

 [image: cover]

 Tuscany SCA in Action

 Simon Laws, Mark Combellack, Raymond Feng, Haleh Mahbod & Simon Nash

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 180 Broad Street
 Suite 1323
 Stamford, CT 06901
 Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 [image:]

	Manning Publications Co.
180 Broad Street
Suite 1323
Stamford, CT 06901

	Development editor: Jeff Bleiel
 Copyeditor: Linda Recktenwald
 Typesetter: Marija Tudor
 Cover designer: Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Title

 About the Cover Illustration

 1. Understanding Tuscany and SCA

 Chapter 1. Introducing Tuscany and SCA

 Chapter 2. Using SCA components

 Chapter 3. SCA composite applications

 2. Using Tuscany

 Chapter 4. Service interaction patterns

 Chapter 5. Implementing components using the Java language

 Chapter 6. Implementing components using other technologies

 Chapter 7. Connecting components using bindings

 Chapter 8. Web clients and Web 2.0

 Chapter 9. Data representation and transformation

 Chapter 10. Defining and applying policy

 3. Deploying Tuscany applications

 Chapter 11. Running and embedding Tuscany

 Chapter 12. A complete SCA application

 4. Exploring the Tuscany runtime

 Chapter 13. Tuscany runtime architecture

 Chapter 14. Extending Tuscany

 Appendix A. Setting up

 Appendix B. What’s next?

