary Piergies, Maureen
 Spencer, Karen Tegtmeyer, Dennis Dalinnik, Dottie Marsico, Tiffany Taylor, Leslie Haimes, Gabriel Dobrescu, and Ron Tomich.

 We’d like to thank these reviewers for their valuable feedback on the manuscript during the various stages of development.
 Their insights and comments helped make it much, much better: Tim Sneath, Beatriz Costa, Patrick Long, Lester Lobo, Don Burnett,
 Andrew Konkol, Alessandro Gallo, Bryce Darling, Frank LaVigne, Nishant Sivakumar, Rama Krishna Vavilala, Barry Elzel, Joe
 Stagner, Ben Constable, David Barkol, Cal Schrotenboer, Oliver Sturm, Scott Pugh, Nick Kramer, Scott Baldwin, Dave Corun,
 Mark Mrachek, Riccardo Audano, Darren Neimke, Jeff Maurone, Michael Feathers, Doug Warren, Radhakrishna M.V., Jon Skeet, Tomas
 Restrepo, Berndt Hamboek, Aleksey Nudelman, Andrew Stopford, John Price, and Curt Christianson.

 We also have to thank the legion of reviewers who took the time to review early versions of the manuscript on the Manning
 Author Online forum and who helped test drive the code. A big shout-out also goes to the WPF blogging community who were running
 into and through issues that had us stymied, and who gave us a number of ideas and insights.

 At Microsoft, we have to first thank Luke Hoban, who was not only willing to answer irritating questions but also to bother
 all sorts of other people on our behalf to answer irritating questions. Thanks also to Mark Boulter, The Program Manager/
 Tech Lead on the .NET Client Team, for answering pages of questions while trying to get not one but two massive products out the door. Sam Bent on the data binding team spent several days confirming that we had hit real bugs,
 and were not insane. Well, not just insane. Charlie Calvert and Kevin Moore also gave us a hand, which we appreciate.

 In the category of blatant friend abuse, we have to thank our blog-compatriot at www.exotribe.com, Tim Binkley-Jones, for being a sounding board and for eventually ending up doing our technical review, as well as David
 Russell for general guinea-pig services (and who probably now knows more about WPF than either of us. Sigh).

 We also have to thank our wives—Tami Wandell and Adriana Wood—for not murdering either of us in our sleep, an act which would
 have been entirely warranted.

 Finally, we would like to thank Microsoft for creating WPF—without which this book would have been a lot more confusing, and
 much less likely to have been published.

About this book

 This book is designed to give you a working knowledge of Windows Presentation Foundation (WPF). The assumption is that the
 reader is already a .NET developer with some familiarity with other UI technologies (WinForms, MFC, HTML) but is new to WPF.
 In particular, the book focuses on using WPF with Visual Studio 2008, which we believe is the primary tool that most WPF developers
 will use, although we still spend some time talking about other available tools.

 Throughout the book, your authors have injected some measure of their twisted humor, and have been known, on occasion, to
 resort to irony and sarcasm. We truly love WPF, but we also try not to take anything too seriously—and we hope that it makes
 reading yet another technical book just that little bit less gnaw-your-own-leg-off boring.

Roadmap

 This book is broken down into four main parts. Part 1 is mostly about history and overviews. Chapter 1 starts this off by explaining how drawing in Windows and on the web got to where they are today, and the general way in which
 WPF addresses some existing problems. Chapter 2 is the first chance to get your feet wet with some simple WPF code, and also provides a guided tour of WPF-specific features
 of Visual Studio 2008. Chapter 3 provides a reasonably detailed look at what WPF is made of, as well as various surrounding technologies and acronyms that
 are likely to cross your path.

 Part 2 covers the core concepts and technologies of WPF, primarily through an extremely brilliantly thought-out example application
 (OK, OK, a calculator). Chapter 4 is all about layouts and the general laying out of content in WPF. In chapter 5, we introduce the most complex of the layouts—the Grid—and use it to rough in the calculator example. Chapter 6 demonstrates how to control the look of an application via the use of resources, control templates, and themes. In chapter 7, we cover the new eventing model of WPF. Finally, in chapter 8, we pull out all the stops to make the calculator sexy and demonstrate some of the hotness that is WPF.

 Part 3 focuses on building real-world applications. In chapter 9, we show how to build the framework for a complex application, including menus and toolbars. Chapter 10 demonstrates WPF command routing. Chapter 11 shows how to hook up data to WPF applications via data binding, including pulling data from databases, XML, or objects in
 general. Chapter 12 continues the binding conversation with more advanced types of binding and with the use of data templates to control the
 way data is handled. We also explain the new Model-View-ViewModel pattern.

 Chapter 13 is about building custom controls in WPF—either one-off combinations of controls, or standalone controls designed to be distributed.
 In chapter 14, we demonstrate various ways of doing drawing in WPF, and in chapter 15, the last chapter of part 3, we extend that to the third dimension.

 Part 4 covers some additional topics likely to be relevant to developing WPF apps. Chapter 16 demonstrates building navigation applications—apps with back/forward and hyperlinking support, which is built into WPF. In
 chapter 17, we take the navigation application and demonstrate how it can be hosted inside a browser via the use of XBAP. We also demonstrate
 ClickOnce deployment with a WPF application and touch (briefly) on Silverlight—a third way in which WPF can take to the web.

 Chapter 18 is all about printing and documents. WPF has extensive support for printing and for transferring content around via XPS.
 In chapter 19, we take a break from the boring stuff and demonstrate how to add slick transitions to your applications. We also talk a
 fair amount about designing an application to support effects. Chapter 20 is about using other stuff with WPF, such as Windows Forms and WPF, and using WPF with Windows Forms. Finally, chapter 21 covers threading, including the new WPF Dispatcher, and timers.

 Throughout the text, we’ve also sprinkled various tips and nags on WPF, UI design, and whatever else we felt like at the time.
 The book is generally designed to be read from start to finish, but you can certainly jump around to different topics and use the various chapters
 for reference as needed.

