

 [image: cover]

 Becoming Agile ...in an imperfect world

 Greg Smith & Ahmed Sidky

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

 ©2009 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830

	Development Editor: Nermina Miller
 Copyeditor: Tiffany Taylor
 Typesetter: Gordan Salinovic
 Cover designer: Leslie Haimes

Second, corrected printing August 2009

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Agile fundamentals and a supporting case study

 Chapter 1. Moving to agile

 Chapter 2. The story of Acme Media

 2. Getting started

 Chapter 3. Are you ready for agile?

 Chapter 4. The fitness test: all about readiness assessments

 Chapter 5. The importance of obtaining executive support

 Chapter 6. Improving buy-in by creating a core team

 Chapter 7. The mindset of an agile leader

 Chapter 8. Injecting agility into your current process

 Chapter 9. Selecting a pilot project

 3. Kicking off

 Chapter 10. Feasibility: is this project viable?

 Chapter 11. Aligning the pilot team with the project

 4. Populating the product backlog

 Chapter 12. Feature cards: a tool for “just enough” planning

 Chapter 13. Prioritizing the backlog

 Chapter 14. Estimating at the right level with the right people

 5. Enough information for scheduling

 Chapter 15. Release planning: envisioning the overall schedule

 Chapter 16. Iteration planning: the nitty-gritty details

 6. Building the product

 Chapter 17. Start your engines: iteration 0

 Chapter 18. Delivering working software

 Chapter 19. Testing: did you do it right?

 7. Embracing change

 Chapter 20. Adapting: reacting positively to change

 Chapter 21. Delivery: bringing it all together

 Chapter 22. The retrospective: working together to improve

 8. Moving forward

 Chapter 23. Extending the new process across your company

 Appendix A. Readiness assessment tables by practice

 Appendix B. Agile concepts from a phase perspective

 Appendix C. Agile process overview in text

 Appendix D. Example: determining process and document needs for a project

 Appendix E. Quantitative feedback on the SAMI

 Resources

 Index

 List of Figures

 List of Tables

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Agile fundamentals and a supporting case study

 Chapter 1. Moving to agile

 1.1. Is Agile just another process?

 1.1.1. The Agile Manifesto and related values

 1.1.2. The agile principles

 1.1.3. The agile practices

 1.2. A paradigm shift from a plan-driven mentality

 1.3. Agile and the bottom line

 1.4. How this book will help you become more agile

 1.5. Key points to remember

 1.6. Looking ahead

 Chapter 2. The story of Acme Media

 2.1. Case study background and circumstances

 2.2. About the Acme Media teams

 2.3. About the individuals

 2.4. What does it look like when a team “becomes agile”?

 2.4.1. The existing process

 2.4.2. A process with more agility

 2.4.3. The ultimate process

 2.5. Key points to remember

 2.6. Looking ahead

 2. Getting started

 Chapter 3. Are you ready for agile?

 3.1. What areas will you become more agile in?

 3.1.1. Increasing customer involvement

 3.1.2. Improving prioritization of features

 3.1.3. Increasing team buy-in and involvement

 3.1.4. Clarifying priorities and reminding everyone of the consequences of changing them

 3.1.5. Adapting to change during development

 3.1.6. Better understanding the project’s status

 3.1.7. More efficient planning and estimating

 3.1.8. Continuous risk management

 3.1.9. Delivering the project needed at the end

 3.1.10. Achieving the right level of project structure

 3.2. The different flavors of agile

 3.2.1. Scrum

 3.2.2. Extreme Programming

 3.3. Create your own flavor to become agile within your constraints

 3.3.1. Your goal: reach the right level of agility for your organization

 3.3.2. Characteristics that make agile easier to adopt

 3.3.3. Roadblocks that others have overcome

 3.4. Key points to remember

 3.5. Looking ahead

 Chapter 4. The fitness test: all about readiness assessments

 4.1. The importance of readiness assessments

 4.2. Reducing the risks of agile adoption using assessments

 4.3. Increasing productivity during transitions

 4.4. Getting executive buy-in for agile adoption using readiness assessments

 4.5. Conducting readiness assessments

 4.5.1. Readiness-assessment tables

 4.5.2. Finding out the results

 4.6. Key points

 4.7. Looking ahead

 Chapter 5. The importance of obtaining executive support

 5.1. Why should we pursue agile?

 5.2. The cost of migrating

 5.3. The risks in migrating

 5.4. Rewards for the executives

 5.5. Communicating frequently with your executive team

 5.6. The role of the sponsor

 5.7. Following Acme Media as the company obtains a sponsor

 5.8. Key points

 5.9. Looking forward

 Chapter 6. Improving buy-in by creating a core team

 6.1. Who should be in the core team?

 6.2. Choosing the core team at Acme Media

 6.3. The kickoff meeting

 6.3.1. Tough questions

 6.3.2. Your role in the migration

 6.4. Key points

 6.5. Looking forward

 Chapter 7. The mindset of an agile leader

 7.1. The role of an agile coach

 7.1.1. Attributes of a good coach

 7.1.2. Training and mentoring the core team

 7.2. Agile management: more shepherding, less directing

 7.2.1. Soft skills

 7.2.2. Working with other managers

 7.2.3. Working with stakeholders

 7.2.4. Demonstrating value

 7.2.5. Leading the team to ownership

 7.3. Creating a team with an agile mindset

 7.3.1. Culture and roles

 7.3.2. Characteristics that influence individual performance

 7.4. Key points

 7.5. Looking forward

 Chapter 8. Injecting agility into your current process

 8.1. Understanding your current process

 8.1.1. Documenting the existing process with Acme Media

 8.1.2. Deciding what to keep: identifying existing valuable practices

 8.1.3. Another potential tool: documenting a perfect process

 8.2. Enhancing the existing process

 8.2.1. Deciding what to change at Acme Media

 8.2.2. Feasibility phase

 8.2.3. Planning phase

 8.2.4. Development phase

 8.2.5. Adapt phase

 8.2.6. Deployment phase

 8.3. Key points

 8.4. Looking forward

 Chapter 9. Selecting a pilot project

 9.1. Characteristics of a good pilot

 9.1.1. A project you can complete in 2 to 8 weeks

 9.1.2. A medium-priority project

 9.1.3. A project that hits all phases and areas

 9.1.4. No external customers

 9.2. Evaluating projects at Acme Media

 9.2.1. Request backlog

 9.2.2. Selecting a pilot project: an example

 9.3. Key points

 9.4. Looking forward

 3. Kicking off

 Chapter 10. Feasibility: is this project viable?