 Appendix C. OSOA SCA specification license

 Appendix D. Travel sample license

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Title

 About the Cover Illustration

 1. Understanding Tuscany and SCA

 Chapter 1. Introducing Tuscany and SCA

 1.1. The big picture

 1.1.1. The basics of SCA

 1.1.2. Tuscany’s Java runtime for SCA

 1.2. Designing a sample composite application

 1.2.1. The travel-booking application

 1.2.2. SCA components, services, and references

 1.2.3. A user scenario demonstrating service interactions

 1.3. Implementing a composite application

 1.3.1. A jump-start to building and running your first SCA component

 1.3.2. Defining more complex components

 1.3.3. Creating component implementations

 1.3.4. Wiring components to form a composite application

 1.3.5. Deploying a composite application using contributions

 1.4. Working with other SOA technologies

 1.4.1. API wrapping

 1.4.2. Using SCA implementations

 1.4.3. Using SCA remote bindings

 1.4.4. Tuscany and an Enterprise Service Bus

 1.5. Summary

 Chapter 2. Using SCA components

 2.1. Implementing an SCA component

 2.1.1. Choosing an implementation type

 2.1.2. Configuring SCA components using component definitions

 2.1.3. Discovering or defining the component type

 2.2. Using components to provide services

 2.2.1. Defining services

 2.2.2. Interface definition in SCA

 2.2.3. Configuring services in component definitions

 2.2.4. Local and remotable interfaces

 2.2.5. Bidirectional interfaces and callbacks

 2.2.6. Conversational interfaces

 2.3. Connecting components using references and wires

 2.3.1. Defining references

 2.3.2. Wiring references to services

 2.3.3. Wire elements

 2.3.4. Automatic wiring

 2.3.5. Reference multiplicity

 2.3.6. Wiring with different multiplicities

 2.4. Configuring components using properties

 2.4.1. Defining properties

 2.4.2. Configuring values for properties

 2.4.3. Using complex types for properties

 2.5. Enabling communication flexibility using bindings

 2.5.1. Configuring bindings for services and references

 2.5.2. The default binding

 2.5.3. Domains, bindings, and wiring

 2.6. Summary

 Chapter 3. SCA composite applications

 3.1. Running a composite application in a single process

 3.1.1. Preparing the contributions

 3.1.2. Writing the launcher

 3.1.3. Running the launcher

 3.2. Understanding the SCA domain

 3.2.1. The domain as a contribution repository

 3.2.2. The domain as a naming and visibility boundary

 3.2.3. The domain as an execution environment

 3.2.4. Using a single execution node with a local domain

 3.2.5. Distributed execution within a domain

 3.3. Running a distributed composite application

 3.3.1. Creating an SCA domain

 3.3.2. Installing contributions into the domain

 3.3.3. Deploying composites for execution

 3.3.4. Assigning composites to execution nodes

 3.3.5. Creating and starting execution nodes

 3.3.6. Running the domain manager from a saved configuration

 3.4. Using SCA composites as application building blocks

 3.4.1. Different ways of using SCA composites

 3.4.2. Using composites as component implementations

 3.4.3. Including composites in other composites

 3.4.4. Composite reuse in action

 3.5. Summary

 2. Using Tuscany

 Chapter 4. Service interaction patterns

 4.1. Understanding the range of SCA service interaction patterns

 4.2. Remote interaction

 4.2.1. Configuring remote interaction

 4.2.2. Exploiting remote interaction

 4.3. Local interaction

 4.3.1. Configuring local interaction

 4.3.2. Exploiting local interaction

 4.4. Request response interaction

 4.4.1. Configuring request response interaction

 4.4.2. Exploiting request response interaction

 4.5. One-way interaction

 4.5.1. Configuring one-way interaction

 4.5.2. Exploiting one-way interaction

 4.6. Callback interaction

 4.6.1. Configuring callback interaction

 4.6.2. Exploiting callback interaction

 4.7. Conversational interaction

 4.7.1. Configuring conversational interaction

 4.7.2. Exploiting conversational interaction

 4.8. Summary

 Chapter 5. Implementing components using the Java language

 5.1. Defining a Java component implementation

 5.2. Using SCA annotations in Java implementations

 5.3. Services and references with Java interfaces

 5.3.1. Identifying local and remote services

 5.3.2. Implicit and explicit definition of component interfaces

 5.3.3. Interface compatibility and mapping

 5.3.4. Transforming messages between interfaces

 5.3.5. Pass-by-reference and pass-by-value

 5.4. Java component services

 5.4.1. The @Service annotation

 5.4.2. Alternatives to the @Service annotation

 5.5. Java component references

 5.5.1. The @Reference annotation and reference injection

 5.5.2. Reference naming

 5.5.3. Reference multiplicity

 5.6. Java component properties

 5.6.1. The @Property annotation and property injection

 5.6.2. Property naming

 5.6.3. Property types

 5.6.4. Property value multiplicity

 5.7. Java component instance creation and scope

 5.7.1. Stateless, composite, and conversational scopes

 5.7.2. Interacting with component instance creation and destruction

 5.8. Making callbacks

 5.8.1. The credit card security callback scenario

 5.8.2. Creating a bidirectional interface with the @Callback annotation

 5.8.3. The service programming model for callbacks

 5.8.4. The client programming model for callbacks

 5.8.5. Getting the callback proxy from the request context

 5.8.6. Using callable references to provide callback flexibility

 5.8.7. Using a callback ID to identify a specific callback

 5.8.8. Redirecting the callback to another service

 5.9. Holding conversations

 5.9.1. Defining and controlling conversations in Java implementations

 5.9.2. Starting, using, and stopping conversations using annotations

 5.9.3. Controlling conversations using the SCA Java API

 5.10. Passing SCA service references

 5.10.1. A service reference–passing scenario

 5.10.2. Retrieving service references

 5.10.3. Passing a service reference to another component

 5.10.4. Making a call via a service reference

 5.11. Handling errors

 5.11.1. Business exceptions

 5.11.2. SCA runtime exceptions

 5.12. Summary

 Chapter 6. Implementing components using other technologies

 6.1. Implementing components using Spring

 6.1.1. Using Spring services and references without SCA tags

 6.1.2. Using Spring services and references with SCA tags

 6.1.3. Setting Spring properties

 6.1.4. Using other SCA Java annotations

 6.1.5. Finding the Spring application context

 6.2. Implementing components using BPEL

 6.2.1. The structure of a BPEL process document

 6.2.2. BPEL in Tuscany and SCA

 6.2.3. Mapping WS-BPEL partner links to SCA services

 6.2.4. Mapping WS-BPEL partner links to SCA references

 6.2.5. Handling errors

 6.2.6. Limitations of implementation.bpel in Tuscany 1.x

 6.3. Implementing components using scripts

 6.3.1. BSF-based script implementations in Tuscany and SCA

 6.3.2. Defining interfaces for script-based SCA services and references

 6.3.3. Mapping between SCA services and scripts

 6.3.4. Mapping between SCA references and scripts

 6.3.5. Mapping between SCA properties and scripts

 6.3.6. Handling errors

 6.4. Summary

 Chapter 7. Connecting components using bindings

 7.1. Introduction to SCA bindings

 7.1.1. Using SCA bindings on an SCA service

 7.1.2. Using SCA bindings on an SCA reference

 7.2. Demonstrating SCA bindings

 7.2.1. Overview of the currency converter

 7.2.2. Overview of the Notification service

 7.3. Connecting component services with binding.sca

 7.4. Connecting component services with web services

 7.4.1. Exposing an SCA service as a web service

 7.4.2. Accessing a web service using the SCA Web Services binding

 7.4.3. Configuration options for the SCA Web Services binding

 7.5. Connecting component services with CORBA

 7.5.1. Exposing an SCA service as a CORBA service

 7.5.2. Accessing a CORBA service using the SCA CORBA binding

 7.5.3. Configuration options for the SCA CORBA binding

 7.6. Connecting component services with RMI

 7.6.1. Exposing an SCA service as an RMI service

 7.6.2. Accessing an RMI service using the SCA RMI binding

 7.6.3. Configuration options for the SCA RMI binding

 7.7. Connecting component services with JMS

 7.7.1. Exposing an SCA service using JMS

 7.7.2. Accessing a JMS service using the SCA JMS service binding

 7.7.3. Configuration options for the SCA JMS binding

 7.8. Connecting to EJBs

 7.8.1. Exposing an SCA service as an EJB

 7.8.2. Accessing an EJB using the SCA EJB binding

 7.8.3. Configuration options for the SCA EJB binding

 7.9. Summary

 Chapter 8. Web clients and Web 2.0

 8.1. Servlets as SCA component implementations

 8.1.1. Creating the currency converter user interface using a servlet

 8.2. Writing web component implementations using JSPs

 8.2.1. Exposing the currency converter using a JSP

 8.3. HTML pages as SCA component implementations

 8.3.1. Using an HTML page for the TuscanySCATours user interface

 8.4. Exposing file system resources

 8.4.1. Exposing the TuscanySCATours help pages

 8.5. Exposing component services as Atom and RSS feeds

 8.5.1. Exposing the TuscanySCATours blog as an Atom feed

 8.5.2. Extending the TuscanySCATours blog with an RSS feed

 8.6. Referencing Atom and RSS feeds

 8.6.1. Logging the TuscanySCATours blog Atom feed

 8.6.2. Logging the TuscanySCATours blog RSS feed

 8.7. Summary

 Chapter 9. Data representation and transformation

 9.1. Data exchange between SCA components

 9.1.1. Using WSDL to describe the CreditCardPayment interface

 9.1.2. Using WSDL in an SCA composite

 9.2. Representing data within component implementations

 9.2.1. Passing data to component references using JAXB objects

 9.2.2. Accepting data in component services as SDO objects

 9.3. Describing data contracts within SCA compositions

 9.3.1. Specifying contracts on the component type

 9.3.2. Specifying contracts on component services and references

 9.3.3. Providing contract configuration to bindings

 9.4. Data transformations

 9.4.1. Converting the data coming from the browser from JSON to JAXB

 9.4.2. Converting from JAXB to AXIOM in order to send a SOAP request

