

From the 2nd edition of PostGIS in Action by Regina O. Obe and Leo S. Hsu

 “PostGIS In Action is a great book to learn how GIS servers function. Reading this book will give any reader insight into how best to provide map services for a wide audience.”

 —Marcus Brown, GIS Architect/Administrator, Enel Green Power

 “I answered so many questions with traditional SQL that, just for curiosity, I went in to see what difference PostGIS could make; now it seems to me that not enough questions were asked, at least not as many as I could think of to resolve with this new toolbox.”

 —Arnaldo Ayala, Software Architect, Consultores Informáticos S.R.L.

 “PostGIS in Action is a book that gets you swiftly started with PostGIS and gives you all the skills you need to get you going with GIS and helps you leverage your spatial data in new creative ways.”

 —Weyert de Boer

 “This book is the best introduction I've seen for engineers that want to get ramped up quickly and build expert knowledge to build advanced GIS applications.”

 —Ikechukwu Okonkwo, Lead Data Scientist, Orum.io

 “As a long time Postgres users I've always been curious how to make use of PostGIS but never knew where to start. This book provided that for me, and now I feel comfortable implementing Postgis for clients to help support their needs.”

 —Mike Haller, Senior Manager

 “An extraordinarily great book for the technology world of GIS. Truly learned a lot!”

 —DeUndre’ Rushon, CEO, DigiDiscover LLC

 “This book is a gem with a wealth of information and showcases how powerful PostGIS is.”

 —Luis Moux-Dominguez, Software Architect, EMO

 [image:]

 PostGIS in Action

 Third Edition

 Regina Obe and Leo Hsu

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Susan Ethridge

 	
 Technical development editor:

 	
 Alain Couniot

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Andy Caroll

 	
 Proofreader:

 	
 Melody Dolab

 	
 Technical proofreader:

 	
 Jan Hartman

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617296697

 dedication

 To Dr. Joan Alice Burnett Obe (1937-2021), a trailblazer, courageous doctor, and mommy, and Dr. Ernest Olagbade Obe (1935–2012), a great professor, chief, and daddy.

brief contents

 Part 1. Introduction to PostGIS

 1 What is a spatial database?

 2 Spatial data types

 3 Spatial reference systems

 4 Working with real data

 5 Using PostGIS on the desktop

 6 Geometry and geography functions

 7 Raster functions

 8 Spatial relationships

 Part 2. Putting PostGIS to work

 9 Proximity analysis

 10 PostGIS TIGER geocoder

 11 Geometry and geography processing

 12 Raster processing

 13 Building and using topologies

 14 Organizing spatial data

 15 Query performance tuning

 Part 3. Using PostGIS with other tools

 16 Extending PostGIS with pgRouting and procedural languages

 17 Using PostGIS in web applications

 Appendix A. Additional resources

 Appendix B. Installing, compiling, and upgrading

 Appendix C. SQL primer

 Appendix D. PostgreSQL features

 index

contents

 front matter

 foreword

 preface

 acknowledgments

 about this book

 about the Author

 about the cover illustration

 Part 1. Introduction to PostGIS

 1 What is a spatial database?

 1.1 Thinking spatially

 1.2 Introducing PostGIS

 Why PostGIS

 Standards conformance

 PostGIS is powerful

 Built on top of PostgreSQL

 Free—as in money

 Free—as in freedom

 Alternatives to PostGIS

 1.3 Installing PostGIS

 Verifying versions of PostGIS and PostgreSQL

 1.4 Spatial data types

 Geometry type

 Geography type

 Raster type

 Topology type

 1.5 Hello real world

 Digesting the problem

 Modeling

 Loading data

 Writing the query

 Viewing spatial data with OpenJump

 2 Spatial data types

 2.1 Type modifiers

 Subtype type modifiers

 Spatial reference identifier

 2.2 Geometry

 Points

 Linestrings

 Polygons

 Collection geometries

 The M coordinate

 The Z coordinate

 Polyhedral surfaces and TINs

 Generating TINs

 Curved geometries

 Spatial catalog for geometry

 2.3 Geography

 Differences between geography and geometry

 Spatial catalogs for geography

 2.4 Raster

 Properties of rasters

 Creating rasters

 Spatial catalog for rasters

 3 Spatial reference systems

 3.1 Spatial reference systems: What are they?

 Geoids

 Ellipsoids

 Datum

 Coordinate reference system

 Spatial reference system essentials

 Projections

 3.2 Selecting a spatial reference system for storing data

 Pros and cons of using EPSG:4326

 Geography data type for EPSG:4326

 Mapping just for presentation

 Covering the globe when distance is a concern

 3.3 Determining the spatial reference system of source data

 Guessing at a spatial reference system

 When the SRS is missing from the spatial_ref_sys table

 3.4 History of PROJ support in PostGIS

 PROJ 4

 PROJ 5

 PROJ 6

 PROJ 7

 PROJ 8 and beyond

 4 Working with real data

 4.1 PostgreSQL built-in tools

 Psql

 pgAdmin4

 Pg_dump and pg_restore

 Downloading files

 4.2 Extracting files

 4.3 Importing and exporting shapefiles

 Importing with shp2pgsql

 Importing and exporting with shp2pgsql-gui

 Exporting with pgsql2shp

 4.4 Importing and exporting vector data with ogr2ogr

 Environment variables in ogr2ogr

 Ogrinfo

 Importing with ogr2ogr

 Exporting with ogr2ogr

 4.5 Querying external data using PostgreSQL foreign data wrappers

 File_fdw foreign data wrapper

 Ogr_fdw foreign data wrapper

 Converting hstore tags to jsonb

 4.6 Importing raster data with raster2pgsql

 Raster2pgsql command-line switches

 Raster2pgsql supported formats

 Loading a single file with raster2pgsql

 Loading multiple files and tiling in shell script

 Using PostgreSQL functions to output raster data

 4.7 Exporting raster data with GDAL

 Using gdalinfo to inspect rasters

 Gdal_translate and gdalwarp

 5 Using PostGIS on the desktop

 5.1 Desktop viewing tools at a glance

 OpenJUMP

 QGIS

 gvSIG

 Jupyter Notebook and JupyterLab

 Spatial database support

 Format support

 Web services supported

 5.2 OpenJUMP

 OpenJUMP feature summary

 Installing OpenJUMP

 Ease of use

 OpenJUMP plug-ins

 OpenJUMP scripting

 OpenJUMP format support

 PostGIS support

 Registering data sources

 Rendering PostGIS geometries

 Exporting data

 5.3 QGIS

 Installing QGIS

 Using QGIS with PostGIS

 5.4 GvSIG

 Using gvSIG with PostGIS

 Exporting data

 5.5 JupyterLab and Jupyter Notebook

 Installing Jupyter

 Launching Jupyter Notebook

 Launching JupyterLab

 Creating a Python notebook

 Magic commands

 Performing raw queries with Jupyter Notebook

 Using GeoPandas, Shapely, and Matplotlib to work with spatial data

 Viewing data on a map with folium

 6 Geometry and geography functions

 6.1 Output functions

 Well-known text (WKT) and well-known binary (WKB)

 Keyhole Markup Language (KML)

 Geography Markup Language (GML)

 Geometry JavaScript Object Notation (GeoJSON)

 Scalable Vector Graphics (SVG)

 Mapbox Vector Tiles (MVT) and protocol buffers

 Tiny WKB (TWKB)

 Extensible 3D Graphics (X3D)

 Examples of output functions

 Geohash

 6.2 Constructor functions

 Creating geometries from text and binary formats

 Creating geographies from text and binary formats

 Using text or binary representations as function arguments

 6.3 Accessor and setter functions

 Spatial reference identifiers

 Transforming geometry to different spatial references

 Using transformation with the geography type

 Geometry type functions

 Geometry and coordinate dimensions

 Retrieving coordinates

 Checking geometry validity

 Number of points that define a geometry

 6.4 Measurement functions

 Geometry planar measurements

 Geodetic measurements

 6.5 Decomposition functions

 Bounding box of geometries

 Boundaries and converting polygons to linestrings

 Centroid, median, and point on surface

 Returning points defining a geometry

 Decomposing multi-geometries and geometry collections

 6.6 Composition functions

 Making points

 Making polygons

 Promoting single geometries to multi-geometries

 6.7 Simplification functions

 Grid snapping and coordinate rounding

 Simplification

 7 Raster functions

 7.1 Raster terminology

 7.2 Raster constructors

 Converting geometries to rasters with ST_AsRaster

 Loading rasters with raster2pgsql

 Constructing rasters from scratch: ST_MakeEmptyRaster and ST_AddBand

 Setting pixels: ST_SetValue and ST_SetValues

 Creating rasters from other rasters

 Converting other raster formats with ST_FromGDALRaster

 7.3 Raster output functions

 ST_AsPNG, ST_AsJPEG, and ST_AsTiff

 Output using ST_AsGDALRaster

 Using psql to export rasters

 7.4 Raster accessors and setters

 Basic raster metadata properties

 Pixel statistics

 Pixel value accessors

 Band metadata setters

 7.5 Georeferencing functions

 Metadata setters

 Processing functions

 7.6 Reclassing functions

 7.7 Polygonizing functions

 ST_ConvexHull

 ST_Envelope

 ST_Polygon

 ST_MinConvexHull

 8 Spatial relationships

 8.1 Bounding box and geometry comparators

 The bounding box

 Bounding box comparators

 8.2 Relating two geometries

 Interior, exterior, and boundary of a geometry

 Intersections

 A house plan model

 Contains and within

 Covers and covered by

 Contains properly

 Overlapping geometries

 Touching geometries

 The faces of equality: geometry

 Underpinnings of relationship functions

 Part 2. Putting PostGIS to work

 9 Proximity analysis

 9.1 Nearest neighbor searches

 Which places are within X distance?

 Using ST_DWithin and ST_Distance for N closest results

 Using ST_DWithin and DISTINCT ON to find closest locations

 Intersects with tolerance

 Items between distances

 Finding the N closest places using KNN distance operators

 9.2 Using KNN with geography types

 Using window functions to number the closest N places

 9.3 Geotagging

 Tagging data to a specific region

 Linear referencing: snapping points to the closest linestring

 PostGIS cluster window functions

 10 PostGIS TIGER geocoder

 10.1 Installing the PostGIS TIGER geocoder

 10.2 Loading TIGER data

 Configuration tables

 Loading nation and state data

 10.3 Normalizing addresses

 Using normalize_address

 Using the PAGC address normalizer

 10.4 Geocoding

 Geocoding using address text

 Geocoding using normalized addresses

 Geocoding intersections

 Batch geocoding

 10.5 Reverse geocoding

 11 Geometry and geography processing

 11.1 Using spatial aggregate functions

 Creating a multipolygon from many multipolygon records

 Creating linestrings from points

 11.2 Clipping, splitting, tessellating

 Clipping

 Splitting

 Tessellating

 11.3 Breaking linestrings into smaller segments

 Segmentizing linestrings

 Creating two-point linestrings from many-point linestrings

 Breaking linestrings at point junctions

 11.4 Translating, scaling, and rotating geometries

 Translating

 Scaling

 Rotating

 11.5 Using geometry functions to manipulate and create geographies

 Cast-safe functions

 12 Raster processing

 12.1 Loading and preparing raster data

 12.2 Forming larger rasters using spatial aggregate functions

 Reconstituting tiled files

 Carving out areas of interest using clipping and unioning

 Using specific expression types with ST_Union

 12.3 Working with bands

 Using ST_AddBand to form multiband rasters from single-band rasters

 Using ST_Band to process a subset of bands

 12.4 Tiling rasters

 12.5 Raster and geometry intersections

 Pixel stats

 Adding a Z coordinate to a 2D linestring using ST_Value and ST_SetZ

 Converting 2D polygons to 3D polygons

 12.6 Raster statistics

 Extruding pixel values

 Raster statistics functions

 12.7 Map algebra

 Choosing between expression or callback function

 Using a single-band map algebra expression

 Using a single-band map algebra function

 Map algebra with neighborhoods

 13 Building and using topologies

 13.1 What topology is

 13.2 Using topologies

 Installing the topology extension

 Creating a topology

 The topogeometry type

 Recap of using topologies

 13.3 Topology of Victoria, BC

 Creating the Victoria topology

 Adding primitives to a topology

 Creating topogeometries

 13.4 Fixing topogeometry issues by editing topology primitives

 Removing faces by removing edges

 Checking for shared faces

 Editing topogeometries

 13.5 Inserting and editing large data sets

 13.6 Simplifying with topology in mind

 13.7 Topology validation and summary functions

 14 Organizing spatial data

 14.1 Spatial storage approaches

 Heterogeneous columns

 Homogeneous columns

 Typmod vs. constraints

 Table inheritance

 Table partitioning

 14.2 Modeling a real city

 Modeling using heterogeneous geometry columns

 Modeling using homogeneous geometry columns

 Modeling using partitioning

 14.3 Making auto-updatable views

 14.4 Using triggers and rules

 Triggers

 Using INSTEAD OF triggers

 Using other triggers

 15 Query performance tuning

 15.1 The query planner

 Different kinds of spatial queries

 Common table expressions and how they affect plans

 15.2 Planner statistics

 15.3 Using explain to diagnose problems

 Text explain vs. pgAdmin graphical explain

 The plan with no index

 15.4 Planner and indexes

 The plan with a spatial index

 Indexes

 15.5 Common SQL patterns and how they affect plans

 Subqueries in SELECT

 FROM subqueries and basic CTEscommon table expressions (CTEs)

 Window functions and self joins

 Lateral joins

 15.6 System and function settings

 Key system variables that affect plan strategies

 Function-specific settings

 Encouraging parallel plans

 15.7 Optimizing spatial data

 Fixing invalid geometries

 Reducing the number of vertices by simplification

 Reducing the number of vertices by breaking geometries apart

 Clustering

 Part 3. Using PostGIS with other tools

 16 Extending PostGIS with pgRouting and procedural languages

 16.1 Solving network routing problems with pgRouting

 Installing pgRouting

 16.2 Extending PostgreSQL with PLs

 Basic installation of PLs

 What you can do with PLs

 16.3 PL/R

 Getting started with PL/R

 What you can do with PL/R

 Using R packages in PL/R

 Converting geometries into R spatial objects and plotting spatial objects

 Outputting plots as binaries

 16.4 PL/Python

 Installing PL/Python

 Writing a PL/Python function

 Using Python packages

 Geocoding example

 16.5 PL/V8: JavaScript in the database

 Installing PL/V8

 Enabling PL/V8 in a database

 Using other JavaScript libraries and functions in PL/V8

 Using PL/V8 to write map algebra functions

 17 Using PostGIS in web applications

 17.1 Limitations of conventional web technologies

 17.2 Mapping servers

 Lightweight mapping servers

 Full mapping servers

 17.3 Mapping clients

 Proprietary services

 17.4 Using MapServer

 Installing MapServer

 Security considerations

 Creating WMS and WFS services

 Calling a mapping service using a reverse proxy

 17.5 Using GeoServer

 Installing GeoServer

 Setting up PostGIS workspaces

 Accessing PostGIS layers via GeoServer WMS/WFS

 17.6 Basics of OpenLayers and Leaflet

 OpenLayers primer

 Leaflet primer

 Synopsis of the OpenLayers and Leaflet APIs

 17.7 Displaying data with PostGIS queries and web scripting

 Using PostGIS and PostgreSQL geometry output functions

 Using PostGIS MVT output functionsMapbox Vector Tiles (MVT)

 Appendix A. Additional resources

 Appendix B. Installing, compiling, and upgrading

 Appendix C. SQL primer

 Appendix D. PostgreSQL features

 index

 front matter

foreword

 As children, we were probably all told at one time or another that “we are what we eat,” as a reminder that our diet is integral to our health and quality of life. In the modern world, with location-aware smartphones in our pockets, GPS units in our vehicles, and the internet addresses of our computers geocoded, it has also become true that “who we are is where we are”—every individual is now a mobile sensor, generating a ceaseless flow of location-encoded data as they move about the planet.

 To manage and tame that flow of data, and the parallel flow of data opened up by economical satellite imaging and crowdsourced mapping, we need a tool equal to the task. A tool that can persistently store the data, efficiently access it, and powerfully analyze it. We need a spatial database, like PostGIS.

 Prior to the advent of spatial databases, computer analysis of location and mapping data was done with geographic information systems (GISs) running on desktop workstations. When it was first released in 2001, the project name was just a simple play on words—naturally a spatial extension of the “PostgreSQL” database would be named “PostGIS.”

 But the name has come to have further significance as the project has matured. Each year, new functions have been added for data analysis, and each year users have pressed those functions further and further, doing the kinds of work that in earlier years would have required a specialized GIS workstation. PostGIS is actually creating a world that is post-GIS—we don’t need GIS software to do GIS work anymore. A spatial database suffices.

