

 [image: cover]

Amazon Web Services in Action, Second Edition

 Michael Wittig and Andreas Wittig

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 The following are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries: Amazon Web
 Services, AWS, Amazon EC2, EC2, Amazon Elastic Compute Cloud, Amazon Virtual Private Cloud, Amazon VPC, Amazon S3, Amazon
 Simple Storage Service, Amazon CloudFront, CloudFront, Amazon SQS, SQS, Amazon Simple Queue Service, Amazon Simple Email Service,
 Amazon Elastic Beanstalk, Amazon Simple Notification Service, Amazon Route 53, Amazon RDS, Amazon Relational Database, Amazon
 CloudWatch, AWS Premium Support, Elasticache, Amazon Glacier, AWS Marketplace, AWS CloudFormation, Amazon CloudSearch, Amazon
 DynamoDB, DynamoDB, Amazon Redshift, and Amazon Kinesis.

 The icons in this book are reproduced with permission from Amazon.com or under a Creative Commons license as follows:

 	AWS Simple Icons by Amazon.com (https://aws.amazon.com/architecture/icons/)

 	File icons by Freepik (http://www.flaticon.com/authors/freepik) License: CC BY 3.0

 	Basic application icons by Freepik (http://www.flaticon.com/authors/freepik) License: CC BY 3.0

 All views expressed in this book are of the authors and not of AWS or Amazon.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Frances Lefkowitz
Technical development editor John Hyaduck
Review editor: Aleksandar Dragosavljević
Project editor: Deirdre Hiam
Copy editor: Benjamin Berg
Proofreader: Elizabeth Martin
Technical proofreader: David Fombella Pombal
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617295119

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – DP – 23 22 21 20 19 18

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Foreword

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Getting started

 Chapter 1. What is Amazon Web Services?

 Chapter 2. A simple example: WordPress in five minutes

 2. Building virtual infrastructure consisting of computers and networking

 Chapter 3. Using virtual machines: EC2

 Chapter 4. Programming your infrastructure: The command-line, SDKs, and CloudFormation

 Chapter 5. Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

 Chapter 6. Securing your system: IAM, security groups, and VPC

 Chapter 7. Automating operational tasks with Lambda

 3. Storing data in the cloud

 Chapter 8. Storing your objects: S3 and Glacier

 Chapter 9. Storing data on hard drives: EBS and instance store

 Chapter 10. Sharing data volumes between machines: EFS

 Chapter 11. Using a relational database service: RDS

 Chapter 12. Caching data in memory: Amazon ElastiCache

 Chapter 13. Programming for the NoSQL database service: DynamoDB

 4. Architecting on AWS

 Chapter 14. Achieving high availability: availability zones, auto-scaling, and CloudWatch

 Chapter 15. Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Service

 Chapter 16. Designing for fault tolerance

 Chapter 17. Scaling up and down: auto-scaling and CloudWatch

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Foreword

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Getting started

 Chapter 1. What is Amazon Web Services?

 1.1. What is cloud computing?

 1.2. What can you do with AWS?

 1.2.1. Hosting a web shop

 1.2.2. Running a Java EE application in your private network

 1.2.3. Implementing a highly available system

 1.2.4. Profiting from low costs for batch processing infrastructure

 1.3. How you can benefit from using AWS

 1.3.1. Innovative and fast-growing platform

 1.3.2. Services solve common problems

 1.3.3. Enabling automation

 1.3.4. Flexible capacity (scalability)

 1.3.5. Built for failure (reliability)

 1.3.6. Reducing time to market

 1.3.7. Benefiting from economies of scale

 1.3.8. Global infrastructure

 1.3.9. Professional partner

 1.4. How much does it cost?

 1.4.1. Free Tier

 1.4.2. Billing example

 1.4.3. Pay-per-use opportunities

 1.5. Comparing alternatives

 1.6. Exploring AWS services

 1.7. Interacting with AWS

 1.7.1. Management Console

 1.7.2. Command-line interface

 1.7.3. SDKs

 1.7.4. Blueprints

 1.8. Creating an AWS account

 1.8.1. Signing up

 1.8.2. Signing In

 1.8.3. Creating a key pair

 1.9. Create a billing alarm to keep track of your AWS bill

 Summary

 Chapter 2. A simple example: WordPress in five minutes

 2.1. Creating your infrastructure

 2.2. Exploring your infrastructure

 2.2.1. Resource groups

 2.2.2. Virtual machines

 2.2.3. Load balancer

 2.2.4. MySQL database

 2.2.5. Network filesystem

 2.3. How much does it cost?

 2.4. Deleting your infrastructure

 Summary

 2. Building virtual infrastructure consisting of computers and networking

 Chapter 3. Using virtual machines: EC2

 3.1. Exploring a virtual machine

 3.1.1. Launching a virtual machine

 3.1.2. Connecting to your virtual machine

 3.1.3. Installing and running software manually

 3.2. Monitoring and debugging a virtual machine

 3.2.1. Showing logs from a virtual machine

 3.2.2. Monitoring the load of a virtual machine

 3.3. Shutting down a virtual machine

 3.4. Changing the size of a virtual machine

 3.5. Starting a virtual machine in another data center

 3.6. Allocating a public IP address

 3.7. Adding an additional network interface to a virtual machine

 3.8. Optimizing costs for virtual machines

 3.8.1. Reserve virtual machines

 3.8.2. Bidding on unused virtual machines

 Summary

 Chapter 4. Programming your infrastructure: The command-line, SDKs, and CloudFormation

 4.1. Infrastructure as Code

 4.1.1. Automation and the DevOps movement

 4.1.2. Inventing an infrastructure language: JIML

 4.2. Using the command-line interface

 4.2.1. Why should you automate?

 4.2.2. Installing the CLI

 4.2.3. Configuring the CLI

 4.2.4. Using the CLI

 4.3. Programming with the SDK

 4.3.1. Controlling virtual machines with SDK: nodecc

 4.3.2. How nodecc creates a virtual machine

 4.3.3. How nodecc lists virtual machines and shows virtual machine details

 4.3.4. How nodecc terminates a virtual machine

 4.4. Using a blueprint to start a virtual machine

 4.4.1. Anatomy of a CloudFormation template

 4.4.2. Creating your first template

 Summary

 Chapter 5. Automating deployment: CloudFormation, Elastic Beanstalk, and OpsWorks