 10.1. Feasibility in the big picture

 10.2. Selecting a feasibility team

 10.2.1. Selecting feasibility team members at Acme Media

 10.3. Introducing the known requirements to the feasibility team

 10.3.1. What does a feasibility investigation look like?

 10.3.2. Analyzing an idea with the Feasibility Discussion Guide

 10.3.3. Feedback from the Acme Media feasibility team

 10.3.4. Modifying the idea during feasibility analysis

 10.3.5. Reacting to the feedback

 10.3.6. Team review of the modified concept

 10.3.7. Regrouping after technical analysis

 10.3.8. Summarizing the feasibility work

 10.4. The go/no go decision

 10.5. Alternate feasibility paths

 10.5.1. What people are talking about

 10.5.2. Feasibility for risk management vs. go/no go

 10.6. Key points

 10.7. Looking forward

 Chapter 11. Aligning the pilot team with the project

 11.1. Identifying the pilot team

 11.2. Preparing the pilot team

 11.2.1. Ensure everyone is trained on agile

 11.2.2. Providing a mechanism for feedback

 11.3. Envisioning the product

 11.3.1. Creating an elevator statement

 11.3.2. Introduce the team to the features

 11.3.3. Common understanding of the features

 11.4. The tradeoff matrix

 11.5. Project worksheet

 11.5.1. Team members

 11.5.2. Objective statement

 11.5.3. Issues and risks

 11.5.4. Technical considerations

 11.5.5. Stakeholders

 11.5.6. User/customer benefits

 11.5.7. Highlights

 11.5.8. Major milestones

 11.5.9. Elevator statement

 11.6. Key points

 11.7. Looking forward

 4. Populating the product backlog

 Chapter 12. Feature cards: a tool for “just enough” planning

 12.1. The structure of a feature card

 12.1.1. The right amount and type of information

 12.1.2. Additional feature-card benefits

 12.2. A team approach to creating feature cards

 12.2.1. Creating a feature card at Acme Media

 12.2.2. Reviewing the feature cards as a team

 12.3. Feature cards compared to...

 12.3.1. User stories

 12.3.2. Use cases

 12.3.3. Functional specifications

 12.4. Limitations in using feature cards

 12.4.1. Project complexity

 12.4.2. The customer isn’t available

 12.4.3. Compliance and traceability

 12.5. Hard-copy cards vs. electronic cards

 12.6. Key points

 12.7. Looking forward

 Chapter 13. Prioritizing the backlog

 13.1. The art of prioritizing, sequencing, and grouping features

 13.2. Prioritizing the backlog at Acme Media

 13.2.1. Prioritizing by value

 13.2.2. Evaluating risk

 13.2.3. Grouping related features

 13.3. Other ways to prioritize features

 13.3.1. What about technical features?

 13.4. Key points

 13.5. Looking forward

 Chapter 14. Estimating at the right level with the right people

 14.1. Contrasting traditional and agile estimation techniques

 14.2. The importance of whole-team estimation

 14.3. A step toward agility: estimating size, not effort

 14.3.1. Using story points for quick estimation

 14.3.2. Planning poker

 14.4. Estimating story points at Acme Media

 14.5. Key points

 14.6. Looking forward

 5. Enough information for scheduling

 Chapter 15. Release planning: envisioning the overall schedule

 15.1. Defining the pieces of a release plan

 15.1.1. Iteration 0 length

 15.1.2. Development iteration length

 15.1.3. How long do you need between iterations?

 15.1.4. Determining the overall timeline

 15.2. Completing the release plan by assigning features to iterations

 15.2.1. Assigning features to iterations at Acme Media

 15.3. Communicating the release plan with a kickoff meeting

 15.4. Key points

 15.5. Looking forward

 Chapter 16. Iteration planning: the nitty-gritty details

 16.1. Clearly defining the goals: what is “feature complete”?

 16.2. Using feature modeling to identify and estimate tasks

 16.2.1. Outlining the workflow for a feature

 16.2.2. Discovering new features

 16.2.3. Outlining the screens for a feature

 16.2.4. Adding details to a screen by considering user interaction

 16.2.5. Is modeling worth it?

 16.3. Identifying and estimating tasks

 16.4. Determining the hours available in an iteration

 16.5. Bringing estimates and capacity together to complete the plan

 16.6. Making status visible

 16.6.1. Visibility within an iteration

 16.6.2. Tracking release status

 16.6.3. Finding tools that work for you

 16.7. Key points

 16.8. Looking forward

 6. Building the product

 Chapter 17. Start your engines: iteration 0

 17.1. Initial vision for the architecture

 17.2. Completing contracts with third parties

 17.3. Preparing environments and support tools

 17.4. Obtaining funding

 17.5. Finalizing and dedicating the project team

 17.6. Cheating: starting the work early

 17.7. Key points

 17.8. Looking forward

 Chapter 18. Delivering working software

 18.1. Supporting the agile principles during development and testing

 18.1.1. Satisfy the customer through early and continuous delivery of valuable software

 18.1.2. Have business people and developers work together daily throughout the project

 18.1.3. Whenever possible, communicate face to face

 18.1.4. Pay attention to technical excellence and good design

 18.1.5. Focus on simplicity and the art of maximizing the amount of work not done

 18.1.6. Welcome changing requirements, even late in development

 18.1.7. Test early, and test often

 18.1.8. Continuously integrate code changes

 18.1.9. Obtain customer feedback as early as possible

 18.1.10. Minimize team distractions during development iterations

 18.2. Where to begin?

 18.2.1. Sequence within an iteration

 18.2.2. Making assignments

 18.3. Completing a feature

 18.3.1. What the work looks like

 18.3.2. Other considerations for development iterations

 18.4. Key points

 18.5. Looking forward

 Chapter 19. Testing: did you do it right?