 In March of 2002, not even one year after the first release of PostGIS, I asked on the user mailing list for examples of how people were using PostGIS.

 In her first post to the list, Regina Obe answered this way:

 We use it here [city of Boston] for proximity analysis. Part of our department is in charge of distributing foreclosed property to developers, etc., to build houses, businesses, etc. We use PostGIS to list properties by proximity ... so that if a developer wants to develop on a piece of land that is, say, X in size, they will be able to get a better sense of whether it can be done.

 Even at that early date in the project, Regina Obe was already testing the capabilities of PostGIS and creating clever analyses.

 Since PostGIS in Action was first released in 2011, PostGIS has itself remained very much in action, adding new features for raster analysis, 3D, clustering, temporal data, topologies, and more. And the world has kept on moving too.

 Almost two decades ago, when PostGIS was brand new, the idea that almost every person would have a GPS unit (a phone) in their pocket was pretty crazy, and now it’s commonplace. The features of PostGIS for managing location are now being used widely by developers who only a few years ago had never heard of spatial data.

 Over the last few years, satellite and aerial imagery have moved into the mass market, drone systems are commonplace, and location sensors are mounted on nearly any asset that moves. The amount of data to analyze—and the velocity and volume of that data—is higher than ever.

 At the same time, PostGIS has never been easier to put to work for you. You can spin up a copy at any cloud provider, you can download builds for any platform, and if you’re sufficiently interested you can still download the open source code and build it yourself, just as Regina did so many years ago.

 Enjoy this book and the insights it provides into putting location data to work. Regina and Leo have distilled a huge body of information into a concise guide that is truly one of a kind.

 Paul Ramsey

 Chair, PostGIS Project Steering Committee

preface

 PostGIS (pronounced post-jis) is a spatial database extender for the PostgreSQL open source relational database management system. It’s the most powerful open source spatial database engine around. It adds to PostgreSQL several spatial data types and over 400 functions for working with these spatial types. PostGIS supports many of the OGC/ISO SQL/MM–compliant spatial functions you’ll find in other relational databases such as Oracle, SQL Server, MySQL, and IBM DB2, as well as numerous additional spatial features that are unique to PostGIS.

 Since the last edition of this book, other databases have added on spatial functionality which is often a subset of the functionality PostGIS provides. You’ll see same-named functions in Google BigQuery and Snowflake. Many cloud providers also now offer PostgreSQL/PostGIS in a Database as a Service (DBaaS).

 Readers coming from other ANSI/ISO–compliant spatial databases, or other relational databases, will feel right at home with PostgreSQL and PostGIS. PostgreSQL is one of the most ANSI/ISO SQL–compliant database management systems around.

 The main raison d’être of this book is to provide a companion volume to the official PostGIS documentation—to serve as a guidebook for navigating through the hundreds of functions offered by PostGIS. We wanted to create a book that would catalog many of the common spatial problems we’ve come across and various strategies for solving them with PostGIS.

 Above and beyond our primary mission, we hope to lay the foundation for thinking spatially. We hope that you’ll be able to adapt our numerous examples and recipes to your own field of endeavor, and perhaps even spawn creative scions of your own.

acknowledgments

 We’d like to thank first the many PostGIS package maintainers; in particular, Sebastiaan Couwenberg, Devrim Gündüz, Greg Troxel, and Christoph Berg who have provided much guidance in improving PostGIS releases and without whom many would be without PostGIS.

 We’d also like to thank the PostGIS development team and Project Steering Committee, in particular Paul Ramsey, Sandro Santilli, Raúl Marín Rodríguez, Darafei Praliaskouski, Bborie Park, Dan Baston, Martin Davis, and Nicklas Avén who contributed to new features discussed in this book.

 We thank everyone at Manning Publications. In particular, our development editor, Susan Ethridge, who helped us polish our chapters and provided much needed nagging; our copy editor, Andy Carroll, who caught many of our nonsensical sentences, invalid code references, and invalid links, and fact-checked many of our statements; and our technical reviewers who tested our code and caught errors in code early on. We also acknowledge publisher Marjan Bace; review editor Aleksandar Dragosavljevic´ for organizing reviewer feedback; and our production and editorial team of Becky Whitney and Deirdre Hiam, our proofreader, Melody Dolab, as well as others who kept us focused during the whole process.

 A special thanks to past contributors of PostGIS whose contributions make up the bread and butter of PostGIS: Olivier Courtin (in loving memory), Mateusz Loskot, Pierre Racine, and countless others. We thank the PostGIS community of newsgroup subscribers who answer questions as best and as quickly as they can, and PostGIS bloggers—each in their own way gives newcomers to PostGIS a warm and fuzzy feeling.

 Our exposure to PostGIS would not be possible without the City of Boston Department of Neighborhood Development (DND), particularly the MIS and Policy Development and Research divisions where Regina was first exposed to GIS and PostGIS.

 We would also like to thank our reviewers: Alvin Scudder, Arnaldo Ayala, Billy O’Callaghan, Biswanath Chowdhury, Carla Butler, Chris Viner, Daniel Tomás Lares, Daniele Andreis, DeUndre’ Rushon, Dhivya Sivasubramanian, Evyatar Kafkafi, Hilde Van Gysel, Ikechukwu, Okonkwo, Jesus Manuel Lopez Becerra, Luis Moux-Dominguez, Marcus Brown, Mike Haller, Mike Jensen, Paulo Vieira, Philip Patterson, Richard Meinsen, Vladimir Kuptsov, and Weyert de Boer. Your suggestions helped make this a better book.

 Finally, we thank our MEAP readers who provided invaluable constructive criticism and caught mistakes early in our code and explanations.

about this book

 This book is focused on the PostGIS 3 and 3.1 series and PostgreSQL 11–13. This book isn’t a substitute for either the official PostGIS or PostgreSQL documentation. The official PostGIS documentation does a good job of introducing you to the myriad of functions available in PostGIS and provides examples of how to use each. But it won’t tell you how to combine all these functions into a recipe to solve your problems. That’s the purpose of our book. Although it doesn’t cover all the functions available in PostGIS, this book does cover the more commonly used and interesting ones and gives you the skills you need to combine them to solve classic and more esoteric but interesting problems in spatial analysis and modeling.

 Although you can use this book as a reference source, we recommend that you also visit the official PostGIS site at https://postgis.net.

 This book focuses on two- and three-dimensional non-curved Cartesian vector geometries, two-dimensional geodetic vector geometries, raster data, and network topologies.

 Although the main purpose of this book is the use of PostGIS, we’d fall short of our mission if we neglected to provide some perspective on the landscape it lives in. PostGIS is not an island and rarely works alone. To complete the cycle, we also include the following:

 	
An extensive appendix that covers PostgreSQL in great detail from setup, to backup, to security management. The appendix also covers the fundamentals of SQL and creating functions and other objects with it.

 	
Several chapters dedicated to the use of PostGIS in web mapping, viewing using desktop tools, PostgreSQL PL languages commonly used with PostGIS, and extra open source add-ons such as the PostGIS-packaged TIGER geocoder and separately packaged pgRouting.

 This book in no way attempts to provide a rigorous treatment of the math underlying the PostGIS libraries. We rely on intuitive understanding for concepts such as points, lines, and polygons. In the same vein, we’re not able to delve into database theory. If we predict that a particular index should be more effective than another, we’re making educated guesses from experience, not from having mastered relational algebra and dissecting a few computer chips along the way.

Who should read this book?

 This book provides an introduction to PostGIS, and it assumes a basic comfort level with programming and working with data. The types of people we’ve found to be most attracted to PostGIS and are best suited for reading this book are listed here.

 GIS practitioners and programmers

 You know everything about data, geoids, and projections. You know where to find sources of data. You can create stunning applications with ArcGIS, MapInfo, Leaflet, OpenLayers, Google Maps, or other Ajax-enabled toolkits. You’re adept at generating data sources in Esri shapefiles, using QGIS or ArcGIS, and creating cartographic masterpieces. You may even be able to add data to and extract it from a spatially enabled database, but when asked questions about the data, you’re stuck. Being able to draw all the Walmarts in the United States on a map is one thing, but being able to answer the question, “How many Walmarts are east of the Mississippi,” without counting individual pushpins is a whole different ball game. Sure, you may have used desktop tools and written procedural code to answer these questions, but we hope to show you a much faster way.

 So what does a spatially enabled database offer that you don’t already have at your fingertips?

 	
It provides the ability to easily intermingle spatial data with other corporate data, such as financial information, observational data, and marketing information. Yes, you can do these with Esri shapefiles, KML files, and other GIS file formats, but that requires an extra step and limits your options for joining with other relevant data. A database such as PostgreSQL has features such as a query planner that improves the speed of your joins and many commonly used statistical functions to make fairly complex questions and summary stats relatively fast to run and quick to write.

 	
When collecting user data, whether that user is drawing a geometry on the screen and inputting related information or clicking a point on the map, there’s so much infrastructure built around databases that the task is much easier if you’re using one. Take, for example, rolling your own web application in .NET, PHP, Perl, Python, Java, or some other language. Each already has a driver for PostgreSQL to make inserting and querying data easy. Add to that mix the text-to-geometry functions, geometry-to-SVG, -KML, and -GeoJSON functions, and other processing functions that PostGIS provides, along with the geometry generation and manipulation functions that platforms like OpenLayers, MapServer, and GeoServer have, and you have a myriad of options to choose from.

 	
A relational database provides administrative support to easily control who has access to what, whether that be a text attribute or a geometry.

 	
PostgreSQL offers triggers that can allow the generation of other things like related geometries in other tables when certain database events happen.

 	
PostgreSQL has a multi-version concurrency control (MVCC) transactional core to ensure that when 100 users are reading or updating your data at the same time, your system doesn’t come screeching to a halt.

 	
PostgreSQL provides the ability to write custom functions in the database that can be called from disparate applications. PostgreSQL offers several choices of languages to choose from when writing stored functions.

 	
If you’re married to your preferred GIS desktop tools, don’t worry. Choosing a spatial DBMS such as PostGIS doesn’t mean you need to abandon your tools of choice. Manifold, Cadcorp, MapInfo 10+, AutoCAD, Esri ArcGIS, ArcMap, Server tools, and various commonly used desktop tools have built-in support for PostGIS. Safe FME, an extract-transform-load (ETL) favorite of GIS professionals, has supported PostGIS for a long time.

 DB practitioners

 At some point in your database career, someone might have asked you a spatially oriented question about the data. Without a spatially enabled database, you’re forced to limit your thinking in terms of coordinates, location names, or other geographical attributes that can be reduced to numbers and letters. This works fine for point data, but you’re at a complete loss once areas and regions come into play. You may be able to find all the people named Smith within a county, but if we were to ask you to find all the Smiths living within 10 miles of the county, you’d be stuck.

 We want readers coming from a standard relational database background to realize that data is more than just numbers, dates, and characters, and that amazing feats of SQL can be accomplished against non-textual data. Sure, you might have stored images, documents, and other oddities in your relational database, but we doubt you were able to do much in the way of writing SQL joins against these fields.

 Scientists, researchers, educators, and engineers

 A lot of highly skilled scientists, researchers, educators, and engineers use spatial analysis tools to analyze their collected data, model their inventions, or train students. Although we don’t consider ourselves the same as them, we admire these people the most because they create knowledge and improve our lives in fundamental ways. They may know a lot about mathematics, biology, chemistry, geology, physics, engineering, and so forth, but they aren’t trained in database management, relational database use, or GIS. If you’re one of these people, we hope to provide just enough of a framework to get you up to speed without too much fuss.

 What does PostgreSQL/PostGIS hold for you?

 	
It gives you the ability to integrate with statistical packages such as R, and you can even write database procedural functions in PL/R that leverage the power of R.

 	
PostgreSQL also supports PL/Python and PL/JavaScript, which allows you to leverage the growing Python and JavaScript libraries for scientific research right in the database, where it can work even closer with the data than in a plain Python environment.

 	
While many think of PostGIS as a tool for geographic information systems, and that’s implied by the name, we see it as a tool for spatial analysis. The distinction is that whereas geography focuses on the earth and the reference systems that bind the earth, spatial analysis focuses on space and the use of space. That space and coordinate reference system may be specific to an ant hill, or to a map of a nuclear plant whose location is yet to be defined, or to the different regions of the brain, or it may be used as a visualization tool to model the inherently non-visual, such as in process modeling. Although you may think of your particular area of interest as not being touched by spatial analysis, we challenge you to dig deeper.

 	
A database is a natural repository for large quantities of data and has a lot of built-in statistical/rollup functions and constructs for producing useful reports and analyses. If you’re dealing with data of a spatial nature or using space as a visualization tool, PostGIS provides more functions to extend that analysis.

 	
Much of the data needed for scientific research can be easily collected by machines (GPS, alarm systems, remote sensing devices) and directly piped to the database via automated feeds or standard import formats. In fact, collection tools such as smartphones and unmanned aircraft are becoming cheaper each day and more accessible to the general population, and the hardware to store the data is also getting cheaper.

 	
Portions of data are easily distributed. A relational database is ideal for creating what we call “data dispensers” or “datamarts,” which allow other researchers to easily grab just the subset of data they need for their research or to provide data for easy download by the public.

 These profiles are the basic groups of spatial database users, but they’re not the only ones. If you’ve ever looked at the world and thought, wouldn’t it be great if I could correlate crime statistics with the locations where we’ve planted trees, or where’s the best place and time to plant our crops given the elevation model and temperature fluctuations of an area, then PostGIS might be the easiest and most cost-effective tool for you.

How this book is organized: a roadmap

 This book is divided into three major parts and has several supporting appendixes.

 Part 1: Learning PostGIS

 Part 1 covers the fundamental concepts of spatial relational databases and PostGIS/PostgreSQL in particular. The goal of this part is to introduce you to industry-standard GIS database concepts and practices. By the end of this part, you should have a solid foundation in the various geometry, geography, raster, and topology types, and what problems each strives to solve. You’ll have a basic understanding of spatial reference systems and database storage options. Most important, you’ll have the ability to load, query, and view spatial data in a PostGIS-enabled PostgreSQL database.

 Part 2: Putting PostGIS to work

 This part focuses on using PostGIS to solve real-world spatial problems and on optimizing for speed. You’ll learn how to do a variety of things:

 	
How to do proximity analysis using both geometry and geography

 	
How to use different kinds of vector operations to optimize your data

 	
How to perform seamless raster processing using raster and vector data

 	
How to create new vector data using raster processing, map algebra, histograms, and other raster statistics functions to compute statistics about an area of interest

 	
How to create big rasters from smaller rasters using raster aggregate functions

 	
How to use the packaged PostGIS TIGER geocoder for address normalization, geocoding, and reverse geocoding

 	
How to use topology to ensure consistency of editing

 	
How to simplify a whole network of geometries and still maintain connectedness in your simplified dataset

 Part 3: Using PostGIS with other tools

 Part 3 encompasses the tools most commonly used with PostGIS for building applications. We’ll cover pgRouting, a tool you can use with PostGIS directly in the database for creating network routing applications. In addition, we’ll cover PostgreSQL stored procedure languages: PL/Python, PL/R, and PL/V8 (a.k.a. PL/JavaScript). Finally, we’ll end with a brief study of PostGIS in web applications. We’ll cover the various mapping servers used with PostGIS as well as the OpenLayers and Leaflet mapping JavaScript APIs. We’ll also look at how to use PostGIS JSON and vector tile output functions to build an interactive web map.

 Appendixes

 There are three appendixes.

 Appendix A provides additional resources for getting help on PostGIS and the ancillary tools discussed in the book.

 Appendix B shows how to get up and running with PostgreSQL and PostGIS.

 Appendix C is an SQL primer that explains the concepts of JOIN , UNION , INTERSECT , EXCEPT , common table expressions (CTEs), and LATERAL . It discusses the fundamentals of rolling up data with aggregate functions and aggregate constructs, as well as the more advanced topics of using window functions and frames.

About the code

 The following typographical conventions are used throughout the book:

 	
Courier typeface is used in all code listings.

 	
Courier typeface is used within the text for certain code words.

 	
Sidebars and notes are used to highlight key points or introduce new terminology.

 	
Code annotations are used in place of inline comments in the code. These highlight important concepts or areas of the code. Some annotations appear with numbered bullets like this, ❶ , that are referenced later in the text.

 The examples and data for all chapters of this book can be downloaded via www.postgis.us/chapters_edition_3. On the book’s site you’ll also find descriptions of each chapter with related links for each chapter. Each chapter page has a link where you can download the full data and code for that chapter.

 The code can also be downloaded from the publisher’s website at www.manning.com/obe3.

liveBook discussion forum

 The purchase of PostGIS In Action, Third Edition includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and other users. You can access and subscribe to the forum at https://livebook.manning.com/#!/book/obe3discussion. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue among individual readers and between readers and authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the book’s forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions, lest their interest stray!