 5.1. Deploying applications in a flexible cloud environment

 5.2. Comparing deployment tools

 5.2.1. Classifying the deployment tools

 5.2.2. Comparing the deployment services

 5.3. Creating a virtual machine and run a deployment script on startup with AWS CloudFormation

 5.3.1. Using user data to run a script on startup

 5.3.2. Deploying OpenSwan: a VPN server to a virtual machine

 5.3.3. Starting from scratch instead of updating

 5.4. Deploying a simple web application with AWS Elastic Beanstalk

 5.4.1. Components of AWS Elastic Beanstalk

 5.4.2. Using AWS Elastic Beanstalk to deploy Etherpad, a Node.js application

 5.5. Deploying a multilayer application with AWS OpsWorks Stacks

 5.5.1. Components of AWS OpsWorks Stacks

 5.5.2. Using AWS OpsWorks Stacks to deploy an IRC chat application

 Summary

 Chapter 6. Securing your system: IAM, security groups, and VPC

 6.1. Who’s responsible for security?

 6.2. Keeping your software up to date

 6.2.1. Checking for security updates

 6.2.2. Installing security updates on startup

 6.2.3. Installing security updates on running virtual machines

 6.3. Securing your AWS account

 6.3.1. Securing your AWS account’s root user

 6.3.2. AWS Identity and Access Management (IAM)

 6.3.3. Defining permissions with an IAM policy

 6.3.4. Users for authentication, and groups to organize users

 6.3.5. Authenticating AWS resources with roles

 6.4. Controlling network traffic to and from your virtual machine

 6.4.1. Controlling traffic to virtual machines with security groups

 6.4.2. Allowing ICMP traffic

 6.4.3. Allowing SSH traffic

 6.4.4. Allowing SSH traffic from a source IP address

 6.4.5. Allowing SSH traffic from a source security group

 6.5. Creating a private network in the cloud: Amazon Virtual Private Cloud (VPC)

 6.5.1. Creating the VPC and an internet gateway (IGW)

 6.5.2. Defining the public bastion host subnet

 6.5.3. Adding the private Apache web server subnet

 6.5.4. Launching virtual machines in the subnets

 6.5.5. Accessing the internet from private subnets via a NAT gateway

 Summary

 Chapter 7. Automating operational tasks with Lambda

 7.1. Executing your code with AWS Lambda

 7.1.1. What is serverless?

 7.1.2. Running your code on AWS Lambda

 7.1.3. Comparing AWS Lambda with virtual machines (Amazon EC2)

 7.2. Building a website health check with AWS Lambda

 7.2.1. Creating a Lambda function

 7.2.2. Use CloudWatch to search through your Lambda function’s logs

 7.2.3. Monitoring a Lambda function with CloudWatch metrics and alarms

 7.2.4. Accessing endpoints within a VPC

 7.3. Adding a tag containing the owner of an EC2 instance automatically

 7.3.1. Event-driven: Subscribing to CloudWatch events

 7.3.2. Implementing the Lambda function in Python

 7.3.3. Setting up a Lambda function with the Serverless Application Model (SAM)

 7.3.4. Authorizing a Lambda function to use other AWS services with an IAM role

 7.3.5. Deploying a Lambda function with SAM

 7.4. What else can you do with AWS Lambda?

 7.4.1. What are the limitations of AWS Lambda?

 7.4.2. Impacts of the serverless pricing model

 7.4.3. Use case: Web application

 7.4.4. Use case: Data processing

 7.4.5. Use case: IoT back end

 Summary

 3. Storing data in the cloud

 Chapter 8. Storing your objects: S3 and Glacier

 8.1. What is an object store?

 8.2. Amazon S3

 8.3. Backing up your data on S3 with AWS CLI

 8.4. Archiving objects to optimize costs

 8.4.1. Creating an S3 bucket for the use with Glacier

 8.4.2. Adding a lifecycle rule to a bucket

 8.4.3. Experimenting with Glacier and your lifecycle rule

 8.5. Storing objects programmatically

 8.5.1. Setting up an S3 bucket

 8.5.2. Installing a web application that uses S3

 8.5.3. Reviewing code access S3 with SDK

 8.6. Using S3 for static web hosting

 8.6.1. Creating a bucket and uploading a static website

 8.6.2. Configuring a bucket for static web hosting

 8.6.3. Accessing a website hosted on S3

 8.7. Best practices for using S3

 8.7.1. Ensuring data consistency

 8.7.2. Choosing the right keys

 Summary

 Chapter 9. Storing data on hard drives: EBS and instance store

 9.1. Elastic Block Store (EBS): Persistent block-level storage attached over the network

 9.1.1. Creating an EBS volume and attaching it to your EC2 instance

 9.1.2. Using EBS

 9.1.3. Tweaking performance

 9.1.4. Backing up your data with EBS snapshots

 9.2. Instance store: Temporary block-level storage

 9.2.1. Using an instance store

 9.2.2. Testing performance

 9.2.3. Backing up your data

 Summary

 Chapter 10. Sharing data volumes between machines: EFS

 10.1. Creating a filesystem

 10.1.1. Using CloudFormation to describe a filesystem

 10.1.2. Pricing

 10.2. Creating a mount target

 10.3. Mounting the EFS share on EC2 instances

 10.4. Sharing files between EC2 instances

 10.5. Tweaking performance

 10.5.1. Performance mode

 10.5.2. Expected throughput

 10.6. Monitoring a filesystem

 10.6.1. Should you use Max I/O Performance mode?

 10.6.2. Monitoring your permitted throughput

 10.6.3. Monitoring your usage

 10.7. Backing up your data

 10.7.1. Using CloudFormation to describe an EBS volume

 10.7.2. Using the EBS volume

 Summary

 Chapter 11. Using a relational database service: RDS

 11.1. Starting a MySQL database

 11.1.1. Launching a WordPress platform with an RDS database

 11.1.2. Exploring an RDS database instance with a MySQL engine

 11.1.3. Pricing for Amazon RDS

 11.2. Importing data into a database

 11.3. Backing up and restoring your database

 11.3.1. Configuring automated snapshots

 11.3.2. Creating snapshots manually

 11.3.3. Restoring a database

 11.3.4. Copying a database to another region

 11.3.5. Calculating the cost of snapshots

 11.4. Controlling access to a database

 11.4.1. Controlling access to the configuration of an RDS database

 11.4.2. Controlling network access to an RDS database

 11.4.3. Controlling data access

 11.5. Relying on a highly available database

 11.5.1. Enabling high-availability deployment for an RDS database

 11.6. Tweaking database performance

 11.6.1. Increasing database resources

 11.6.2. Using read replication to increase read performance

 11.7. Monitoring a database

 Summary

 Chapter 12. Caching data in memory: Amazon ElastiCache

 12.1. Creating a cache cluster

 12.1.1. Minimal CloudFormation template

 12.1.2. Test the Redis cluster

 12.2. Cache deployment options

 12.2.1. Memcached: cluster

 12.2.2. Redis: Single-node cluster

 12.2.3. Redis: Cluster with cluster mode disabled

 12.2.4. Redis: Cluster with cluster mode enabled

 12.3. Controlling cache access

 12.3.1. Controlling access to the configuration

 12.3.2. Controlling network access

 12.3.3. Controlling cluster and data access

 12.4. Installing the sample application Discourse with CloudFormation

 12.4.1. VPC: Network configuration

 12.4.2. Cache: Security group, subnet group, cache cluster

 12.4.3. Database: Security group, subnet group, database instance

 12.4.4. Virtual machine—security group, EC2 instance

 12.4.5. Testing the CloudFormation template for Discourse

 12.5. Monitoring a cache

 12.5.1. Monitoring host-level metrics

 12.5.2. Is my memory sufficient?

 12.5.3. Is my Redis replication up-to-date?

 12.6. Tweaking cache performance

 12.6.1. Selecting the right cache node type

 12.6.2. Selecting the right deployment option

 12.6.3. Compressing your data

 Summary

 Chapter 13. Programming for the NoSQL database service: DynamoDB

 13.1. Operating DynamoDB

 13.1.1. Administration

 13.1.2. Pricing

 13.1.3. Networking

 13.1.4. RDS comparison

 13.1.5. NoSQL comparison

 13.2. DynamoDB for developers

 13.2.1. Tables, items, and attributes

 13.2.2. Primary key

 13.2.3. DynamoDB Local

 13.3. Programming a to-do application

 13.4. Creating tables

 13.4.1. Users are identified by a partition key

 13.4.2. Tasks are identified by a partition key and sort key

 13.5. Adding data

 13.5.1. Adding a user

 13.5.2. Adding a task

 13.6. Retrieving data

 13.6.1. Getting an item by key

 13.6.2. Querying items by key and filter

 13.6.3. Using global secondary indexes for more flexible queries

 13.6.4. Scanning and filtering all of your table’s data

 13.6.5. Eventually consistent data retrieval

 13.7. Removing data

 13.8. Modifying data

 13.9. Scaling capacity

 13.9.1. Capacity units

 13.9.2. Auto-scaling

 Summary

 4. Architecting on AWS

 Chapter 14. Achieving high availability: availability zones, auto-scaling, and CloudWatch

 14.1. Recovering from EC2 instance failure with CloudWatch

 14.1.1. Creating a CloudWatch alarm to trigger recovery when status checks fail

 14.1.2. Monitoring and recovering a virtual machine based on a CloudWatch alarm

 14.2. Recovering from a data center outage

 14.2.1. Availability zones: groups of isolated data centers

 14.2.2. Using auto-scaling to ensure that an EC2 instance is always running

 14.2.3. Recovering a failed virtual machine to another availability zone with the help of auto-scaling

 14.2.4. Pitfall: recovering network-attached storage

 14.2.5. Pitfall: network interface recovery

 14.3. Analyzing disaster-recovery requirements

 14.3.1. RTO and RPO comparison for a single EC2 instance

 Summary

 Chapter 15. Decoupling your infrastructure: Elastic Load Balancing and Simple Queue Service