 19.1. Unit testing

 19.2. Integration testing

 19.3. Functional testing

 19.4. Exploratory testing

 19.5. Test automation

 19.6. Key points

 19.7. Looking forward

 7. Embracing change

 Chapter 20. Adapting: reacting positively to change

 20.1. Common reasons for adapting

 20.1.1. Feature is larger than expected

 20.1.2. Customer refinement of requirements

 20.1.3. The business need changes

 20.1.4. A technical constraint is discovered

 20.1.5. A team member is unavailable

 20.1.6. A third party doesn’t deliver

 20.1.7. Team throughput is lower than expected

 20.2. Adapting during an iteration

 20.3. Three ways Acme Media adapted during its first iteration

 20.3.1. A change in feature scope

 20.3.2. An issue with performance

 20.3.3. Underestimating the registration need

 20.4. Adapting at the end of an iteration

 20.4.1. Demonstrating and gathering feedback

 20.4.2. Re-evaluating priorities: what are your options?

 20.4.3. Reviewing team performance and velocity

 20.4.4. Re-planning and reacting

 20.5. How Acme Media adapts during adapt week

 20.5.1. Reviewing the work completed

 20.5.2. Demonstrating the work

 20.5.3. Personality types and demonstrations

 20.5.4. Demonstrating incomplete features

 20.6. User Acceptance Testing

 20.6.1. Acme Media’s UAT approach

 20.6.2. Output from Acme Media’s UAT

 20.7. Changes in the business climate

 20.8. Reviewing the findings and revising the plan for the next iteration

 20.8.1. Evaluating team velocity

 20.8.2. New work identified during the iteration

 20.8.3. Features originally slated for iteration 2

 20.9. Key points

 20.10. Looking forward

 Chapter 21. Delivery: bringing it all together

 21.1. When to release

 21.1.1. To support a constraint

 21.1.2. To meet a predetermined schedule

 21.1.3. When there is enough value

 21.1.4. To test the product

 21.2. Final testing

 21.2.1. What about quality level?

 21.2.2. Completing functional/usability testing

 21.2.3. Completing the user acceptance process

 21.2.4. Validation of nonfunctional requirements

 21.3. Preparing support groups and processes

 21.3.1. The running maintenance and support worksheet

 21.3.2. Finalizing help materials and support processes

 21.3.3. Enabling system monitoring, and creating an escalation process

 21.3.4. Enabling maintenance and background processes

 21.4. Communication and training

 21.5. Ready to release

 21.5.1. Deciding to go live

 21.5.2. Planning the deployment steps

 21.5.3. Deployment considerations

 21.5.4. Creating a deployment and backout plan

 21.5.5. Reducing risk with a pilot

 21.6. Enough planning; let’s deploy

 21.6.1. Celebrate!

 21.7. Key points

 21.8. Looking forward

 Chapter 22. The retrospective: working together to improve

 22.1. Setting expectations for the retrospective

 22.2. Time to digest: a survey in advance

 22.3. Conducting the retrospective meeting

 22.4. What to expect during the meeting

 22.5. Converting the feedback into action

 22.6. Key points

 22.7. Looking forward

 8. Moving forward

 Chapter 23. Extending the new process across your company

 23.1. Common findings after a pilot

 23.1.1. Slower than the old process

 23.1.2. Confusion about the process

 23.1.3. Team polarization

 23.1.4. Starting to feel agile

 23.2. What the Acme Media team learned from their pilot

 23.2.1. Embracing change to deliver customer value

 23.2.2. Customer involvement and feedback

 23.2.3. Planning and delivering software frequently

 23.2.4. Technical excellence

 23.2.5. Human-centric practices

 23.3. Next steps

 23.3.1. Spanning the chasm

 23.3.2. Using the SAMI

 23.3.3. Agile practices

 23.4. Key points

 23.5. Conclusion

 Appendix A. Readiness assessment tables by practice

 Appendix B. Agile concepts from a phase perspective

 B.1. Overview of the phases

 B.2. Feasibility: define and validate your vision

 B.3. Planning: speculate and create a living plan

 B.4. Development: exploration with a schedule

 B.5. Adapt: react to new information

 B.6. Deployment: deliver, train, revisit, and close the project

 Appendix C. Agile process overview in text

 C.1. Feasibility phase

 C.2. Planning phase

 C.3. Development phase

 C.4. Delivery phase

 Appendix D. Example: determining process and document needs for a project

 Appendix E. Quantitative feedback on the SAMI

 Resources

 Index

 List of Figures

 List of Tables

Foreword

 Over the years I have seen a lot of software development organizations try to become agile. Some have succeeded beyond their
 wildest dreams and continue to improve to this day. But those are the exceptions. In a more typical scenario, agile development
 shows some initial success, but once the low-hanging fruit has been picked, it doesn’t seem to deliver that much sustained
 value over time. The question is, why does sustained success from agile development seem to be so elusive?

 I observe three reasons why agile initiatives seem to plateau:

 First, agile development is frequently initiated as a grassroots movement to develop better software—it is seen as a “developer
 thing.” Consequently, development managers and customer organizations are often not on board. This is a mistake, because dramatic
 improvements from agile development require a different mindset on the part of both development managers and the organizations
 for which the software is being developed.

 Second, some companies have made serious missteps in applying agile—perhaps by developing an unmaintainable code base or creating
 an unsupportable set of expectations in the minds of development teams or customers. Sometimes an agile implementation follows
 a simple recipe that is a bad fit to the company needs; sometimes the implementation is perfect for some people in the company
 (developers, for instance), but it doesn’t take into account the needs of others (testers, for example).

 Finally, agile development might be considered a silver bullet—a quick and easy fix to problems that plague software development.
 In this case, the hard work required to make agile successful is ignored, and when companies come to the realization that
 agile is not going to be as easy as they anticipated, all too often commitment dissipates.

 Initiating and sustaining an effective agile development program is a challenging journey. First, implementation should involve
 far more than the development team. A broad array of cross-functional impacts should be considered, not to mention the fact
 that agile might well require a different management approach. Second, the technical practices that agile brings to the table—short
 iterations, test-first development, continuous integration—are not optional. Ignore them or leave them until later at your
 own risk. Finally, nothing, not even agile development, will remove the inherent complexity of software development or its
 nonlinear escalation with size.

 In Becoming Agile, Greg Smith and Ahmed Sidky lay out a path to agile software development that addresses the typical failure modes. First,
 they understand that no environment is perfect, and it is practically impossible to roll out a perfect agile process. To compensate
 for this reality, Greg and Ahmed suggest numerous ways of pursuing the agile principles within the constraints of your business.
 The book does not ask you to discard processes that have been successful for you; the authors realize your existing processes
 may have many positive aspects. They show you how to convene a cross-functional steering committee to guide the agile implementation
 so that it fits into your organization.

 Second, since part of being agile is learning and adapting, Greg and Ahmed show you how to pilot the new approach. They explain
 how to select a pilot project and how to try out the new ideas and adapt them so they work in your context. Through an extended
 case study, they show what actually happened in agile deployments they have led. The case study also introduces real personas
 so you can see how different personality types react to a move to agile.

 Finally, Greg and Ahmed dispel the notion that agile is a simple recipe that anyone can learn in a day with guaranteed success.
 Instead of offering a simple, foolproof formula, this book shows how to thoughtfully introduce agile into a company. After
 leading you through a readiness assessment to determine the most logical areas to introduce agile, Greg and Ahmed take you
 through assembling a cross-functional leadership team, identifying the best aspects of your current process, designing more
 adaptive processes, carefully choosing a pilot, trying and adapting the process, and gradually improving and expanding agile
 processes over time. This strikes me as a more likely approach to successfully evolve a new development process that fits
 the company.

 The book is full of simple tools that will help people think clearly; it is about readiness, chartering, specifying, estimating,
 assuring quality, product demonstrations, retrospectives, and so on. By using an extended case study, Greg and Ahmed show
 you one example of a migration to agile, all the while pointing out other ways to accomplish the same objectives. Their book
 is neither a recipe nor a set of principles. It is a thoughtful, practical set of steps, presented with commentary and alternatives,
 about how to become agile. It will help you put together an agile development approach that matches your company needs and
 has a high likelihood of delivering sustained value over time.

 MARY POPPENDIECK

 PRESIDENT, POPPENDIECK, LLC

Preface

 In 2005 I began teaching an Agile Project Management course at Bellevue Community College. Although my students noted I was
 a bit “wordy,” they appreciated the real-world case study I used for the course, based on my own agile experiences. I told
 the students I had created the course because most available agile training was based on perfect world explanations of agile
 practices and the creation of a pure agile environment. The case study used in the course showed what it was like to start
 transitioning to agile versus what it looked like after a team had been using agile for many years.

 Positive student feedback made me wonder if a book on transitioning to agile would be of value to the software community.
 I began searching through the shelves of Barnes & Noble and through the inventory available on Amazon.com. I was surprised
 to see that very few books addressed agile migration, and I could not find any books that demonstrated what the process looked
 like from day one through the completion of a pilot project. Maybe it was time to find out if I had any writing skills!