 The discussion forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print. Lastly, there will be additions to the content added to the author’s online website for the book, located at www.postgis.us.

 You may also visit the authors at the PostgreSQL and Open Source GIS companion sites: www.postgresonline.com and www.bostongis.com.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help with learning and remembering. According to research in cognitive science, the things people remember are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent, it must pass through stages of exploration, play, and, interestingly, retelling of what’s being learned. People understand and remember new things, which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it’s example-driven. It encourages the reader to try things out, to play with new code, and to explore new ideas.

 There’s another, more mundane, reason for the title of this book: Our readers are busy. They use books to do a job or solve a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want it. They need books that aid them in action. The books in this series are designed for such readers.

about the Author

 Regina Obe and Leo Hsu are database consultants and authors. Regina is a member of the PostGIS core development team and the Project Steering Committee.

about the cover illustration

 The figure on the cover of PostGIS in Action, Third Edition is captioned “A woman from Ubli, Croatia.” The illustration is taken from a reproduction of an album of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenović, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life. Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated by only a few miles.

 Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Part 1. Introduction to PostGIS

 Welcome to PostGIS in Action, Third Edition. PostGIS is a spatial database extender for the PostgreSQL database management system. This book will teach you the fundamentals of spatial databases in general, key concepts in geographic information systems (GIS), and more specifically how to configure, load, and query a PostGIS-enabled database. You’ll learn how to perform actions with single lines of SQL code that you thought were possible only with a desktop GIS system. By using spatial SQL, much of the heavy lifting that would require many manual steps in desktop GIS tools can be scripted and automated.

 This book is divided into three sections and four appendixes. Part 1 covers the fundamentals of spatial databases, GIS, and working with spatial data. Although part 1 is focused on PostGIS, many of the concepts you’ll learn in this part are equally applicable to other spatial relational databases.

 Chapter 1 covers the fundamentals of spatial databases and what you can do with a spatially enabled database that you can’t do with a standard relational database. It also introduces features that are fairly unique to PostGIS. It concludes with a fast-paced example of loading fast-food restaurant longitude/latitude data and converting it to geometric points, loading road data from Esri shapefiles, and doing spatial summaries by joining these two sets of data.

 Chapter 2 covers all the spatial types that PostGIS has to offer. You’ll learn how to create these using various functions and learn about concepts unique to each spatial type.

 Chapter 3 is an introduction to spatial reference systems, and we’ll explain the concepts behind them, why they’re important for working with geometry, raster, and topology, and how to work with them.

 Chapter 4 covers how to load spatial data into PostGIS using packaged tools as well as additional third-party open source tools. You’ll learn how to load geometry and geography data using the shp2pgsql command-line tool commonly packaged with PostGIS distributions, as well as the shp2pgsql-gui GUI loader/exporter that’s packaged with some desktop distributions of PostGIS. You’ll also learn how to load raster data using the PostGIS-packaged raster2pgsql command-line tool and how to import and export both raster and vector data of various formats using the GDAL/OGR suite. You’ll also learn how to query data from external sources without loading them by using PostgreSQL foreign data wrappers (FDWs).

 Chapter 5 covers some of the more common open source desktop tools for viewing and querying PostGIS data.

 Chapter 6 starts getting into the simpler core functions that are used with geometry and geography functions. These all take single geometry or geography objects and morph them or take text representations of them and convert them to PostGIS spatial objects.

 Chapter 7 is an introduction to raster functions. It covers some functions for creating rasters, interrogating rasters, and setting pixel values.

 Chapter 8 concludes this first part by introducing you to spatial relationships. Spatial relationships are most important when working with sets of data. In later sections of the book, we’ll use these concepts to do things like spatial joins.

1 What is a spatial database?

 This chapter covers

 	
Spatial databases in problem solving

 	
Spatial data types

 	
Modeling with spatial in mind

 	
Why you might use PostGIS/PostgreSQL for a spatial database

 	
Loading and querying spatial data

 Most folks experience their first spatially enabled application when they see pushpins tacked onto points of interest on an interactive map. This provides a glimpse into the vast and varied field of geographic information systems (GIS).

 We’ll begin this chapter with a pushpin model. As we demonstrate its limited usefulness, we’ll introduce the need for a spatial database—not just any database, but PostGIS. PostGIS is a spatial database extender for the PostgreSQL database management system. We’ll provide a brief introduction to the entire PostGIS suite and whet your appetite with an example that goes far beyond what you can accomplish with pushpins.

 The data and code used in this chapter can be found at www.postgis.us/chapter_01_edition_3.

1.1 Thinking spatially

 Popular mapping sites such as OpenStreetMap, Mapbox, Google Maps, Bing Maps, and MapQuest have empowered people in many walks of life to answer the question “Where is something?” by displaying teardrop shapes on a gorgeously detailed, interactive map. No longer are we restricted to textual descriptions of “where,” like “Turn right at the supermarket, and it’ll be the third house on the right with a mangy dog out front.” Nor are we faced with the frustrating problem of not being able to figure out our current location on a paper map.

 Going beyond getting directions, organizations large and small have discovered that mapping can be a great resource for analyzing patterns in data. By plotting the addresses of pizza lovers, a national pizza chain can assess where to locate the next grand opening. Political organizations planning grassroots campaigns can easily see on a map where the undecided or unregistered voters are located and target their route walks accordingly. Even though the pushpin model offers unprecedented geographical insight, the reasoning that germinates from it is entirely visual.

 In the pizza example, the chain might be able to see the concentration of pizza lovers in a city by means of adding pushpins, but what if they needed to differentiate pizza lovers by income level? If the chain has a gourmet offering, it would be a good idea to locate new restaurants in the midst of mid- to high-income pizza lovers. The pizza planners could use pushpins of different colors on an interactive map to indicate various income tiers, but the heuristic visual reasoning will now be much more complicated, as shown in figure 1.1. Not only do the planners need to look at the concentration of pushpins, they must also keep the varying colors or icons of the pin in mind. Add another variable to the map, like households with lactose-intolerant adults, and the problem overwhelms our feeble minds. Spatial databases come to the rescue.

 [image:]

 Figure 1.1 Pushpin madness!

 A spatial database is a database with column data types specifically designed to store objects in space—these data types can be added to database tables. The information stored is usually geographic in nature, such as a point location or the boundary of a lake. A spatial database also provides functions and indexes for querying and manipulating the spatial data, which can be called from a query language such as Structured Query Language (SQL). A spatial database is often just used as a storage container for spatial data, but it can do much more than that. Although a spatial database need not be relational in nature, most are. A spatial database gives you a storage tool, an analysis tool, and an organizing tool all in one.

 Presenting data visually isn’t a spatial database’s only goal. The pizza shop planners can store an infinite number of attributes of the pizza-loving household, including income level, number of children in the household, pizza-ordering history, and even religious preferences and cultural upbringing (as they relate to topping choices on a pizza). More important, the analysis need not be limited to the number of variables that can be juggled in the brain. The planners can make very specific requests, like “Give me a list of neighborhoods ranked by the number of high-income pizza lovers who have more than two children.” Furthermore, they can easily incorporate additional data from varied sources, such as the location and rating of existing pizzerias from restaurant review sites or the health-consciousness level of various neighborhoods as identified by the local health commission. Their questions of the database could be as complicated as “Show me the region with the highest number of households where the average closest distance to any pizza parlor with a star-ranking below 5 is greater than 16 kilometers (10 miles). Oh, and toss out the health-conscious neighborhoods.”

 Table 1.1 shows what the results of such a spatial query might look like.

 Table 1.1 Result of a spatial query

 	
 Region

 	
 Households

 	
 Restaurants

 	
 Distance

 	
 Region A

 	
 194

 	
 1

 	
 17.1 km

 Suppose you aren’t a mapping user but are more of a data user. You work with data day in and day out, never needing to plot anything on a map. You’re familiar with questions like “Give me all the employees who live in Chicago” or “Count up the number of customers in each postal code.” Suppose you have the latitude and longitude of all the employees’ addresses; you could ask questions like “Give me the average distance that each employee must travel to work.” This is the extent of the kind of spatial queries that you can formulate with conventional databases, where data types consist mainly of text, numbers, and dates.

 But suppose the question posed is “Give me the number of houses within two miles of the coastline requiring evacuation in the event of a hurricane” or “How many households would be affected by the noise of a newly proposed runway?” Without spatial support, these questions would require you to collect or derive additional values for each data point. For the coastline question, you’d need to determine the distance from the beach, house by house. This could involve algorithms to find the shortest distance to fixed intervals along the coastline or require a series of SQL queries to order all the houses by proximity to the beach and then make a cut. With spatial support, all you need to do is reformulate the question slightly as “Find all houses within a two-mile radius of the coastline.” A spatially enabled database can intrinsically work with data types like coastlines (modeled as linestrings), buffer zones (modeled as polygons), and beach houses (modeled as points).

 As with most things in life worth pursuing, nothing comes without some effort. You’ll need to climb a gentle learning curve to tap into the power of spatial analysis. The good news is that unlike other good things in life, the database that we’ll introduce you to is completely free—moneywise.

 If you’re able to figure out how to get data into your Google map, you’ll have no problem taking the next step. If you can write queries in non-spatially enabled databases, we’ll open your eyes and mind to something beyond the mundane world of numbers, dates, and strings. Let’s get started.

1.2 Introducing PostGIS

 PostGIS is a free and open source library that spatially enables the free and open source PostgreSQL object-relational database management system (ORDBMS). We want you to choose PostgreSQL as your relational database and PostGIS as your spatial database extender for PostgreSQL.

1.2.1 Why PostGIS

 PostGIS started as a project of Refractions Research (http://refractions.net), a geospatial consulting company located in Victoria, Canada, and has since been adopted and improved on by governments, universities, public organizations, and other companies.

 The power of PostGIS is enhanced by other supporting projects:

 	
 Proj—Provides projection support, now in its seventh generation

 	
 Geometry Engine Open Source (GEOS)—Advanced geometry processing support

 	
 Geospatial Data Abstraction Library (GDAL)—Provides many advanced raster-processing features

 	
 Computational Geometry Algorithms Library (CGAL/SFCGAL)—Enables advanced 3D analysis

 Most of these projects, including PostGIS, now fall under the umbrella of the Open Source Geospatial Foundation (OSGeo).

 The foundation of PostGIS is the PostgreSQL object-relational database management system (ORDBMS), which provides transactional support, gist index support for spatial objects, and a query planner out of the box. It’s a great testament to the power and flexibility of PostgreSQL that Refractions Research chose to build on top of PostgreSQL rather than on any other open source database.

1.2.2 Standards conformance

 PostGIS and PostgreSQL conform to industry standards more closely than most products. PostgreSQL supports many of the newer ANSI SQL features. PostGIS supports OGC standards and the SQL Multimedia spec (SQL/MM) spatial standard. This means that you aren’t simply learning how to use a set of products; you’re garnering knowledge about industry standards that will help you understand other commercial and open source geospatial databases and mapping tools.

 What are OGC, OSGeo, ANSI SQL, and SQL/MM?

 OGC stands for Open Geospatial Consortium, and it’s the body that exists to standardize how geographic and spatial data is accessed and distributed. Toward that goal, they have numerous specifications that govern accessing geospatial data from web services, geospatial data delivery formats, and querying of geospatial data.

 OSGeo stands for Open Source Geospatial Foundation, and it’s the body whose initiative is to fund, support, and market open source tools and free data for GIS. There’s some overlap between the OSGeo and OGC. Both strive to make GIS data and tools available to everyone, which means they’re both concerned about open standards.

 You’ll also often hear the term American National Standards Institute (ANSI) or International Organization of Standardization (ISO) SQL. The ANSI/ISO SQL standards define general guidelines that SQL implementations should follow. These guidelines are often year-dated, like ANSI SQL 92 and ANSI SQL:2016, and they build upon prior year specs. You’ll find that many relational databases support most of the ANSI SQL 92 spec but not as much of the later specs. PostgreSQL supports many of the newer guidelines, some of which we’ll cover in appendix C.

 The ANSI/ISO SQL Multimedia spec (SQL/MM) is a specification that, among other things, defines standard functions for spatial data used in SQL.

 As spatial became not so special and almost an expected part of high-end relational databases, much of what OGC governed fell under the ANSI/ISO SQL making body. As a result, you’ll often see the newer SQL/MM specs referring to spatial types with an ST_ prefix, like ST_Geometry and ST_Polygon, instead of the unadorned Geometry and Polygon from the older OGC/SFSQL (Spatial Features for SQL) specs.

 If your data and your APIs implement standards supported by many kinds of software—Cadcorp, Safe FME, AutoCAD, Manifold, MapInfo, Esri ArcGIS, ogr2ogr/GDAL, OpenJUMP, QGIS, Deegree, MapGuide, UMN MapServer, GeoServer, or even standard programming tools like SQL, JavaScript, PHP, Python, Ruby, Java, Perl, ASP.NET, SQL, or new emerging tools—then everyone can use the tools that they feel most comfortable with, or that fit their work processes, or that they can afford, and share information with one another. OSGeo tries to ensure that regardless of how small your pocketbook is, you can still afford to view and analyze GIS data. OGC and ANSI/ISO SQL try to enforce standards across all products so that regardless of how expensive your GIS platform is, you can still make your hard work available to everyone. This is especially important for government agencies whose salaries and tools are paid for with tax dollars; for students who have a lot of will and the intelligence to learn advanced technology, but have small pockets; and even for smaller vendors who have a compelling offering for specific kinds of users but who are often snubbed by larger vendors because they can’t support (or lack access to) the private API standards of the big-name vendors.

 PostGIS is supported by a vast number of GIS proprietary desktop and server tools. PostGIS is also the preferred spatial relational database of most open source geospatial desktop and web mapping server tools and the preferred spatial relational database platform for most government and start-ups.

 We’ll cover some of the more common tools that work with PostGIS in chapters 5 and 17.

1.2.3 PostGIS is powerful

 PostGIS provides many spatial operators, spatial functions, spatial data types, and spatial indexing enhancements to PostgreSQL. If you add to the mix the complementary features that PostgreSQL and other related projects provide, you have a jam-packed powerhouse at your disposal that’s well suited for sophisticated GIS analysis and that is a valuable tool for learning GIS.

 You’ll be hard pressed to find the following features in other spatial databases:

 	
 Functions to work with GeoJSON, Keyhole Markup Language (KML), Mapbox Vector Tiles (MVT) allowing web applications to talk directly to PostGIS without the need for additional serializing schemes or translations

 	
 Comprehensive geometry processing functions that go far beyond basic geometric operations, including functions for fixing invalid geometries and for simplifying and deconstructing geometries

 	
 Built-in 3D and topology support

 	
 Over 300 seamless operations for working with vectors and rasters in tandem, as well as for converting between the two families

 GeoJSON, KML, and MVT data formats

 Geographic JavaScript Object Notation (GeoJSON; http://geojson.org) and Keyhole Markup Language (KML; http://en.wikipedia.org/wiki/Keyhole_Markup_Language) are two of the older, more popular vector formats used by web mapping applications. Mapbox Vector Tiles (MVT) is a relatively new standard that has gained quite a bit of popularity in the last few years.

 	
 GeoJSON is an extension of JSON that’s used for representing JavaScript objects. It adds to the JSON standard support for geographic objects.

 	
 KML is an XML format developed by Keyhole (which was purchased by Google), first used in Google’s mapping products and later supported by various mapping APIs.

 	
 Mapbox Vector Tiles (MVT) is a binary vector format popularized by Mapbox that dishes out data in tiles of binary vector data, allowing client-side styling of vector data, often lighter than standard raster tiles, and for scaling resolution.

 These are only three of the many formats that PostGIS can output.

1.2.4 Built on top of PostgreSQL

 The major reason PostGIS was built on the PostgreSQL platform was the ease of extensibility that PostgreSQL provided for building new types and operators and for controlling the index operators. PostgreSQL was designed to be extensible from the ground up.

 PostgreSQL has a regal lineage that dates back almost to the dawn of relational databases. It’s a cousin of the Sybase and Microsoft SQL Server databases, because the people who started Sybase came from UC Berkeley and worked on the Ingres or PostgreSQL projects with Michael Stonebraker. Michael Stonebraker is considered by many to be the father of Ingres and PostgreSQL and to be one of the founding fathers of object-relational database management systems. The source code of Sybase SQL Server was later licensed to Microsoft to produce Microsoft SQL Server.

 PostgreSQL’s claim to fame is that it’s the most advanced open source database in existence. It has the speed and functionality to compete with the popular commercial enterprise offerings, and it’s used to power databases petabytes in size. As time has moved on, new usability features have been added, making it not only the most advanced, but perhaps the most flexible and best relational database out there. For more details about the features of PostgreSQL and the key enhancements in newer versions that are lacking in most other databases (including expensive proprietary ones), please refer to appendix D.