 15.1. Synchronous decoupling with load balancers

 15.1.1. Setting up a load balancer with virtual machines

 15.2. Asynchronous decoupling with message queues

 15.2.1. Turning a synchronous process into an asynchronous one

 15.2.2. Architecture of the URL2PNG application

 15.2.3. Setting up a message queue

 15.2.4. Producing messages programmatically

 15.2.5. Consuming messages programmatically

 15.2.6. Limitations of messaging with SQS

 Summary

 Chapter 16. Designing for fault tolerance

 16.1. Using redundant EC2 instances to increase availability

 16.1.1. Redundancy can remove a single point of failure

 16.1.2. Redundancy requires decoupling

 16.2. Considerations for making your code fault-tolerant

 16.2.1. Let it crash, but also retry

 16.2.2. Idempotent retry makes fault tolerance possible

 16.3. Building a fault-tolerant web application: Imagery

 16.3.1. The idempotent state machine

 16.3.2. Implementing a fault-tolerant web service

 16.3.3. Implementing a fault-tolerant worker to consume SQS messages

 16.3.4. Deploying the application

 Summary

 Chapter 17. Scaling up and down: auto-scaling and CloudWatch

 17.1. Managing a dynamic EC2 instance pool

 17.2. Using metrics or schedules to trigger scaling

 17.2.1. Scaling based on a schedule

 17.2.2. Scaling based on CloudWatch metrics

 17.3. Decouple your dynamic EC2 instance pool

 17.3.1. Scaling a dynamic EC2 instance pool synchronously decoupled by a load balancer

 17.3.2. Scaling a dynamic EC2 instances pool asynchronously decoupled by a queue

 Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 Fantastic introduction to cloud basics with excellent real-world examples.

 Rambabu Posa, GL Assessment

 A very thorough and practical guide to everything AWS ... highly recommended.

 Scott M. King, Amazon

 Cuts through the vast expanse of official documentation and gives you what you need to make AWS work now!

 Carm Vecchio, Computer Science Corporation (CSC)

 The right book to program AWS from scratch.

 Javier Muñoz Mellid, Senior Computer Engineer, Igalia

Foreword

 Throughout the late 1990s and early 2000s I worked in the rank and file of system administrators endeavoring to keep network
 services online, secure, and available to users. At the time, administration was a tedious, onerous affair involving cable
 slinging, server racking, installing from optical media, and configuring software manually. It was thankless work, often an
 exercise in frustration, requiring patience, persistence, and plenty of caffeine. To participate in the emerging online marketplace,
 businesses of the era bore the burden of managing this physical infrastructure, accepting the associated capital and operating
 costs and hoping for enough success to justify those expenses.

 When Amazon Web Services emerged in 2006, it signaled a shift in the industry. Management of compute and storage resources
 was dramatically simplified, and the cost of building and launching applications plummeted. Suddenly anyone with a good idea
 and the ability to execute could build a global business on world-class infrastructure at a starting cost of just a few cents
 an hour. The AWS value proposition was immediately apparent, ushering in a wave of new startups, data center migrations, and
 third-party service providers. In terms of cumulative disruption of an established market, a few technologies stand above
 all others, and AWS is among them.

 Today, the march of progress continues unabated. In December 2017 at its annual re:Invent conference in Las Vegas, Werner
 Vogels, CTO of Amazon, announced to more than 40,000 attendees that the company had released 3,951 new features and services
 since the first conference in 2012. AWS has an $18 billion annual run rate and 40% year-over-year growth. Enterprises, startups,
 and governments alike have adopted the AWS cloud en masse. The numbers are staggering, and AWS shows no signs of slowing down.

 Needless to say, this growth and innovation comes at the expense of considerable complexity. The AWS cloud is composed of
 scores of services and thousands of features, enabling powerful new applications and highly efficient designs. But it is accompanied
 by a brand-new lexicon with distinct architectural and technical best practices. The platform can bewilder the neophyte. How
 does one know where to begin?

 Amazon Web Services in Action, Second Edition, slices through the complexity of AWS using examples and visuals to cement knowledge in the minds of readers. Andreas and
 Michael focus on the most prominent services and features that users are most likely to need. Code snippets are sprinkled
 throughout each chapter, reinforcing the programmable nature of the cloud. And because many readers will be footing the bill
 from AWS personally, any examples that incur charges are called out explicitly throughout the text.

 As a consultant, author, and at heart an engineer, I celebrate all efforts to introduce the bewildering world of cloud computing
 to new users. Amazon Web Services in Action, Second Edition is at the head of the pack as a confident, practical guide through the maze of the industry’s leading cloud platform.

 With this book as your sidekick, what will you build on the AWS cloud?

 —BEN WHALEY, AWS COMMUNITY HERO AND AUTHOR

Preface

 When we started our career as software developers in 2008, we didn’t care about operations. We wrote code, and someone else
 was responsible for deployment and operations. There was a huge gap between software development and IT operations. On top
 of that, releasing new features was a huge risk because it was impossible to test all the changes to software and infrastructure
 manually. Every six months, when new features needed to be deployed, we experienced a nightmare.

 Time passed, and in 2012 we became responsible for a product: an online banking platform. Our goal was to iterate quickly
 and to be able to release new features to the product every week. Our software was responsible for managing money, so the
 quality and security of the software and infrastructure was as important as the ability to innovate. But the inflexible on-premises
 infrastructure and the outdated process of deploying software made that goal impossible to reach. We started to look for a
 better way.

 Our search led us to Amazon Web Services, which offered us a flexible and reliable way to build and operate our applications.
 The possibility of automating every part of our infrastructure was fascinating. Step by step, we dove into the different AWS
 services, from virtual machines to distributed message queues. Being able to outsource tasks like operating an SQL database
 or a load balancer saved us a lot of time. We invested this time in automating testing and operations for our entire infrastructure.

 Technical aspects weren’t the only things that changed during this transformation to the cloud. After a while the software
 architecture changed from a monolithic application to microservices, and the separation between software development and operations
 disappeared. Instead we built our organization around the core principle of DevOps: you build it, you run it.

 We have worked as independent consultants since 2015, helping our clients get the most out of AWS. We’ve accompanied startups,
 mid-sized companies, and enterprises on their journey to the cloud. Besides designing and implementing cloud architectures
 based on AWS services, we are focusing on infrastructure as code, continuous deployment, Docker, serverless, security, and
 monitoring.

 We enjoyed writing the first edition of our book in 2015. The astonishing support from Manning and our MEAP readers allowed
 us to finish the whole book in only nine months. Above all, it was a pleasure to observe you—our readers—using our book to
 get started with AWS or deepen your knowledge.

 AWS is innovating and constantly releases new features or whole new services. Therefore, it was about time to update our book
 in 2017. We started to work on the second edition of our book in June. Within six months we updated all chapters, added three
 more chapters, and improved the book based on the feedback of our readers and our editors.

 We hope you enjoy the second edition of Amazon Web Services in Action as much as we do!

Acknowledgments

 Writing a book is time-consuming. We invested our time, and other people did as well. We think that time is the most valuable
 resource on Earth, and we want to honor every minute spent by the people who helped us with this book.

 To all the readers who bought the first edition of our book: thanks so much for your trust and support. Watching you reading
 our book and working through the examples boosted our motivation. Also, we learned quite a bit from your feedback.

 Next, we want to thank all the readers who bought the MEAP edition of this book. Thanks for overlooking the rough edges and
 focusing on learning about AWS instead. Your feedback helped us to polish the version of the book that you are now reading.

 Thank you to all the people who posted comments in the Book Forum and who provided excellent feedback that improved the book.

 In addition, thanks to all the reviewers of the second and first edition who provided detailed comments from the first to
 the last page. The reviewers for this second edition are Antonio Pessolano, Ariel Gamino, Christian Bridge-Harrington, Christof
 Marte, Eric Hammond, Gary Hubbart, Hazem Farahat, Jean-Pol Landrain, Jim Amrhein, John Guthrie, Jose San Leandro, Lynn Langit,
 Maciej Drozdzowski, Manoj Agarwal, Peeyush Maharshi, Philip Patterson, Ryan Burrows, Shaun Hickson, Terry Rickman, and Thorsten
 Höger. Your feedback helped shape this book—we hope you like it as much as we do.