 9.4.3. Converting from AXIOM to SDO

 9.5. The Tuscany databinding framework

 9.6. Summary

 Chapter 10. Defining and applying policy

 10.1. An overview of policy within an SCA domain

 10.2. The policy runtime

 10.2.1. Policy interceptors

 10.2.2. The interceptor interface

 10.3. Using intents and policy sets for implementation policy

 10.3.1. Adding implementation intents to the composite file

 10.3.2. Choosing a policy set to satisfy the intent

 10.4. Using intents and policy sets for interaction policy

 10.4.1. Adding interaction intents to the composite file

 10.4.2. Adding interaction intents to the component implementation

 10.4.3. Choosing a policy set to satisfy the intent at the service

 10.4.4. Choosing a policy set to satisfy the intent at the reference

 10.4.5. Running the payment example with authentication enabled

 10.5. Other features of the SCA Policy Framework

 10.5.1. Dealing with policy sets directly

 10.5.2. Profile intents

 10.5.3. Intent qualification

 10.5.4. Default intents

 10.6. Tuscany intents and policy sets

 10.7. Summary

 3. Deploying Tuscany applications

 Chapter 11. Running and embedding Tuscany

 11.1. Understanding the Tuscany runtime environment

 11.1.1. The SCA domain and Tuscany nodes

 11.1.2. Tuscany node configuration

 11.1.3. Hosting options for a Tuscany node

 11.2. Running Tuscany standalone

 11.3. Running Tuscany using APIs

 11.4. Running Tuscany with web applications

 11.4.1. Configuring WEB-INF/web.xml

 11.4.2. Customizing class loading policy

 11.4.3. Deploying Tuscany-enabled web applications

 11.5. Configuring distributed nodes

 11.5.1. Defining the contents of the domain code repository

 11.5.2. Specifying the deployed composites

 11.5.3. Defining the nodes in the execution cloud

 11.5.4. Configuring bindings for the nodes in the execution cloud

 11.6. Embedding Tuscany with a managed container

 11.7. Summary

 Chapter 12. A complete SCA application

 12.1. Getting ready to run the application

 12.2. Assembling the travel-booking application

 12.2.1. The application user interface (fullapp-ui)

 12.2.2. Coordinating the application (fullapp-coordination)

 12.2.3. Partner services (fullapp-packagedtrip and bespoketrip)

 12.2.4. Currency conversion (fullapp-currency)

 12.2.5. Constructing trips (fullapp-shoppingcart)

 12.2.6. Payment processing (payment and creditcard)

 12.3. The travel-booking application in a distributed domain

 12.4. Hints and tips for building composite applications

 12.4.1. Prototyping and then filling out

 12.4.2. Application organization

 12.4.3. Developing contributions in a team

 12.4.4. Testing contributions in a single VM

 12.4.5. Top-down and bottom-up development

 12.4.6. Recursive composition

 12.4.7. SCA and versioning

 12.5. Summary

 4. Exploring the Tuscany runtime

 Chapter 13. Tuscany runtime architecture

 13.1. An overview of the Tuscany architecture

 13.2. A structural perspective of the Tuscany architecture

 13.2.1. Tuscany core functions

 13.2.2. Tuscany runtime extension points and plugins

 13.2.3. Defining extension points and plugins

 13.3. A behavioral perspective of the Tuscany architecture

 13.3.1. Starting and stopping the Tuscany runtime

 13.3.2. Loading SCA applications

 13.3.3. Building SCA composites

 13.3.4. Augmenting the composite with runtime artifacts

 13.3.5. Starting and stopping an SCA component

 13.3.6. Invoking SCA references and services

 13.4. Summary

 Chapter 14. Extending Tuscany

 14.1. The high-level view of developing a Tuscany extension

 14.2. Developing a POJO implementation type

 14.2.1. Add the implementation.pojo XML schema

 14.2.2. Adding implementation.pojo XML processing

 14.2.3. Determining the component type for implementation.pojo

 14.2.4. Controlling implementation.pojo invocation and lifecycle

 14.2.5. The end-to-end picture for the POJO implementation type

 14.2.6. Packaging the POJO implementation type

 14.3. Developing a new binding type

 14.3.1. Adding the binding.echo XML schema

 14.3.2. Adding the binding.echo XML processor

 14.3.3. Controlling binding.echo invocation and lifecycle

 14.3.4. The end-to-end picture for the Echo binding type

 14.3.5. Packaging the echo binding type

 14.4. Summary

 Appendix A. Setting up

 A.1. Installing Tuscany

 A.1.1. Getting Tuscany’s prerequisites

 A.1.2. Downloading and installing Tuscany

 A.1.3. Testing the Tuscany installation

 A.1.4. SCA samples provided with Tuscany

 A.1.5. Setting up your Java IDE

 A.2. Installing the examples for this book

 A.2.1. Downloading the travel sample

 A.2.2. Setting the TUSCANY_HOME environment variable

 A.2.3. Testing the travel sample installation

 A.2.4. Travel sample structure

 A.2.5. Using a Java IDE with the travel sample

 A.3. Interacting with the Tuscany project and community

 A.4. Troubleshooting

 Appendix B. What’s next?

 B.1. Support for OASIS Open CSA SCA standards

 B.2. OSGi enablement for the Tuscany runtime

 B.3. Enhanced SCA domain and node support

 B.4. Implementation of OSGi remote services with SCA

 B.5. Running Tuscany in the cloud

 Appendix C. OSOA SCA specification license

 Appendix D. Travel sample license

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 What brought the five of us together to write a book on Apache Tuscany and Service Component Architecture (SCA)? We all had
 practical experience of how difficult and costly integration of applications and technologies can be, and we were excited
 about how Tuscany and SCA can help solve these problems. Having been involved with Tuscany and the SCA specifications from
 the early days, we understood the potential of this new technology and wanted to share it with you.

 Although we’d been entertaining the idea of writing a book for a while, the event that made it possible was the completion
 of the SCA 1.0 implementation in Tuscany. With that we had a real implementation of a service-oriented infrastructure that
 we could use to explain SCA through examples. As well as implementing the SCA 1.0 specifications, Tuscany handles integration
 with many underlying technologies and enables users to focus on developing business solutions instead of worrying about infrastructure
 details. By writing this book we wanted to help our readers take advantage of the power of SCA and leverage the many technology
 choices that Tuscany offers.

 Of course, we didn’t see a point in repeating what the SCA specifications already provide. The specifications define SCA but
 don’t explain how to use it. Rather, we chose to address how to use SCA with Tuscany by showing working examples and sharing
 best practices. There are articles available that give a high-level overview of Tuscany and SCA, and there’s some detailed
 technical information on the Tuscany website, which assumes a good understanding of the technology. What’s been missing until
 now is a hands-on introduction and guide that explains the capabilities of Tuscany and SCA and shows by practical examples
 why these are useful to application developers. This book provides that “missing link.”

 We hope that by reading this book you come to share our enthusiasm for SCA as a rich programming model that makes it easy
 to create flexible service-based applications, and that you discover how Tuscany’s wide range of technology support can help
 you overcome the challenges posed in integrating service-based applications.

Acknowledgments

 Writing any book presents a challenge, and this is particularly true for a geographically distributed group of technologists.
 You’re able to hold the finished book now because of significant help that we received from other people.

 First of all, we’d like to thank the Tuscany community for creating and using the software, getting involved on the Tuscany
 mailing lists, and motivating us to write this book in the first place. We hope this book helps to add some detail to the
 many topics that we’ve talked about on the mailing lists over the last few years.

 The process of writing has been a voyage of discovery for all of us, and the shape and focus of the book wouldn’t be what
 it is without the many reviewers who’ve given their time to read and comment on the manuscript during its development. This
 includes Jeff Davis, Mykel Alvis, Ara Ebrahimi, Doug Warren, Alberto Lagna, Jeff Anderson, Mike Edwards, Kevin Williams, Marco
 Ughetti, Robert Hanson, and Tray Scates. We’re also grateful to the MEAP subscribers who’ve given us valuable feedback via
 the Manning forum.

 The team at Manning has been particularly helpful and understanding. Megan Yockey originally commissioned the book, and Marjan
 Bace gave us the confidence to get started. Most important, Jeff Bleiel has been our constant companion during the development
 of the book, nudging us in the right direction and giving us unfaltering encouragement. We also thank the many other members
 of the Manning team who helped us behind the scenes, including production team members Mary Piergies, Linda Recktenwald, Allison
 Cichosz, Katie Tennant, and Janet Vail, as well as Doug Warren, who did a final technical review of the manuscript during
 production.

 It goes without saying that this exercise has taken up many weekends and evenings, and so our final thanks go to our families.

 SIMON L To Maddy, thank you for sticking with it. You can have me back now.

 MARK I would like to thank my loving and beautiful wife, Amy, for her enduring patience and support throughout this project. Perhaps
 I shall spend less time at my computer now that it’s finished. Thanks to my daughters, Emily (age 3) and Chloe (age 1), for
 their understanding that Daddy sometimes needed to write his book rather than play princesses or read nursery rhymes. Thanks
 to our family and friends for their support and for keeping my girls company while I worked on this book.

 RAYMOND I greatly thank my wife, Tao, for accepting my endless excuses to spend hours of weekend time writing the book. Thanks to
 my sons, Thomas and Jerry; you can now have more time with me and be proud of your Daddy for publishing a book.

 HALEH I thank my dear family—Bahman, Aurash, and Armaan—who always support and encourage my endless projects.