 Needless to say, Manning saw the value in the idea and helped me refine the concept. Manning also sought out experts in the
 agile community who provided unfiltered feedback on the first chapters of the book (reviewers, you were anonymous to us, but
 we want you to know we appreciate all of your feedback and we worked quite a bit of it into the book).

 As I started writing the book I kept receiving feedback that I needed to discuss agility levels within an organization. Reviewers
 wanted a tool for assessing their ability to use agile and also for measuring their agility at the organization level, similar
 to the Capability Maturity Model Integration (CMMI). I was not an authority in the assessment field, so I sought out an expert
 and came across Ahmed Sidky, creator of the Sidky Agile Measurement Index (SAMI).

 At first I just wanted permission to use Ahmed’s assessment materials, but as we spoke more on the phone it felt like we were
 two lost agile brothers who had spent a lifetime apart. Although our software experiences were completely different, Ahmed
 and I were in synch with our core agile beliefs. So much so that Ahmed signed on to not only provide the assessment content,
 but also to coauthor and refine the book with me. He suggested great ways to organize the content and also provided insight
 into agile practices where my experience was light. His contribution was invaluable and helped take the book to another level.

 I am proud of our final product and I hope our experiences do help others become agile.

 GREG SMITH

Acknowledgments

 Together the authors would like to thank the many great people who brought this book together.

 Thank you to all the reviewers who took time out of their busy schedules to read our manuscript in different stages during
 its development. Your feedback was invaluable. Thanks to John C. Tyler, Robi Sen, Randy Miller, Andrew Siemer, Tariq Ahmed,
 Bernard Farrell, Bruno Lowagie, Carlo Bottiglieri, Paul King, Mike Tian-Jian Jiang, Federico Tomassetti, Robert Dempsey, Patrick
 Debois, Doug Warren, Horaci Mcias, Daniel Alford, Amr Elssamadisy, Dave Corun, Bas Vodde, Vincent Yin, Valentin Crettaz, Marco
 Ughetti, Darren Neimke, Hannu Terävä, Eric Raymond, Jason Kolter, Christopher Haupt, Robert Hanson, Dusty Jewett, and Christian
 Siegers.

 We had a first-class review team for this book. Craig Smith provided solid technical proofreading and helped us enrich the
 content for different perspectives. Nermina Miller was the main editor and provided great guidance for connecting with the
 reader. You are the best, Nermina!

 The final edit team also put the book through several reviews to improve continuity, wording, grammar, and flow. Tiffany Taylor,
 Linda Recktenwald, and Katie Tennant may need a vacation after correcting all of our typos. Director of Production, Mary Piergies,
 did an excellent job of coordinating all of our work and getting the book into print.

 GREG SMITH Writing this book has been an exciting journey that brought several incredible people into my life. First, thank you to Ahmed
 Sidky for your superb ideas on how to organize the book and for the content you provided. Your insights on agile adoption
 are groundbreaking, and I am honored to work with you. You are a great partner.

 I also want to thank Michael Stephens of Manning for spending weeks working with me to convert a raw idea into a real book.
 Your guidance and feedback had a huge impact on the final product. And of course, thank you to publisher Marjan Bace for taking
 on this book and sticking with it as it went down various paths and side roads on the way to final copy.

 I would also like to thank all of the people who have shaped my ideas about software development throughout my career. Joe
 Woodmancy, thank you for my first commercial software job. You were a great mentor and provided sound guidance on application
 development. Jim Highsmith, you have influenced me more than any other person. The first class I took from you opened my eyes
 and allowed me to start enjoying software projects again. Thank you for the great training and inspiration you have provided
 to me. Mary Poppendieck, thank you for providing the foreword and for pioneering new discoveries and insights in the agile
 community. I am always learning something new from your work.

 Lastly, I thank my family. Thanks to my parents, Darrell and Eva, for providing unconditional support for whatever endeavor
 I have pursued. Thanks to my wife, Peggy, who continued to provide support even after we discovered what it really means to
 write a book. And finally, a thank you to my daughter, Lauren, for listening to me go on and on about agile for years. Although
 only 10 years old, Lauren now has the skills necessary to lead any company in its move to agile.

 AHMED SIDKY First and foremost, I am grateful and thankful to Allah, who blessed me with guidance, health, family, and friends who supported
 me and helped me through the writing of this book. I am especially grateful to my sisters and beloved parents, Samy and Hoda,
 who supported me and encouraged me through every step of my life to reach where I am today. I am very fortunate to have been
 blessed with an amazing and supportive wife, Noura, who has felt both the pain and joy of this book. Thank you, Noura, for
 your love and enthusiasm, and I hope you are ready for my next book! This book could not have happened without the hard work
 and dedication of my dear friend and coauthor Greg Smith. I really enjoyed working with him and thank him for his patience
 and perseverance.

About this Book

 You may be wondering if there is a need for another book on agile. We have dozens of books on Extreme Programming and Scrum.
 Areas such as retrospectives, Test Driven Development, and estimating have been covered well. It seems every subject has been
 thoroughly discussed. However, one area that still does not have a lot of coverage is the actual process of adopting agile.
 You may find all of the information you need related to agile practices, but you may have a hard time finding information
 on how to go from your existing process to an agile one.

 The authors have created this book in the hope of providing more information on what it takes to move to a more agile process.
 We have taken all of our migration experiences and rolled them into this book to help you with your own agile adoption. To
 make the adoption steps even more tangible, we have created a case study that is an amalgamation of our experiences. As you
 follow the case study, you will be reviewing actual situations that we encountered during migrations and how the companies
 we worked with dealt with constraints and cultural change. Real company names are not used, but the events are real.

 Our case study also helps you envision working with different personality types and experience levels during a migration to
 agile. We will introduce several personas at the start of the pilot project, and you will see how the personas react to the
 process and cultural changes of an agile environment.

 The approach we outline in this book is based on five key observations we have made:

	Moving to agile is not a straightforward process. Every organization has unique constraints it must address.

 	Adopting agile can be risky and even harmful if done incorrectly.

 	Many teams try to use popular agile practices before they are ready for them. They believe they “are not agile” if they are
 not using techniques such as Test Driven Development or Pair Programming.

 	Many teams rush to adopt agile practices without properly embracing the agile values and principles. They assume “that’s how
 we become agile.”

 	Many teams start from scratch when moving to agile, discarding legacy practices that may have been effective and valuable
 in their environment.

We address these five discoveries with the following approach.

 First, we understand the realities of constraints within a company. We have witnessed agile constraints such as

	Distributed teams

 	The need to support production operations in parallel with projects

 	Compliance and regulatory constraints

 	Limited employee experience

 	Limited customer availability

 	And many more

To support these realities we will walk you through a process of reviewing your existing process and performing an assessment/survey
 of your company culture and maturity. This process will allow you to identify many barriers before you begin your migration,
 and you can make an informed decision about which constraints to accept and which ones to challenge as you move to agile.

 Second, we have witnessed the risks associated with moving to agile. We have seen product delivery jeopardized, and we have
 seen employees become upset with a change to the development process.

 To minimize these risks we will guide you through a process that involves the development team in the migration. Any concerns
 the team has with the new process will be taken into account because the team will be involved in creating the new agile process
 for your company. Involving the team will also help you create an agile lifecycle that should flourish in your environment.
 Your team is closest to the work, and they will know how things work today and in which areas a change could introduce high
 risk.