 Special thanks to Michael Labib for his input and feedback on chapter 12 covering AWS ElastiCache.

 Furthermore, we want to thank John Hyaduck, our technical developmental editor. Your unbiased and technical view on Amazon
 Web Services and our book helped to perfect the second edition. Thanks to Jonathan Thoms, the technical editor of the first
 edition as well.

 David Fombella Pombal and Doug Warren made sure all the examples within our book are working as expected. Thanks for proofing
 the technical parts of our book.

 We also want to thank Manning Publications for placing their trust in us. Especially, we want to thank the following staff
 at Manning for their excellent work:

 	Frances Lefkowitz, our development editor, who guided us through the process of writing the second edition. Her writing and
 teaching expertise is noticeable in every part of our book. Thanks for your support.

 	Dan Maharry, our development editor while writing the first edition. Thanks for taking us by the hand from writing the first
 pages to finishing our first book.

 	Aleksandar Dragosavljević, who organized the reviews of our book. Thanks for making sure we got valuable feedback from our
 readers.

 	Benjamin Berg and Tiffany Taylor, who perfected our English. We know you had a hard time with us, but our mother tongue is
 German, and we thank you for your efforts.

 	Candace Gillhoolley, Ana Romac, and Christopher Kaufmann, who helped us to promote this book.

 	Janet Vail, Deirdre Hiam, Elizabeth Martin, Mary Piergies, Gordan Salinovnic, David Novak, Barbara Mirecki, Marija Tudor,
 and all the others who worked behind the scenes and who took our rough draft and turned it into a real book.

 Many thanks to Ben Whaley for contributing the foreword to our book.

 Last but not least, we want to thank the significant people in our lives who supported us as we worked on the book. Andreas
 wants to thank his wife Simone, and Michael wants to thank his partner Kathrin, for their patience and encouragement.

About this book

 Our book guides you from creating an AWS account to building fault-tolerant and auto-scaling applications. You will learn
 about services offering compute, network, and storage capacity. We get you started with everything you need to run web applications
 on AWS: load balancers, virtual machines, file storage, database systems, and in-memory caches.

 The first part of the book introduces the principles of Amazon Web Services and gives you a first impression of the possibilities
 in the cloud. Next, you will learn about fundamental compute and network services. Afterward, we demonstrate six different
 ways to store your data. The last part of our book focuses on highly available or even fault-tolerant architectures that allow
 you to scale your infrastructure dynamically as well.

 Amazon offers a wide variety of services. Unfortunately, the number of pages within a book is limited. Therefore, we had to
 skip topics such as containers, big data, and machine learning. We cover the basic or most important services, though.

 Automation sneaks in throughout the book, so by the end you’ll be comfortable with using AWS CloudFormation, an infrastructure-as-code
 tool that allows you to manage your cloud infrastructure in an automated way; this will be one of the most important things
 you will learn from our book.

 Most of our examples use popular web applications to demonstrate important points. We use tools offered by AWS instead of
 third-party tools whenever possible, as we appreciate the quality and support offered by AWS. Our book focuses on the different
 aspects of security in the cloud, for example by following the “least privilege” principle when accessing cloud resources.

 We focus on Linux as the operating system for virtual machines in the book. Our examples are based on open source software.

 Amazon operates data centers in geographic regions around the world. To simplify the examples we are using the region US East
 (N. Virginia) within our book. You will also learn how to switch to another region to exemplarily make use of resources in
 Asia Pacific (Sydney).

Roadmap

 Chapter 1 introduces cloud computing and Amazon Web Services. You’ll learn about key concepts and basics, and you’ll create and set
 up your AWS account.

 Chapter 2 brings Amazon Web Services into action. You’ll spin up and dive into a complex cloud infrastructure with ease.

 Chapter 3 is about working with a virtual machine. You’ll learn about the key concepts of the Elastic Compute Service (EC2) with the
 help of a handful of practical examples.

 Chapter 4 presents different approaches for automating your infrastructure: the AWS command-line interface (CLI) from your terminal,
 the AWS SDKs to program in your favorite language, as well as AWS CloudFormation, an infrastructure-as-code tool.

 Chapter 5 introduces three different ways to deploy software to AWS. You’ll use each of the tools to deploy an application to AWS in
 an automated fashion.

 Chapter 6 is about security. You’ll learn how to secure your networking infrastructure with private networks and firewalls. You’ll
 also learn how to protect your AWS account and your cloud resources.

 Chapter 7 is about automating operational tasks with AWS Lambda. You will learn how to execute small code snippets in the cloud without
 the need of launching a virtual machine.

 Chapter 8 introduces Amazon Simple Storage Service (S3), a service offering object storage, and Amazon Glacier, a service offering
 long-term storage. You’ll learn how to integrate object storage into your applications to implement a stateless server by
 creating an image gallery.

 Chapter 9 is about storing data from your virtual machines on hard drives with Amazon Elastic Block Storage (EBS) and instance storage.
 In order to get an idea of the different options available, you will take some performance measurements.

 Chapter 10 explains how to use a networking filesystem to share data between multiple machines. Therefore, we introduce the Amazon Elastic
 File System (EFS).

 Chapter 11 introduces Amazon Relational Database Service (RDS), which offers managed relational database systems like MySQL, PostgreSQL,
 Oracle, and Microsoft SQL Server. You will learn how to connect an application to an RDS database instance, for example.

 Chapter 12 is about adding a cache to your infrastructure to speed up your application and save costs due to minimizing load on the
 database layer. Specifically, you will learn about Amazon ElastiCache, which provides Redis or memcached as a service.

 Chapter 13 introduces Amazon DynamoDB, a NoSQL database offered by AWS. DynamoDB is typically not compatible with legacy applications.
 You need to rework your applications to be able to make use of DynamoDB instead. You’ll implement a to-do application in this
 chapter.

 Chapter 14 explains what is needed to make your infrastructure highly available. You will learn how to recover from a failed virtual
 machine or even a whole datacenter automatically.

 Chapter 15 introduces the concept of decoupling your system to increase reliability. You’ll learn how to use synchronous decoupling
 with the help of Elastic Load Balancing (ELB). Asynchronous decoupling is also part of this chapter; we explain how to use
 the Amazon Simple Queue Service (SQS), a distributed queuing service, to build a fault-tolerant system.

 Chapter 16 dives into building fault-tolerant applications based on the concepts explained in chapter 14 and 15. You will create a fault-tolerant image processing web services within this chapter.

 Chapter 17 is all about flexibility. You’ll learn how to scale the capacity of your infrastructure based on a schedule or based on the
 current load of your system.

Code conventions and downloads

 You’ll find four types of code listings in this book: Bash, YAML, Python, and Node.js/JavaScript. We use Bash to create tiny
 scripts to interact with AWS in an automated way. YAML is used to describe infrastructure in a way that AWS CloudFormation
 can understand. In addition, we use Python to manage our cloud infrastructure. Also, we use the Node.js platform to create
 small applications in JavaScript to build cloud-native applications.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source
 code is formatted in a fixed-width font like this to separate it from ordinary text. Code annotations accompany many of the listings, highlighting important concepts. Sometimes
 we needed to break a line into two or more to fit on the page. In our Bash code we used the continuation backslash. In our
 YAML, Python, and Node.js/JavaScript code, an artificial line break is indicated by this symbol: [image:].

 The code for the examples in this book is available for download from the publisher’s website at https://www.manning.com/books/amazon-web-services-in-action-second-edition and from GitHub at https://github.com/awsinAction/code2.

Book forum

 Purchase of Amazon Web Services in Action, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://forums.manning.com/forums/amazon-web-services-in-action-second-edition. You can also learn more about Manning’s forums and the rules of conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s
 website as long as the book is in print.