 SIMON N To my wife, Charlotte, thank you for your understanding and patience as I spent many hours at the computer and on the phone
 doing “book stuff,” including a considerable amount of time while we were traveling in New Zealand. To my sons, David and
 Adam, and my parents, thank you for your interest and encouragement in this venture.

About this Book

 The Apache Tuscany open source project was created to overcome the challenges associated with creating, deploying, and managing
 service-based applications—in particular, applications made of many components, potentially written using different programming
 languages, using different data formats, and communicating with various communication protocols. Apache Tuscany, or just Tuscany for short, provides the infrastructure that solves this problem and allows companies to focus on developing business components
 rather than worrying about managing and maintaining the underlying infrastructure.

 The Tuscany project encompasses a number of different technologies, but the glue that binds everything together is provided
 by the Service Component Architecture (SCA). Tuscany SCA in Action focuses on SCA and explains how composite applications can be developed easily using the Apache Tuscany SCA Java runtime,
 or Tuscany SCA for short. This book is a tool for learning SCA and Tuscany. It provides detailed practical examples and is a guide for those
 wanting to learn how to create real applications. The source code for the examples in this book is available from the Apache
 Tuscany project at http://tuscany.apache.org/sca-java-travel-sample-1x-releases.html, or from the publisher’s website at www.manning.com/TuscanySCAinAction.

How the book is organized

 Tuscany SCA in Action is divided into four parts, plus four appendixes. The first part introduces SCA as a programming model and Apache Tuscany
 as the platform for developing applications using SCA. In this part of the book we introduce the TuscanySCATours travel-booking
 application. The travel-booking application is developed in the book as we cover various aspects of Tuscany and SCA. Part 2 looks in more detail at SCA’s support for developing services and assembling them into composite applications. It starts
 by explaining the SCA-supported component interaction patterns. It continues with a detailed description of the various implementation,
 binding, data-binding, and policy technologies that Apache Tuscany supports. Part 3 explores techniques for deploying the travel-booking application locally or into a distributed environment. Apache Tuscany
 supports a number of technologies out of the box to facilitate integration with a variety of existing technologies. In addition,
 it offers an extensible architecture that allows users to extend it with new technologies. Part 4 explains the Apache Tuscany architecture and how it can be extended to support new technologies.

 After reading this book you’ll have a thorough understanding of SCA and its benefits for your business. You’ll learn this
 through practical examples that are available as runnable applications from the Apache Tuscany website. You’ll also learn
 how to join the community of users and developers who work with Apache Tuscany and extend Apache Tuscany to support new technologies.
 Let’s look at how each part is divided into chapters.

Roadmap

 Part 1 consists of chapters 1 through 3. Chapter 1 explains what Apache Tuscany is and highlights its benefits. It also introduces SCA, including a quick jumpstart for creating
 an application using SCA and Tuscany. Chapters 2 and 3 demonstrate most of the features of SCA at a high level using examples. They highlight how SCA can be used to assemble components
 into applications when the components may have been developed with a variety of technologies, using a variety of data formats
 and communication protocols.

 Part 2 of the book focuses on understanding the detailed features of Apache Tuscany. This part consists of chapters 4 through 10. Chapter 4 covers interaction patterns in composite applications. Chapters 5 and 6 provide examples of developing components and services using Java, BPEL, Spring, and scripting technologies. Chapter 7 describes how components can be assembled and easily reassembled, using SCA bindings for a variety of technologies including
 Web Services, RMI, and more. In chapter 8 we focus on the client side and how Web 2.0 can be used with SCA to provide a flexible web client.

 Chapter 9 explains how SCA services can use different data formats to interact with one another. It covers Service Data Objects (SDO)
 and Java Architecture for XML Binding (JAXB) as examples.

 By now we’ve covered how to create and deploy composite applications. In chapter 10 we talk about how to apply quality of service features to these applications using policies, for example, to handle security
 configuration.

 Now that we’ve developed a flexible application and shown how to deploy it, in part 3 we look at the choice of host platforms that Tuscany supports. Tuscany can be embedded into a variety of host platforms,
 for example, Apache Tomcat, Jetty, and Apache Geronimo. Chapter 11 covers hosting environment choices. Chapter 12 finishes off part 3 by describing how the pieces discussed in the earlier chapters come together to complete the travel application.

 Part 4 of the book is for developers who’d like to learn to extend Apache Tuscany to support new technologies. This part consists
 of chapters 13 and 14. Chapter 13 describes the architecture of the Tuscany SCA Java runtime. Chapter 14 talks about how Tuscany can be extended to add a new component implementation and a new binding type. It also discusses how
 Tuscany seamlessly handles protocol format differences between components through its databinding framework and how that too
 can be extended.

 Tuscany SCA in Action has four appendixes. Appendix A helps you set up your environment to run the examples in the book. Appendix B shares some thoughts on likely future directions for the Apache Tuscany project. Appendixes C and D include copies of the OSOA SCA specification license and ASF2 license, respectively.

Who should read this book

 Tuscany SCA in Action is for all enterprise developers who care about creating reusable services and assembling those services into flexible composite
 applications (business applications). The particular focus is on freedom of choice of technology for developing component
 implementations, using communication protocols, and handling data formats. The book guides you through learning SCA and Tuscany
 using code examples and concludes with the assembly and deployment of the travel-booking application.

 Although a major portion of the book is focused on developing applications using Tuscany and SCA, part 4 talks about how to extend Tuscany to support new technologies. This part is particularly relevant for architects and developers
 who would like to extend Tuscany to embrace other technologies not currently supported by Tuscany and to learn about how to
 get involved with the Tuscany open source project.

 The scope of the Tuscany project is quite broad, and so we assume that you’re familiar with some of the basic techniques and
 technologies on which the Tuscany project builds, in particular the following:

	The Java programming language

 	XML, XML Schema, and the use of XML namespaces

 	Web Services Definition Language (WSDL) and the use of tools for transformation between WSDL and Java classes

If you need more information on any of these subjects, then the internet is your friend. Many online resources are available
 that you can refer to.

Code conventions

 The book contains many code examples. These examples will always appear in a fixed-width code font. Any class name, method name, or XML fragment within the normal text of the book will appear in code font as well. All runnable code pieces will appear as listings. Code annotations accompany many of the listings, highlighting
 important concepts. In some cases, numbered bullets link to explanations that follow the listing.

Author Online

 Purchase of Tuscany SCA in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point
 your web browser to www.manning.com/TuscanySCAinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 SIMON LAWS is a committer for the Apache Tuscany project focused on building the Java runtime for the Service Component Architecture.
 He’s been working in commercial software development for 23 years and has a general interest in distributed component-based
 technology. In the past he’s worked on both PHP and C++ runtimes for SCA. He’s a member of the IBM Open Source SOA project
 team and lives and works in Hampshire in the UK.