 Related to the third observation and the desire to use popular practices, the assessment tool we provide will help you determine
 which practices the team, company, and customer can support. We will not encourage you to pursue the most trendy or popular
 practices. Instead we will ask you to select practices that add value for your situation.

 Concerning the fourth item and the desire to become agile overnight, we have seen many companies try to shotgun agile in,
 attempting to get through the pain as quickly as possible. While there are situations where this makes sense, it can be a
 risky approach. Instead we will walk you through an iterative process for bringing agile into your organization. We will guide
 you through developing and piloting an agile process that meets your needs, and we will provide a system for maintaining,
 improving, and sustaining the lifecycle over time.

 Lastly, concerning starting from scratch, if you are a startup, or if your company is very dysfunctional, it may make sense
 to start from scratch and throw away everything you currently do. However, if you have significant experience with your company,
 you probably have some practices that add value, and these practices may continue to add value as you move to agile. In many
 cases it will not make sense to discard everything you do today.

 Our hope is that we can show you how to make your team and organization become as agile as possible within your current constraints.

Roadmap

	
Chapter 1 discusses why agile is a better development process. The chapter also ties agile to the two most important factors for most
 companies: increasing revenue and lowering costs.

 	
Chapter 2 introduces our case study and the circumstances that have added urgency to its projects. The chapter also provides an example
 of a company going from no agility, to medium-level agility, to high agility.

 	
Chapter 3 discusses the ability for any company to increase its agility and how you can become agile within your constraints.

 	
Chapter 4 kicks off our approach for becoming agile. We will walk you through a process of assessing your ability to use each agile
 practice.

 	
Chapter 5 builds on the assessment from chapter 4. Now that you have an understanding of your ability to become agile, you will pursue executive support within your company.
 You will also follow along as our case study pursues executive support and obtains an executive sponsor.

 	
Chapter 6 discusses the selection of the “core team.” This core team is made up of project team members and includes agile supporters,
 agile detractors, and people on the fence. Working with their coach, the core team will determine which agile practices to
 pilot.

 	
Chapter 7 talks about the agile mindset and how managers need to shift to more of a coaching role as the team matures.

 	
Chapter 8 focuses on designing a development process that works for a specific environment. Acme Media’s core team will document their
 existing process and compare it to an agile process. The core team will then document modifications to the existing process
 to make it more agile. This new process will be piloted on a test project.

 	
Chapter 9 walks you through the process of identifying a pilot project to test your new, more agile process. We will provide guidelines
 for how to select a pilot project based on size, scope, and priority.

 	
Chapter 10 starts the pilot project. Acme Media will analyze the pilot to verify it is feasible. The feasibility work answers two questions:
 (1) is the project technically possible? and (2) is there truly a market/need for this project?

 	
Chapter 11 shows the selection of the project team members who will perform the pilot. The pilot team will go through an exercise of
 chartering and alignment to reach a clear understanding on the project benefits and objectives. Chartering will also expose
 the main features of the pilot.

 	
Chapter 12 explains feature cards and how Acme Media learns to create the correct level of requirements throughout the project. Historically
 Acme Media has created detailed specifications before work begins. Feature cards will require a change in mindset.

 	
Chapter 13 follows Acme Media as it more clearly defines and prioritizes features for the project. The features are prioritized by business
 value and risk.

 	
Chapter 14 introduces Acme Media to a new approach on early estimation: estimating for relative size versus identifying tasks and trying
 to map out the project hour by hour. The work in this chapter is based on the story-point process that Mike Cohn promotes
 in his book Agile Estimating and Planning.

 	
Chapter 15 leads Acme Media through the process of creating an overall release/project schedule. Iterations are identified, and the
 team compares capacity to estimates to determine what features will be initially targeted for each iteration.

 	
Chapter 16 follows Acme Media through detailed iteration planning. The team will identify the tasks for each feature in iteration 1
 and verify that they can commit to the features that were assigned during release planning. The team will also create a burndown
 chart to support daily meetings and transparency of iteration status.

 	
Chapter 17 covers iteration 0, the time needed to get foundational pieces of the project in place before development begins. This includes
 environment preparation, finalization of funding, and negotiation of contracts with vendors or partners that may be needed
 for the project.

 	
Chapter 18 follows Acme Media through the first iteration of development. The team will begin designing, coding, refining, testing,
 and delivering features in the 10 working days allocated for the iteration. The team will focus on early testing and integration
 of features to identify requirement gaps or technical issues as soon as possible.

 	
Chapter 19 covers the different types of testing in an agile environment. These include unit, integration functional, exploratory, and
 usability testing. We also focus on identifying tests that can be automated to speed up the build process.

 	
Chapter 20 is about adapting during and after an iteration. This chapter, more than any other, demonstrates what it is like to work
 in an agile environment and respond successfully to discoveries during a project. The chapter also discusses customer demonstrations
 and validating status via the measurement of working code.

 	
Chapter 21 focuses on aggregating iterations and releasing them to a production environment. We discuss important areas such as determining
 when quality is good enough for releasing and validation of nonfunctional requirements.

 	
Chapter 22 is about project retrospectives. We identify the common issues with retrospectives and walk you through a process that optimizes
 the use of everyone’s time. We also follow Acme Media through a retrospective and provide templates and guides that you can
 use during your retrospectives.

 	
Chapter 23 is about “what’s next?” We review what Acme Media learned from its pilot and discuss what it takes to go from project-level
 agile adoption to enterprise-level adoption. We also introduce the Sidky Agile Measurement Index (SAMI). The SAMI highlights
 five agile value levels or steps and guides organizations in introducing the practices that satisfy each step.

About the graphics

 Most of the photos and illustrations in this book were created by the authors or obtained via stock photos, unless otherwise
 noted. Several graphics and photos have been reduced to fit the format of this book. You can view and download many of the
 graphics in full size from the publisher’s website: www.manning.com/BecomingAgile.

Author Online

 The purchase of Becoming Agile includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. To access and subscribe to the forum, point your browser to
 www.manning.com/BecomingAgile or www.manning.com/smith. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions,
 lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 GREG SMITH is a Senior Project Manager, ScrumMaster, and Agile coach who has been helping teams become agile since 2001. Greg has been
 teaching Agile Project Management since 2005.

 Greg’s experience is based on helping the companies he has worked for increase their agility. Greg has worked for companies
 including Philips Electronics, The Seattle Times, R.R. Donnelley, Washington Mutual, and JP Morgan Chase. Greg currently works
 for GS Solutions Group, helping teams become agile through training and adoption coaching. Greg focuses on helping teams add
 agility within corporate and business constraints, with a focus on the most important business metrics: increasing revenue
 and lowering costs.