 PostgreSQL is becoming a one-size-fits-all database that doesn’t sacrifice the needs and wants of any database users. Most OS distributions carry a fairly new version that provides a quick and painless install process. Since the last edition of this book, cloud offerings have come on board that provide PostgreSQL with PostGIS out of the box. Some popular cloud versions of PostgreSQL that PostGIS users use are CartoDB, Heroku PostgreSQL, Microsoft Azure database for PostgreSQL, and Amazon RDS and Aurora for PostgreSQL. Google BigQuery, a data warehouse service provided by Google, though not PostgreSQL, has adopted PostgreSQL constructs and PostGIS function names and spatial types for querying their spatial data (https://cloud.google.com/bigquery/docs/gis-data).

1.2.5 Free—as in money

 Licenses for SQL Server Standard start at $5,000 and can easily cost you $20,000 for a modest server. The free version of SQL Server, while it has the same spatial functionality as the paid version, is crippled by its memory and processor limits.

 Oracle Standard prior to Oracle 19c shipped only with Oracle Locator, which had only elementary functionality. Oracle spatial prior to Oracle 19c required Oracle Spatial purchase to get the advanced spatial features. Starting with Oracle 19c, all editions include the Oracle spatial support.

 PostGIS is free. ’Nuff said.

1.2.6 Free—as in freedom

 PostGIS and PostgreSQL are open source. PostGIS is under a GPLv2+ license; PostgreSQL is under a BSD-style license, which means you can both see and modify the source code. If you find a feature missing, you can contribute a patch or pay a developer to add the feature. Adding features to PostGIS and PostgreSQL generally costs much less than the licensing costs for proprietary counterparts. If you discover a bug in PostGIS or PostgreSQL, you’ll find the PostGIS and PostgreSQL teams very responsive in addressing bugs—more so than most proprietary database vendors.

 You have more freedom to control your destiny with PostGIS and PostgreSQL than you do with comparable proprietary offerings. You can install PostGIS on as many servers as you want, and you aren’t limited by artificial restrictions on how many cores you can use.

 The openness of PostGIS has spawned an explosion of user-contributed add-ons and community-funded features. These are the most notable ones to date: raster support, geodetic support, topology support, improved 3D support, faster spatial indexes, TIGER geocoder enhancements, and a PostGIS spatial viewer in the pgAdmin4 database management tool commonly shipped with PostgreSQL.

 The release cycles for PostGIS and PostgreSQL are radically shorter than those of commercial offerings. With contributions from users, PostgreSQL evolves at a rate of one major version per year and one patch release version every two or three months, with bugs getting immediate attention. You don’t have to wait years in anticipation of features promised in subsequent releases. If you choose to live on the bleeding edge, you can even download a new build every other week.

1.2.7 Alternatives to PostGIS

 Admittedly, PostGIS isn’t the only spatial database in use today. Early entrants were dominated by proprietary offerings, and PostGIS broke this mold. Successors to PostGIS are gravitating towards installations with lightweight footprints for use on mobile devices. We’re also beginning to see spatial features in NoSQL databases like MongoDB, CouchDB, Elastic Search, and Solr.

 Oracle Spatial

 Oracle was the one that started it all. In Oracle 7, joint development efforts with Canadian scientists gave birth to SDO (Spatial Data Option). In later releases, Oracle redubbed this lovechild as Oracle Spatial.

 Oracle Spatial isn’t available with lower-priced editions of Oracle. Only when you fork out the money for Oracle Enterprise Edition will you have the luxury of being able to buy the Oracle Spatial option.

 Standard Oracle installations do come with something called Oracle Locator, which offers the basic geometry types, proximity functions, some spatial aggregates, and limited spatial processing. Oracle has been pressured by users to provide more spatial support in Oracle Locator, so newer versions of Oracle Locator do provide basic functions like union and intersection but leave out union aggregate options and many other functions you’ll find in PostGIS, SQL Server, and Oracle Spatial.

 Microsoft SQL Server

 Microsoft introduced spatial support in their SQL Server 2008 offering, with its built-in Geometry and Geodetic Geography types and companion spatial functions. To Microsoft’s credit, you’ll get the same feature set with their Express, Standard, Enterprise, and Datacenter offerings. You may just be limited regarding database size, how many processors you can use, and what query plan features you’re allowed.

 Microsoft’s spatial feature, except their curved and geodetic support, pales in comparison to PostGIS. Admittedly, Microsoft SQL Server has probably got the best curve and geodetic support of any database—it’s the only one to support curved geometries in geodetic space. But don’t expect to find numerous output/input functions, such as input/output for KML, GeoJSON, and MVT, or raster support, or the numerous processing functions that PostGIS has.

 SpatiaLite and GeoPackage

 Our favorite kids on the block are SpatiaLite and GeoPackage, which are both add-ons to the open source SQLite portable database. These are especially interesting because they can be used as low-end companions to PostGIS and other high-end spatially enabled databases.

 GeoPackage is an OGC standard storage and transport mechanism that can store both vector and raster data. Internally, it is a relational database just like PostGIS, and it’s growing in popularity with tools such as QGIS, making it a default standard for exporting data.

 GeoPackage is touted more as a data storage than a querying tool, and it leaves the query functionality to tools that use it. SpatiaLite, on the other hand, includes much of the same functionality you’ll find in PostGIS and builds using the same libraries that PostGIS uses: GEOS, PROJ, and GDAL. This makes it an even more fitting companion to PostGIS because many of the conventions are the same and much of the ecosystem around PostGIS also supports or is starting to support SpatiaLite/RasterLite.

 What SpatiaLite lacks is a strong enterprise database behind it for writing advanced functions and spatial aggregate functions. That’s why some spatial queries possible in PostGIS are harder to write or are not even possible in SpatiaLite.

 SpatiaLite, SQLite, and GeoPackage store data as a single file that’s easily transportable. This makes it less threatening to deploy for users new to databases or GIS and easier to deploy as a lightweight offline database companion to a server-side database like PostGIS/PostgreSQL.

 MySQL

 MySQL has had elementary spatial support since version 4, but MySQL, as a database, is handicapped by its lack of a powerful SQL engine. Its primary audience is still developers who are looking for a database that will store something, rather than do something. Earlier MySQL spatial support made the fatal mistake of not providing indexing capabilities except on MyISAM tables—spatial queries rely heavily on indexing for speedy performance. In version 5.6, MySQL extended geometric operations to work beyond bounding boxes and also allowed spatial indexes on its InnoDB storage engine. Newer versions of MySQL and MariaDb offer even more functions, such as GeoJSON and other output functions.

 Oracle MySQL and other MySQL forks like MariaDB have made strides in the 5.6 variants by improving the performance of subqueries, but the query planner and SQL feature set in the MySQL family is still a kid when compared to the likes of PostgreSQL, SQL Server, and Oracle, so MySQL is not suitable for doing anything as complex as most spatial analysis. The spatial support has vastly improved in MySQL 8 and MariaDb 10, but it’s still no competition for PostGIS.

 Although Oracle MySQL and MariaDb have mostly the same functionality, their spatial offerings are not exactly the same. For a comparison of the differences, see the MariaDB website (https://mariadb.com/kb/en/library/mysqlmariadb-spatial-support-matrix/).

 ArcGIS by Esri

 We must give a nod to Esri, which has long packaged its spatial database engine (SDE) with its ArcGIS for Server product. The SDE engine is integrated into the ArcGIS line of products and is often used to spatially enable or augment legacy or weak database products, such as Microsoft SQL Server 2005 and Oracle Locator.

 Older versions of ArcGIS desktop required going through an SDE middle tier to get at the native offerings of your spatial database. Newer versions, starting around ArcGIS 10.0, allow for direct access to PostGIS and other databases. By sidestepping the middleware, you’re free to use any version of PostGIS with ArcGIS desktop.

 Be careful when using ArcGIS as it installs its own flavor of geometry in PostgreSQL. This often causes users of PostGIS confusion as they sometimes pick the sde.st _geometry database type instead of the PostGIS geometry type and are further locked into Esri middleware. The sde.st_geometry type is needed to use Esri versioning tools, but for most other uses it’s a hinderance.

 Although the Esri proprietary model doesn’t sit well with us, we must give them credit—a lot of credit, in fact—for being one of the first major companies to introduce GIS analysis to commercial and government organizations. They paved the way for, but still stand in the way of, the rise of free and open source GIS.

1.3 Installing PostGIS

 We encourage you to install the latest versions of PostgreSQL and PostGIS—PostgreSQL 13 and PostGIS 3.1 at the time of writing. The introduction of the extension model in PostgreSQL 9.1 greatly simplified the installation of add-ons (such as PostGIS) to two steps:

 	
 Locate and install the binaries for your particular OS into your PostgreSQL directories.

 	
 Individually enable the extensions for each database as needed. For instance, if you have 10 databases on your server, but only 2 require PostGIS, you’d only enable PostGIS for the 2.

 PostGIS must be enabled in each database

 One characteristic of PostgreSQL that confuses many people coming from other database systems is that custom extensions like PostGIS, hstore, PL/JavaScript, and PL/Python must be enabled in each database they will be used in. This isn’t the case for built-in types like Full-Text, XML, JSON, JSONB, and so on, which are always present.

 Many of the popular Linux/Unix distributions include PostGIS 3.1 in their repositories. Use yum or apt to install the binaries. For Mac users, there are a couple of popular distributions, all itemized on the PostGIS install page (http://postgis.net/install). For MS Windows, we recommend using the EnterpriseDB (EDB) application Stack Builder, if you are uncomfortable with command lines. We also are the package maintainers for the “Spatial Extensions” category in the EDB Windows application Stack Builder. We try to pack the “Spatial Extensions” category with all the PostGIS extensions and many related PostGIS extensions, such as pgRouting and pgPointcloud. Please refer to appendix B for more details on where to obtain binaries for your OS.

 Two popular tools come packaged with PostgreSQL: psql and pgAdmin. You use these tools to create databases, users, and compose queries.

 Psql is strictly a command-line tool. If you don’t have a GUI, psql is your only option.

 If you have the luxury of a graphical interface, we encourage you to use the more newbie-friendly pgAdmin. PgAdmin can be installed separately from PostgreSQL. You can find source code as well as precompiled binaries at the pgAdmin site (www.pgadmin.org).

 Once you’ve successfully installed the binaries, you can create a database with a command such as this, using the psql or pgAdmin query tool:

 CREATE DATABASE postgis_in_action;

 After creating the database, you should connect to it. You can do this in psql with \connect postgis_in_action and in pgAdmin by refreshing the database tree and selecting the new database.

 You should next enable PostGIS in your database by connecting to the database and running the code in the following listing. Enabling the extension rarely fails, but you may encounter dependency errors, especially if you have earlier versions of PostGIS floating around.

 Listing 1.1 Enabling PostGIS in a database

 CREATE SCHEMA postgis; ❶
GRANT USAGE ON schema postgis to public; ❷
CREATE EXTENSION postgis SCHEMA postgis; ❸
ALTER DATABASE postgis_in_action SET search_path=public,postgis,contrib; ❹

 ❶ Create the schema.

 ❷ Give all users access.

 ❸ Install the postgis extension.

 ❹ Add to the search path.

 Tip Although it’s not required, we always install postgis in a separate schema such as postgis so the functions don’t clutter up the default public schema.

 You can also enable extensions in pgAdmin, using the Extensions install section pictured in figure 1.2.

 [image:]

 Figure 1.2 Database with postgis extension installed

 Warning Installing postgis with the pgAdmin Extensions interface doesn’t allow you to set which schema it should be installed in. It defaults to installing postgis in the public schema. As a result, we prefer running CREATE EXTENSION from the query window instead of using the Extensions interface.

 If postgis isn’t listed, you can install it by right-clicking the Extensions branch, choosing New Extension, and picking postgis from the menu.

 You should see postgis listed in the Add Extension menu if you installed the binaries and don’t have it already installed in your selected database.

 PostGIS 3 raster support packages separately

 Prior to PostGIS 3, the postgis raster support was included as part of the postgis extension. If you are using PostGIS 3+ and want to use raster and raster functions, you’ll need to perform the following additional step:

 CREATE EXTENSION postgis_raster SCHEMA postgis;

1.3.1 Verifying versions of PostGIS and PostgreSQL

 After a PostGIS install, disconnect from your database and reconnect. Then quickly verify the versions to make sure the installation succeeded. Execute the following query:

 SELECT postgis_full_version();

 If all is well, you should see the version of PostGIS, as well as the versions of the supporting GEOS, GDAL, PROJ, LIBXML, and LIBJSON libraries, as shown here:

 POSTGIS="3.1.1 3.1.1" [EXTENSION]
PGSQL="130" GEOS="3.9.1-CAPI-1.14.1" PROJ="7.1.1"
GDAL="GDAL 3.2.1, released 2020/12/29"
LIBXML="2.9.9" LIBJSON="0.12"
LIBPROTOBUF="1.2.1" WAGYU="0.5.0 (Internal)" TOPOLOGY RASTER

 Installing visualization tools

 Unlike conventional character-based databases, spatial databases must be experienced visually. When you view a bitmap file, you’d much rather see the rendered bitmap than the bits themselves. Similarly, you’d much rather see your spatial objects rendered rather than their textual representations.

 Many visualization tools are available for free download, with OpenJump and QGIS being two of the more popular ones. pgAdmin, starting at the pgAdmin4 3.3 version, includes a lightweight PostGIS viewer for viewing the output of spatial queries. The pgAdmin4 tool, however, does not allow you to overlay multiple queries as you can with OpenJump and QGIS. It also doesn’t allow the viewing of PostGIS rasters, as you can with QGIS.

 We encourage you to install multiple viewing tools for comparison. Chapter 5 offers a quick guide to installing and will get you started with these tools.

1.4 Spatial data types

 Four key spatial types are offered by PostGIS: geometry, geography, raster, and topology. PostGIS has always supported the geometry type from its inception. It introduced support for geography in PostGIS 1.5. PostGIS 2.0 raised the bar further by incorporating raster, introducing areal types in the geometry type and network topology support. Although PostGIS 2.1 introduced many more functions, perhaps the most important feature it provided was faster speed, particularly for raster and geography operations. Newer versions of PostGIS have introduced newer spatial index types such as spgist, BRIN, and support for parallelizing queries:

 	
 Geometry—The planar type. This is the very first model, and it’s still the most popular type that PostGIS supports. It’s the foundation of the other types. It uses the Cartesian math you learned about in high school geometry.

 	
 Geography—The spheroidal geodetic type. Lines and polygons are drawn on the earth’s curved surface, so they’re curved rather than straight lines. PostGIS 2.2 introduced support for any geodetic spatial reference systems, which means you can use geography for other planets, such as Mars or your own made-up world.

 	
 Raster—The multi-band cell type. Rasters model space as a grid of rectangular cells, each containing a numeric array of values.

 	
 Topology—The relational model type. Topology models the world as a network of connected nodes, edges, and faces. Objects are composed of these elements and may share these with other objects. There are really two related concepts in topology—the network, which defines what elements each thing is composed of, and routing. PostGIS 2+ packages the network topology model, which is often just referred to as topology.

 Network topology ensures that when you change the edge of an object, other objects sharing that edge will change accordingly. Routing is commonly used with PostGIS via a long-supported add-on called pgRouting. Routing not only cares about connectedness but also how costly that connectedness is. pgRouting is mostly used for building trip navigation applications (taking into account the cost of tolls or delays due to construction), but it can be used for any application where costs along a path are important. We’ll cover pgRouting in later chapters of this book.

 All these four types can coexist in the same database and even as separate columns in the same table. For example, you can have a geometry that defines the boundaries of a plant, and you can have a raster that defines the concentration of toxic waste along each part of the boundary.

1.4.1 Geometry type

 In two dimensions, you can represent all geographical entities with three building blocks: points, linestrings, and polygons (see figure 1.3). For example, an interstate highway crossing the salt flats of Utah clearly jumps out as linestrings cutting through a polygon. A desolate gas station located somewhere along the interstate can be a point.

 [image:]

 Figure 1.3 Basic geometries: a point, a linestring, and a polygon

 But you need not limit yourself to the macro dimensions of road atlases. Look around your home. Use rectangular polygons to represent rooms. The wiring and the piping running behind the walls would be linestrings. You can use either a point or a polygon to stand in for the dog house, depending on its size. Just by abstracting the landscape to 2D points, linestrings, and polygons, you have enough to model everything that could crop up on a map or a blueprint.