Code

 This book contains a number of examples written in C# and/or in XAML. Although we did most of the work using the Professional
 version of Visual Studio 2008, you can do almost everything here using Visual Studio 2008 Express, which can be downloaded for free from Microsoft at www.microsoft.com/express. We’ve tried to indicate when particular capabilities require one of the for-money versions. All the source code for the
 book (and a few additional examples) can be downloaded from www.manning.com/WPFinAction or from our blog at www.exotribe.com.

 The following conventions are used throughout the book:

	Courier typeface is used to denote code samples, as well as elements and attributes, method names, classes, interfaces, and
 other identifiers.

 	Code annotations accompany many segments of code. Certain annotations are marked with bullets such as [image:]. These annotations have further explanations that follow the code.

Author Online

 The purchase of WPF in Action with Visual Studio 2008 includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/WPFinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between
 readers and authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interests stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

 There are a number of good WPF resources out on the web, including:

	The authors’ blog, which covers a number of topics (including WPF), at www.exotribe.com

 	Microsoft’s windowsclient.net, which is a good place for general WPF (and Win-Forms) articles

 	The WPF team blog at wpf.netfx3.com/blogs/presentation_bloggers

 	The blog of Tim Sneath, a Technical Evangelist at Microsoft and the creator of the famed WPF New York Times Reader, at http://blogs.msdn.com/tims

 	Beatriz Costa’s blog, which is the place to go for data binding info, at www.beacosta.com/blog

About the authors

 ARLEN FELDMAN has been developing software professionally for over 20 years, and has been a Windows developer for the last 14. He was chief
 architect for the award-winning HEAT software product, and has been working with .NET since its earliest days, including working
 with Microsoft on the direction of .NET, the C# language, and Visual Studio, as a member of the C# customer council. Arlen
 specializes in architecting and building metadata-driven applications, particularly focusing on the usability issues of such
 systems. Because of an accident involving rogue metadata retrieval, his brain is now a five-dimensional hyper-cube.

 Arlen is the author of ADO.NET Programming (Manning, 2003), and is currently the Chief Architect for Cherwell Software, builders of .NET-based support solutions. He
 lives in Colorado Springs, Colorado.

 MAXX DAYMON learned BASIC (on a Commodore VIC-20) before he learned English. His extremely eclectic background has given him experience
 with virtually every type of personal computer and a whole host of different industries; he’s considered an expert in the
 back-end to the front-end of application design. To say that he’s somewhat obsessed with human factors engineering would be
 like saying that Ghengis Kahn kind of liked fuzzy hats.

 Maxx is MCPD Certified for both Windows and web development, and has been working with .NET since its preview releases. Maxx is currently a Software Architect at Configuresoft, a leading developer of configuration-management
 and compliance software.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we’re convinced that, for learning to become permanent, it must pass
 through stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember
 new things, which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it’s example-driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of WPF in Action with Visual Studio 2008 is captioned “Henri, Seigneur de Metz.” A seigneur was a medieval lord, who was granted power and privilege by the King,
 as well as large tracts of land which he, in turn, then leased to others. Metz today is the capital of Lorraine, a district
 in northeastern France.

 The illustration is taken from the 1805 edition of Sylvain Maréchal’s four-volume compendium of regional and historical dress
 customs. This book was first published in Paris in 1788, one year before the French Revolution. Each illustration is finely
 drawn and colored by hand. The colorful variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s
 towns and regions—as well as its inhabitants—were centuries ago. You could tell where they lived and what their station in
 life was by their dress alone.

 Dress codes have changed since then and the diversity by region and class has faded away. It is now hard to tell apart the
 inhabitants of different continents, let alone different countries, towns, or regions. Perhaps we have traded cultural diversity
 for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, we at Manning celebrate the inventiveness and initiative
 of the computer business with book covers based on the rich diversity of regional life of many centuries ago, brought back
 to life by Maréchal’s pictures.

Part 1. Past, Present, and Future

 Before we get into the nuts and bolts of WPF, we think it’s important to explain where WPF came from and why. That is the
 topic of chapter 1, “The road to Avalon (WPF).” This background will help developers using existing technologies—Windows or web—understand the
 whys and wherefores of WPF and, in particular, some of the bigger differences.

 We’ll also explain where WPF fits in the grand scheme of things (at least relative to the latest version of .NET) and provide
 a breakdown of the technology and tools that make up WPF. That’s the topic of chapter 3, “WPF from 723 feet.” This overview will provide a framework for understanding how all the bits and pieces tie together and,
 if nothing else, will provide the keywords you’ll need when searching Google!

 Part 1 isn’t entirely devoid of code. In chapter 2, “Getting started with WPF and Visual Studio 2008,” we’ll provide an obligatory (if much reviled) Hello, World! to give you
 an idea of what WPF development looks like. That chapter also includes a tour of Visual Studio 2008, focusing on the features
 built specifically to support WPF.

Chapter 1. The road to Avalon (WPF)

 This chapter covers:

	A brief history of Windows drawing

 	A briefer history of web UI design

 	The underlying theory and purpose of WPF

 	Some slightly intemperate comments about Microsoft’s marketing department

When the development team at Microsoft started to work on their brand-new framework for developing user interfaces, they used
 the code name Avalon. Avalon, in British mythology, is the island where King Arthur was taken under the care of the Lady of the Lake—until the
 time when he will return. The name conjures up images of user interfaces with glimmering water and misty backgrounds.

 The marketing department at Microsoft, whose job it is to make technology appealing to the masses, decided that a better, more appealing
 name would be Windows Presentation Foundation (WPF). Ah, well. If the name isn’t particularly appealing, the technology certainly is.

 Building user interfaces (UIs) is an often underappreciated facet of development. We, the authors of this book, have architected
 systems, large and small, dealing with everything from the database, security, and communication, all the way to the UI. It’s hard to say that one part of the infrastructure of a system is more or less important than any other. To the
 user, the interface is the application. It doesn’t matter how brilliantly you build stored procedures or how carefully you make sure your communications
 are secure. If the UI is poor, the application is poor. Period.

 That’s where WPF comes in. WPF is the latest Microsoft technology for building rich Windows applications. Rich is one of the terms used to differentiate Windows applications from browser applications.[1] They’re also sometimes called smart applications or (usually if you’re a web developer) fat applications. In this respect,
 WPF can be seen as the latest in the line of technologies including the Windows SDK, MFC, and Windows Forms. WPF does include
 several other technologies, which we’ll discuss in more detail in chapter 3; but, when you get right down to it, WPF is mostly about building Windows applications.