 AHMED SIDKY Along with many years of experience in software development, Ahmed has a Ph.D. in value-based process frameworks for effective
 agile adoption. Ahmed’s work has gained popularity and respect in the agile community as a pragmatic approach for organizations
 of all sizes attempting to adopt agile. Ahmed is frequently referred to as Dr. Agile on account of having developed a free
 online agile readiness assessment tool named Doctor Agile (www.doctoragile.com). He is a frequent speaker at numerous national and international agile conferences as well as a managing partner at TenPearls.
 At TenPearls, Ahmed helps guide small and large organizations during their transition to agile software development, and enjoys
 coaching and educating agile teams around the world. You can reach him at asidky@tenpearls.com

About the cover illustration

 The figure on the cover of Becoming Agile is “un Fauconnier” or a falconer, taken from a compendium of French dress customs published in Paris between 1835 and 1839.
 The four-volume collection is entitled Costumes Français depuis Clovis jusqu’a nos jours and consists of hand-colored engraved plates, many heightened with gilt.

 The lithographs from this collection, like the other illustrations that appear on our covers, bring to life the richness and
 variety of dress customs of two centuries ago. Dress codes have changed since then and the diversity by region, so rich at
 the time, has faded away. It is now often hard to tell the inhabitant of one continent from another, not to mention a country
 or region. Perhaps, trying to view it optimistically, we have traded a cultural and visual diversity for a more varied personal
 life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of long ago—brought back to life by the pictures from collections such as this one.

Part 1. Agile fundamentals and a supporting case study

 The following two chapters will provide a foundation for understanding what agile is and introduce a case study that we will
 use throughout the book. Chapter one will discuss the origins of agile and contrast agile to traditional software development
 practices. Chapter one also focuses on correlating agile to the two most important goals for many companies: making money
 and holding down costs.

 Chapter two will introduce you to our case study, Acme Media. Acme Media has business needs that are driving it to become more agile.
 They have not delivered software very well in the past, and there has not been urgency surrounding their projects. This has
 all changed with the rise of online advertising. The team needs to learn how to deliver valuable software quickly, else their
 customers will shift to their competitors.

Chapter 1. Moving to agile

 [image:]

 The tragedy started when the crew accidentally bored into an adjacent, abandoned mine that was flooded with water. The miners’
 map told them, incorrectly, that the abandoned mine was hundreds of yards away. The men scrambled to reach the exit, but the
 rising water blocked the way out. Their only option was to seek out the highest point in the mine.

 Word of the accident spread above ground and a rescue team was formed. The rescue team estimated where the crew was located
 in the mine and picked a spot to drill. Maps revealed a gas line that ran close to the target drilling point; and if their
 coordinates were incorrect, they might rupture the line and create an explosion. Being careful to avoid the gas line, the
 team began drilling a small, exploratory hole. After 90 minutes the drill broke through the wall of the tunnel, and the rescuers listened anxiously for any sounds from the miners. After minutes of sobering silence, the rescuers could
 hear the trapped men pounding on the drill bit with their hammers. The miners had been located. Now the challenge was to get
 them out of the mine before hypothermia set in.

 The rescue team outlined a two-part plan. First, they would drill additional holes to help pump water from the mine. Second,
 they would use a “super drill” to create a 2-foot-wide escape tunnel for the miners. The drilling work began without a hitch,
 but then the super drill bit broke 105 feet below the surface. A special “fishing” tool was needed to extract the bit. In
 the past it had taken 3 days to build such a tool. The rescuers knew they did not have 3 days to get to the miners out.

 Rescue workers contacted Frank Stockdale, the plant manager at Star Iron Works, and asked him to build the tool they needed.
 They faxed engineering prints to Stockdale and explained the dire situation to him. Using his 95-member machine shop, Stockdale
 was able to reduce a 3-day job to 3 hours. The rescue team then removed the broken bit and resumed drilling the rescue tunnel.

 Finally, 78 hours after the tragedy began, the drill penetrated the shaft and the drill operator shouted with joy. The last
 miner was pulled to safety 5 hours later from the Quecreek Mine in Somerset County, Pennsylvania on July 28, 2002. After being
 trapped 240 feet below the surface, and with body temperatures as low as 92.5 Fahrenheit, they would all make full recoveries
 (see figure 1.1).

 Figure 1.1. A Quecreek miner is rescued from the flooded mine after spending 3 days crouched in waist-deep water. (Photo courtesy of the
 U.S. Department of Labor.)

 [image:]

 You may wonder why a software development book starts with a story about a mining rescue. If you’ve performed agile software
 development previously, you’ve probably identified the parallels. Let’s look at a few.

 All software projects have constraints. Similar to the situation during the Quecreek rescue, the number-one constraint is
 frequently time. The Quecreek rescue team had a few days to reach the miners. Software projects are often limited to a few days, weeks, or months, after which they’re of no value. Like a Sunday newspaper delivered on Monday, all the quality work and effort invested
 in the project are worthless if you don’t meet your most critical priority.

 The rescue project also had a clear vision of the primary project priority: to reach the miners while they were still alive.
 A secondary priority was to reach them before they got hypothermia, and a third priority was to reach them before they started
 losing consciousness due to hunger. The team focused on delivering the number-one priority first.

 When you perform software projects, you can lose track of your priorities, things can get muddy, and low-value work can hold
 up project delivery. Agile software development asks you to follow the Quecreek model by identifying what is critical and
 focusing on delivering to meet the critical need as soon as possible.

 Quecreek also reinforces another agile tenet: you should expect change, you should embrace change, and you should be ready
 to plan and adapt frequently. The Quecreek rescuers adapted to broken drill bits, gas lines blocking their path, and the need
 to reduce the time required to create a fishing device. In software development, you encounter similar situations. You discover
 a missing requirement, you identify a technical constraint that prevents you from following your initial design, or a third
 party delivers their part of the project later than expected. These types of issues happen on every software project; and
 to ensure success, agile asks you not to be surprised but to continue to perform by adapting to the reality of the situation.

 Finally, the Quecreek rescue demonstrated goodwill and collaborative team work. Ideas came from all team members, such as
 the suggestion to try positive air pressure to keep the water at bay. Goodwill and collaboration were also demonstrated when
 the rescue team approached Frank Stockdale and asked if he could create the fishing tool. Stockdale didn’t ask the rescuers
 to spend days creating a contract and going through legal papers; instead, he trusted the rescue team and quickly delivered
 the fishing device.

 Agile development depends on this type of relationship with customers and vendors. You want a vendor who is a partner, not
 a vendor who is considered the enemy because you spend more time talking about contracts than ensuring the delivery of value.

 In this chapter, we’ll help you understand the need for agile practices, what agile really is, and how agile contrasts to
 plan-driven development practices. We’ll conclude the chapter by discussing the most important consideration when pursuing
 a development process: how does agile correlate to the most common corporate goal of increasing revenue and reducing expenses?

1.1. Is Agile just another process?

 Many people may think that agile is just another software development process. Although that is true to a degree, there is
 a lot more to agile than just a process or just a set of practices. Agile (or agility) is more of a mindset—a way of thinking
 about software development. This agile mindset can be applied to any process using any set of practices. The best way to illustrate our understanding of agile is through figure 1.2.

 Figure 1.2. The relationship between agile values, principles, and practices

 [image:]

 Today the market is moving quickly, and as a result, the software development lifecycle needs to be flexible enough to enable
 organizations to seize new and emerging market opportunities before their competitors do. To reach the desired ability to
 respond to constant change, your software process needs to focus on what is truly important.