 MARK COMBELLACK graduated with a degree in computer science in 1994 and has been using the Java programming language since JDK 1.0.1 in 1996.
 Mark is currently working as a software developer specializing in the development of Java application servers for the telecommunication
 industry. Previously, he has developed software for interactive television and video on demand as well as other telecommunication
 projects for British Telecommunications. He is a committer and a member of the Project Management Committee of the Apache
 Tuscany project. For two years, he was co-chair of the SCA-J OASIS Open CSA technical committee standardizing SCA in the Java
 programming language.

 RAYMOND FENG is a PMC member and committer of the Apache Tuscany open source project. He has been actively contributing to Tuscany to
 build the Service Component Architecture runtime for more than 4 years. His expertise spans most of the areas in the project,
 including core architecture, Java EE, OSGi, Web Services, XML, and data-bindings. Prior to this role he was a developer and
 team lead for the IBM WebSphere Process Server products, where SCA was originally invented and implemented. Raymond has been
 a pioneer and veteran in SCA runtime development since 2002. He also contributed to the SCA and Enterprise OSGi specifications
 as a member of OASIS Open CSA committees and OSGi Alliance. Raymond has spoken in many conferences to evangelize SCA, including
 JavaOne, ApacheCon, and SOAWorld.

 HALEH MAHBOD directed the development of SCA from its inception at IBM; SCA was then contributed to Apache. As one of the founding members
 of the Apache Tuscany project, she has made significant contributions to creating Tuscany’s open source community by promoting
 the technology and Tuscany worldwide. Haleh has a BS degree in computer science from U.C. Berkeley. With over 20 years of
 experience, Haleh has held various leadership positions as architect and director in different startup and Fortune 500 companies.
 She has been at the forefront of a number of innovative technologies and products with particular focus on data and application
 integration. Haleh’s varied experience and extensive work with enterprise-level customers struggling with software integration
 cost and complexities has been a catalyst for her to innovate with technologies such as SCA to address these challenges. In
 her spare time Haleh is an accomplished photographer and philanthropist.

 SIMON NASH is a Tuscany PMC member and committer and has made significant contributions to the OASIS specifications for the SCA 1.1
 standard. Simon started developing software in 1970, and he has been at the forefront of a number of innovative technologies
 with particular interests in programming languages, communication technology, parallel processing, object technology, and
 simplifying software development. Simon was IBM’s CTO for Java technology from 2001 to 2003, and he was an IBM Distinguished
 Engineer from 2003 until he retired from IBM in 2008. His other notable career achievements include Object REXX (1988-1993)
 and RMI-IIOP (1997-2001).

About the Title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it’s example driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want, just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of Tuscany SCA in Action is captioned “Berger Des Garrigues,” indicating a shepherd from the southern regions of France around the Mediterranean Basin.
 Garrigue is a type of low, soft-leaved scrubland typically found in Mediterranean forests and woodlands in France and Spain, and often
 composed of kermes oak, lavender, and thyme. The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s
 four-volume compendium of regional dress customs published in France. Each illustration is finely drawn and colored by hand.
 The rich variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were just
 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside,
 it was easy to identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell
 apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity
 for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Understanding Tuscany and SCA

 Tuscany SCA In Action teaches you to use the Service Component Architecture (SCA) through practical examples developed using the Java SCA runtime
 from the Apache Tuscany open source project. This part of the book provides a broad introduction to SCA and Apache Tuscany
 using a travel-booking scenario. It presents an overview of Apache Tuscany and helps you to set up your environment so that
 you can develop and run the examples in this book. This is all covered in three chapters.

 In chapter 1, “Introducing Tuscany and SCA,” you’ll learn about the Apache Tuscany open source project and the travel-booking scenario
 and be introduced to SCA at a high level. By the end of this chapter, you’ll have an appreciation of SCA and will be able
 to run a small part of our travel-booking application.

 Chapter 2, “Using SCA components,” covers SCA in greater detail. You’ll gain a better understanding of SCA and use it to create more
 of the components that compose the travel-booking application.

 Chapter 3, “SCA composite applications,” covers the deployment of SCA-based applications. Here, you’ll learn about the flexible deployment
 model that Tuscany SCA offers and experiment with deploying the travel application in a local or distributed environment.

 By the end of part 1, you’ll know about Tuscany and SCA and will have built and deployed a simple travel application.

Chapter 1. Introducing Tuscany and SCA

 This chapter covers

	Exploring SCA and Tuscany

 	Learning basic SCA concepts

 	Developing your first SCA application

Businesses are always looking for ways to lower the cost of creating and maintaining business applications. One popular approach
 to business application development, often called Service Oriented Architecture (SOA), is to adopt a model where business
 functions are described as well-defined services that can be used to compose working applications.

 SOA is an attractive idea, but putting it into practice can be difficult. Business computing environments typically contain
 many different technologies, and the integration of these technologies can be complex. In a single application you can be
 joining Java objects, Business Process Execution Language (BPEL) processes, browser-based clients, and Ruby scripts using
 web services, as well as Java Message Service (JMS) and JSON-RPC protocols, to name but a few.

 What’s needed is a common way to describe an assembly of distributed services regardless of the technology used to implement
 and connect them. Step forward the Service Component Architecture (SCA) and the Apache Tuscany project.

 Apache Tuscany is an open source project developed by the Apache Software Foundation. The Tuscany software is freely available
 from the project website (http://tuscany.apache.org) under the Apache 2.0 License. The software is a lightweight infrastructure that implements Service Component Architecture
 (SCA), Service Data Objects (SDO), and Data Access Service (DAS) technologies and provides seamless integration with many
 other technologies. This book is about Tuscany’s Java implementation of SCA, which is what we mean when we use the term Tuscany SCA.

 The SCA specifications are the foundation upon which Tuscany SCA is built. The first version of SCA specifications (v1.0)
 was developed by a consortium of companies called the Open Service Oriented Architecture (OSOA) collaboration. The specifications
 are published via the collaboration’s website (http://www.osoa.org). These are the specifications that the Tuscany Java SCA v1.x runtime and this book use.

	

 OSOA and OASIS versions of the SCA specifications
 Following the release of the SCA v1.0 specifications from OSOA, the SCA specifications were donated to the OASIS Open Composite
 Services Architecture (CSA) Member Section (http://www.oasis-opencsa.org/). Work is ongoing at OASIS to standardize v1.1 of the SCA specifications. The Tuscany 1.x runtime and this book are based
 on the completed v1.0 specifications from OSOA. Appendix B covers the direction that Tuscany 2.x is taking beyond what’s available in Tuscany 1.x. The fundamentals of what you learn
 about SCA in this book apply to both versions.

	

SCA provides a technology-neutral assembly capability for composing applications from business services. The services themselves
 can be developed and connected using many different technologies. If you look at the Tuscany project website, you’ll find
 subprojects providing Java language and C++ (also known as native) implementations of SCA. You’ll also find Java language
 and native implementations of SDO and DAS, which provide ways of handling and persisting data. SDO and DAS aren’t prerequisites
 for using SCA. Although this book concentrates on Tuscany’s Java SCA runtime, in chapter 9 we do use SDO when building SCA service interfaces. If you want to know more about SDO, DAS, or the native runtimes, then
 the Apache Tuscany website (http://tuscany.apache.org) is a good place to start.