 1 Although a new term has started floating around—RIA for Rich Internet Application—when we use the term rich, we’re specifically talking about non-browser applications.

 This book isn’t only about how to use WPF—it’s also about how to use WPF well. Throughout the book, we provide suggestions on best practices and good UI design.

 This first chapter explains some of the motivations for building WPF in the first place, and provides an extremely high-level
 view of how WPF works. But, before we get to that, we want to provide some historical context, explaining some existing technologies
 and comparing them to WPF. We take this approach partially to help bridge the gap between how you currently go about building
 UI and how it’s done in WPF. We also believe strongly in the maxim that those who don’t remember the past are condemned to
 repeat it. (And it was painful enough the first time through.)

1.1. The past and the present

 Up until now, developing for Windows and for the web required a completely different set of tools and technologies. This is
 hardly surprising considering the target and genesis of each, but as times have changed, there has been a huge demand for
 Windows-like tools for the web and web-like tools for the desktop.

 The results have been, shall we say, mixed.

 Bringing functionality from one platform to the other has generally involved tacking additional functionality semi-randomly
 onto existing tools and technologies—sort of like mounting an oven on the top of your SUV so that you can have snacks while
 you drive. WPF, on the other hand, has the advantage of being built from the ground up with this problem in mind. It can address
 the needs of its target domain and learn the lessons from all the other frameworks and technologies that have grown up in
 the last few years.

 WPF is primarily a technology for building Windows applications, but it also has a web story and a document-format story.
 All these stories fall under the aegis of presentation—presenting content to a user, whether via a rich application, a browser, or a piece of paper.

 The Foundation part of Windows Presentation Foundation comes in because WPF is the base for presentation-based applications, just as Windows
 Communication Foundation (WCF) is the base for communication between applications. The names may be a tad on the pretentious
 side, but for those of us who survived the alphabet soup of Microsoft DNA, it isn’t too bad.

 WPF had the opportunity to start from scratch and learn lessons from earlier technologies. Two of the strongest influences
 on WPF were existing Windows development methods and web development—and by influence, we mean “let’s not do that ever again.”

 To understand how revolutionary WPF is, we should look at how Windows development and web development came into being and
 how they exist today. You’re probably already somewhat familiar with the details of one or both technologies, but we’ll try
 to highlight their genesis and some of the specific issues that WPF addresses.

 1.1.1. Why Windows drawing is the way it is

 Time passes strangely in the computer world. We talk about last year’s technology being obsolete and only fit for the rubbish
 heap. At the same time, we end up having to do things in certain ways because of decisions made decades ago. Windows first
 came out in 1985, and Windows 3.0 (the first popular version) came out in 1990. Despite the many enhancements and new versions,
 some of that early Windows code is still floating around behind the scenes; and, more scarily, the patterns of that code are still around, like some sort of design virus, even when the code itself has been replaced. Figure 1.1 shows a screen shot from Window 3.x. Although it looks quite different than Windows XP or Vista, it is easily recognizable as a forebear.

 Figure 1.1. Although Windows 3.x came out more than 15 years ago, it has an influence on the UIs of today.

 [image:]

 Drawing/painting in Windows is one area where those original decisions have a strong influence. Think back to the computer
 you were using in 1985. In the fledgling PC world, 4.77 megahertz (note the m) machines were all the rage, and 640K was more memory than anyone would ever need.[2] The machine on which this text is being written is about twenty-thousand times faster and has around two-thousand times more
 memory (although, sadly, it takes much longer to boot than our machines from 1985). It’s important to our story to note that
 those fancy 640x480 256-glorious-color VGA cards didn’t come out until 1988.

 2 Bill Gates supposedly made this claim in 1981, although he denies it!

 Even with all those limitations, the Windows designers attempted to think ahead by making things as abstract as possible.
 You didn’t code directly to the screen’s memory but to a device context, which might be the screen or a printer. Instead of plotting everything directly to the screen, you created brushes, fonts,
 and pens, and worked with handles that abstracted them slightly (although woe betide anyone who had more than five declared
 at one time). Windows—and the controls within windows—were even represented by object-oriented ish structures called classes, and referenced by pointers, Handles to WiNDows (HWNDs).

 All this history matters today because, up until WPF, nearly every drawing technology on Windows has sat on top of this design.
 MFC, for example, was a thin wrapper. .NET Windows Forms, which is much more robust, does a lot to hide the complexity and
 the arcane rules of working with the low-level libraries. Even with Windows Forms, the original design occasionally leaks
 through. Why, when you draw a line, does it end one pixel shy of where you said? Because HP was a big customer of Microsoft,
 and their plotters needed the pens to stop short to avoid getting a noticeable blob at corners. Why do the rules for disabled
 text differ from the rules for regular text? Because the developers working on the original UI library didn’t want to wait
 around for the Graphics Device Interface (GDI) people to add disabled text support to their TextOut() function, so they created their own DrawText() function. It goes on and on.

 The biggest legacy of all this is the philosophy of drawing. Each window is responsible for drawing itself and refreshing itself when asked. Drawing is done by using various
 methods that set the value of different pixels on a pixel-by-pixel basis. And all the drawing is done by your computer’s processor.
 This point may seem obvious, but it’s not. In this day and age, graphics cards are extremely powerful. In an average gamer’s
 PC, the graphics card may have more computing power than the computer itself. Yet, when you write a Windows Forms application,
 as Mark Boulter[3] says, no matter how complicated the graphics in your application, you’re barely lighting up one diode on your graphics card.

 3 The Program Manager/Technical Lead on the .NET Client Team

 WPF is an almost complete departure from this legacy. It’s almost complete because WPF still has to interact with existing technologies at some level, and there’s still a single HWND lurking
 below the surface of WPF applications. The existence of this HWND has some implications for WPF development, particularly when interacting with nonWPF code. But, as you’ll see throughout the
 rest of this book, WPF is a new beast, built from the ground up. It takes the best ideas from Windows drawing, web presentation,
 DirectX, and modern graphics theory, with only a minimal thread tying it to the limitations of the technology and ideas that
 have ruled GUI development for the last 20 years.