 Similar to the way you pack light when you’re going to backpack around Europe, your process needs to be light. You need to
 increase everything in the process that adds value to the end goal and decrease everything that doesn’t add value. Agile values
 attempt to highlight what adds value in a software development process.

 1.1.1. The Agile Manifesto and related values

 In 2001, a group of authors wrote a document called the Manifesto for Agile Software Development, with a goal of identifying the values that yield the most benefit to a software development process. Let’s look at the manifesto,
 which is available online at http://agilemanifesto.org/:

 We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come
 to value:

	
Individuals and interactions over processes and tools

 	
Working software over comprehensive documentation

 	
Customer collaboration over contract negotiation

 	
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

 When people first read the manifesto they immediately agree with the stated values or they hesitate. The hesitation usually
 comes from the perception that an agile methodology throws away the items on the right (processes, tools, documentation, contracts,
 and planning). This is completely false. The manifesto is saying that the items on the right do add value to the development
 process but the items on the left (interaction between individuals, developing working software, and so on) provide more value to the process. The manifesto is trying to point out that organizations traditionally put a huge emphasis on the items
 on the right, such as processes and tools, and neglect the items on the left, such as the interaction between individuals.
 An agile mindset promotes the items on the left while maintaining the level required for the items on the right. Let us re-emphasize that an agile process
 can and sometime should contain some of the items on the right; but you need to make sure that each of those items adds indispensible
 value to the project.

 1.1.2. The agile principles

 Moving to the layer that surrounds agile values in figure 1.2, let’s consider the agile principles. The Manifesto for Agile Software Development defines a set of 12 principles that represent the characteristics or inherent traits of an agile process:

	
Our highest priority is to satisfy the customer through early and continuous delivery of valuable software. As obvious as this principle may seem, it’s often violated in traditional software development. It’s important to remember
 that customers are asking you to deliver working software that adds value; they don’t want a prototype or a set of documents.
 The earlier you can start delivering working software, the earlier you can begin satisfying your customer.

 	
Welcome changing requirements, even late in development. Agile processes harness change for the customer’s competitive advantage. Your customers are competing in a dynamic market,
 and therefore they may have to change the requirements for their software in order to gain a competitive advantage. It is
 important to note that you should welcome changing requirements, but no one said this change is free.

 	
Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale. Have you ever shown your customer software for the first time and received no feedback? In most cases, you receive feedback—sometimes
 minor, but usually major. The trick is to deliver software early so that you can get feedback early. This early feedback can
 save you re-work down the road.

 	
Business people and developers must work together daily throughout the project. This principle is careful to say business people and not the customer. In most cases, it would be impractical to work with the customer on a daily basis; but generally there are multiple business
 proxies. These proxies may not know everything about the customer’s wants and needs, but they usually know more about the
 business needs than the developers do. These proxies may be analysts, product managers, or program managers. The key is to
 maintain constant communication between the developers and the business people to ensure that the project never goes off track—not
 even for a day.

 	
Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done. Remember, people aren’t resources. Software
 development is different from manufacturing. Software development is more of an art. Project teams need to be motivated and
 trusted. If you have motivated team members they will find a way to give you their best; and that’s what an agile process
 needs—everyone’s best.

 	
The most efficient and effective method of conveying information to and within a development team is face-to-face conversation. Instant messaging or the telephone should never replace face-to-face communication. A lot of context is lost in communication
 over email and instant messaging—not to mention the fact that ambiguity increases with nonverbal communication. Face-to-face
 communication also lets you run with less formal documentation.

 	
Working software is the primary measure of progress. If you recall, the customer is primarily interested in working software. So why would you measure progress in terms of anything
 else? Today, the progress of most software development efforts is measured in terms of their plan. When requirements are complete,
 the managers say the project is 30 percent complete. In a plan-driven world, this may be correct; but in a value-driven world,
 where the value is the working software, the project is 30 percent complete when 30 percent of the required functionality
 is coded, integrated, tested, and deployed. This is a fundamental difference between the agile value-driven world and the
 traditional plan-driven world.

 	
Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a constant pace indefinitely. In traditional development, the
 team often has to work late toward the end of a project, although at the beginning of the project they may have taken 2-hour
 lunch breaks. This is primarily due to the way project activities are distributed across the project’s lifecycle. There isn’t
 much for developers to do at the beginning of the project, but at the end everything is put on their shoulders because of
 tight delivery schedules. With agile development, you deliver every two weeks or so, and development begins with the first
 iteration. Efforts are distributed more consistently throughout the project lifecycle, which leads to a constant development
 pace for the team.

 	
Continuous attention to technical excellence and good design enhances agility. A successful gymnast needs strong muscles. Similarly, technical excellence is an essential enabler for a truly agile software
 development process. For example, extensible designs and architectures make it much easier to build the product in an evolutionary
 manner. Automated testing frameworks are needed to ensure that refactoring one part of the system doesn’t affect other parts.
 Continuous integration is essential if you want assurance that your software is working after every change.

 	
Simplicity—the art of maximizing the amount of work not done—is essential. No code means no bugs. The more code you write, the more bugs your code may have. If something isn’t essential to the product,
 then don’t build it. Some developers tend to develop massive underlying frameworks and infrastructures in the system under
 the assumption that those elements may be needed in the future. The key is simplicity: try not to develop anything that isn’t
 essential to the features you’re developing now. Remember, the more time you invest in anything, the more you get attached to it. This attachment makes it harder to accept the fact that you don’t need a piece of code or
 that you need to change it.

 	
The best architectures, requirements, and designs emerge from self-organizing teams. In traditional software development, analysts write requirements, and architects lay out the architecture of the system. Then
 the requirements and architectures are communicated to the team in a document. In the agile world, we encourage teams to self-organize.
 True self-organization involves giving the whole team the task and asking them, as a team, to complete the task without specifying
 who should do what—they’re left to self-organize. It will naturally occur that architects will lead the discussion when it
 comes to architecture, but now everyone is free to challenge them and suggest new ideas that may enhance the architecture
 the architects would have come up with on their own. This form of collaboration also increases the knowledge transfer within
 the team.

 	
At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly. We believe this is probably the most important principle of agility. The idea of always reflecting on what you’re doing and
 trying to figure out better ways to do things is the essence of continuous improvement. Without continuous improvement, people
 and organizations remain at a status quo. If you adopt only one thing that will make your process better, regularly reflect
 on your process as a team. You need to identify what you’re doing well and continue doing it, and you need to identify what
 you’re doing poorly and improve it.

1.1.3. The agile practices

 The last layer in figure 1.2 represents the agile practices. These are activities that are used to manifest or implement the agile principles and values.
 There are numerous agile practices, such as user stories, test-driven development, pair programming, daily stand-up meetings,
 and so forth. But no specific set of agile practices is defined—it’s anti-agile to say that there is a defined set of practices
 and that no new practices can be created. Organizations create different agile practices or tailor existing agile practices
 to address specific organizational or team needs. Teams may also need to be creative and come up with new agile practices
 to achieve agility while adhering to organizational constraints.

 Known agile development methodologies like Extreme Programming (XP), Scrum, Lean, and Feature Driven Development (FDD) consist
 of a set of agile practices that have a certain synergy. Some methodologies, like Scrum, focus more on agile practices related
 to project management; others, like XP, focus more on technical agile practices. No methodology is better than the other; it all depends which works best in your environment and within your constraints. Better yet, in this book, we won’t talk about a certain methodology: we’ll talk about a generic set of agile practices and
 then show how you can customize the practices to fit your organization.