 We’ll start this chapter by taking our first high-level look at SCA and Tuscany. Then we’ll look at how an example travel-booking
 application can be described using SCA. This exercise sets the scene for building and running your first SCA application in
 section 1.3.

 There are already many SOA-related technology choices out there. In the last section of this chapter we look at how Tuscany
 and SCA are able to integrate with and complement other popular SOA technologies.

 The samples used in this chapter, and in the rest of this book, can be downloaded following the instructions in appendix A. The source code for the samples is available in the Tuscany project, and the samples are accompanied by a README file that
 describes the structure and the operation of the samples.

 In this chapter you’ll gain a high-level understanding of the Tuscany software and the advantages of SCA, and you’ll build
 your first composite application. This will get you ready to dive into the rest of the book and explore what else Tuscany
 SCA has to offer.

1.1. The big picture

 SCA uses a range of terms, some of which will sound familiar and others that are new. It’s important to appreciate what SCA
 means when it talks about such things as components, services, references, and composites. These terms will be used repeatedly
 throughout the book, so we’ll start here by giving a high-level introduction of what it means to assemble applications from
 SCA components and what the various parts of the resulting assembly are called.

 Assembly is at the core of SCA, so much so that the central SCA specification concentrates on defining what’s called the Assembly
 Model. The SCA Assembly Model defines an XML language for assembling components into applications and provides the framework
 into which extensions are plugged to support the wide variety of implementation and communication technologies that are available
 today. In the next sections, we’ll first provide an overview of the SCA Assembly Model and then give a quick summary of how
 Tuscany is architected to support SCA. This will provide sufficient background for understanding the details throughout the
 rest of the book.

 1.1.1. The basics of SCA

 SOA promotes the benefits of constructing large and complex enterprise systems out of well-defined and sometimes replaceable
 component parts called component services. SCA describes an Assembly Model for doing just that.

 An SCA service provides a reusable piece of business function and has a well-defined interface that identifies how it can
 be called to provide that function. An application broken down into a set of well-defined services significantly reduces the
 complexity of development as well as its long-term maintenance by isolating change and simplifying testing. The challenge
 then becomes how to assemble the cooperating network of services to provide maximum flexibility and reuse while maintaining
 the integrity of each service. Figure 1.1 shows a web shopping application that uses a set of connected services to allow the user to browse a catalog, add items to
 a shopping cart, and then pay for the items at checkout time.

 Figure 1.1. A web shopping application built from cooperating services showing the typical variety of technologies use to implement and
 connect services

 [image:]

 Figure 1.1 demonstrates that the web shopping example is made up of services that are developed in various technologies and communicate
 using different protocols. This mix of technologies is typical of today’s applications.

 The danger with the usual approach to application development is that technology integration logic can often become intermingled
 with business logic. For example, we may call remote web services by using a web service provider API directly from business
 logic. This makes services hard to build, hard to maintain, and hard to deploy and reuse. A higher level of abstraction is
 required to describe the assembly of such services.

 The Service Component Architecture has been designed to address this issue. It does this by defining an Assembly Model that
 provides a clear separation between business logic and other infrastructure concerns.

 Figure 1.2 shows the main artifacts of the SCA Assembly Model by taking the Payment and CreditCardPayment functions from figure 1.1 and mapping them to SCA components and services. We’ll use a style of diagram that’s similar to those the SCA specifications
 use to show composite applications, but we’ll extended it to show bindings. In an SCA application the component is the basic building block. A collection of components that make up all, or part of, an application is called a composite and is described using simple XML constructs. Figure 1.2 gives an overview of a composite application with two components, CreditCardPayment and Payment, that are wired together using the web service binding.

 Figure 1.2. The Payment and CreditCardPayment components from the web shopping application presented as SCA components in order to show
 the main artifacts of the SCA Assembly Model

 [image:]

 A component is a configured instance of some business logic. It provides services and can use services. Every SCA service has a name and an interface. The interface defines the operations that the service provides. You might be more familiar with
 other terms in place of operation, such as method, function, or request. A component can provide one or more services. The business logic of a service is provided by a component’s implementation, for example, a Java class containing business logic for CreditCardPayment processing.

 A component implementation can be configured by defining properties. In our example, transactionFee is a property for the Payment component. A property value is set through configuration and
 is made available to the component implementation in a way appropriate to the implementation language in use.

 SCA components call a service using a reference, for example, the creditCardPayment Service Reference in the Payment component. The component implementation is given access
 to references in an implementation language–specific way.

 The connection between the reference and the service is called a wire. References are wired to services, and so a network of connected components is described within a composite application.

 At a high level that’s all there is to it. Using these simple constructs, applications of arbitrary complexity can be composed
 using a concise, precise, and standardized component Assembly Model.

 Components are implemented using a regular programming language of your choice, such as Java, Ruby, or BPEL, or frameworks
 such as Spring, Java EE, and OSGi. This is called a component implementation.

 What’s more, this assembly approach allows components implemented with one technology, say the Java language, to be connected
 to components implemented in another technology, say BPEL. The detail of a component’s implementation is abstracted away from
 the other components that it’s connected to.

 Building on this idea of abstraction, the technology used to join components together is unrelated to how the components are
 implemented. This is what SCA calls a binding. Today we may choose to connect the Payment and CreditCardPayment components using web services. Tomorrow we may choose to
 exploit the asynchronous and assured delivery properties of a JMS provider to connect the components. We could even support
 both web services and JMS. We can do this by changing the configuration of the assembled application and without changing
 the component implementations.

 The main point here is that the Assembly Model is at the heart of SCA and Tuscany. All the extensions that we’ll describe
 in this book are based on this simple idea. The Assembly Model is compelling not only because of the flexibility it brings
 to your applications but also because of the flexibility it brings to the process of application development.

 A good example of this is how long it takes to build a web service today. It probably takes no more than a few minutes with
 modern software tools to generate WSDL and client proxies. SCA brings this level of productivity to the problem of wiring
 up services regardless of the technology used.

 This is particularly powerful when your application development takes an incremental and prototype-driven approach. The Tuscany
 community has worked hard in building the Java SCA runtime to make the tedious and fiddly things simple and automatic. For
 example, imagine that you want to build a service that will be available over web services and JMS at the same time. First,
 SCA makes this configuration easy to describe. Second, Tuscany makes this configuration easy to test, with no special configuration
 required to automatically start web service containers and JMS providers. Come deployment time, you can then adjust the configuration
 of the Tuscany runtime and use the container of your choice.

 Chapter 2 takes a much more detailed look at SCA components. So now let’s move on and take a quick look at how the Tuscany Java SCA
 runtime is structured.

 1.1.2. Tuscany’s Java runtime for SCA

 It’s useful to take a high-level look at the structure of the Tuscany Java SCA runtime at this point so that you can better
 understand the relevance of the various chapters in this book.

 Tuscany Java SCA offers a lightweight runtime that can be used out of the box to build composite applications using SCA. Alternatively,
 the Tuscany libraries can be embedded in other applications so they too can host SCA composite applications.