 To see exactly how far we’ve come, we should look at how existing Windows applications work.

 1.1.2. How we currently create Windows UIs

 When you look at a Windows Forms application (or an MFC or ATL application, or even one written using C and doing low-level
 message handling) you’re looking at some number of windows. If you see a dialog with some text, a text box, and a couple of
 buttons, you’re probably looking at five windows—one for the dialog, one for the text, one for the text box, and one for each
 of the buttons.

 Each of those windows is responsible for painting itself and responding to messages. Messages might be things like “the mouse
 has moved over me” or “I just got focus.” For some windows, such as buttons, Windows (capital W) knows what to do and automatically
 provides basic handling. For others that do their own things or have special behaviors (for example, a button that looks like
 glass), the applications are responsible for handling everything themselves.

 The fact that each window is responsible for painting itself is important. If you drag something over the top of the dialog
 and then move it, Windows doesn’t remember what that dialog looked like. Instead, it sends a message to the dialog, and to
 each window within the dialog, telling them each to repaint themselves. The major reason why Windows works that way is that
 there isn’t enough memory to store the bits representing each separate pixel on all the possible overlapping windows.

 To be consistent with this approach, when a window wants to change the way it looks, it doesn’t just repaint the bit of the
 screen that it occupies. For example, consider what happens when you click a button. When the mouse is pressed, the button
 has to be drawn in a depressed (or happy but pushed) state. Instead of painting over that bit of the screen, this is more
 or less what happens (figure 1.2):

	The user clicks the mouse over the button.

 	The button detects the mouse-down.

 	The button Invalidates the bit of the screen it occupies, telling Windows that it needs to be repainted.

 	Windows (at some point in the future) sends a Paint message to the application, telling it to repaint part of itself.

 	The application passes the message to the button.

 	The button draws a depressed version of itself.

Figure 1.2. To have a control change state, you have to force it to redraw itself, as with these buttons shown before and during a click.

 [image:]

 There are two important points to remember about the way Windows UI works:

	Each window is constantly redrawing itself—when it’s first created, when it’s covered and then reexposed, or when something
 about the look-and-feel needs to change.

 	Controls are responsible for receiving messages from Windows and handling them appropriately. These messages are pretty low-level—“the
 mouse moved over me,” “focus has changed from me,” and so on. Windows Forms does some wrapping to make handling these messages
 as painless as possible, but rest assured, messages are zipping merrily back and forth behind the scenes. If you want to customize
 behavior or look-and-feel, even in Windows Forms, you need to know a lot about handling messages.

Finally, there’s the drawing itself. When the application is told to paint something, it works with a device context (wrapped
 in a Graphics object in Windows Forms). The device context/Graphics object is an abstraction so that the same code can paint to a printer, to different screens, to a bitmap, and so on. A good
 (but not entirely accurate) way to think of the device context is as a surface on which you can draw.

 Drawing is a matter of calling various methods for things like rectangles, shapes, or text. This is much like painting in
 a drawing program. Once you draw a circle on a device context, it’s no longer a circle, but a bunch of dots with color values.
 The same thing happens with drawing lines, dots, or even text—although text is special because graphics cards and printers
 work better if they know that they’re printing text instead of dots. But for all practical purposes, the text is just dots
 as far as any interface that you can get to is concerned.

 If you’ve used fancy layout programs like CorelDRAW or Visio, you know that you can click circles, for example, and move them
 around. The drawing program is doing all the work, including determining whether your click was inside the circle or outside
 it (which can get complicated with more complex shapes) and telling Windows to redraw the parts of the screen where the circle
 was and where the circle has moved to.

 The way in which classic Windows draws is very different from the Visio approach, bringing us to one final important point:

	In classic Windows applications, everything you see, as far as Windows is concerned, is a bunch of colored dots.

This statement is a ridiculously high-level overview of how classic Windows UIs are created; but, when we talk about the way
 in which WPF handles drawing, you should remember these three important points to see how different WPF is.

 Programming Windows UI is often about figuring out how to do things. At the same time that Windows development was maturing, the World Wide Web came into being. On the web, everything
 was about what you wanted to say, with the details of presentation left to the browser. As the web developed, more and more effort went
 into controlling how that content was presented.

 1.1.3. Why the web is the way it is

 In 1990, around the time Windows 3.0 was being released, Tim Berners-Lee was busy creating the World Wide Web. Originally
 designed to author and disseminate documents, the web has grown into a multipurpose platform far beyond its original roots.
 Through many incremental advances, the web has become an application platform, although it’s still fundamentally document-centric.
 The evolution of the web into an application platform is a testament both to the flexibility of the system and to the creativity
 of the developers who write applications for it.

 HTML is the means by which web content is created and displayed. Early HTML was mostly semantic. Semantic HTML is HTML in which the tags describe the structure and meaning of the content, not the way it’s presented. For
 example, rather than declaring the font, size, and style of text as you might do in a word processor, you declare the text
 as being a header, paragraph, a citation, and so on. The web client software then determines the appropriate font, size, and
 style to render. This is particularly relevant because control of the presentation of documents by the document authors wasn’t
 a primary concern, and even something to be avoided.

 Then something happened that turned all of this on its head. War was declared!

The First Great Browser War

 In the mid-1990s, seeing the potential of the web, Marc Andreessen and Jim Clark formed Mosaic Communications Corporation
 (later to become Netscape). When excitement around the web grew, it eventually caught the roving (Sauron-like) eye of Microsoft,
 who then entered with their own web browser, Internet Explorer. The increasingly tense competition resulted in a number of
 design decisions that would simultaneously advance and drag down web development for years.

 The first casualty was the erratic and uncontrolled expansion of HTML. To gain favor, Netscape and Microsoft both added tags
 to HTML that would describe, not only what a given block of text was for, but also how to format the text. The most egregious,
 shark-jumping example of these additions would have to be Netscape’s inclusion of the <blink> tag. (And shame on you if you ever used it.)

 At the same time Netscape and Microsoft were battling it out, developers were piling onto the HTML bandwagon. In wild-west
 style, people were staking claims and figuring out what worked and using it, even if it only worked because of an accident
 or side effect of that week’s browser release.