 Don’t be overly concerned with the rigorous definition of the geometries. Questions such as “how many angels will fit into a point,” and “what is the width of a linestring” are best left for mathematicians and philosophers. To us, points, linestrings, and polygons are simplified models of reality. As such, they’ll never perfectly mimic the real thing. Also, don’t worry if you feel that we’re leaving out other geometries. Two good examples are beltways around a metropolis and hippodromes. The former could be well represented by circles, the latter by ellipses. You’ll do fine by approximating them using linestrings with many segments and polygons with many edges.

 The geometry type treats the world as a flat Cartesian grid. The mathematics behind the model requires nothing more than the analytic geometry you learned in high school. The geometry model is intuitively appealing and computationally speedy, but it suffers from one major shortcoming—the flat earth.

1.4.2 Geography type

 The curvature of the earth comes into play when you’re modeling anything that extends beyond the visual horizon. Although geometry works for architectural floor plans, city blocks, and runway diagrams, it comes up short when you model shipping lanes, airways, or continents, or whenever you consider two locations that are far apart. You can still perform distance computations without abandoning the Cartesian underpinnings by sprinkling a few sines and cosines into your formulas, but the minute you need to compute areas, the math becomes intractable.

 A better solution is to use a family of data types based on geodetic coordinates—geography. Geography shields the complexity of the math from the PostGIS user. As a trade-off, geography offers fewer functions, and it trails geometry in speed. You’ll find the same point, linestring, and polygon data types in geography; just keep in mind that the linestrings and polygons conform to the curves of a globe.

 Are geometry and geography standard or not?

 The geometry type is a long-accepted OGC SQL/MM type that you’ll find in other relational databases. Geography, on the other hand, isn’t a standard type and is only found in a few spatial databases. PostGIS, SQL Server, and Google BigQuery are the only ones we know of that have it. You’ll find newer MySQL and Oracle versions repurpose their geometry type and switch to a round earth model if the coordinates of the geometry are in degrees.

 The PostGIS geography type is loosely patterned after the SQL Server geography type. For general use cases, you can think of the SQL Server geography type and PostGIS geography type as the same kind of animal.

1.4.3 Raster type

 Geometry and geography are vector-based data types. Loosely speaking, anything you can sketch with an ultra-fine pen without running short on ink lends itself to vector representation. Vectors are well suited to modeling designed or constructed features, but suppose you snap a colored photo of the coral-rich Coral Sea. With its motley colors and fractal patterns, you’re going to have a hard time constructing lines and polygons out of the photo. Your best hope is to quantize the photo into microscopic rectangles and assign a color value to each. Raster data is exactly this—a mosaic of pixels.

 Perhaps the best example of a raster is the television you stare into every day, for hours on end. A TV screen is nothing more than a giant raster with some two million pixels. Each pixel stores three different color values: the intensity of red, green, and blue (hence the term RGB). In raster-speak, each color is called a band. The pixel represents some area of geographic space, which can vary based on the dimensions of the film you are watching and the number of pixels on your TV set.

 If you’re buying a TV, the physical number of pixels will matter greatly to you: the larger the number of pixels, the bigger the viewing area and the more money it’ll cost you. A pixel represents a certain unit of area in reality, and raster data is stored in those pixels.

 Raster data almost always originates from instrumental data collection and often serves as the raw material for generating vector data. As such, you’ll encounter a lot more sources of raster data than vector data. PostGIS will let you overlay vector data atop raster data and vice versa. The satellite view you often see in maps is a perfect example of such an overlay. You see roads (vector data) superimposed on top of the satellite imagery (raster).

 Rasters appear in the following applications:

 	
 Land coverage or land use.

 	
 Temperature and elevation variations. This is a single-band raster where each square holds a measured temperature or elevation value.

 	
 Color aerial and satellite photos. These have four bands—one for each of the colors of the RGB, and A for alpha intensity color space.

1.4.4 Topology type

 When you gaze down at the terrain from your private jet, what you witness is not distinct geometries on a barren terrestrial plane, but an interwoven network of points, linestrings, and polygons. A cornfield abuts a wheat field, which abuts a pasture, which abuts a large expanse of prairie. Roads, rivers, fences, or other artificial boundaries divide them all. The surface of the earth (at least the parts that host humanity) resembles a completed jigsaw puzzle. Topology models take on this jigsaw perspective of the world. Topology recognizes the inherent interconnection of geographic features and exploits it to help you better manage data.

 Consider a historical example where you want to model the United States and Mexico as two large polygons. Prior to the Gadsden Purchase, the northern boundary of Mexico extended well into present day Arizona and parts of New Mexico. For 33 cents per acre, the US “purchased” 30 million acres from Mexico. The US polygon grew as the Mexico polygon shrank. If you were using the geometry family to model the two polygons, you’d have to perform two operations to get your record-keeping straight: enlarge the US and shrink Mexico. Using the topology model, you only need to perform one operation—either the enlargement or the shrinkage—because topology tracks the fact that the US abuts Mexico. If the US grows on its southern border, Mexico must shrink on its northern border. One operation implies the other.

 Topology isn’t concerned with the exact shape and location of geographic features, but with how they’re connected to each other.

 Topology is useful in the following applications:

 	
 Parcel (land lot) data, where you want to ensure that the change of one parcel boundary adjusts all other parcels that share that boundary change as well.

 	
 Road management, water boundaries, and jurisdiction divisions. U.S. Census MAF/Topologically Integrated Geographic Encoding and Referencing system (TIGER) data is a perfect example (www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html).

 	
 Architecture.

1.5 Hello real world

 In this section, we’ll walk you through a full example from start to finish. Unfortunately, PostGIS is not a programming language where a few lines of code will print a “Hello World” message on your screen. Instead, to provide you with a true taste of PostGIS, we’re going to guide you through the following steps:

 	
 Digesting a problem and formulating a solution

 	
 Modeling

 	
 Gathering and loading data

 	
 Writing a query

 	
 Viewing the result

 If you’re completely new to PostGIS, just perform the tasks we ask of you for now. You won’t understand most of what you’re typing, but you’ll have the rest of this book for that. Right now, we want to give you an overview of the steps involved in writing a spatial query.

 Before going further, you’ll need to have working copies of PostGIS and PostgreSQL, as well as ancillary tools such as pgAdmin to compose and execute your queries. Information about acquiring and installing these can be found in appendix B. As always, if you’re starting from scratch, we recommend you install the latest versions.

1.5.1 Digesting the problem

 Here’s the scenario you’re faced with: you need to find the number of fast-food restaurants within one mile of a highway. As for why someone might want to do this, any of the following reasons could apply:

 	
 A fast-food chain is trying to locate a new store where supply falls short.

 	
 A highway commissioner wants to satisfy the needs of motorists, who will be paying tolls.

 	
 A health-conscious parent is trying to cut down the availability of fast food in the neighborhood.

 	
 Hungry travelers are looking for their next meal.

 First, you need to realize that you’re not going to be able to answer this question quickly or accurately with your usual arsenal of Google Maps, Bing, or MapQuest, or even with the latest paper map you picked up from the auto association. Learning PostGIS may not be any quicker, but you’ll have at your disposal the tools and skills to solve any and all problems of this kind in the future. Replace the highway with a lake, and you can determine how many homes surrounding the lake can be considered waterfront property. On a geodetic scale, replace the highway with the continent of Australia, and you can determine the number of islands within territorial waters. From there, you can even go on to a planetary scale and ask how many moons are within 10 million kilometers at perigee.

 Once you have an initial understanding of the problem, we recommend that you immediately perform a feasibility study, even if it’s just in your mind. You don’t want to devote time toward a solution if the problem itself is impossible to solve, lacking specificity, or, worse, you have no available data source.

 Before going further, you need the postgis_in_action database you set up in section 1.3.

1.5.2 Modeling

 You need to translate the real world to a model that is composed of database objects. For this example, you’ll represent the highway as a geometric linestring and the locations of fast-food restaurants as points. You’ll then create two tables: highways and restaurants.

 Using schemas

 First you need to create a schema to hold your data for this chapter. A schema is a container, similar to a directory, that you’ll find in most high-end databases. It logically segments objects (tables, views, functions, and so on) for easier management:

 CREATE SCHEMA ch01;

 In PostgreSQL it’s very easy to back up selected schemas and also to set up permissions based on schemas. You could, for example, have a big schema of fairly static data that you exclude from your daily backups, and you could divide schemas along user groups so that you can allow each group to manage their own schema set of data. The postgis_in_action database schemas are chapter-themed so that it’s easy to download just the set of data you need for a specific chapter. Refer to appendix D for more details about schemas and security management.

 Restaurants table

 Next you need to create a lookup table to map franchise codes to meaningful names, as in the following listing. You can then add all the franchises you’ll be dealing with.

 Listing 1.2 Create a franchise lookup table

 CREATE TABLE ch01.lu_franchises (id char(3) PRIMARY KEY
 , franchise varchar(30)); ❶

INSERT INTO ch01.lu_franchises(id, franchise) ❷
VALUES
 ('BKG', 'Burger King'), ('CJR', 'Carl''s Jr'),
 ('HDE', 'Hardee'), ('INO', 'In-N-Out'),
 ('JIB', 'Jack in the Box'), ('KFC', 'Kentucky Fried Chicken'),
 ('MCD', 'McDonald'), ('PZH', 'Pizza Hut'),
 ('TCB', 'Taco Bell'), ('WDY', 'Wendys');

 ❶ Create a table.

 ❷ Populate the table.

 Finally, you need to create a table to hold the data you’ll be loading as follows.

 Listing 1.3 Create a restaurants table

 CREATE TABLE ch01.restaurants
(
 id serial primary key, ❶
 franchise char(3) NOT NULL,
 geom geometry(point,2163) ❷
);

 ❶ Create a primary key.

 ❷ Create a spatial geometry column.

 For your later analysis, you’ll need to uniquely identify restaurants so that you don’t double-count them. Also, certain mapping servers and viewers, such as MapServer and QGIS, balk at tables without integer primary keys or unique indexes. The restaurant data has no primary key, and nothing in the data file lends itself to a good natural primary key, so you create an autonumber primary key ❶.

 Next, you need to place a spatial index on your geometry column. This step can be done before or after the data load.

 CREATE INDEX ix_code_restaurants_geom
 ON ch01.restaurants USING gist(geom);

 If you are planning to load a lot of data into the table, it is more efficient to create the spatial index and any other indexes after the data load is complete so the indexing of each record doesn’t impact the load performance.

 As part of the definition of an index in PostgreSQL, you must specify the type of index, as we did in the preceding CREATE INDEX. PostGIS spatial indexes are of the gist, spgist, or brin index types. For most use cases, you’ll want to stick with gist. We’ll go over when to use each index type later in this book.

 Although it’s not necessary for this particular data set, because it won’t be updated, you’ll create a foreign key relationship between the franchise column in the restaurants table and the lookup table. This helps prevent people from mistyping franchises in the restaurants table. Adding CASCADE UPDATE DELETE rules when you add foreign key relationships will allow you to change the franchise ID for your franchises if you want, and to have those changes update the restaurants table automatically:

 ALTER TABLE ch01.restaurants
 ADD CONSTRAINT fk_restaurants_lu_franchises
 FOREIGN KEY (franchise)
 REFERENCES ch01.lu_franchises (id)
 ON UPDATE CASCADE ON DELETE RESTRICT;

 By restricting deletes, you prevent inadvertent removal of franchises with extant records in the restaurants table. (One added benefit of foreign keys is that relational designers, such as those you’ll find in OpenOffice Base and other ERD tools, will automatically draw lines between the two tables to visually alert you to the relationships.)

 You can then create an index to make the join between the two tables more efficient:

 CREATE INDEX fi_restaurants_franchises
 ON ch01.restaurants (franchise);

 Next you need to create a highways table to contain the road segments that are highways.

 Listing 1.4 Create a highways table

 CREATE TABLE ch01.highways ❶
(
 gid integer NOT NULL,
 feature character varying(80),
 name character varying(120),
 state character varying(2),
 geom geometry(multilinestring,2163), ❷
 CONSTRAINT pk_highways PRIMARY KEY (gid)
);

CREATE INDEX ix_highways
 ON ch01.highways USING gist(geom); ❸

 ❶ Create the highways table.

 ❷ Multilinestring equal area

 ❸ Add a spatial index.

 In this case, you’re creating the spatial index before loading the data, but for large tables that are loaded only once, it’s more efficient to create the indexes after you have loaded the data.

1.5.3 Loading data

 To give this example some real-world flavor, we’ll scope out real data sources.

 In this chapter, you first created the data tables and are now chasing after data to populate them. Ideally, these are the steps you’d want to take. In reality, though, you’ll sometimes find yourself subservient to the available data and begrudgingly have to alter your ideal table structure to fit what’s available.

 But don’t surrender to the availability of real data too easily. You can often create SQL scripts that will translate the less-than-perfect data from your source into your perfected data structure. Always give primacy to your model. A well-thought-out model can often ride out the vagaries of a data source. We’ll follow this mantra as we continue.

 Importing a CSV file

 Fastfoodmaps.com graciously provided us with a comma-delimited file of all fast-food restaurants circa 2005. To import a CSV file, you need to create a table beforehand. After quickly studying the CSV file, you can create a staging table:

 CREATE TABLE ch01.restaurants_staging (
 franchise text, lat double precision, lon double precision);

 Use the psql \copy command to import the CSV file into your staging table:

 \copy ch01.restaurants_staging FROM '/data/restaurants.csv' DELIMITER as ',';

 Note If your file is on the database server and you have superuser postgres access, you have the additional option of using the SQL COPY command: COPY ch01.restaurants_staging FROM '/data/restaurants.csv' DELIMITER as ',';

 Your purpose here is to get the CSV data into a table so you can scrutinize it more carefully and write any additional queries to sanitize the data before you insert it into the production table. In this case, the data passes the quality check, so you can proceed with the insert:

 INSERT INTO ch01.restaurants (franchise, geom)
SELECT franchise
 , ST_Transform(
 ST_SetSRID(ST_Point(lon , lat), 4326)
 , 2163) As geom
FROM ch01.restaurants_staging;

 Next, you use a point geometry column to store your restaurant locations. The second argument to the geometry function indicates the spatial reference ID (SRID) that you’ve selected for the restaurant data. The SRID denotes the coordinate range and how the spherical space is projected on a flat surface. In this example we use SRID 4326 (which corresponds to WGS 84 lon/lat), but then transform all the data to our desired planar projection for faster analysis. We’ll get into more detail about spatial reference systems in chapter 3.

 If you’re coming from a GIS background, you’ll know that you must have common projections before you can compare two data sets. This example uses EPSG:2163, which is an equal-area projection covering the continental United States.

 Spatial reference IDs (SRIDs) and spatial reference systems

 You’ll often find number identifiers such as 4326 and 2163 in PostGIS and other spatial database code. These refer to records in the spatial_ref_sys table, where srid is the column that uniquely identifies the record. The ID 4326 is the most popular and refers to a spatial reference system that often goes by the name WGS 84 lon/lat. We’ll go into spatial reference systems in more detail in chapter 3.

 Importing from an Esri shapefile

 You’ll find Esri shapefiles to be a common storage format for spatial data, mostly due Esri’s early predominance in GIS. To load data from shapefiles into a PostGIS database, use the shp2pgsql command-line utility that comes with all PostGIS installations. If you’re on Windows or Linux/Unix with a graphical desktop, you can also use the DbManager tool within a desktop tool called QGIS, which we’ll cover later in this book. Both shp2pgsql and QGIS can load DBF files in addition to the Esri shapefile format.

 We know our projection to be NAD 83 lon/lat, so we indicate this by changing the SRID to 4269, but be careful here! You’re simply telling the importer what the SRID is for the data coming in. You’re not transforming it! In this example, we also changed the name of the imported table to highways_staging. Click the Import button once you’re ready.

 Once the import finishes, you should see the new highways_staging table in your database. You may have to refresh the browse tree in pgAdmin. Both shp2pgsql-gui and its command-line sibling automatically add a column named geom during the import and set its data type by reading information contained in the shapefile. If you’re unfamiliar with the raw data, this is the time to study it. Perform general sanity checks, such as checking the total record count, inspecting columns that came in without data, and so on.

 To load the highway data into a staging table using the shp2pgsql command-line, you would do the following:

 shp2pgsql -D -s 4269 -g geom -I /data/roadtrl020.shp ch01.highways_staging
| psql -h localhost -U postgres -p 5432 -d postgis_in_action

 After you’re satisfied that the importer did its job without dropping any information, you can write an INSERT query to move the data from your staging table to the production table. In the query, you want to transform the SRID from 4269 to 2163 and only select columns that you defined in your production table. You can also filter the data to only the needed rows. The highway data has approximately 47,000 rows and includes every major and state highway in the U.S., and you’re only going to be looking at major highways, so you can add a filter that will bring the row count down to about 14,000.