About the authors

 [image:]

 [image:]

 Andreas Wittig and Michael Wittig are software and DevOps engineers focusing on Amazon Web Services. The brothers started
 building on AWS in 2013 when migrating the IT infrastructure of a German bank to AWS—the first bank in Germany to do so. Since
 2015, Andreas and Michael have worked as consultants helping their clients to migrate and run their workloads on AWS. They
 focus on infrastructure-as-code, continuous deployment, serverless, Docker, and security. Andreas and Michael build SaaS products
 on top of the Amazon’s cloud as well. Both are certified as AWS Certified Solutions Architect - Professional and AWS Certified
 DevOps Engineer - Professional. In addition, Andreas and Michael love sharing their knowledge and teaching how to use Amazon
 Web Services through this book, their blog (cloudonaut.io), as well as online- and on-site trainings (such as AWS in Motion [https://www.manning.com/livevideo/aws-in-motion]).

About the cover illustration

 The figure on the cover of Amazon Web Services in Action, Second Edition is captioned “Paysan du Canton de Lucerne,” or a peasant from the canton of Lucerne in central Switzerland. The illustration
 is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled
 Costumes de Différent Pays, published in France in 1797. Each illustration is finely drawn and colored by hand.

 The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and
 regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or
 in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to
 tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded
 cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Grasset de Saint-Sauveur’s pictures.

Part 1. Getting started

 Have you watched a blockbuster on Netflix, bought a gadget on Amazon.com, or booked a room on Airbnb today? If so, you have
 used Amazon Web Services (AWS) in the background. Because Netflix, Amazon.com, and Airbnb all use Amazon Web Services for
 their business.

 Amazon Web Services is the biggest player in the cloud computing markets. According to analysts, AWS maintains a market share
 of more than 30%.[1] Another impressive number: AWS reported net sales of $4.1 billion USD for the quarter ending in June 2017.[2] AWS data centers are distributed worldwide in North America, South America, Europe, Asia, and Australia. But the cloud does
 not consist of hardware and computing power alone. Software is part of every cloud platform and makes the difference for you,
 as a customer who aims to provide a valuable experience to your services’s users. The research firm Gartner has yet again
 classified AWS as a leader in their Magic Quadrant for Cloud Infrastructure as a Service in 2017. Gartner’s Magic Quadrant
 groups vendors into four quadrants: niche players, challengers, visionaries, and leaders, and provides a quick overview of
 the cloud computing market.[3] Being recognized as a leader attests AWS’s high speed and high quality of innovation.

 1

Synergy Research Group, “The Leading Cloud Providers Continue to Run Away with the Market,” http://mng.bz/qDYo.

 2

Amazon, 10-Q for Quarter Ended June 30 (2017), http://mng.bz/1LAX.

 3

AWS Blog, “AWS Named as a Leader in Gartner’s Infrastructure as a Service (IaaS) Magic Quadrant for 7th Consecutive Year,”
 http://mng.bz/0W1W.

 The first part of this book will guide you through your initial steps with AWS. You will get an impression of how you can
 use AWS to improve your IT infrastructure.

 Chapter 1 introduces cloud computing and AWS. This will get you familiar with the big-picture basics of how AWS is structured.

 Chapter 2 brings Amazon Web Service into action. Here, you will spin up and dive into a complex cloud infrastructure with ease.

Chapter 1. What is Amazon Web Services?

 This chapter covers

 	Overview of Amazon Web Services

 	The benefits of using Amazon Web Services

 	What you can do with Amazon Web Services

 	Creating and setting up an AWS account

 Amazon Web Services (AWS) is a platform of web services that offers solutions for computing, storing, and networking, at different layers of
 abstraction. For example, you can use block-level storage (a low level of abstraction) or a highly distributed object storage
 (a high level of abstraction) to store your data. You can use these services to host websites, run enterprise applications,
 and mine tremendous amounts of data. Web services are accessible via the internet by using typical web protocols (such as HTTP) and used by machines or by humans through a
 UI. The most prominent services provided by AWS are EC2, which offers virtual machines, and S3, which offers storage capacity.
 Services on AWS work well together: you can use them to replicate your existing local network setup, or you can design a new
 setup from scratch. The pricing model for services is pay-per-use.

 As an AWS customer, you can choose among different data centers. AWS data centers are distributed worldwide. For example, you can start a virtual machine in Japan in exactly the same way
 as you would start one in Ireland. This enables you to serve customers worldwide with a global infrastructure.

 The map in figure 1.1 shows AWS’s data centers. Access is limited to some of them: some data centers are accessible for U.S. government organizations
 only, and special conditions apply for the data centers in China. Additional data centers have been announced for Bahrain,
 Hong Kong, Sweden, and the U.S..

 Figure 1.1. AWS data center locations

 [image:]

 In more general terms, AWS is known as a cloud computing platform.

1.1. What is cloud computing?

 Almost every IT solution is labeled with the term cloud computing or just cloud nowadays. Buzzwords like this may help sales, but they’re hard to work with in a book. So for the sake of clarity, let’s
 define some terms.

 Cloud computing, or the cloud, is a metaphor for supply and consumption of IT resources. The IT resources in the cloud aren’t
 directly visible to the user; there are layers of abstraction in between. The level of abstraction offered by the cloud varies,
 from offering virtual machines (VMs) to providing software as a service (SaaS) based on complex distributed systems. Resources
 are available on demand in enormous quantities, and you pay for what you use.

 The official definition from the National Institute of Standards and Technology:

 Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
 computing resources (networks, virtual machines, storage, applications, and services) that can be rapidly provisioned and
 released with minimal management effort or service provider interaction.

 National Institute of Standards and Technology, The NIST Definition of Cloud Computing

 Clouds are often divided into three types:

 	
Public—A cloud managed by an organization and open to use by the general public.

 	
Private—A cloud that virtualizes and distributes the IT infrastructure for a single organization.

 	
Hybrid—A mixture of a public and a private cloud.

 AWS is a public cloud. Cloud computing services also have several classifications:

 	
Infrastructure as a service (IaaS)—Offers fundamental resources like computing, storage, and networking capabilities, using virtual machines such as Amazon
 EC2, Google Compute Engine, and Microsoft Azure.

 	
Platform as a service (PaaS)—Provides platforms to deploy custom applications to the cloud, such as AWS Elastic Beanstalk, Google App Engine, and Heroku.

 	
Software as a service (SaaS)—Combines infrastructure and software running in the cloud, including office applications like Amazon WorkSpaces, Google Apps
 for Work, and Microsoft Office 365.

 The AWS product portfolio contains IaaS, PaaS, and SaaS. Let’s take a more concrete look at what you can do with AWS.

1.2. What can you do with AWS?

 You can run all sorts of application on AWS by using one or a combination of services. The examples in this section will give
 you an idea of what you can do.

 1.2.1. Hosting a web shop

 John is CIO of a medium-sized e-commerce business. He wants to develop a fast and reliable web shop. He initially decided
 to host the web shop on-premises, and three years ago he rented machines in a data center. A web server handles requests from
 customers, and a database stores product information and orders. John is evaluating how his company can take advantage of
 AWS by running the same setup on AWS, as shown in figure 1.2.

 Figure 1.2. Running a web shop on-premises vs. on AWS

 [image:]

 John not only wants to lift-and-shift his current on-premises infrastructure to AWS; he wants to get the most out of the advantages
 the cloud is offering. Additional AWS services allow John to improve his setup.

 	The web shop consists of dynamic content (such as products and their prices) and static content (such as the company logo).
 Splitting these up would reduce the load on the web servers and improve performance by delivering the static content over
 a content delivery network (CDN).

 	Switching to maintenance-free services including a database, an object store, and a DNS system would free John from having
 to manage these parts of the system, decreasing operational costs and improving quality.

 	The application running the web shop can be installed on virtual machines. Using AWS, John can run the same amount of resources
 he was using on his on-premises machine, but split into multiple smaller virtual machines at no extra cost. If one of these
 virtual machines fails, the load balancer will send customer requests to the other virtual machines. This setup improves the
 web shop’s reliability.

 Figure 1.3 shows how John enhanced the web shop setup with AWS.

 Figure 1.3. Running a web shop on AWS with CDN for better performance, a load balancer for high availability, and a managed database to
 decrease maintenance costs

 [image:]

 John is happy with running his web shop on AWS. By migrating his company’s infrastructure to the cloud, he was able to increase
 the reliability and performance of the web shop.