Too Late for Conformance

 By the time standards were starting to get nailed down, it was already too late. Too many people were relying on the side
 effects. The solution? Make conformance optional. An HTML document could violate the rules[4] of HTML, and browsers would simply do their best to display the document. The ability to render invalid HTML even became
 a selling point. A great deal of energy today goes into browser development to make invalid documents display correctly. (Browsers to this day have things like quirks mode and, we kid you not, almost-standards mode)

 4 The rules around the HTML document structure are defined by a metalanguage called SGML, but even that wasn’t true until HTML
 2.0.

 In the last few years, there has been some improvement with the introduction of Cascading Style Sheets (CSS). With CSS, the
 content to be rendered (in the HTML) is separated from the instructions as to how it should be rendered (in the CSS). In addition
 to making things simpler, this approach provides significantly more control over how content is rendered.[5] HTML with CSS is an example of the concept of separation of concerns, which we’ll touch on throughout this book.

 5 For a CSS tour-de-force, visit www.csszengarden.com. We haven’t seen a better site for demonstrating the power of CSS as a theming device.

 As with existing Windows technology, the WPF team looked thoroughly at how UI works on the web, so it’s worth spending time
 talking about this ourselves.

 1.1.4. How UI is created on the web

 The basis for any true web application[6] is HTML. HTML provides for UIs indirectly through a subset of native platform controls. This control support was originally
 provided to enable form-based documents with fillable fields. By design, a limited subset of controls is exposed by HTML for
 this purpose (figure 1.3). One important goal of HTML is to be usable across a wide variety of platforms and devices, and that goal tends to gravitate
 toward the lowest common denominator of the platforms of interest. The lack of controls can be problematic for developers.
 In particular, we’ve seen the lack of tree controls, combo boxes, and calendar controls cause many Windows developers confusion
 and grief when first introduced to web development.

 6 For the purposes of this discussion, a web application is one that doesn’t rely on any platform-specific technologies such
 as ActiveX or Flash, which should be considered to be Windows or Flash applications delivered via HTTP.

 Figure 1.3. The set of available native controls in HTML is limited. This image shows most of them.

 [image:]

 Though not essential, JavaScript is the second tool in the web UI designer’s toolbox. JavaScript is an object-oriented[7] (OO) scripting language that enables use of the events on HTML elements and controls and allows behavior to be overridden
 to an extent, providing a much richer user experience. Without JavaScript, web UIs are extremely limited and largely only
 support the form-submission model from HTML, where controls may either contain information (text box, radio button, check
 box), send information to a server (via form button), or abandon a view entirely (by leaving the page).

 7 Few statements in the book have generated more comments in the forums and from reviewers than this. Yes, JavaScript is an
 object-oriented language, although it’s rarely used as such.

 The third major tool, CSS, provides the developer with the ability to fine-tune the look and behavior of the UI. CSS is used
 to define the way content should be presented by providing styles that are applied to various elements. The degree to which
 the presentation can be altered lies within the constraints of CSS itself. Prior to widespread support of CSS, web-based interfaces
 (and documents, for that matter) tended to include an obscene number of tables to influence the layout of the UI. Like HTML,
 CSS is oriented around the formatting of documents and tends to center around pagelayout instructions.

 To summarize, we want to emphasize two important points for web UI development:

	
Web UI is described using HTML and CSS. The browser then follows a set of internal rules to create the UI from the descriptions given to it. Describing what you want,
 rather than specifically coding it, is the basis of declarative programming. This approach can be extremely powerful, as it
 greatly simplifies UI design and allows for dynamic UIs.

 	
A web developer doesn’t have direct control over the UI. Through use of HTML, CSS, and JavaScript, the web developer influences the UI, but ultimately, the browser has the final word.
 If CSS doesn’t support a text style you want, you can’t add it. If, for example, CSS didn’t support
 [image:], you’re pretty much out of luck (barring some ugly image-based hack). Contrast this with native UI development in which the
 developer may choose to take over virtually any aspect of presentation and behavior of a UI element.

Some web application frameworks overcome, in varying degrees, many of the limitations discussed—albeit with considerable effort.
 The best of these frameworks typically create an entire presentation layer based on JavaScript, many generic HTML <div> and tags, and extensive use of CSS. Although the results can be impressive, the downside of this approach is that a tremendous
 amount of power is dedicated to providing a user experience on par with Windows 3.1.

 Now, imagine a markup language with the simplicity and declarative style of HTML, but expressly designed for describing applications
 rather than documents. Imagine a framework that uses the massive power of modern Graphics Processing Units (GPUs) to provide
 the next generation user experience. Enter Windows Presentation Foundation.

1.2. Why Avalon/WPF

 Why did Microsoft decide that it was time to completely re-create the way in which UIs were built? In many ways, the last
 two sections provide a lot of reasons—the technology behind Windows UI is creaking. The technology behind web UI is being
 tortured into something that can be used for building applications. Both have some powerful capabilities and concepts, but
 the two certainly don’t play well together.

 Microsoft had big goals for Windows Vista, their new flagship OS. Sadly, a lot of these goals have been missed, such as Windows
 Future Storage (WinFS), the SQL Server-based replacement for the NTFS filesystem. As far as presentation is concerned, WPF
 delivers on most of its promises (and doesn’t even require Windows Vista).

 Obviously, some of the impetus for a new graphical system is market driven. Anyone who has any familiarity with Macintosh
 OS X knows that it’s extremely slick, both to use and to code. Although Apple’s market share is pretty small[8] in comparison, Microsoft knows a good idea when they see it. Even if keeping up with the Jobses was one of the driving factors
 behind the decision to create WPF, there were also a lot of specific technical goals, as follows:

 8 Apple’s handicap is its size, whereas Microsoft’s is its size.

	
To use modern hardware— Hardware has changed a lot in the last decade or two, but taking advantage of the hardware requires extremely specialized
 coding. WPF should make use of the underlying hardware by default.

 	
To use modern software design— When the graphic subsystem of Windows was first created, things like OO development, patterns, and garbage collection were
 either nonexistent or bleeding edge. WPF should be built using modern software design and easy to access by programmers who
 use modern software design.

 	
To separate presentation from presentation logic— WPF should allow programmers to develop the look-and-feel of an application independently from the logic that makes it work.

 	
To simplify coding— Doing simple things is pretty easy, but WPF should make doing complex, formerly painful things relatively easy as well.

We’ll dig a little deeper into each of these goals.

 1.2.1. Taking advantage of modern hardware

 Earlier, we talked about how little advantage most Windows applications take of the super-powered graphics cards in most of
 today’s PCs. Prior to WPF, to do any sort of serious graphical UI, you were required to use DirectX or Open Graphics Library
 (OpenGL). It’s ironic that programming games required doing some of the most unpleasant types of programming. Making the standard
 library for Windows UI take advantage of current and future graphics cards was important.

 But modern hardware refers to more than the graphics card. For example, tablet PCs are becoming popular (well, more popular), and handheld devices in general are everywhere. Handling their specialized input easily was important—which is
 where Ink comes in. Ink is the technology that provides support for writing directly on screens and converting that writing
 into text. WPF applications can get input from Ink, merging it with standard mouse and keyboard input so that your applications
 work reasonably, even if not built for tablets.

 Modern display devices also needed to be addressed. Multiple monitors are now much more common, and high-definition displays
 will be the norm in the near future. Even today, many machines ship with their dots per inch (DPI) set to 120, instead of
 the standard 96 DPI to which most applications have been developed. Windows Forms and other technologies play tricks to try to make things look the same when changing DPI. But it doesn’t work all that well.
 It’s not uncommon for applications to wrap text strangely or have oddly sized text when running at an alternative DPI (figure 1.4). These approaches don’t take advantage of the better equipment; instead of having a sharper UI, the UI just gets smaller.

 Figure 1.4. Most applications don’t handle DPI changes elegantly. These are Windows programs running at a higher DPI, with various poor
 side effects. Vista handles higher DPI settings better than XP but still has issues; for example, old toolbars tend to be
 tiny.

 [image:]

 If Microsoft’s own applications don’t handle DPI changes well, what chance do we have? To date, the most common solution has
 been to request that users not use the fancy new modes of their equipment—not a popular workaround.

 WPF is built on top of Direct3D, which can take advantage of the features of current and new graphics cards as they come out.
 As you’ll see, it also has a clean approach for the DPI problem. WPF uses device independent pixels (DIPs). There are always 96 pixels to an inch. If the DPI setting of the target device changes, everything is automatically
 scaled up or down. The main reason that 96 was used is that most current hardware uses 96 DPI. Also, it’s easy to scale from
 96ths of an inch to 72nds of an inch, which is what most fonts use.

 1.2.2. Using modern software design

 It’s a little odd to describe object-oriented programming (OOP) as modern, given that it’s been around since the ’70s. It
 wasn’t until much later that the concepts and technology caught up with the promise of the early days. Windows Forms is OO,
 and MFC is—um—MFC has things called classes. Both MFC and Windows Forms are wrappers on low-level technology, and the underlying
 mechanisms have a lot of influence on the higher-level design. Also, the non-OO stuff underneath peeks its head out rather
 more than is desirable. WPF was built OO from the ground up.

 The WPF API is also completely managed, and almost all of WPF itself is written with managed code. This is a major change for Windows. For the first time, there’s
 no underlying C interface that you can call directly—the managed code is the code. Some advantages to going managed are, as follows:

	
Managed WPF code operates extremely smoothly with applications that are also managed.

 	Having a model that relies on garbage collection means that the design of the framework isn’t driven by the need to clean
 up after resources.

 	Being able to use reflection to discover behavior means powerful tools that can pick up new capabilities automatically.

 	Possibly the most important benefit of being managed is avoiding the serious security issues of the older C APIs. It’s harder
 to exploit vulnerabilities, and you can also safely run WPF over the web (picture this on Amazon.com) and know that the code
 is limited to a properly secure sandbox.

	

Note

 Managed code is Microsoft’s term for code designed to operate with the.NET Common Language Runtime (CLR). Before managed code,
 a program was compiled directly to a machine-understandable format and did what it liked. Now programs are compiled into an
 intermediate language (called, cleverly, Intermediate Language) that’s processed by the CLR at runtime. It’s beyond the scope
 of this book to go into a detailed explanation of why managed code is a good idea and how it works in detail, but it does
 provide a huge number of advantages including security, garbage collection, interoperability between languages, reflection,
 better multiple target support, and extra dessert on Tuesdays.

	

Being managed is hardly the only modern thing about WPF. The framework makes use of best practices and patterns developed
 over the last umpteen years. WPF isn’t hampered by limitations that no longer exist (640K, anyone?).

 1.2.3. Separating presentation logic from presentation

 Hard as it is to admit, most programmers are not artists. That isn’t to say we don’t try; given six or seven hours, we can
 come up with a 16x16 toolbar button that’s almost (but not quite) recognizable. Design has become harder as resolutions and
 user expectations have increased (figure 1.5). Microsoft has recognized this difficulty and has built WPF with the explicit idea that a developer will make things work,
 but a UI designer will make things look nice. In WPF, the graphic designer can take the description of the UI and make it
 pretty without (we hope) breaking the behavior.

 Figure 1.5. Which one requires an artist? Users have a much greater expectation for pretty UIs these days.

 [image:]

 The downside to this theory is that many companies don’t bother with a UI designer, so developers are still responsible for
 the look-and-feel of many applications.[9] We think it will be a long time before most companies have the resources to create the desired separation of responsibilities
 suggested by Microsoft. Fortunately, the default behavior for UI is reasonably sane with Visual Studio. The problem is that, although Windows Forms was flexible, there was a limit on how horrible a UI could be developed. With WPF, the opportunities
 for crimes against good taste have expanded exponentially.

 9 Although the design of WPF and Windows Vista may cause this to change.

 One major benefit of separating the look-and-feel from the behavior is in prototyping UIs. Often, if a company does have a
 graphic artist, he’ll create mock-ups in tools like Photoshop or Flash. The mock-ups may be pretty, but they have two big
 problems. First, Photoshop can create pictures of anything. WPF is flexible, but replicating an artist’s painted vision can be, shall we say, difficult. Second, the prototype is a
 throwaway; it has nothing to do with the real application. With WPF and XAML, the graphic designer can build his mock-up using
 tools that create real WPF UI elements. The developer can take that UI and make it work. If things need to change, the mock-up
 just has to be updated—a necessary task anyway because it’s now part of the application.

 1.2.4. Making it simpler to code GUIs

 This is one of those sections that can get you into a lot of trouble. WPF does simplify the development of UIs. In particular, it makes it easier to do things that would have previously been extremely
 difficult and required an extensive knowledge of underlying APIs. But in some respects, programming with WPF will make some
 things harder!

 The reason for this interesting contradiction isn’t so much WPF itself, but the broader target of applications. It’s still
 possible to build a dialog by dragging a bunch of controls onto a form, positioning them in a way that looks nice, and then
 going forward. But if you want that form to adapt properly when the display device is at a different DPI setting or automatically
 adjust when terminology changes or be set up properly for your graphic artist to work out the ideal look-and-feel, you’ll
 have to spend more time upfront planning and setting up your UI elements.

 In addition, WPF and Windows Vista will raise the bar on what’s considered acceptable UI. The tools keep improving, but so
 do the targets. For example, a few years ago (okay, a decade or so ago), features such as toolbars, context menus, and drag-and-drop,
 weren’t expected. Now, they’re considered basic functionality. An application that doesn’t take advantage of the richness
 of WPF will, in a few years, stand out starkly. We have to do more work to provide the basics.

 Even so, WPF does make it easier to do most things. There’s also a great deal of tool support, both within Visual Studio and
 with tools like Expression Blend for graphic designers. The tools will also improve with time, and third-party tools are already
 available.

 Overall, WPF has done a good job of addressing all of these goals and a host of lesser goals including animation support,
 3D drawing, style support, and a consistent printing model. As you’ll see as we move forward, there are literally dozens of
 other advantages to WPF.

 So, what is involved in building a WPF application? In the next chapter, we’ll show a more complete example, but we first
 want to talk about the building blocks and tools involved in creating a WPF application.

1.3. Creating UI using WPF

 In many respects, developing WPF UI is much more like building web UI than native Windows development. WPF development is
 more about “what do I want” than “how do I make it work.” You start by defining the elements that make up your UI and go from
 there. There are also two (and one-half) different ways in which you can specify what you want. One way is by writing code
 to create the various elements and appropriately associate them. The other way is by using XAML. The remaining one-half is to use the designers and tools such as those in Visual Studio or Blend.

 In the next sections, we’ll talk about how to define UI in WPF, and then we’ll talk about WPF’s approach to rendering that
 UI.

 1.3.1. Defining WPF UI with XAML

 XAML (pronounced zammel) is an acronym for eXtensible Application Markup Language and is an XML-based specification for defining UIs.[10] Although XAML was created specifically for WPF, it’s possible that, in the future, it might be used for defining UI for other
 things. It wouldn’t be too far-fetched, for example, to see some version of XAML replace HTML![11]

 10 Technically, XAML can also be used for other technologies, such as defining workflows, but its raison d’être is for designing UI via WPF. In fact, XAML used to stand for eXtensible Avalon Markup Language, (remember: Avalon was the code name for WPF), but they changed it to Application because Avalon wasn’t going
 to be the public name.

 11 What is far-fetched would be the W3C accepting a standard patented by Microsoft, and using it...

 Using XAML, you can describe what your user interface should look like. This is technically called a declarative programming model. WPF will take that definition and convert it into real elements on the screen. For example, let’s look
 at the canonical (albeit somewhat dull) Hello, World! example (listing 1.1).

 Listing 1.1. Hello, World! in XAML

 <Page
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
 <StackPanel>
 <Label>Hello, World!</Label>
 </StackPanel>
</Page>

 If you’d like to see what it looks like (it will be a big surprise, we assure you), there’s a great utility program called
 XAMLPad that comes with the Windows SDK. It should be on the SDK menu, under Tools. Run XAMLPad and type in the example into
 the window at the bottom. You should see something like figure 1.6.

 Figure 1.6. Hello, World! in XAMLPad. XAMLPad is a utility that can immediately render XAML as you type.

 [image:]

 The XML here is validated by a schema, which is referenced in the xmlns attribute in the first line. The schema enforces the correctness of the XAML. The enforcement of the schema goes extremely
 deep; XAML documents are strict XML. Every tag (for example, StackPanel or Label) and attribute (for example, Margin or FontSize) must correspond to a valid .NET type or property. If a tag has the wrong case or an unknown attribute is used, the resulting XAML won’t work. The benefit of this validation is that XAML won’t ever fall into the black
 hole of quirks, incompatibilities, and haphazard development of HTML.

 There are a fair number of other markup languages for designing user interfaces, such as MXML (Adobe Flex), XUL (Mozilla/Firefox),
 and GladeXML (GNOME/Linux). Given the ubiquity of Windows, it’s likely that XAML will quickly become the most widely deployed
 of these languages.

 1.3.2. Defining WPF UI through code

 You don’t have to use XAML to define UI elements. You can write code to define your UI, much as you did with Windows Forms.
 This is the classic imperative programming model that we all know and love. Alternatively, you can mix and match—define the basics in XAML, but have some
 elements added in code. The following code does exactly the same thing as the XAML in listing 1.2.

 Listing 1.2. Hello, World! in code

 Window window1;
Page page1;
StackPanel stackPanel1;
Label label1;
public Procedural()
{
 window1 = new Window();
 page1 = new Page();
 stackPanel1 = new StackPanel();
 label1 = new Label();
 label1.Content = "Hello, World!";
 stackPanel1.Children.Add(label1);
 page1.Content = stackPanel1;
 window1.Content = page1;
}

 One thing should be immediately obvious: The declarative model (XAML) is much more concise and easier to read. Declarative
 programming recognizes that domainspecific problems (such as creating a UI) generally operate in a well-known and prescribed
 fashion. Think about creating a form using Windows Forms. The designer creates procedural code that always does the exact
 same thing: It declares a set of controls, sets the relevant properties on them, and adds them to each other as necessary.
 Using XML to create a declarative UI language, the parenting of controls can be implied based on the hierarchy of the XML,
 and each control is declared with the relevant attributes set.