 Listing 1.5 Populating the highways table

 INSERT INTO ch01.highways (gid, feature, name, state, geom)
SELECT gid, feature, name, state, ST_Transform(geom, 2163)
FROM ch01.highways_staging
WHERE feature LIKE 'Principal Highway%';

 The shp2pgsql command line lets you transform the SRID with an additional :<to_ srid>, so you could skip the ST_Transform step in your code by replacing the 4269 with -s 4269:2163 as follows:

 shp2pgsql -s 4269:2163 -g geom
➥ -I /data/roadtrl020.shp ch01.highways_staging
➥ | psql -h localhost -U postgres -p 5432 -d postgis_in_action

 shp2pgsql transform improved in PostGIS 3.0

 Prior to PostGIS 3.0, the shp2pgsql transform process was much slower. If you are running PostGIS 3.0 or later and have a large table, the speed is faster when loading as is and then transforming in the database. The shp2pgsql transform logic was improved in PostGIS 3.0 so you can now use the -D (faster dump format) switch. Prior versions did not support -D with constructs such as -s 4269:2163.

 After you’ve finished loading the data, it’s good to follow up with a vacuum analyze so the statistics are up to date:

 vacuum analyze ch01.highways;

1.5.4 Writing the query

 It’s now time to write the query. Remember the question we set out to answer: “How many fast-food restaurants are within one mile of a highway?” The query that will answer this question is shown in the following listing.

 Listing 1.6 Restaurants within one mile of a highway

 SELECT f.franchise
 , COUNT(DISTINCT r.id) As total ❶
FROM ch01.restaurants As r
 INNER JOIN ch01.lu_franchises As f ON r.franchise = f.id
 INNER JOIN ch01.highways As h
 ON ST_DWithin(r.geom, h.geom, 1609) ❷
GROUP BY f.franchise
ORDER BY total DESC;

 ❶ Remove duplicates.

 ❷ Spatial join

 The crux of this example is where you join the restaurants table with the highways table using the ST_DWithin function. This commonly used function accepts two geometries and returns TRUE if the minimum distance between the two geometries is within the specified distance. In this case, you pass in a point for the restaurant, a multilinestring for the highway, and 1609 meters as the distance. All restaurant-highway pairs matching the join condition will filter through.

 The join condition does allow for duplicate restaurants. For example, a McDonald’s located at the intersection of two major highways would show up twice. To only count each restaurant once, you use the COUNT(DISTINCT) construct.

 The rest of the code is elementary SQL. If you’re a little rusty on SQL, please see appendix C for a refresher. As fair warning, the SQL we use in this book will get harder.

 Finally, here’s the fruit of your labor:

 franchise_name | total
------------------------+------
 McDonald's | 5343
 Burger King | 3049
 Pizza Hut | 2920
 Wendy's | 2446
 Taco Bell | 2428
 Kentucky Fried Chicken | 2371
:

1.5.5 Viewing spatial data with OpenJump

 What’s more gratifying than to see your query output displayed on a map? You don’t want to display some 20,000 dots on a map of the US—you can find that on each chain’s restaurant locator. Instead, you’re going to draw a buffer zone around highway segments and see how many dots fall within them.

 For this you’ll use the ST_Buffer function. This function will take any geometry and radially expand it by a specified number of units. The post-expansion polygonal geometry is called a buffer zone or corridor.

 Note If you haven’t installed OpenJump, do so now before continuing. Chapter 5 discusses the installation and use of OpenJump, among other tools.

 For this example, we’ll locate Hardee’s restaurants within a 20-mile buffer of US Route 1 in the state of Maryland. Here’s the query to get the count:

 SELECT COUNT(DISTINCT r.id) As total
FROM ch01.restaurants As r
 INNER JOIN ch01.highways As h
 ON ST_DWithin(r.geom, h.geom, 1609*20)
WHERE r.franchise = 'HDE'
 AND h.name = 'US Route 1' AND h.state = 'MD';

 Let’s see where the three Hardee’s restaurants are located. Fire up OpenJump and connect to your PostgreSQL database. You can first draw US Route 1 using the following query:

 SELECT gid, name, geom
FROM ch01.highways
WHERE name = 'US Route 1' AND state = 'MD';

 Next, overlay the 20-mile corridor:

 SELECT ST_Union(ST_Buffer(geom, 1609*20))
FROM ch01.highways
WHERE name = 'US Route 1' AND state = 'MD';

 Finally, position the Hardee’s restaurants in the buffer zone routes.

 SELECT r.geom
FROM ch01.restaurants r
WHERE EXISTS
 (SELECT gid FROM ch01.highways
 WHERE ST_DWithin(r.geom, geom, 1609*20) AND
 name = 'US Route 1'
 AND state = 'MD' AND r.franchise = 'HDE');

 The results are shown in figure 1.4.

 [image:]

 Figure 1.4 US Route 1 in Maryland, with three Hardee’s restaurants in the 20-mile buffer, and the 20-mile buffer around the route

 Play around with this example. Use your home state and your favorite chain to see how far you have to go to grab your next nutritious meal.

 Some of the SQL examples we demonstrated were at an intermediate level. If you’re new to SQL or spatial databases, these examples may have seemed daunting. In the chapters that follow, we’ll explain the functions we used here and the SQL constructs in greater detail. For now, we hope that you focused on the general steps we followed and the strategies that we chose.

 Although spatial modeling is an integral part of any spatial analysis, there’s no right or wrong answer in modeling. Modeling is inherently a balance between simplicity and adequacy. You want to make your model as simple as possible so you can focus on the problem you’re trying to solve, but you must retain enough complexity to simulate the world you’re trying to model. Therein lies the challenge.

Summary

 	
 PostGIS spatially enables PostgreSQL, allowing you to model real-world objects in a database and answer questions of where and how far.

 	
 PostGIS and PostgreSQL provide tools to load data from common data sources.

 	
 There are freely available tools such as OpenJump, QGIS, and pgAdmin that allow you to experience your spatial data visually.

 	
 PostGIS adds functions that can be used in SQL to answer questions about where and how far quickly and succinctly.

 	
 Sometimes a table of statistics is more digestible than a figure of dots, colors, and shapes.

2 Spatial data types

 This chapter covers

 	
geometry, geography, and raster spatial types and subtypes

 	
geometry and geography type modifiers

 	
Spatial catalog tables

 	
How to create spatial columns and populate them

 In the first chapter we teased you with the potential that you can unlock with PostGIS. This chapter will start to show you how by delving deeper into the core spatial data types bundled with PostGIS. We’ll discuss each spatial type in detail. Once you’ve completed this chapter, you should know how to create table columns of these various types and how to populate them with spatial data.

 Do keep in the back of your mind that PostgreSQL has its own built-in geometric types. These are point, polygon, lseg, box, circle, and path. PostgreSQL geometry types have almost no functional support, are not adapted for GIS work, and are incompatible with the PostGIS geometry type. These geometry types have existed since the dawn of PostgreSQL and don’t follow the SQL/MM standards, nor do they support spatial coordinate systems. We advise staying away from them for GIS.

 If you’ve already started using them, PostGIS rescues you with functions and casts to convert the PostgreSQL types to PostGIS geometry. For example, the following code converts a PostgreSQL polygon, path, box, and circle to an equivalent PostGIS geometry. PostGIS doesn’t have conversions for all PostgreSQL geometry types. As a work-around, we cast box and circle to PostgreSQL polygons before casting to PostGIS geometry:

 SELECT polygon('((10,20),(25,30),(30, 30),(10,20))')::geometry
UNION ALL
SELECT path('(1,21), (5,15), (9,20), (12,5)')::geometry
UNION ALL
SELECT box('(10, 21)'::point, '(16,10)'::point)::polygon::geometry
UNION ALL
SELECT circle('(20,10)'::point, 3)::polygon::geometry;

 Even if you choose to remain with PostgreSQL geometry types, casting to PostGIS geometry will let you take advantage of visualization tools for PostGIS, such as the pgAdmin4 PostGIS viewer. Run the preceding code in pgAdmin4. An eye icon will appear in the header of the geometry column. Click on the eye and you’ll see your geometries rendered as in figure 2.1.

 [image:]

 Figure 2.1 PostgreSQL native geometric types cast to geometry, shown in pgAdmin4

 Note geometry, geography, and raster columns are often referred to as layers or feature classes when displayed in mapping applications.

 Before we begin, you’ll need to create a schema to house the data for this chapter:

 CREATE SCHEMA ch02;

 The data and code used in this chapter can be found at www.postgis.us/chapter_02_edition_3.

 The most basic statement to create a spatial table with a geometry column is as follows:

 CREATE TABLE ch02.my_geometries(id serial PRIMARY KEY,name text, geom geometry);

 Such a table would welcome any kind of geometry in the geom column.

2.1 Type modifiers

 Before we get into data types themselves, we must explain the role of type modifiers (sometimes known simply as typmods). You have been using type modifiers all the time in PostgreSQL, perhaps without knowing. When you declare a column as character(8), the number 8 is a type modifier of the type character, specifically, the length modifier. When you write numeric(8,2), you’re declaring the data type to be numeric, the length (precision) type modifier to be 8, and the scale type modifier to be 2.

 Generally, you specify type modifiers when you declare the data type of a column. Alternatively, you can use check constraints to achieve the same effect as type modifiers after column creation. For example, you can declare a column as character and then add a check constraint that limits the length to be 8. You can add constraints to any attributes of a column, but keep in mind that not all constraints are type modifiers—only the most frequently used attributes are promoted to be type modifiers. In the character example, the length qualifies as a type modifier, but a lesser attribute, such as the number of vowels in the char, does not.

2.1.1 Subtype type modifiers

 In PostGIS, geometry and geography data types have subtype type modifiers. Although geometry and geography are types in their own right, you should avoid declaring columns as these parental types without subtype modifiers. Examples of geometry subtypes are POINTZ, POINT, LINESTRING, LINESTRINGM, POLYGON, POLYGONZ, POLYHEDRALSURFACE, POLYHEDRALSURFACEZ, TIN, and TINZ. A typical type declaration in PostGIS is geometry(POINT,4326), where geometry is the data type, POINT is the subtype type modifier, and 4326 is the SRID type modifier. To make the subtype stand out from other type modifiers, we often capitalize subtypes, even though PostgreSQL is case-insensitive for types and type modifiers.

 You may also use GEOMETRY, GEOMETRYZ, GEOMETRYZM as type modifiers. These type modifiers constrain the coordinate dimension of a geometry.

 If you declare a column as geometry(GEOMETRY), the geometry column is constrained to allow only two-dimensional geometries.

 Only geometry and geography data types support type modifiers. The PostGIS raster data type doesn’t, nor does the topogeometry data type.

 Note We use the term typmod both as an abbreviation for type modifier and also to refer to the practice of adding type modifiers in parentheses during column creation.

2.1.2 Spatial reference identifier

 All PostGIS spatial data types have a spatial reference identifier (SRID). We’ll cover SRIDs and spatial reference systems in chapter 3. For now, know that two PostGIS data types must share a common SRID if you wish to “overlay” the pair. Use the PostGIS function ST_Transform() to transform data types from one SRID to another. If the SRID is unspecified, but known, you can set the SRID using ST_SetSRID().

 PostGIS relies on the spatial_ref_sys table to figure out if an SRID is valid and how to perform the reprojection to transform between SRIDs. The spatial_ref_sys table is the only table created and populated during the installation of PostGIS. Most SRIDs that you’ll ever need are already included in spatial_ref_sys. You can add missing SRIDS to the table; you’ll need to be sure to include reprojection information.

 You can leave the SRID as unknown—an unknown SRID takes the value of 0 for geometry, raster, and topogeometry types. The SRID for geography is never unknown; if not specified, geography is assumed to be 4326 (WGS 84 lon/lat). An unknown SRID still means that the data resides in Cartesian coordinate space, even though it has no geographical placement meaning. For example, if you’re trying to plan out your dream home on a blueprint, the SRID is unimportant but the geometries representing walls are still necessary, and placing them on a coordinate system won’t hurt. Go one step further and mentally assign a unit of measure. (One unit equals one foot, for instance.) The architect will be grateful that you handed over more than a sketch from your imagination. Until you buy the land for your dream home, SRID doesn’t come into play.

2.2 Geometry

 At the dawn of PostGIS, geometry was the only data type available. The geometry data type was so named because its basis is analytical geometry. All geometry subtypes assume a Cartesian coordinate system: parallel lines never meet, the Pythagorean theorem applies, the distances between coordinates are uniform throughout, and so on.

 Often you’ll find people using latitude and longitude to specify a point geometry, but don’t let this mislead you into thinking that they’ve abandoned the Cartesian plane. The use of lon/lat coordinates in geometry means that the area under consideration is small enough that you can consider degrees of longitude and latitude as uniform, and that the curvature of the earth doesn’t come into play. When dealing with distances on a global scale, however, the geometry data type is grossly inadequate, leading to the advent of the geography data type.

2.2.1 Points

 Subtypes of points differentiate themselves by the dimension of the Cartesian space (X,Y,Z) they occupy. In addition, they can have a measured (M) coordinate value, which can represent any kind of measure you want. We’ll discuss this later.

 Here’s a complete listing of POINT subtype modifiers for geometry and geography:

 	
 POINT—A point in 2D space specified by its X and Y coordinates

 	
 POINTZ—A point in 3D space specified by its X, Y, and Z coordinates

 	
 POINTM—A point in 2D space with a measured value specified by its spatial X and Y coordinates plus an M value

 	
 POINTZM—A point in 3D space with a measured value specified by its X, Y, and Z coordinates plus an M value

 The code in the following listing creates a table with one column for each of the point subtypes and appends one record.

 Listing 2.1 Points

 CREATE TABLE ch02.my_points (
 id serial PRIMARY KEY,
 p geometry(POINT),
 pz geometry(POINTZ),
 pm geometry(POINTM),
 pzm geometry(POINTZM),
 p_srid geometry(POINT,4269)
);
INSERT INTO ch02.my_points (p, pz, pm, pzm, p_srid)
VALUES (
 ST_GeomFromText('POINT(1 -1)'),
 ST_GeomFromText('POINT Z(1 -1 1)'),
 ST_GeomFromText('POINT M(1 -1 1)'),
 ST_GeomFromText('POINT ZM(1 -1 1 1)'),
 ST_GeomFromText('POINT(1 -1)',4269)
);

 In the preceding listing, we didn’t specify the SRID of any point except for the last one. When unspecified, SRIDs take on the value of 0. SRID 4269 is North America Datum 1983 Lon/Lat (NAD 83).

 POINTZ versus POINT Z

 In listing 2.1, the ST_GeomFromText function used the SQL/MM format ST_GeomFromText('POINT Z(1 -1 1)'). PostGIS will also allow ST_GeomFromText ('POINTZ (1 -1 1)') or even ST_GeomFromText ('POINT(1 -1 1)'). However, for cross-compatibility with other spatial relational databases, you should keep with the more conventional form of ST_GeomFromText ('POINT Z(1 -1 1)'), which includes the space. The same goes for POINT ZM, LINESTRING ZM, and so on.

 When defining columns, you should omit the spaces. For instance, geometry (PointZM) is equivalent to geometry(POINTZM), but geometry(POINT ZM) won’t work. Casing is not enforced, but for consistency we like to use fully uppercase subtypes.

2.2.2 Linestrings

 Connected straight lines between two or more distinct points form linestrings. Individual lines between points are called segments. Segments aren’t data types or subtypes in PostGIS, but it is possible for a linestring to have just one segment.

 Although a linestring is defined using a finite set of points, in reality it’s composed of an infinite number of points, and each line segment defines a straight line. This distinction becomes clear when you need to determine something like the closest point on a linestring to a polygon or other geometric form. The closest point rarely coincides with any point used to define the linestring but is somewhere between two of the points.

 Like points, linestrings have four dimensional variants:

 	
 LINESTRING—A linestring in 2D specified by two or more distinct POINTs

 	
 LINESTRINGZ—A linestring in 3D space specified by two or more distinct POINTZs

 	
 LINESTRINGM—A linestring in 2D space with measure values specified by two or more distinct POINTMs

 	
 LINESTRINGZM—A linestring in 3D space with measure values specified by two or more distinct POINTZMs

 The following listing adds some 2D linestrings.

 Listing 2.2 Add linestrings

 CREATE TABLE ch02.my_linestrings (
 id serial PRIMARY KEY,
 name varchar(20),
 my_linestrings geometry(LINESTRING)
); ❶

INSERT INTO ch02.my_linestrings (name, my_linestrings)
VALUES
 ('Open', ST_GeomFromText('LINESTRING(0 0, 1 1, 1 -1)')), ❷
 ('Closed', ST_GeomFromText('LINESTRING(0 0, 1 1, 1 -1, 0 0)'))
; ❸

 ❶ Create a table.

 ❷ Insert an open linestring.