 1.2.2. Running a Java EE application in your private network

 Maureen is a senior system architect in a global corporation. She wants to move parts of her company’s business applications
 to AWS when the data-center contract expires in a few months, to reduce costs and gain flexibility. She wants to run enterprise
 applications (such as Java EE applications) consisting of an application server and an SQL database on AWS. To do so, she
 defines a virtual network in the cloud and connects it to the corporate network through a Virtual Private Network (VPN) connection.
 She installs application servers on virtual machines to run the Java EE application. Maureen also wants to store data in an
 SQL database service (such as Oracle Database Enterprise Edition or Microsoft SQL Server EE).

 For security, Maureen uses subnets to separate systems with different security levels from each other. By using access-control
 lists, she can control ingoing and outgoing traffic for each subnet. For example, the database is only accessible from the
 JEE server’s subnet which helps to protect mission-critical data. Maureen controls traffic to the internet by using Network
 Address Translation (NAT) and firewall rules as well. Figure 1.4 illustrates Maureen’s architecture.

 Figure 1.4. Running a Java EE application with enterprise networking on AWS improves flexibility and lowers costs.

 [image:]

 Maureen has managed to connect the local data center with a private network running remotely on AWS to enable clients to access
 the JEE server. To get started, Maureen uses a VPN connection between the local data center and AWS, but she is already thinking
 about setting up a dedicated network connection to reduce network costs and increase network throughput in the future.

 The project was a great success for Maureen. She was able to reduce the time needed to set up an enterprise application from
 months to hours, as AWS can take care of the virtual machines, databases, and even the networking infrastructure on demand
 within a few minutes. Maureen’s project also benefits from lower infrastructure costs on AWS, compared to using their own
 infrastructure on-premises.

 1.2.3. Implementing a highly available system

 Alexa is a software engineer working for a fast-growing startup. She knows that Murphy’s Law applies to IT infrastructure:
 anything that can go wrong will go wrong. Alexa is working hard to build a highly available system to prevent outages from ruining the business. All services
 on AWS are either highly available or can be used in a highly available way. So, Alexa builds a system like the one shown
 in figure 1.5 with a high availability architecture. The database service is offered with replication and fail-over handling. In case the
 master database instance fails, the standby database is promoted as the new master database automatically. Alexa uses virtual
 machines acting as web servers. These virtual machines aren’t highly available by default, but Alexa launches multiple virtual
 machines in different data centers to achieve high availability. A load balancer checks the health of the web servers and
 forwards requests to healthy machines.

 Figure 1.5. Building a highly available system on AWS by using a load balancer, multiple virtual machines, and a database with master-standby
 replication

 [image:]

 So far, Alexa has protected the startup from major outages. Nevertheless, she and her team are always planning for failure
 and are constantly improving the resilience of their systems.

 1.2.4. Profiting from low costs for batch processing infrastructure

 Nick is a data scientist who needs to process massive amounts of measurement data collected from gas turbines. He needs to
 generate a report containing the maintenance condition of hundreds of turbines daily. Therefore, his team needs a computing
 infrastructure to analyze the newly arrived data once a day. Batch jobs are run on a schedule and store aggregated results
 in a database. A business intelligence (BI) tool is used to generate reports based on the data stored in the database.

 As the budget for computing infrastructure is very small, Nick and his team have been looking for a cost effective solution
 to analyze their data. He finds a way to make clever use of AWS’s price model:

 	
AWS bills virtual machines per minute. So Nick launches a virtual machine when starting a batch job, and terminates it immediately after the job finished. Doing
 so allows him to pay for computing infrastructure only when actually using it. This is a big game changer compared to the
 traditional data center where Nick had to pay a monthly fee for each machine, no matter how much it was used.

 	
AWS offers spare capacity in their data centers at substantial discount. It is not important for Nick to run a batch job at a specific time. He can wait to execute a batch job until there is enough
 spare capacity available, so AWS offers him a virtual machine with a discount of 50%.

 Figure 1.6 illustrates how Nick benefits from the pay-per-use price model for virtual machines.

 Figure 1.6. Making use of the pay-per-use price model of virtual machines

 [image:]

 Nick is happy to have access to a computing infrastructure that allows his team to analyze data at low costs. You now have
 a broad idea of what you can do with AWS. Generally speaking, you can host any application on AWS. The next section explains
 the nine most important benefits AWS has to offer.

1.3. How you can benefit from using AWS

 What’s the most important advantage of using AWS? Cost savings, you might say. But saving money isn’t the only advantage.
 Let’s look at how else you can benefit from using AWS.

 1.3.1. Innovative and fast-growing platform

 AWS is announcing new services, features, and improvements constantly. Go to https://aws.amazon.com/about-aws/whats-new/ to get an impression of the speed of innovation. We have counted 719 announcements from Jan. 1 to Oct. 21 in 2017, and 641
 announcements in 2016. Making use of the innovative technologies provided by AWS helps you to generate valuable solutions
 for your customers and thus achieve a competitive advantage.

 AWS reported net sales of $4.1 billion USD for the quarter ending in June 2017. That’s a year-over-year growth rate of 42%
 (Q3 2016 versus Q3 2017). We expect AWS to expand the size and extend of its platform in the upcoming years, for example,
 by adding additional services and data centers.[4]

 4

Amazon, 10-Q for Quarter Ended June 30 (2017), http://mng.bz/1LAX.

 1.3.2. Services solve common problems

 As you’ve learned, AWS is a platform of services. Common problems such as load balancing, queuing, sending email, and storing
 files are solved for you by services. You don’t need to reinvent the wheel. It’s your job to pick the right services to build
 complex systems. So let AWS manage those services while you focus on your customers.

 1.3.3. Enabling automation

 Because AWS has an API, you can automate everything: you can write code to create networks, start virtual machine clusters,
 or deploy a relational database. Automation increases reliability and improves efficiency.

 The more dependencies your system has, the more complex it gets. A human can quickly lose perspective, whereas a computer
 can cope with graphs of any size. You should concentrate on tasks humans are good at—such as describing a system—while the
 computer figures out how to resolve all those dependencies to create the system. Setting up an environment in the cloud based
 on your blueprints can be automated with the help of infrastructure as code, covered in chapter 4.

 1.3.4. Flexible capacity (scalability)

 Flexible capacity frees you from planning. You can scale from one virtual machine to thousands of virtual machines. Your storage
 can grow from gigabytes to petabytes. You no longer need to predict your future capacity needs for the coming months and years.

 If you run a web shop, you have seasonal traffic patterns, as shown in figure 1.7. Think about day versus night, and weekday versus weekend or holiday. Wouldn’t it be nice if you could add capacity when
 traffic grows and remove capacity when traffic shrinks? That’s exactly what flexible capacity is about. You can start new
 virtual machines within minutes and throw them away a few hours after that.

 Figure 1.7. Seasonal traffic patterns for a web shop

 [image:]

 The cloud has almost no capacity constraints. You no longer need to think about rack space, switches, and power supplies—you
 can add as many virtual machines as you like. If your data volume grows, you can always add new storage capacity.

 Flexible capacity also means you can shut down unused systems. In one of our last projects, the test environment only ran
 from 7 a.m. to 8 p.m. on weekdays, allowing us to save 60%.

 1.3.5. Built for failure (reliability)

 Most AWS services are highly available or fault tolerant by default. If you use those services, you get reliability for free.
 AWS supports you as you build systems in a reliable way. It provides everything you need to create your own highly available
 or fault-tolerant systems.

 1.3.6. Reducing time to market

 In AWS, you request a new virtual machine, and a few minutes later that virtual machine is booted and ready to use. The same
 is true with any other AWS service available. You can use them all on demand.

 Your development process will be faster because of the shorter feedback loops. You can eliminate constraints such as the number
 of test environments available; if you need another test environment, you can create it for a few hours.

 1.3.7. Benefiting from economies of scale

 AWS is increasing its global infrastructure constantly. Thus AWS benefits from an economy of scale. As a customer, you will
 benefit partially from these effects.

 AWS reduces prices for their cloud services every now and then. A few examples:

 	In November 2016, charges for storing data on the object storage S3 were reduced by 16% to 28%.

 	In May 2017, prices were reduced by 10% to 17% for virtual machines with a one- or three-year commitment (reserved instances).