 But you can’t do everything in XAML. For example, if our Hello, World! had put a button on the screen, you could, using XAML,
 completely change the way the button looks and even make it do things like change color when the mouse moves over it. But
 if you want the button to do something useful when the user clicks it, you have to add code somewhere.

 Also, some things that can be done in either code or XAML are easier to read in code. You’ll see this as we go through various
 examples. The nice thing is that you have the choice.

 In this day and age, we don’t necessarily expect to have to write presentation code from scratch; rather, we rely on tools.

 1.3.3. Defining WPF UI with tools

 We said that there are two and one-half ways to build user interfaces in WPF. The first two are declarative (XAML) and imperative
 (coding). In all probability, much of your work will be done using the half—Microsoft’s nifty tools for graphic designers, such as Visual Studio 2008 and Microsoft Expression Blend.

 Visual Studio has a WPF form designer that’s similar to the one for Windows Forms. But by switching to a declarative model,
 the tools can become much better and more reliable. Prior to XAML, typical UI development involved a delicate editing dance
 between the developer and IDE. Unfortunately, things could get out of hand (shorthand for “the bloody designer ate my form
 again”) if the design view and code view got out of sync. Partial classes were added to .NET 2.0 largely to support the IDE
 writing UI and web code. The core problem is that the imperative model doesn’t fit well with the UI designer concept. Declarative
 models work extremely well—so well that working on the UI and code independently is now not only possible but a reasonable
 and recommended approach.

 Now that the look-and-feel of the UI can be defined in XAML, linked only by references to the code, it becomes much easier
 to have different tools (such as Expression Blend) for graphic designers that let them play with look-and-feel without messing
 up the underlying code, and vice versa.

 Unfortunately, there’s a reason why we called using tools only half a method. WPF is so flexible, and the tools are new enough, that there are severe limits to what they can do. You’ll probably
 find yourself dropping into XAML often. We hope that, as the tools mature, this will become less necessary, but it’s unlikely
 that the tools will ever be able to handle everything that WPF can do.

 No matter how you choose to build your user interface—via XAML, code or with the use of the provided tools—you still end up
 with a description of how your UI should look. It’s then up to WPF to figure out how to present that UI and make it behave
 appropriately.

 1.3.4. Who does the drawing

 As you may have noticed, XAML is a lot like HTML. Rather than specifically turning on dots on the screen when you’re told
 that you need to repaint, you describe what you want and get out of the way. Unlike HTML, you have extreme control over the
 way in which everything is rendered.

 When using WPF, you describe the look-and-feel and the behavior of the UI. WPF then takes care of making all that work. Then,
 you only have to worry about dealing with application behavior. If you, via XAML, say that you want a video to show up on
 a button whenever the user moves the mouse over it and then have the button change color, WPF takes care of it for you. You
 don’t have to watch for mouse move events to start and stop the video, manage the state of the button, and so on.

 You can look for and handle the low-level messages about mouse moves and other messages, but the situations where you have to are
 rarer. WPF has an extremely powerful event model for dealing with the types of events that you do care about, which we’ll
 discuss later in great detail.

 WPF works with your graphics card under the hood, offloading the heavy lifting of drawing. This cooperation means that you
 can have a significantly more complex UI that runs much more smoothly than a relatively simple Windows Forms application that
 has to do the drawing, handle input, and do the dishes, as well as all the applicationspecific work.

 We said that you describe the UI to WPF. This approach goes all the way from complex control trees, right down to low-level
 drawing.

 1.3.5. Pixels versus vectors

 We haven’t discussed straight drawing much yet. When talking about classic Windows, we pointed out that you’re drawing dots
 on a surface. If you draw a circle, it gets turned into a set of dots. Nothing in the system is aware that those dots make
 up a circle. This approach is called immediate mode drawing.

 WPF, on the other hand, remembers what you’ve drawn. If you describe a circle, to WPF it is a circle and can receive events and be scaled as a circle. This is part of how WPF can do what it does—it doesn’t have to
 store each separate pixel and ask for more information when sizes change. It only has to know a center point and a radius.
 This is called retained-mode drawing. Conveniently, modern graphics cards know how to draw circles too, so WPF can pass that information to the card to
 do the work.

 But screens these days don’t know how to draw circles. Everything eventually does get turned into dots, but it’s done at the last point of contact, not
 the first, and that makes a huge difference. Interestingly, monitors used to be able to draw vector-based images (although
 circles were pushing it). If you ever played some of the old video games like Asteroids or Battle Zone, those games did everything
 by constantly redrawing vectors to the screen.

1.4. Summary

 In the section about Windows and web UIs, we brought up a number of important points about the ways in which each work. Now
 that we’ve also talked about how WPF works, we’d like to revisit those points and compare the old and new worlds:

	In classic Windows, the application is responsible for drawing itself whenever it’s told to do so. In WPF, the application
 describes how the UI should look and then lets WPF do all the drawing work. Even if you decide to do the rendering for a specialized
 control yourself, you don’t have to keep doing it. WPF will ask your custom control to render (literally calling the OnRender method on your control), you do the drawing once, and then WPF handles it from there, unless you specifically indicate that
 something has changed and that you want to render the control differently. This approach is referred to as retained-mode drawing, and we’ll go into much more detail about this topic when we talk about drawing.

 	In classic Windows, the application receives low-level messages from the OS. The application must appropriately handle the
 messages to change appearance and so forth, and to determine that an event that relates to the application logic has taken
 place. (For example, the mouse was pushed down and then released while over the button so that’s treated as a click.) In WPF,
 the low-level stuff is taken care of. You only have to worry about events that relate to application logic, and WPF provides
 lots of support for making handling application-level events even easier.

 	In classic Windows, you draw dots on a surface. The dots are just dots with no semantic meaning. In WPF, you draw shapes,
 and WPF intrinsically understands that they’re shapes.

 	On the web, UI is described by HTML, just as WPF UI is described by XAML. Unlike HTML, XAML is strongly typed and validated,
 so the description is reliable and consistent.

 	On the web, you’re extremely limited as to what you can control as far as the UI is concerned. In WPF, you have control over
 everything.

 	Falling between the two sections, for both classic Windows and the web, the look-and-feel and the behavior of the UI are tightly
 coupled. In WPF, you can completely divorce the two so that a graphics designer builds the look-and-feel and a developer makes
 the application operate.