 The Tuscany runtime has a modular and pluggable architecture so users can choose the functionality that they need and discard
 the rest. It’s easy to manage the software footprint to suit each individual requirement.

 At a high level the Apache Tuscany SCA Java runtime can be divided into a core infrastructure and a set of extensions that
 extend the core to work with various technologies. Altogether this is referred to as the SCA runtime and is shown in figure 1.3. Let’s look at each of these building blocks in turn.

 Figure 1.3. The main building blocks of the Tuscany SCA Java runtime

 [image:]

Composite Applications

 The composite application is shown in the top box in figure 1.3 and represents the business application we’re building with SCA and Tuscany. It’s described using the Assembly Model XML
 that the SCA specifications define. It defines wired components whose implementations reference the artifacts required to
 run the application, such as Java class files and BPEL process files. This topic is covered in chapter 3 in more detail.

SCA API

 The SCA API sits between the composite application and the rest of the runtime in figure 1.3. It allows component implementations in the composite application to interact with the runtime. The SCA API is implementation
 language specific; for example, a Java Common Annotations and APIs specification describes the version of the SCA API for
 the Java language.

Tuscany Core

 To the left of figure 1.3 is the core infrastructure. This supports construction of components and their services, the assembly of components into
 usable composite applications, and the management of the resulting applications. We discuss the Tuscany runtime architecture
 in chapter 13, which gives you an idea of how the Tuscany core operates.

Tuscany Extensions

 The Tuscany SCA runtime is designed to be extensible in order to accommodate the large range of existing technologies and
 to allow new technologies to be adopted as they’re developed. The basic plug points are shown on the right-hand side of figure 1.3 and consist of binding, databinding, implementation type, policy, and interface.

 Bindings provide support for different kinds of communication protocols, such as SOAP/HTTP web services, JSON-RPC, and RMI.
 Components use these to interact with one another. Chapter 7 describes how to use various binding extensions.

 Databindings provide support for different data formats that can pass between services, such as SDO, JAXB, and AXIOM. The
 Tuscany core provides a databinding framework that enables services using different data formats to work seamlessly with one
 another. This frees the developer from defining explicit data format conversions. Chapter 9 talks in more detail about how data is represented and transformed.

 The implementation type extension in figure 1.3 provides support for different programming languages and container models, such as the Java language, BPEL, and Spring, and
 scripting languages like Ruby. Tuscany users can develop or use services written with different languages in their composite
 applications. We’ve devoted chapter 5 to the SCA Java implementation type and chapter 6 to the Spring, BPEL, and scripting implementation types.

 The policy extension in figure 1.3 separates infrastructure setup concerns from the development of services. This provides flexibility to adjust infrastructure-related
 policies such as security and transactions without impacting the code. Chapter 10 covers policy in more depth.

 Finally, the interface extension allows service interfaces to be described using a variety of technologies. Currently, Java
 interfaces and WSDL are the two supported means for defining service interfaces. Chapter 2 gives a good description of the role interfaces play.

Tuscany SPI

 Although Apache Tuscany supports many popular technologies in the form of extensions, new extensions can be added easily using
 the Tuscany SPI. Chapter 14 gives an introduction to building Tuscany extensions.

Tuscany Hosting

 The Apache Tuscany SCA Java implementation has a modular architecture. This makes Tuscany more easily extensible and simplifies
 integration with other technologies. It allows Tuscany adopters to pick and choose modules that they’re interested in exploiting.

 In particular, the project’s modular structure provides for a lightweight and flexible packaging and distribution mechanism.
 A set of Tuscany hosting modules allows developers to choose from a variety of options for how they want their composite application
 to run, for example, as a command-line application or within a web application. Tuscany already runs on a variety of hosting
 platforms, including Apache Tomcat, Jetty, and Apache Geronimo, and many commercial application containers, such as IBM WebSphere,
 and can easily be extended to include others. Chapter 11 describes the various hosting options that Tuscany offers.

 Now that you know a little about SCA and Tuscany, let’s try Tuscany out for real. In the next section we describe how a simple
 application can be composed from an assembly of components in preparation for building the application in section 1.3.

1.2. Designing a sample composite application

 The strengths of SCA and Tuscany can best be demonstrated through scenarios and examples. Let’s introduce an imaginary business
 called TuscanySCATours that’s building a travel-booking application and is looking for an extensible architecture to accommodate
 its current needs and predicted future growth.

 The travel-booking application is used throughout the book to demonstrate the various features of the Tuscany Java SCA runtime.
 Like many applications, our application starts small and needs to grow and change over time. You guessed it—using an SCA composite
 application is an ideal way to provide this kind of flexibility.

 In this section we introduce you to the scenario and show how the application can be described using a composite application.

 1.2.1. The travel-booking application

 TuscanySCATours is a newly formed travel agency. Initially, the agency intends to offer a limited selection of canned travel
 packages for U.S. customers that include flight, hotel, and airport transfers. Depending on the initial success of the travel
 agency, TuscanySCATours plans to extend its offerings to include travel packages for customers from other countries, optional
 car rentals, and the ability to create customized travel packages.

 The first version of the travel application is simple. The user uses predefined trip-booking codes to populate the shopping
 cart and purchase a trip. We assume that the web application displaying the travel package catalog, and which provides the
 predefined trip-booking codes, has been implemented using off-the-shelf software that doesn’t use SCA. The browser-based SCA
 application allows the user to take the codes of the selected trips and add them to the shopping cart.

 TuscanySCATours is using SCA to implement its trip-booking and payment systems with two components named TripBooking and ShoppingCart.
 TuscanySCATours doesn’t organize trips itself but buys them from a partner called GoodValueTrips.

 GoodValueTrips uses software that wasn’t originally developed using SCA, and so a third component called TripProvider wraps
 this existing non-SCA code.

 For credit card payment processing, TuscanySCATours communicates with an existing software package running outside the Tuscany
 Java SCA runtime.

 The diagram in figure 1.4 shows this travel-booking application. It’s a high-level architectural overview that shows components as simple boxes with
 no details of what’s inside them, with one important exception: where one SCA component makes use of a service provided by
 another SCA component, the diagram shows these interactions as solid arrows. The dashed boxes and dashed arrows represent
 non-SCA software packages and their own interactions.

 Figure 1.4. An overview of the initial travel-booking application showing those components that will be implemented using SCA as solid
 boxes and those components that are outside SCA as dashed boxes

 [image:]

 Even with this simple scenario, this looks a little complicated for a first application. But SCA is well suited to dealing
 with this combination of existing and new software, and this is exactly the kind of scenario you’re likely to face when approaching
 an SOA project.

 Now that you understand the basic architecture of the application, the next step is to translate this high-level block diagram
 into SCA components and services. In the next section we show how the boxes and arrows in figure 1.4 are represented using SCA.

 1.2.2. SCA components, services, and references

 The solid arrows in figure 1.4 represent service interactions between components, with the arrowhead attached to the component providing the service. Let’s
 add more detail to our architectural overview by including the services and references that the components provide. For example,
 in figure 1.5, the TripBooking component has a single service named Bookings and two references named mytrips and cart.