 	In July 2017, AWS reduced prices for virtual machines running a Microsoft SQL Server (Standard Edition) by up to 52%.

 1.3.8. Global infrastructure

 Are you serving customers worldwide? Making use of AWS’s global infrastructure has the following advantages: low network latencies
 between your customers and your infrastructure, being able to comply with regional data protection requirements, and benefiting
 from different infrastructure prices in different regions. AWS offers data centers in North America, South America, Europe,
 Asia, and Australia, so you can deploy your applications worldwide with little extra effort.

 1.3.9. Professional partner

 When you use AWS services, you can be sure that their quality and security follow the latest standards and certifications.
 For example:

 	
ISO 27001—A worldwide information security standard certified by an independent and accredited certification body.

 	
ISO 9001—A standardized quality management approach used worldwide and certified by an independent and accredited certification body.

 	
PCI DSS Level 1—A data security standard (DSS) for the payment card industry (PCI) to protect cardholders data.

 Go to https://aws.amazon.com/compliance/ if you want to dive into the details. If you’re still not convinced that AWS is a professional partner, you should know that
 Expedia, Vodafone, FDA, FINRA, Airbnb, Slack, and many more are running serious workloads on AWS.[5]

 5

AWS Customer Success, https://aws.amazon.com/solutions/case-studies/.

 We have discussed a lot of reasons to run your workloads on AWS. But what does AWS cost? You will learn more about the pricing
 models in the next section.

1.4. How much does it cost?

 A bill from AWS is similar to an electric bill. Services are billed based on use. You pay for the time a virtual machine was
 running, the used storage from the object store, or the number of running load balancers. Services are invoiced on a monthly
 basis. The pricing for each service is publicly available; if you want to calculate the monthly cost of a planned setup, you can use
 the AWS Simple Monthly Calculator (http://aws.amazon.com/calculator).

 1.4.1. Free Tier

 You can use some AWS services for free within the first 12 months of your signing up. The idea behind the Free Tier is to
 enable you to experiment with AWS and get some experience using its services. Here is a taste of what’s included in the Free
 Tier:

 	750 hours (roughly a month) of a small virtual machine running Linux or Windows. This means you can run one virtual machine
 for a whole month or you can run 750 virtual machines for one hour.

 	750 hours (or roughly a month) of a classic or application load balancer.

 	Object store with 5 GB of storage.

 	Small database with 20 GB of storage, including backup.

 If you exceed the limits of the Free Tier, you start paying for the resources you consume without further notice. You’ll receive
 a bill at the end of the month. We’ll show you how to monitor your costs before you begin using AWS.

 After your one-year trial period ends, you pay for all resources you use. But some resources are free forever. For example,
 the first 25 GB of the NoSQL database are free forever.

 You get additional benefits, as detailed at http://aws.amazon.com/free. This book will use the Free Tier as much as possible and will clearly state when additional resources are required that
 aren’t covered by the Free Tier.

 1.4.2. Billing example

 As mentioned earlier, you can be billed in several ways:

 	
Based on minutes or hours of usage—A virtual machine is billed per minute. A load balancer is billed per hour.

 	
Based on traffic—Traffic is measured in gigabytes or in number of requests, for example.

 	
Based on storage usage—Usage can be measured by capacity (for example, 50 GB volume no matter how much you use) or real usage (such as 2.3 GB used).

 Remember the web shop example from section 1.2? Figure 1.8 shows the web shop and adds information about how each part is billed.

 Figure 1.8. AWS bills services on minutes or hours of usage, by traffic, or by used storage.

 [image:]

 Let’s assume your web shop started successfully in January, and you ran a marketing campaign to increase sales for the next
 month. Lucky you: you were able to increase the number of visitors to your web shop fivefold in February. As you already know,
 you have to pay for AWS based on usage. Table 1.1 shows your bill for February. The number of visitors increased from 100,000 to 500,000, and your monthly bill increased from
 $127 USD to $495 USD, which is a 3.9-fold increase. Because your web shop had to handle more traffic, you had to pay more
 for services, such as the CDN, the web servers, and the database. Other services, like the amount of storage needed for static
 files, didn’t change, so the price stayed the same.

 Table 1.1. How an AWS bill changes if the number of web shop visitors increases

 	
 Service

 	
 January usage

 	
 February usage

 	
 February charge

 	
 Increase

 	Visits to website
 	100,000
 	500,000
 	
 	

 	CDN
 	25 M requests + 25 GB traffic
 	125 M requests + 125 GB traffic
 	$135.63 USD
 	$107.50 USD

 	Static files
 	50 GB used storage
 	50 GB used storage
 	$1.15 USD
 	$0.00 USD

 	Load balancer
 	748 hours + 50 GB traffic
 	748 hours + 250 GB traffic
 	$20.70 USD
 	$1.60 USD

 	Web servers
 	1 virtual machine = 748 hours
 	4 virtual machines = 2,992 hours
 	$200.46 USD
 	$150.35 USD

 	Database (748 hours)
 	Small virtual machine + 20 GB storage
 	Large virtual machine + 20 GB storage
 	$133.20 USD
 	$105.47 USD

 	DNS
 	2 M requests
 	10 M requests
 	$4.00 USD
 	$3.20 USD

 	Total cost
 	
 	
 	$495.14 USD
 	$368.12 USD

 With AWS, you can achieve a linear relationship between traffic and costs. And other opportunities await you with this pricing
 model.

 1.4.3. Pay-per-use opportunities

 The AWS pay-per-use pricing model creates new opportunities. For example, the barrier for starting a new project is lowered,
 as you no longer need to invest in infrastructure up front. You can start virtual machines on demand and only pay per second
 of usage, and you can stop using those virtual machines whenever you like and no longer have to pay for them. You don’t need
 to make an upfront commitment regarding how much storage you’ll use.

 Another example: a big server costs exactly as much as two smaller ones with the same capacity. Thus you can divide your systems
 into smaller parts, because the cost is the same. This makes fault tolerance affordable not only for big companies but also
 for smaller budgets.

1.5. Comparing alternatives

 AWS isn’t the only cloud computing provider. Microsoft Azure and Google Cloud Platform (GCP) are major players as well.

 The three major cloud providers share a lot in common. They all have:

 	A worldwide infrastructure that provides computing, networking, and storage capabilities.

 	An IaaS offering that provides virtual machines on-demand: Amazon EC2, Azure Virtual Machines, Google Compute Engine.

 	Highly distributed storage systems able to scale storage and I/O capacity without limits: Amazon S3, Azure Blob storage, Google
 Cloud Storage.

 	A pay-as-you-go pricing model.

 But what are the differences between the cloud providers?

 AWS is the market leader in cloud computing, offering an extensive product portfolio. Even if AWS has expanded into the enterprise
 sector during recent years, it is still obvious that AWS started with services to solve internet-scale problems. Overall,
 AWS is building great services based on innovative, mostly open source, technologies. AWS offers complicated but rock-solid
 ways to restrict access to your cloud infrastructure.

 Microsoft Azure provides Microsoft’s technology stack in the cloud, recently expanding into web-centric and open source technologies
 as well. It seems like Microsoft is putting a lot of effort into catching up with Amazon’s market share in cloud computing.

 GCP is focused on developers looking to build sophisticated distributed systems. Google combines their worldwide infrastructure
 to offer scalable and fault-tolerant services (such as Google Cloud Load Balancing). The GCP seems more focused on cloud-native
 applications than on migrating your locally hosted applications to the cloud, in our opinion.

 There are no shortcuts to making an informed decision about which cloud provider to choose. Each use case and project is different.
 The devil is in the details. Also don’t forget where you are coming from. (Are you using Microsoft technology heavily? Do
 you have a big team consisting of system administrators or are you a developer-centric company?) Overall, in our opinion,
 AWS is the most mature and powerful cloud platform available at the moment.

1.6. Exploring AWS services

 Hardware for computing, storing, and networking is the foundation of the AWS cloud. AWS runs services on this hardware, as
 shown in figure 1.9. The API acts as an interface between AWS services and your applications.

 Figure 1.9. The AWS cloud is composed of hardware and software services accessible via an API.