 ❸ Insert a closed linestring.

 In this listing, you create a new table to hold 2D linestrings of an unknown spatial reference system ❶ and formulate a set of values to insert into the table. The first VALUES entry adds a linestring starting at the origin, going to (1,1) and terminating at (1,–1) ❷. This is an example of an open linestring. The second VALUES entry adds a closed linestring ❸.

 Figure 2.2 illustrates the linestrings created in listing 2.2.

 [image:]

 Figure 2.2 Open and closed linestrings created using the code in listing 2.2. The points that make up the lines are shown as well.

 Listing 2.2 introduces the concept of open and closed linestrings. In open linestrings, the starting and ending points aren’t the same, whereas in closed linestrings, they are the same, forming a loop. In modeling real-world geographic features, open linestrings predominate over closed linestrings. Rivers, trails, fault lines, and roads do not start where they end. However, as you’ll soon see, closed linestrings play an indispensable part in constructing polygons.

 The concept of simple and non-simple geometries also comes into play when describing linestrings. A simple linestring can’t have self-intersections (can’t cross itself) except at the start and end points. All points in the linestring being unique enforces this restriction. Conversely, a linestring with self-intersection is non-simple.

 PostGIS provides a geometry function, ST_IsSimple, to test for simpleness. The following query returns false:

 SELECT ST_IsSimple(ST_GeomFromText('LINESTRING(2 0,0 0,1 1,1 -1)'));

 Figure 2.3 displays the non-simple linestring.

2.2.3 Polygons

 Closed linestrings are the building blocks of polygons. Let’s start by creating a triangle. Any closed linestring with three distinct, noncollinear points will build a triangle. By definition, a polygon contains all the enclosed area and its boundary—the linestring that forms the perimeter. The closed linestring outlining the boundary of the polygon is called the ring of the polygon when used in this context; more specifically, it’s the exterior ring.

 [image:]

 Figure 2.3 A non-simple linestring

 The following listing demonstrates forming a solid polygon whose boundary is the closed linestring from listing 2.2.

 Listing 2.3 Triangular polygon with no holes

 ALTER TABLE ch02.my_geometries ADD COLUMN my_polygons geometry(POLYGON);
INSERT INTO ch02.my_geometries (name, my_polygons)
VALUES (
 'Triangle',
 ST_GeomFromText('POLYGON((0 0, 1 1, 1 -1, 0 0))')
);

 Figure 2.4 illustrates the solid triangular polygon formed with listing 2.3.

 [image:]

 Figure 2.4 Triangular polygon

 A single ring surrounds most polygons used in geographical modeling, but polygons can have multiple rings, carving out holes. To be precise, a polygon must have exactly one exterior ring and can have one or more inner rings. Each interior ring creates a hole in the overall polygon. You can see such a hole generated in listing 2.4. This is why you need the seemingly redundant set of parentheses in the text representations of polygons. The well-known text representation (WKT) of a polygon is a set of closed linestrings. The first one designates the exterior ring, and all subsequent ones designate inner rings. Always include the extra set of parentheses in the WKT, even if your polygon has just a single ring. Some tools may tolerate single-ringed polygons with only one pair of parentheses, but not PostGIS.

 Listing 2.4 Polygon with two holes

 INSERT INTO ch02.my_geometries (name,my_polygons)
VALUES (
 'Square with two holes',
 ST_GeomFromText(
 'POLYGON(
 (-0.25 -1.25,-0.25 1.25,2.5 1.25,2.5 -1.25,-0.25 -1.25),
 (2.25 0,1.25 1,1.25 -1,2.25 0),(1 -1,1 1,0 0,1 -1)
)'
)
);
SELECT my_polygons
FROM ch02.my_geometries
WHERE name = 'Square with two holes';

 The output of listing 2.4 is shown in figure 2.5.

 [image:]

 Figure 2.5 Polygon with interior rings (holes)

 In the real world, multi-ringed polygons play an important part in excluding bodies of water within geographical boundaries. For example, if you were planning a surface transit system in the greater Seattle area, you could start by outlining a big polygon bounded by Interstate 5 on the west and Interstate 405 on the east, as shown in figure 2.6. You could then start to place terminals of popular bus lines and let a routing program, such as pgRouting, choose the shortest path within the polygon. Soon enough, you’d realize that most of those popular routes are over water—Lake Washington to be specific. To have the program avoid drownings, your polygon of greater Seattle needs an inner ring outlining the shape of Lake Washington. This way, if you run a query seeking the shortest path between two points on the polygon and completely within the polygon, you won’t end up with underwater buses.

 [image:]

 Figure 2.6 The Seattle area modeled as a polygon with two rings. (Lake Washington fills up the hole.)

 Note Our model of Seattle is a polygon with a hole (ring) with Lake Washington filling up the hole. If we were to also consider the existence of Mercer Island in Lake Washington, pictured as part of Seattle, then this would be called a multipolygon. We’ll cover multipolygons in the next section.

 Polygons have the concept of validity. The rings of a valid polygon may only intersect at distinct points—rings can’t overlap, and they can’t share a common boundary. A polygon whose inner rings partly lie outside its exterior ring is also invalid.

 Figure 2.7 shows an example of a single polygon with self-intersections. Visually, you can’t discern that it’s an invalid geometry because such a visual can also be created with two valid polygons or with one valid multipolygon that happens to be touching at a point. We’ll cover multipolygons in the next section.

 [image:]

 Figure 2.7 A self-intersecting polygon. This is an invalid polygon, but just by looking, it’s impossible to see that it’s not one valid multipolygon or two valid polygons.

 Not every invalid polygon lends itself to a pictorial representation. Degenerate polygons, such as polygons that don’t have enough points and polygons with non-closed rings, are difficult to illustrate. Fortunately these polygons are difficult to generate in PostGIS and don’t serve any purpose in real-world modeling. Unless you’re mathematically minded, stick to your common sense when it comes to thinking about validity. The construction of a polygon representative of real-world features should not be mindboggling!

 PostGIS does have functions for dealing with invalid geometries. You can use the ST_IsValid function, which returns true or false if a geometry is valid (https://postgis.net/docs/ST_IsValid.html). ST_IsValidReason gives a detailed description of what makes a geometry invalid, and says Valid Geometry if valid (https://postgis.net/docs/ST_IsValidReason.html). For geometries with many kinds of invalidity, you can use ST_IsValidDetail, which details why your geometry is invalid and itemizes each kind of invalidity on separate rows (https://postgis.net/docs/ST_IsValidDetail.html). It will return true with no extra details if the geometry is valid. Finally the ST_MakeValid function can be used to convert an invalid geometry to a valid one (https://postgis.net/docs/ST_MakeValid.html). In doing so, it may change the type of the geometry such as from a polygon to a multipolygon or geometry collection. It strives to keep as many points from the original geometry as possible. In the case of our bow tie in figure 2.7, ST_MakeValid would turn that into a valid multipolygon.

2.2.4 Collection geometries

 To demonstrate the concept of collection geometries, try mentally picturing the 50 states of the United States as polygons. Interior rings allow you to handle states with large bodies of water within their boundaries, such as Utah (the Great Salt Lake), Florida (Lake Okeechobee), and Minnesota with its 10,000-plus lakes. There’s at least one state that you’ll have trouble handling: Hawaii. Hawaii has at least five big pieces. You could conceivably model Hawaii as five separate polygons, but this would complicate your storage. For example, if you wanted to create a table of states, you’d expect to have 50 rows. Breaking states into different polygons would call for storing a state using a state-polygon table, where each state could have up to hundreds of geometries depending on how fragmented the state is. You’d lose the simplicity associated with one geometry per state.

 To overcome this problem, PostGIS and the OGC standard offer collections of geometries as data types in their own right. A collection of geometries groups distinct geometries that logically belong together. With the use of collections, each of the fifty states becomes a collection of polygons—a multipolygon.

 US states as multipolygons

 To give you a taste of real-world GIS, consider the state polygon data set you can download from the US Census Bureau’s TIGER (Topologically Integrated Geographic Encoding and Referencing) data set: https://www2.census.gov/geo/tiger/TIGER2018/ STATE. In this data set, only the following states are modeled as multipolygons: Alaska, California, Hawaii, Florida, Kentucky, New York, and Rhode Island.

 In reality, more states are multipolygons based on geography alone. Almost all states border large bodies of water and have detached islands. Because the census is more concerned with people living in the states rather than their physical outlines, it uses the political boundaries for its table of states. Political boundaries extend to adjacent bodies of water and stretch for a few miles into oceans. These encompassing boundaries eliminate most states as multipolygons.

 In PostGIS, all single geometry subtypes have a collection counterpart: multipoints, multilinestrings, and multipolygons. In addition, PostGIS includes a data type called geometrycollection. This data type can contain any kind of geometry as long as all geometries in the set have the same spatial reference system and the same coordinate dimensions.

 Multipoints

 We’ll start with multipoints, which are nothing more than collections of points. Figure 2.8 shows an example of a multipoint.

 [image:]

 Figure 2.8 A single multipoint geometry (not three distinct points!)

 Let’s look at the WKT syntax for multipoints. If you have only X and Y coordinates for a multipoint, each comma-delimited value would have two coordinates. The following example is pictured in figure 2.8:

 SELECT ST_GeomFromText('MULTIPOINT(-1 1, 0 0, 2 3)');

 If you have an additional coordinate, such as a coordinate to measure elevation, then you’d have a Z coordinate. If you needed to track another kind of coordinate that is not necessarily spatial in nature, you’d use the M coordinate. The M coordinate is known as the measure coordinate and is often used to measure time or some other kind of measurement like a mile marker position.

 For a multipoint, having X, Y, Z, M, you’d have four coordinates:

 SELECT ST_GeomFromText('MULTIPOINT ZM(-1 1 3 4, 0 0 1 2, 2 3 1 2)');

 For a regular 3D multipoint composed of X, Y, Z, you’d have the following:

 SELECT ST_GeomFromText('MULTIPOINT Z(-1 1 3, 0 0 1, 2 3 1)');

 For a multipoint where each point is composed of X, Y, M, you must write out MULTIPOINT M to distinguish it from an X, Y, Z multipoint:

 SELECT ST_GeomFromText('MULTIPOINT M(-1 1 4, 0 0 2, 2 3 2)');

 Note When we use the term 3D, we’re almost always referring to coordinate dimensions, not geometry dimensions. A flag fluttering in the wind is a 2D geometry living in 3D space. The same goes for most hollow chocolate bunnies. If you’re rich enough to own a solid chocolate bunny, that bunny would be a 3D geometry living in 3D space.

 An alternate and acceptable WKT representation for multipoints uses parentheses to separate each point as follows: MULTIPOINT ((-1 1), (0 0), (2 3)). PostGIS accepts this multi-parenthetical format as well as the simpler MULTIPOINT (-1 1, 0 0, 2 3) format. Output functions, such as ST_AsText and ST_AsEWKT, return the non-parenthetical format.

 Multilinestrings

 Unsurprisingly, a multilinestring is a collection of linestrings. Be mindful of the extra sets of parentheses in the WKT representation of a multilinestring that surround each individual linestring in the set. The following examples of multilinestrings are shown in figure 2.9:

 SELECT ST_GeomFromText('MULTILINESTRING((0 0,0 1,1 1), (-1 1,-1 -1))');
SELECT ST_GeomFromText('MULTILINESTRING ZM ((0 0 1 1,0 1 1 2,1 1 1 3), (-1 1 1 1,-1 -1 1 2))');
SELECT ST_GeomFromText('MULTILINESTRING M((0 0 1,0 1 2,1 1 3), (-1 1 1,-1 -1 2))');

 [image:]

 Figure 2.9 Multilinestrings

 Note that because the M coordinate can’t be visually displayed, the MULTILINESTRING and MULTILINESTRING M code examples have the same visual representation.

 Before moving on to multipolygons, let’s return to the concept of simplicity. In section 2.2.2 we tested a linestring for simplicity. Simplicity is relevant for all linestring type geometries. Multilinestrings are considered simple if all constituent linestrings are simple and the collective set of linestrings doesn’t intersect each other at any point except boundary points. For example, if you create a multiline-string with two intersecting simple linestrings, the resultant multilinestring isn’t simple.

 Multipolygons

 The WKT of multipolygons has even more parentheses than its singular counterpart. Because you use parentheses to represent each ring of a polygon, you’ll need another set of outer parentheses to represent multipolygons. With multipolygons, we highly recommend that you follow the PostGIS conventions and not omit any inner parentheses for single-ringed polygons.

 Following are some examples of multipolygons, the first of which is shown in figure 2.10:

 SELECT 'MULTIPOLYGON(
 ((2.25 0,1.25 1,1.25 -1,2.25 0)),
 ((1 -1,1 1,0 0,1 -1))
)'::geometry;
SELECT 'MULTIPOLYGON Z(
 ((2.25 0 1,1.25 1 1,1.25 -1 1,2.25 0 1)),
 ((1 -1 2,1 1 2,0 0 2,1 -1 2))
)'::geometry;
SELECT 'MULTIPOLYGON ZM(
 ((2.25 0 1 1,1.25 1 1 2,1.25 -1 1 1,2.25 0 1 1)),
 ((1 -1 2 1,1 1 2 2,0 0 2 3,1 -1 1 4))
)'::geometry;
SELECT 'MULTIPOLYGON M(
 ((2.25 0 1,1.25 1 2,1.25 -1 1,2.25 0 1)),
 ((1 -1 1,1 1 2,0 0 3,1 -1 4))
)'::geometry;

 [image:]

 Figure 2.10 MULTIPOLYGON (2.25 0,1.25 1,1.25 -1, 2.25 0,1 -1,1 1,0 0,1 -1)

 Note You can use ST_GeomFromText or 'somewktwkb'::geometry to convert well-known text to a geometry. Both approaches are more or less equivalent, except ::geometry is a bit shorter to write and works with other geometry string representations such as well-known binary. Since PostGIS 3.1, ::geometry will also work for converting the geoJSON string format to PostGIS geometry.

 Recall from our discussion of single polygons that a polygon is valid if its rings don’t intersect or they intersect only at distinct points. For a multipolygon to qualify as valid, it must pass two tests:

 	
 Each constituent polygon must be valid in its own right.

 	
 Constituent polygons can’t overlap. Once you lay down a polygon, subsequent polygons can’t be laid on top.

 GEOMETRYCOLLECTION

 The GEOMETRYCOLLECTION is a PostGIS geometry subtype that can contain heterogeneous geometries. Unlike multi-geometries, where the constituent geometries must be of the same subtype, GEOMETRYCOLLECTION can include points, linestrings, polygons, and their collection counterparts. It can even contain other geometry collections. In short, you can stuff every geometry subtype known to PostGIS into a GEOMETRYCOLLECTION.

 The following listing presents the WKT for geometry collections, but instead of building the geometries using ST_GeomFromText and the WKT representation, we’ll build them by collecting simpler geometries using the ST_Collect function.

 Listing 2.5 Forming geometry collections by collecting constituent geometries

 SELECT ST_AsText(ST_Collect(g))
FROM (
 SELECT ST_GeomFromText('MULTIPOINT(-1 1, 0 0, 2 3)') As g
 UNION ALL
 SELECT ST_GeomFromText(
 'MULTILINESTRING((0 0, 0 1, 1 1), (-1 1, -1 -1))'
) As g
 UNION ALL
 SELECT ST_GeomFromText(
 'POLYGON(
 (-0.25 -1.25, -0.25 1.25, 2.5 1.25, 2.5 -1.25, -0.25 -1.25),
 (2.25 0, 1.25 1, 1.25 -1, 2.25 0),
 (1 -1, 1 1, 0 0, 1 -1)
)'
) As g
) x;

 The output of the preceding listing is as follows:

 GEOMETRYCOLLECTION(
 MULTIPOINT(-1 1, 0 0, 2 3),
 MULTILINESTRING((0 0, 0 1, 1 1), (-1 1, -1 -1)),
 POLYGON(
 (-0.25 -1.25, -0.25 1.25, 2.5 1.25, 2.5 -1.25, -0.25 -1.25),
 (2.25 0,1.25 1,1.25 -1,2.25 0),
 (1 -1, 1 1, 0 0, 1 -1)
)
)

 The visual representation of the geometrycollection is shown in figure 2.11.

 [image:]

 Figure 2.11 Geometrycollection formed from listing 2.5

 In real-world applications, you should rarely define a data column as geometrycollection. Although having a collection is perfectly reasonable for storage purposes, using it within a function rarely makes any sense. For example, you can ask what the area of a multipolygon is, but you can’t ask for the area of a geometrycollection that has linestrings and points in addition to polygons. Geometry collections almost always originate as the result of queries rather than as predefined geometries. You should be prepared to work with them, but avoid using them in your table design.

 Finally, a geometrycollection is considered valid if all the geometries in the collection are valid. It’s invalid if any of the geometries in the collection are invalid.