 Figure 1.5. The components, services, and references of the travel-booking application

 [image:]

 Wires connecting references to services are shown as plain lines without arrowheads. For example, in figure 1.5, the mytrips reference of TripBooking is wired to the Trips service of TripProvider. No arrowhead is needed because the direction of a
 wire is always from its reference to its target service.

 To validate the design of the travel application using SCA components and services, it’s useful to walk through the end-to-end
 message flows and through the various components and services involved. In the next section we’ll describe a user scenario
 and show how this translates into SCA service interactions.

 1.2.3. A user scenario demonstrating service interactions

 To illustrate how the services in figure 1.5 work and interact, we’ll use a simple scenario of a customer, called Mary, making a travel booking. Stepping through a user
 scenario is an important part of validating the software design because it exposes any problems with the chosen structure
 of components and services and allows corrections to be made before incurring the expense of creating an implementation. To
 keep the scenario as simple as possible, we won’t include the transactional coordination aspects that can be associated with
 a travel-booking scenario. The following steps refer to the numbers in figure 1.5:

	
Selecting a trip— Mary wants to visit Italy. She browses the TuscanySCATours web-site, looking at the various packages that are available. She
 decides she’d like to book the Florence and Siena trip, departing on April 4. The booking code for this trip is FS1APR4.

 	
Booking a trip— To reserve a place on this trip, Mary’s browser-based client software sends a newBooking request to the Bookings service of
 the TripBooking component. The parameters for this request are the trip-booking code FS1APR4 and the number of people traveling,
 in this case one.

 	
Checking that the trip is available— The newBooking request is received by the Bookings service of the TripBooking component. This service needs to find out whether
 the requested trip is available. It does this by calling the check-Availability operation that the Trips service of the TripProvider
 component provides. There are enough unsold places within the trip to satisfy Mary’s request, so the Trips service indicates
 this by returning a reservation code to the Bookings service.

 	
Adding the trip to the shopping cart— The Bookings service uses the Updates service of the ShoppingCart component to add the selected trip to Mary’s shopping cart
 and then responds to the browser client, confirming Mary’s reservation for the trip she requested.

 	
Checking out— Now that Mary’s booking is confirmed, she needs to pay for it. For this, Mary’s client software uses the Checkout service
 of the ShoppingCart component. This service has a makePayment operation that Mary’s client software uses to send her credit card details.

 	
Processing the payment— The makePayment operation uses a third-party credit card processing service to validate Mary’s credit card details and ensure that she has
 enough funds to make the payment. Everything is fine, so the makePayment operation returns to Mary’s client software, confirming that the payment was accepted. In the event of a problem with the
 payment, the makePayment operation would throw an exception back to the client, with the exception type and exception data giving details of the payment
 problem.

Notice that everything needed to make and confirm the booking was done by invoking services. Some of these services are using
 other services as part of their processing. For example, the newBooking operation of the Bookings service used the checkAvailability
 operation of the TripProvider service, and the makePayment operation of the Checkout service invoked a third-party credit card processing service. Using existing services as part of
 the implementation of a new service is called composition, and the result is a composite application. Making the creation
 and deployment of composite applications easy to do is one of the objectives of SCA and Tuscany.

 An SCA composite application describes the way that component services are wired together. This description may be explicit
 about the physical location of component services. Alternatively, it may omit this information and defer to the Tuscany runtime
 to determine the physical location of deployed component services. Whichever approach is taken the composite application will
 still describe how component services are logically wired to form the application.

 You’ve seen how the architecture and design of a business application can be expressed using the basic elements of the SCA
 programming model: components, services, and references. You’ve also seen how SCA services and non-SCA services can be combined
 within a business application. Let’s get our hands dirty and implement some of the parts of this simple scenario.

1.3. Implementing a composite application

 In the previous section we looked at the architecture and design of the travel-booking application. In this section, we’ll
 build the components of the application. We’ll do this in two stages. First, we’ll cut straight to the action and build a
 single component and run it to see how it works. Second, we’ll take a more studied look at how to wire components together
 into a running application.

 Let’s start by building and running the TripProvider component. You’ll find the launcher for this sample in the sample directory
 launchers/jumpstart. A launcher is a simple Java program that loads and runs the sample.

 We’ve chosen the TripProvider component because it’s simple. It provides a single service and doesn’t use any references.
 Once we have this first component running, we’ll build and wire the other two components.

 1.3.1. A jump-start to building and running your first SCA component

 For this first example we’ll create a simple version of the GoodValueTrips company’s TripProvider component. There are no
 particular restrictions to the environment you can use to build this application. Appendix A gives an overview of how to use Tuscany with Ant, Maven, and Eclipse, and the sample code comes with pom.xml and build.xml
 files for Maven and Ant users. All of the following code is provided with the book samples in the contribution/introducing-trips
 and launcher/jumpstart directories, so you won’t need to type it in manually.

 Our goal here is to send a test message to the TripProvider component from a Java program to demonstrate that it works. Figure 1.6 shows the TripProvider component as we’ll build it here. The Trips service is shown as the right-facing arrow to the left
 of the TripProvider component box.

 Figure 1.6. The configuration of the first GoodValueTrips TripProvider component we’ll build

 [image:]

 We’ll follow these five steps to create the TripProvider component:

	Design the Trips.java service interface.

 	Build the TripProvider.java component implementation.

 	Build the XML trips.composite file to define the SCA TripProvider component.

 	Package TripProvider.java and trips.composite into the scatours-contribution-introducing-trips.jar contribution. Let’s for
 now assume that a contribution is a package that contains the code that you want to run and its related artifacts. This concept
 is explained in detail in chapter 3, but this explanation is sufficient for now.

 	Create a simple launcher to load the contribution and test the Trips service.

	

 Sample contribution layout
 The contributions provided with the book samples are laid out using the default Maven project structure. For example, if you
 look at contributions/introducing-trips you’ll see the following:

 contributions/
 introducing-trips/
 src/
 main/
 java/
 all the Java source code goes here
 resources/
 all the non-Java resources go here
 build.xml – the Ant build script for the contribution
 pom.xml – the Maven build script for the contribution

 Some contributions also have an src/test directory that hold artifacts to unit test the contribution.

	

To build the component service we first design the service interface. In this case the interface must allow a trip’s availability
 to be checked and, if the trip is available, return a booking reference number.

 The service interface is a normal Java interface, as shown in the following listing, and can be found in the sample’s contribution/introducing-trips
 contribution directory.

 Listing 1.1. The Trips interface definition

 package com.goodvaluetrips;
import org.osoa.sca.annotations.Remotable;

@Remotable
public interface Trips {
 String checkAvailability(String trip, int people);
}

OEBPS/01fig04_alt.jpg

OEBPS/01fig05_alt.jpg

OEBPS/01fig02_alt.jpg

OEBPS/01fig03.jpg

OEBPS/manning.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg

OEBPS/icon.jpg

OEBPS/01fig06_alt.jpg

OEBPS/cover.jpg