 [image:]

 You can manage services by sending requests to the API manually via a web-based UI like the Management Console, a command-line
 interface (CLI), or programmatically via an SDK. Virtual machines have a special feature: you can connect to virtual machines
 through SSH, for example, and gain administrator access. This means you can install any software you like on a virtual machine.
 Other services, like the NoSQL database service, offer their features through an API and hide everything that’s going on behind
 the scenes. Figure 1.10 shows an administrator installing a custom PHP web application on a virtual machine and managing dependent services such
 as a NoSQL database used by the application.

 Figure 1.10. Managing a custom application running on a virtual machine and dependent services

 [image:]

 Users send HTTP requests to a virtual machine. This virtual machine is running a web server along with a custom PHP web application.
 The web application needs to talk to AWS services in order to answer HTTP requests from users. For example, the application
 might need to query data from a NoSQL database, store static files, and send email. Communication between the web application
 and AWS services is handled by the API, as figure 1.11 shows.

 Figure 1.11. Handling an HTTP request with a custom web application using additional AWS services

 [image:]

 The number of services available can be scary at the outset. When logging into AWS’s web interface you are presented with
 an overview listing 98 services. On top of that, new services are announced constantly during the year and at the big conference
 in Las Vegas, AWS re:Invent.

 AWS offers services in the following categories:

 	Analytics

 	Application Integration

 	AR and VR

 	Business Productivity

 	Compute

 	Customer Engagement

 	Database

 	Desktop and App Streaming

 	Developer Tools

 	Game Development

 	Internet Of Things

 	Machine Learning

 	Management Tools

 	Media Services

 	Migration

 	Mobile Services

 	Networking and Content Delivery

 	Security, Identity, and Compliance

 	Storage

 Unfortunately, it is not possible to cover all services offered by AWS in our book. Therefore, we are focusing on the services
 that will best help you get started quickly, as well as the most widely used services. The following services are covered
 in detail in our book:

 	
EC2—Virtual machines

 	
ELB—Load balancers

 	
Lambda—Executing functions

 	
Elastic Beanstalk—Deploying web applications

 	
S3—Object store

 	
EFS—Network filesystem

 	
Glacier—Archiving data

 	
RDS—SQL databases

 	
DynamoDB—NoSQL database

 	
ElastiCache—In-memory key-value store

 	
VPC—Private network

 	
CloudWatch—Monitoring and logging

 	
CloudFormation—Automating your infrastructure

 	
OpsWorks—Deploying web applications

 	
IAM—Restricting access to your cloud resources

 	
Simple Queue Service—Distributed queues

 We are missing at least three important topics that would fill their own books: continuous delivery, Docker/containers, and
 Big Data. Let us know when you are interested in reading one of these unwritten books.

 But how do you interact with an AWS service? The next section explains how to use the web interface, the CLI, and SDKs to
 manage and access AWS resources.

1.7. Interacting with AWS

 When you interact with AWS to configure or use services, you make calls to the API. The API is the entry point to AWS, as
 figure 1.12 demonstrates.

 Figure 1.12. Different ways to access the AWS API, allowing you to manage and access AWS services

 [image:]

 Next, we’ll give you an overview of the tools available for communicating with API: the Management Console, the command-line
 interface, the SDKs, and infrastructure blueprints. We will compare the different tools, and you will learn how to use all
 of them while working your way through the book.

 1.7.1. Management Console

 The AWS Management Console allows you to manage and access AWS services through a graphical user interface (GUI), which runs
 in every modern web browser (the latest three versions of Google Chrome and Mozilla Firefox; Apple Safari: 9, 8, and 7; Microsoft
 Internet Explorer: 11; Microsoft Edge: 12). See figure 1.13.

 Figure 1.13. The AWS Management Console offers a GUI to manage and access AWS services.

 [image:]

 When getting started or experimenting with AWS, the Management Console is the best place to start. It helps you to gain an
 overview of the different services quickly. The Management Console is also a good way to set up a cloud infrastructure for
 development and testing.

 1.7.2. Command-line interface

 The command-line interface (CLI) allows you to manage and access AWS services within your terminal. Because you can use your
 terminal to automate or semi-automate recurring tasks, CLI is a valuable tool. You can use the terminal to create new cloud
 infrastructures based on blueprints, upload files to the object store, or get the details of your infrastructure’s networking
 configuration regularly. Figure 1.14 shows the CLI in action.

 Figure 1.14. The CLI allows you to manage and access AWS services from your terminal.

 [image:]

 If you want to automate parts of your infrastructure with the help of a continuous integration server, like Jenkins, the CLI
 is the right tool for the job. The CLI offers a convenient way to access the API and combine multiple calls into a script.

OEBPS/01fig01_alt.jpg
i e

OEBPS/01fig02.jpg
User

Internet,

On-premises server /

server | [Database ‘ ‘

Web
Web server Database

Maint f Managed by you with updates
v/ Maintenance free ffg T8TEGEE DY YO N

OEBPS/xxviifig01.jpg
S/

OEBPS/xxviifig02.jpg

OEBPS/common2.jpg

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/01fig03_alt.jpg
improve

Interet

i

reliability. —_ | @/ Dyrvamwc

Decrease

maintenance — |

costs.

Load balancer

Database

R
-

NS coN

-4

Object store

o Mainenarco ree

Managed by you with updates,
monitoring, and 80 on

Improve
— performance

OEBPS/01fig05_alt.jpg
£ —— _intemet
User

/ Fault olerant by defaut

Load

balancer

Data center A
Database
(master)
Web server
Data center B
Database
(standby)
Web server

B Faok tolersnt ssage posstic

OEBPS/01fig04_alt.jpg
Internet —@ DI—
4

s

Internet
gateway

o Vitval network

10.10.0.0/16

&

NAT

Private subnet
10.10.0.0/24

- 0
VPN

Corporate network gateway

10.20.0.0116

Java EE server

Private subnet
10.10.1.0/24

SQL database

Private subnet
10.10.2.0/24

OEBPS/cover.jpg
SECOND EDITION
Michael Wittig
Andreas Wittig

orewordby s Whaly

| | T

OEBPS/01fig07_alt.jpg
Systemload

Systemload

‘Systemload

6am

12n00n

6pm

Monday Thursday Sunday

January.

December

OEBPS/01fig06_alt.jpg
Machines Machines

are used. are idling.
onpremises o
Using virtual machines Using virtual machines
Pay for virtual machines Pay forvitual machines
You're paying for You're only paying for machines

PR, i o O

OEBPS/01fig09_alt.jpg
Manage
O services

Services

APl

Administrator .
Compute: Virtual machines.

App: Queues, search
Enterprise: Directory service, mail
Deployment: Access rights, monitoring

Storage: Object store, archiving
Database: Relational, NoSQL
Networking: DNS, virtual network

Software
Hardware

OEBPS/01fig08_alt.jpg
[l = _Intemet

User

TO B T B\
@ Dynamic .l' Static =

DNS CDN

D

Load balancer

Virtual machines

| Ho =
. Object
storage

Database

@ Billed by hours of usage ™ Billed by traffic Billed by storage usage

OEBPS/01fig11_alt.jpg
OeC
©
.~]

HTTP request

—
@ XL

Virtual \
e ¢ T

machine
NosQL Sending Static file.
database email storage

Services

OEBPS/01fig10_alt.jpg
Administrator

Install and configure
software remotely.

Manage
services.

Services

- —
@D

Virtual
machine

NosQL. Sending Static file
database email storage

OEBPS/01fig13_alt.jpg
Sy oo
pe—
oy

tnc L T EoTo0 WS A e B 72310245

@ o
Mot T
pros . Sy

oo e

© < reran

D s e %
mmn

OEBPS/01fig12_alt.jpg
interface

@ management
@ @ console

SDKs for Java,
Python, JavaScript,
andsoon

Automation

Blueprints

OEBPS/01fig14_alt.jpg
4 andreas — -bash — 130x40

amespace "ANS/EC2" ~-max-itens 3

"Instanceld",
0bds524716b447eba"
Networkout"
B
|
"Dinensions": [
)

1
"MiextToken": "eyd0ZXhOVGIrZWa101BudxsLCATYRIOD190CVUY2FOZVSRBHO1bnQ 0TAZ Q-

LA R—