1.2. A paradigm shift from a plan-driven mentality

 Traditionally, once a project starts, a requirements package is created and then is “signed off.” The project manager assumes
 that this sign-off results in a fixed set of requirements and that now planning can begin. The project manager estimates how
 long it will take to complete the requirements and creates the project plan. The plan predicts that the project will be finished
 by a certain date, and that date is communicated back to the customer.

 The fundamental flaw in this approach is that the plan, which drives everything, is based on an assumption that the requirements
 are fixed and won’t change. Experience has shown us that this is never the case; requirements are never fixed—they always
 change. When the requirements change, the plan is affected; and as a result, the completion date needs to change too. Unfortunately,
 in many cases, that is impossible, and the team has to deliver by the date they committed to. This is when a major crisis occurs and the project starts to go out of control.

 The value-driven agile approach switches the whole mindset. It assumes from the start that whatever requirements exist up
 front are not fixed and that they will change. The agile mindset also assumes that you have to deliver by a certain date. This approach fixes the time and resources
 and leaves the requirements undetermined. To us, this approach more closely resembles the reality of creating software. Now
 the whole notion of value-driven makes perfect sense. When you have a fixed amount of time in which you aren’t sure whether you can deliver all the requirements
 (because they will change and hence the time needed to finish them will change), the natural reaction is to prioritize the
 requirements and finish first those that add the most value to the customer.

 You may be thinking, “What about the requirements that aren’t finished by the delivery date?” That is the reason you use the
 value-driven approach. You acknowledge the fact that not all of the requirements will be completed by the delivery date. The
 important question to ask is whether you have delivered enough features to support a system that provides value to the customer.

 Figure 1.3 shows an interesting finding from a study by the Standish Group. Only 20 percent of the features in a system are often or
 always used; 45 percent of the features are never used. Another study showed that when a new system was installed at DuPont,
 only 25 percent of the system’s features were really needed. The important point we’re trying to emphasize is that if you
 can deliver, say, 35 percent of the features by the delivery date, you may be giving the customer all the value they’re looking
 to attain from the system.

 Figure 1.3. A study by the Standish Group indicates how often features are used in a typical application.

 [image:]

 The traditional plan-based approach isn’t flawed in and of itself; it just isn’t suitable for today’s software industry. The
 plan-based approach was originally based on traditional project management concepts, which originated from the construction
 industry. In the construction industry, the plan-based approach is suitable: the blueprints, which are the requirements, are
 fixed and probably won’t change while the building is being built. You can estimate how long it will take to build the steel
 pillars, pour the concrete, and so forth.

 The reason why the traditional plan-based approach is suitable for the construction industry but not for the software industry
 comes back to the difference in the way we control empirical systems (like software development) and the way we control defined
 systems (like construction or manufacturing). Table 1.1 shows the differences between the characteristics of a defined process and those of an empirical process.

 Table 1.1. Comparison between a defined process and an empirical process

	
 Predictable manufacturing (defined process)

 	
 New product development (empirical process)

	It’s possible to first complete specifications and then build.
 	It’s rarely possible to create up-front, unchanging, detailed specs.

	Near the beginning, you can reliably estimate effort and cost.
 	Near the beginning, it isn’t possible to reliably estimate effort and cost. As empirical data emerge, it becomes increasingly
 possible to plan and estimate.

	It’s possible to identify, define, schedule, and order all the detailed activities at the start of the project.
 	Near the beginning, it isn’t possible to identify, define, schedule, and order activities. Adaptive steps driven by build-feedback
 cycles are required.

	Adaptation to unpredictable change isn’t the norm, and change rates are relatively low.
 	Creative adaptation to unpredictable change is the norm. Change rates are high.

After reading the table, it’s easy to see that software development is definitely an empirical process, not a defined process.
 The problem is that we’ve been approaching software development for years as a defined process—and that approach doesn’t work.

1.3. Agile and the bottom line

 If you’re an executive, you may wonder whether agile can provide any value for what matters: the company’s bottom line. If
 agile can’t help you make money and reduce costs, is it worth pursuing? Most companies would say, “no, we don’t need agile
 if it doesn’t help us make money.” Thankfully, agile does tie directly to the bottom line. To see the financial correlation,
 let’s start by looking at statistics related to agile adoption.

 In 2007, VersionOne, a leading provider of agile management tools, surveyed 1,700 people in 71 countries. All the participants
 were using agile to some extent in their companies. VersionOne asked the participants to identify specific improvements they
 had realized from implementing agile practices; see figure 1.4.

 Figure 1.4. Teams that use agile attest to the benefits.

 [image:]

 VersionOne’s data shows that agile does help in key areas related to software development, with increased productivity, fewer
 defects, quicker time to market, and reduced costs. We have witnessed similar results with the companies we’ve helped move
 to agile.

 The VersionOne survey provides proof that agile worked for most of the companies interviewed, but the main question for most
 people remains: “Will agile help my specific company with my specific situation?” Agile will help your company if you have
 changing requirements and a need to deliver functioning software frequently. If your requirements rarely change and you have
 the luxury of delivering when you feel the product is satisfactory, then you may not obtain the full benefits recorded in
 VersionOne’s survey. (Note that we’ve never worked for any companies where this was true.)

 It’s valuable to see how well agile has worked for others, but the most important thing is how agile correlates to the bottom
 line. How does agile help you to increase revenue and/or reduce costs?

 To increase revenue and profits indefinitely, your company must identify the key objectives that ensure success within your
 business environment. These objectives will vary depending on your customers, your competition, and your product market. But
 almost all companies list the following five items among their key objectives:

	
Customer retention —Retaining customers is key for almost all businesses. An existing customer provides continuous revenue and spreads the word
 to other potential customers, leading to increased revenues.

 	
Accurate delivery —To be successful, you need to understand the needs of your market. You must deliver what the customer needs, or satisfaction
 will decline and revenues will go down.

 	
Innovation —Not only must you help customers address their known needs, you must also anticipate their future needs. Innovative companies
 solve problems that their customers don’t realize they have.

 	
Timely delivery —Similar to the Sunday newspaper analogy at the start of the chapter, you must deliver while the need still exists.

 	
Motivated workforce —As the poet Hebbel noted, “Nothing great in the world has ever been accomplished without passion.” Executives know their
 development teams need to be passionate about their projects; otherwise, the projects and the company will remain mediocre.

If these are the strategic objectives, then what principles do companies follow to obtain these objectives? We believe the
 following agile principles should be pursued:

	
Embrace change. The world is volatile, and many discoveries occur during any development project. You’ll discover missing requirements, business
 needs may change, or you may encounter a technical constraint. The goal is to succeed, not to make excuses. A good development
 team adapts and delivers in the face of adversity.

 	
Plan and deliver software frequently. To ensure customer satisfaction and timely delivery, you must work with customers and prioritize their needs. After the needs
 are prioritized, the team works to deliver the functionality iteratively, starting with the minimal features necessary to
 deploy a working system.