2.2.5 The M coordinate

 The M coordinate is an additional coordinate added for the convenience of recording measured values taken at various points along spatial coordinates. The benefit of using M to store additional information becomes clear as soon as you move beyond points. Suppose that you have a linestring made up of many points, each with its own measure. Without the M coordinate, you’d always need an additional table to store the measurement data.

 The M coordinate need not have any spatial interpretation and is therefore impervious to the reference system of the other spatial X, Y, Z coordinates. It can be negative or positive, and its units have no relationship to the units of the other spatial coordinates. The M coordinates of a geometry are unchanged when you transform a geometry to another spatial reference system. All functions of PostGIS that work with M treat the coordinate as linear, allowing you to interpolate along the M dimension.

 The M coordinate is a full-fledged coordinate, and as such we offer the following recommendations:

 	
 Support for M has grown over the years, but it is still fairly limited.

 	
 M is often used to represent time, and as such you’ll find functions such as ST_IsValidTrajectory that will tell you if M is increasing along the vector or ST_ClosestPointOfApproach and ST_LocateAlong that identify when two trajectories (with M representing linear time) come closest to each other and at what points this happens.

 	
 Don’t use M for sparsely populated data. Once you introduce the M dimension, all your geometries must live in this space. If most of your data points don’t have an M value, you’ll have to resort to some convention to tag the missing data. A coordinate can’t have null values.

 	
 You should be consistent in your use of the M value. For instance, if you’re using M to measure temperature or ocean depth, keep the units consistent.

 	
 Try to use M for linear measures, as opposed to logarithmic ones, even though you’re free to populate the coordinate with any numeric value. All PostGIS functions that take M coordinates into consideration assume that the M dimension is linear, like its spatial counterparts. For instance, if you take a pH measure for a linestring with points spaced far apart, and you try to estimate the pH at the midpoint, PostGIS only has linear interpolation functions, which will be woefully inadequate for your logarithmic measurements. In this case, you’re better off storing the pH as an additional attribute of each point or writing your own functions to do the correct interpolation.

 	
 Once you introduce M, avoid using interrogative functions and applying spatial concepts. For instance, you probably can’t trust the answer if you ask if a LINESTRINGM is closed or open. Did the function consider the M coordinate? If so, what is closure for an M coordinate? Spare yourself the headache; don’t ask and PostGIS won’t tell.

 The M coordinate can also exist in a GEOMETRYCOLLECTION. The following listing is a GEOMETRYCOLLECTIONM example similar to listing 2.5 but with an M component.

 Listing 2.6 Forming a GEOMETRYCOLLECTIONM from constituent geometries

 SELECT ST_AsText(ST_Collect(g))
FROM (
 SELECT ST_GeomFromEWKT('MULTIPOINTM(-1 1 4, 0 0 2, 2 3 2)') As g
 UNION ALL
 SELECT ST_GeomFromEWKT(
 'MULTILINESTRINGM((0 0 1, 0 1 2, 1 1 3), (-1 1 1,-1 -1 2))'
) As g
 UNION ALL
 SELECT ST_GeomFromEWKT(
 'POLYGONM(
 (-0.25 -1.25 1, -0.25 1.25 2, 2.5 1.25 3, 2.5 -1.25 1, -0.25 -1.25 1),
 (2.25 0 2, 1.25 1 1, 1.25 -1 1, 2.25 0 2),
 (1 -1 2,1 1 2,0 0 2,1 -1 2)
)'
) As g
) x;

 The output of the preceding listing is as follows:

 GEOMETRYCOLLECTION M (
 MULTIPOINT M (-1 1 4, 0 0 2, 2 3 2),
 MULTILINESTRING M ((0 0 1, 0 1 2, 1 1 3), (-1 1 1, -1 -1 2)),
 POLYGON M (
 (-0.25 -1.25 1, -0.25 1.25 2, 2.5 1.25 3, 2.5 -1.25 1, -0.25 -1.25 1),
 (2.25 0 2, 1.25 1 1, 1.25 -1 1, 2.25 0 2),
 (1 -1 2, 1 1 2, 0 0 2,1 -1 2)
)
)

 PostGIS does offer POLYGON M, POLYHEDRAL ZM, TIN ZM, and so on, but we have yet to see any real-world need for these more abstruse dimensional types.

2.2.6 The Z coordinate

 First, to clear up any misconceptions, just because a geometry has a Z coordinate doesn’t make it a volumetric geometry. A polygon in three-coordinate dimensional space is still a planar 2D geometry. It has an area but no volume. The story will get a little more interesting when we get to polyhedral surfaces in the next section.

 PostGIS 2 introduced new relationship and measurement functions prefixed with ST_3D, specifically designed to work with subtypes in X, Y, Z coordinate space. Common ones are ST_3DIntersects, ST_3DDistance, ST_3DDWithin for 3D radius searches, ST_3DMaxDistance, and ST_3DClosestPoint. PostGIS 2 also introduced the n-D spatial index (the index class is suffixed with _nd), which considers the Z coordinate and M coordinate. The default spatial index ignores the Z and M coordinate. We’ll cover spatial indexes in chapter 15.

 PostGIS 2.1 introduced additional 3D functions based on the SFCGAL library, which is a 3D enhancement built atop the Computational Geometry Algorithms Library (CGAL); the SF stands for spatial features. SFCGAL added functions such as ST_3DIntersection and ST_3DArea. It also brought its own implementation of some existing ST_3D functions such as ST_3DIntersects. For more details about the PostGIS SFCGAL, visit www.sfcgal.org. As of PostGIS 3, the ST_3DIntersects built into PostGIS now supports volumetric geometries as well. As such, SFCGAL’s ST_3DIntersects has been removed.

 In order to take advantage of these additional 3D functions and 3D enhanced functions, you need to compile PostGIS with SFCGAL support or find a distribution of PostGIS already compiled with it. As of PostGIS 2.5, Windows, Ubuntu/Debian, and yum.postgresql.org include SFCGAL.

 Regardless of how you get a SFCGAL-fortified version of PostGIS, be sure to run this command:

 CREATE EXTENSION postgis_sfcgal SCHEMA postgis;

 The postgis_sfcgal extension must be installed in the same schema as postgis for PostGIS 2.3 and later.

 Prior to PostGIS 3.0, some functions provided by SFCGAL, such as ST_Intersects and ST_3DIntersects, are named the same as the functions packaged with PostGIS but behave differently or support more geometry types than those packaged with the postgis extension. By default, the PostGIS ones are used. If you instead want the SFCGAL ones to be used where they have the same names, and you are using a version of PostGIS before version 3, you’ll want to set postgis .backend=sfcgal. This is covered in more detail in the PostGIS manual.

 SFCGAL backend removed in PostGIS 3.0

 For PostGIS 3.0, ST_3DIntersects and ST_Intersects, as well as other functions that were same-named, were augmented to support geometry types such as TIN and TRIANGLE. As such, the backend switch was removed, and those same-named functions were removed from SFCGAL.

 Prior to PostGIS 2.0, support for the Z coordinate was sketchy. PostGIS relied on a library called GEOS, which is not well known for 3D support. When using PostGIS functions against your 3D geometry, the functions won’t error out if they can’t handle the Z coordinate; they’ll either pretend the Z isn’t there or do some interpolation to give you some semblance of processing the Z dimension. For example, when you use ST_Intersection and ST_Union with geometries having Z coordinates, both functions will handle the X and the Y perfectly but only approximate the Z coordinate. This may be acceptable when you don’t need precision, such as when mapping a mountainous hiking trail. But the outcome could be deadly if you used it to program a flight GPS to navigate around mountainous terrain. The PostGIS reference guide will tell you how each function behaves when the Z coordinate is present. If you’re doing serious modeling in 3D, consult the manual to make sure Z behaves within your specifications.

 For PostGIS prior to version 3, there is no support in ST_Transform for geometries with a Z coordinate. If you are using PostGIS 3+ and Proj 6+, some spatial reference systems that have a Z component will also transform the Z coordinate. Refer to chapter 3 for details of this change. Most commonly used spatial reference systems are 2D and as such will leave the Z coordinate alone. This should be fine, because reprojections rarely affect Z anyway. Mount Everest stays the same height regardless of how you draw your map.

2.2.7 Polyhedral surfaces and TINs

 Float a bunch of polygons in 3D space and glue them together at their edges, and you’ll form a patchwork referred to as a polyhedral surface. Although polygons make up both multipolygons and polyhedral surfaces, there is one fundamental difference between them: polygons in multipolygons can’t share edges; polygons in a polyhedral surface almost always do. There are two other notable restrictions in the construction of polyhedral surfaces: polygons can’t overlap, and each edge can be mated with at most one other edge.

 Note You can read the more rigorous definition of polyhedral surfaces in the OGC and SQL/MM specifications at www.opengeospatial.org/standards/sfa.

 Some real-world examples of polyhedral surfaces that come to mind are geodetic domes, a jigsaw puzzle that you pieced together but later spilled drinks on so now it’s warped, a honeycomb, or the checkered flag at a car race as it flaps in the wind.

 Polyhedral surfaces allow you to create closed surfaces in three dimensions. The simplest example is the triangular pyramid formed by four equilateral triangular polygons. Prior to PostGIS 2.2 there was no way to denote if a surface was a solid (having volume) or just area. A polyhedral surface that is closed can be treated as a solid, with a geometry dimension of three, or as a surface, with a geometry dimension of two. A solid would mean that all points inside the surface would count as part of the geometry, and the intersection of two solids could generate another solid. Solid or planar?

 In PostGIS 2.2 and above there is an ST_MakeSolid function that will mark a closed polyhedral surface as solid, and there is a companion ST_IsSolid function that will return true or false to denote whether a 3D geometry is solid. Some functions, such as ST_Dimension, will return 3 for closed polyhedral surfaces. Prior to PostGIS 3, if you applied the native ST_3DIntersects built into PostGIS for two closed polyhedral surfaces, the result just considered the surface. However, if you have the SFCGAL engine enabled, ST_3DIntersects and the SFCGAL ST_3DIntersection treat the surfaces as solids if they were created via SFCGAL functions. The native ST_3DIntersects in PostGIS 3 can now work with solids and TINs, and as such the SFCGAL ST_3DIntersects was removed in version 3.0, since it was redundant.

 TINs stands for triangular irregular networks. They’re a subset of polyhedral surfaces where all the constituent polygons must be triangles. TINs are widely used to describe terrain surfaces. Recall from basic geometry (or common sense) the minimum number of points needed to form an area: three—a triangle. The mathematical underpinning of TINs is based on triangulating key peak and valley point locations of a surface to form non-overlapping connected area pockets. The most common form of triangulation used in GIS is Delaunay triangulation (explained on Wikipedia: http://en.wikipedia.org/wiki/Delaunay_triangulation).

 PostGIS over the years has added more support for surface and volumetric geometries. The powerful ST_DelaunayTriangles function converts a “well-behaved” polygon collection into a TIN, but it can’t convert polyhedral surfaces to TINs. For that conversion, you need to use ST_Tesselate, which is packaged with SFCGAL and will convert polygon collections as well.

 PostGIS 2.0 added many new functions specifically for use with polyhedral surfaces and TINs; section 9.11 of the PostGIS Special Functions Index provides the full list (http://mng.bz/rmnx). Many existing functions, such as ST_Dump and ST_DumpPoints, were augmented to accept these two subtypes as well.

 To fully appreciate geometries in 3D space, you’ll need rendering software. The PostGIS ST_AsX3D function will output geometry in X3D XML format, which you can view with various X3D viewers. The JavaScript x3dom.js library (www.x3dom.org) has logic for rendering X3D in HTML5-compatible browsers.

 We’ve created a PostGIS X3D web viewer for PHP and ASP.NET built on the x3dom.js library to demonstrate the process. You can download the code for that at https://github.com/robe2/postgis_x3d_viewer. We used our minimalist X3D viewer to render the images of polyhedral surfaces and TINs you’ll see in this chapter.

 In addition, the latest version of the QGIS Open Source Desktop (3.18 as of this writing) supports viewing of polyhedral surfaces and TINs. By default in QGIS, 3D geometries are rendered in 2D mode, but there is a 3D Map panel you can add to your canvas that will show your data in its full 3D glory. We’ll cover this in greater detail in chapter 5.

 Generating polyhedral surfaces

 The following listing demonstrates two ways of generating a three-faced polyhedral surface.

 Listing 2.7 A three-faced polyhedral surface

 SELECT ST_GeomFromText(
 'POLYHEDRALSURFACE Z (
 ((12 0 10, 8 8 10, 8 10 20, 12 2 20, 12 0 10)),
 ((8 8 10, 0 12 10, 0 14 20, 8 10 20, 8 8 10)),
 ((0 12 10, -8 8 10, -8 10 20, 0 14 20, 0 12 10))
)'
);

 -- Which can be generated using --
SELECT ST_Extrude(ST_GeomFromText(
 'LINESTRING(12 0 10, 8 8 10, 0 12 10,-8 8 10)'),
 0, 2, 10
);

 Both examples in the preceding listing generate the same polyhedral surface. The second example uses the SFCGAL ST_Extrude function, whereas the first uses the WKT representation of the resulting geometry when extruding the linestring. A rendering of listing 2.7 is shown in figure 2.12. If you were to extrude a polygon, you’d end up with a closed polyhedral surface (a volume).

 [image:]

 Figure 2.12 A three-faced polyhedral surface generated from the code in listing 2.7

 Note that like the MULTIPOLYGON, the POLYHEDRALSURFACE has double-braced rings with the coordinates of each POLYGON Z that makes up the element.

2.2.8 Generating TINs

 A TIN is a collection subtype formed from a geometry subtype called TRIANGLE. You’ll rarely see the TRIANGLE subtype in use, especially not in its column data type form of geometry(TRIANGLE). But you may come across it if you use the ST_Dump function to dump out all the triangles in a TIN.

 In the next example, we’ll demonstrate a four-triangled TIN and we’ll color-code each triangle so it’s clear where the delineations are. Many rendering packages won’t delineate the triangles by design, so that the result ends up looking like a regular polyhedral surface.

 Listing 2.8 A TIN made up of four triangles

 SELECT ST_GeomFromText(
 'TIN Z (
 ((12 2 20, 8 8 10, 8 10 20, 12 2 20)),
 ((12 2 20, 12 0 10, 8 8 10, 12 2 20)),
 ((8 10 20, 0 12 10, 0 14 20, 8 10 20)),
 ((8 10 20, 8 8 10, 0 12 10, 8 10 20))
)'
);

 The visual output of listing 2.8 is shown in figure 2.13.

 [image:]

 Figure 2.13 A four-triangle TIN surface generated from listing 2.8

2.2.9 Curved geometries

 Curved geometries came into existence with the OGC SQL/MM Part 3 specs, and PostGIS has almost complete support for what’s defined in the specs, but tools for rendering PostGIS curved geometries still lag behind and are somewhat spotty as to what they support.

 Curved geometries aren’t as mature as other geometries and aren’t widely used. Natural terrestrial features rarely manifest themselves as curved geometries. Architectural structures and artificial boundaries do have curves, but linestrings will adequately serve as approximations for many modeling cases. Aeronautical charts are full of curves because the sweep of radar is circular. Dams, dikes, breakwaters, stadiums, hippodromes, coliseums, Greek and Shakespearean theaters, and crop circles (both those made by humans and by aliens) are other curved structures that come to mind. Some highway segments come close to being curves, but linestrings are often more appropriate for modeling them when processing speed is more important than accuracy.

 Because of the lack of support, consider the following points before you decide to go down the path of using curved geometries:

 	
 Few third-party tools, either open source or commercial, currently support curved geometries.

 	
 The advanced spatial library called GEOS that PostGIS uses for much of its functionality, such as performing intersections, containment checks, and other spatial-relation checks, doesn’t support curved geometries. As a work-around, you can convert curved geometries to linestrings and regular polygons using the ST_CurveToLine function, and then convert back with ST_LineToCurve. The downside of this method is the loss of speed and the inaccuracies introduced when interpolating arcs using linestrings. ST_LineToCurve is also useful for rendering curved geometries in tools that don’t support curved geometries.

 	
 Many native PostGIS functions don’t support curved geometries. You can find a full list of functions that do support curved geometries in the PostGIS reference manual. Again, for cases where you need to use functions that don’t support curved geometries, you can apply the ST_CurveToLine function and then apply ST_LineToCurve to convert back if needed.

 	
 PostGIS hasn’t supported curved geometries for as long as the other geometries, so you’re more likely to run into bugs when working with them. More recent releases of PostGIS have cleaned up many of the bugs and have expanded the number of functions that support curved geometries.

 Given all the drawbacks of curved geometries, you might be wondering why you’d ever want to use them. Here are a few reasons:

