

 [image: cover]

The Well-Grounded Rubyist, Third Edition

 David A. Black and Joseph Leo III

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 © 2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Jenny Stout
Technical development editor: Arthur Zubarev
Review editor: Ivan Martinović
Production editor: Céline Durassier
Copyeditor: Andy Carroll
Proofreader: Katie Tennant
Technical proofreader: René van den Berg
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617295218

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

Dedication

 For David.

 David

 For Diana, for teaching me how to take it easy. I am still a work in progress.

 Joseph

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the Second Edition

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Ruby foundations

 Chapter 1. Bootstrapping your Ruby literacy

 Chapter 2. Objects, methods, and local variables

 Chapter 3. Organizing objects with classes

 Chapter 4. Modules and program organization

 Chapter 5. The default object (self), scope, and visibility

 Chapter 6. Control-flow techniques

 2. Built-in classes and modules

 Chapter 7. Built-in essentials

 Chapter 8. Strings, symbols, and other scalar objects

 Chapter 9. Collection and container objects

 Chapter 10. Collections central: Enumerable and Enumerator

 Chapter 11. Regular expressions and regexp-based string operations

 Chapter 12. File and I/O operations

 3. Ruby dynamics

 Chapter 13. Object individuation

 Chapter 14. Callable and runnable objects

 Chapter 15. Callbacks, hooks, and runtime introspection

 Chapter 16. Ruby and functional programming

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the Second Edition

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Ruby foundations

 Chapter 1. Bootstrapping your Ruby literacy

 1.1. Basic Ruby language literacy

 1.1.1. Installing Ruby and using a text editor

 1.1.2. A Ruby syntax survival kit

 1.1.3. The variety of Ruby identifiers

 1.1.4. Method calls, messages, and Ruby objects

 1.1.5. Writing and saving a simple program

 1.1.6. Feeding the program to Ruby

 1.1.7. Keyboard and file I/O

 1.2. Anatomy of the Ruby installation

 1.2.1. The Ruby standard library subdirectory (RbConfig::CONFIG[“rubylibdir”])

 1.2.2. The C extensions directory (RbConfig::CONFIG[“archdir”])

 1.2.3. The site_ruby (RbConfig::CONFIG[“sitedir”]) and vendor_ruby (RbConfig::CONFIG[“vendordir”]) directories

 1.2.4. Standard Ruby gems and the gems directory

 1.3. Ruby extensions and programming libraries

 1.3.1. Loading external files and extensions

 1.3.2. “Load”-ing a file in the default load path

 1.3.3. “Require”-ing a feature

 1.3.4. require_relative

 1.4. Out-of-the-box Ruby tools and applications

 1.4.1. Interpreter command-line switches

 1.4.2. A closer look at interactive Ruby interpretation with irb

 1.4.3. The rake task-management utility

 1.4.4. Installing packages with the gem command

 Summary

 Chapter 2. Objects, methods, and local variables

 2.1. Talking to objects

 2.1.1. Ruby and object orientation

 2.1.2. Creating a generic object

 2.1.3. Methods that take arguments

 2.1.4. The return value of a method

 2.2. Crafting an object: the behavior of a ticket

 2.2.1. The ticket object, behavior first

 2.2.2. Querying the ticket object

 2.2.3. Shortening the ticket code via string interpolation

 2.2.4. Ticket availability: expressing Boolean state in a method

 2.3. The innate behaviors of an object

 2.3.1. Identifying objects uniquely with the object_id method

 2.3.2. Querying an object’s abilities with the respond_to? method

 2.3.3. Sending messages to objects with the send method

 2.4. A close look at method arguments

 2.4.1. Required and optional arguments

 2.4.2. Default values for arguments

 2.4.3. Order of parameters and arguments

 2.4.4. What you can’t do in argument lists

 2.5. Local variables and variable assignment

 2.5.1. Variables, objects, and references

 2.5.2. References in variable assignment and reassignment

 2.5.3. References and method arguments

 2.5.4. Local variables and the things that look like them

 Summary

 Chapter 3. Organizing objects with classes

 3.1. Classes and instances

 3.1.1. Instance methods

 3.1.2. Overriding methods

 3.1.3. Reopening classes

 3.2. Instance variables and object state

 3.2.1. Initializing an object with state

 3.3. Setter methods

 3.3.1. The equal sign (=) in method names

 3.3.2. Syntactic sugar for assignment-like methods

 3.3.3. Setter methods unleashed

 3.4. Attributes and the attr_* method family

 3.4.1. Automating the creation of attributes

 3.4.2. Summary of attr_* methods

 3.5. Inheritance and the Ruby class hierarchy

 3.5.1. Single inheritance: one to a customer

 3.5.2. Object ancestry and the not-so-missing link: the Object class

 3.5.3. BasicObject

 3.6. Classes as objects and message receivers

 3.6.1. Creating class objects

 3.6.2. How class objects call methods

 3.6.3. A singleton method by any other name ...

 3.6.4. When, and why, to write a class method

 3.6.5. Class methods vs. instance methods

 3.7. Constants up close

 3.7.1. Basic use of constants

 3.7.2. Reassigning vs. modifying constants

 3.8. Nature vs. nurture in Ruby objects

 Summary

 Chapter 4. Modules and program organization

 4.1. Basics of module creation and use

 4.1.1. A module encapsulating “stacklikeness”

 4.1.2. Mixing a module into a class

 4.1.3. Using the module further

 4.2. Modules, classes, and method lookup

 4.2.1. Illustrating the basics of method lookup

 4.2.2. Defining the same method more than once

 4.2.3. How prepend works

 4.2.4. How extend works

 4.2.5. The rules of method lookup summarized

 4.2.6. Going up the method search path with super

 4.2.7. Inspecting method hierarchies with method and super_method

 4.3. The method_missing method

 4.3.1. Combining method_missing and super

 4.4. Class/module design and naming

 4.4.1. Mix-ins and/or inheritance

 4.4.2. Nesting modules and classes

 Summary

 Chapter 5. The default object (self), scope, and visibility

 5.1. Understanding self, the current/default object

 5.1.1. Who gets to be self, and where

 5.1.2. The top-level self object

 5.1.3. Self inside class, module, and method definitions

 5.1.4. Self as the default receiver of messages

 5.1.5. Resolving instance variables through self

 5.2. Determining scope

 5.2.1. Global scope and global variables

 5.2.2. Local scope

 5.2.3. The interaction between local scope and self

 5.2.4. Scope and resolution of constants

 5.2.5. Class variable syntax, scope, and visibility

 5.3. Deploying method-access rules

 5.3.1. Private methods

 5.3.2. Protected methods

 5.4. Writing and using top-level methods

 5.4.1. Defining a top-level method

 5.4.2. Predefined (built-in) top-level methods

 Summary

 Chapter 6. Control-flow techniques

 6.1. Conditional code execution

 6.1.1. The if keyword and its variants

 6.1.2. Assignment syntax in condition bodies and tests

 6.1.3. case statements

 6.2. Repeating actions with loops

 6.2.1. Unconditional looping with the loop method

 6.2.2. Conditional looping with the while and until keywords

 6.2.3. Multiple assignment in conditional statements

 6.2.4. Looping based on a list of values

 6.3. Iterators and code blocks

 6.3.1. The ingredients of iteration

 6.3.2. Iteration, home-style

 6.3.3. The anatomy of a method call

 6.3.4. Curly braces vs. do/end in code block syntax

 6.3.5. Implementing times

 6.3.6. The importance of being each

 6.3.7. From each to map

 6.3.8. Block parameters and variable scope

 6.4. Error handling and exceptions

 6.4.1. Raising and rescuing exceptions

 6.4.2. The rescue keyword to the rescue!

 6.4.3. Debugging with binding.irb

 6.4.4. Avoiding NoMethodError with the safe navigation operator

 6.4.5. Raising exceptions explicitly

 6.4.6. Capturing an exception in a rescue clause

 6.4.7. The ensure clause

 6.4.8. Creating your own exception classes

 Summary

 2. Built-in classes and modules

 Chapter 7. Built-in essentials

 7.1. Ruby’s literal constructors

 7.2. Recurrent syntactic sugar

 7.2.1. Defining operators by defining methods

 7.2.2. Customizing unary operators

 7.3. Bang (!) methods and “danger”

 7.3.1. Destructive (receiver-changing) effects as danger

 7.3.2. Destructiveness and “danger” vary independently

 7.4. Built-in and custom to_* (conversion) methods

 7.4.1. String conversion: to_s and other methods defined on Object

 7.4.2. Array conversion with to_a and the * operator

 7.4.3. Numerical conversion with to_i and to_f

 7.4.4. Role-playing to_* methods

 7.5. Boolean states, Boolean objects, and nil

 7.5.1. True and false as states

 7.5.2. true and false as objects

 7.5.3. The special object nil

 7.6. Comparing two objects

 7.6.1. Equality tests

 7.6.2. Comparisons and the Comparable module

 7.7. Inspecting object capabilities

 7.7.1. Listing an object’s methods

 7.7.2. Querying class and module objects

 7.7.3. Filtered and selected method lists

 Summary

 Chapter 8. Strings, symbols, and other scalar objects

 8.1. Working with strings

 8.1.1. String notation

 8.1.2. Basic string manipulation

 8.1.3. Querying strings

 8.1.4. String comparison and ordering

 8.1.5. String transformation

 8.1.6. String conversions

 8.1.7. String encoding: a brief introduction

 8.2. Symbols and their uses

 8.2.1. Chief characteristics of symbols

 8.2.2. Symbols and identifiers

 8.2.3. Symbols in practice

 8.2.4. Strings and symbols in comparison

 8.3. Numerical objects

 8.3.1. Numerical classes

 8.3.2. Performing arithmetic operations

 8.4. Times and dates

 8.4.1. Instantiating date/time objects

 8.4.2. Date/time query methods

 8.4.3. Date/time formatting methods

 8.4.4. Date/time conversion methods

 Summary

 Chapter 9. Collection and container objects

 9.1. Arrays and hashes in comparison

 9.2. Collection handling with arrays

 9.2.1. Creating a new array

 9.2.2. Inserting, retrieving, and removing array elements

 9.2.3. Combining arrays with other arrays

 9.2.4. Array transformations

 9.2.5. Array querying

 9.3. Hashes

 9.3.1. Creating a new hash

 9.3.2. Inserting, retrieving, and removing hash pairs

 9.3.3. Specifying default hash values and behavior

 9.3.4. Combining hashes with other hashes

 9.3.5. Hash transformations

 9.3.6. Hash querying

 9.3.7. Hashes as final method arguments

 9.3.8. A detour back to argument syntax: named (keyword) arguments

 9.4. Ranges

 9.4.1. Creating a range

 9.4.2. Range-inclusion logic

 9.5. Sets

 9.5.1. Set creation

 9.5.2. Manipulating set elements

 9.5.3. Subsets and supersets

 Summary

 Chapter 10. Collections central: Enumerable and Enumerator

 10.1. Gaining enumerability through each

 10.2. Enumerable Boolean queries

 10.3. Enumerable searching and selecting

 10.3.1. Getting the first match with find

 10.3.2. Getting all matches with find_all (a.k.a. select) and reject

 10.3.3. Selecting on threequal matches with grep

 10.3.4. Organizing selection results with group_by and partition

 10.4. Element-wise enumerable operations

 10.4.1. The first method

 10.4.2. The take and drop methods

 10.4.3. The min and max methods

 10.5. Relatives of each

 10.5.1. reverse_each

 10.5.2. The each_with_index method (and each.with_index)

 10.5.3. The each_slice and each_cons methods

 10.5.4. The slice_family of methods

 10.5.5. The cycle method

 10.5.6. Enumerable reduction with inject

 10.6. The map method

 10.6.1. The return value of map

 10.6.2. In-place mapping with map!

 10.7. Strings as quasi-enumerables

 10.8. Sorting enumerables

 10.8.1. Defining sort-order logic with a block

 10.8.2. Concise sorting with sort_by

 10.8.3. Sorting enumerables and the Comparable module

 10.9. Enumerators and the next dimension of enumerability

 10.9.1. Creating enumerators with a code block

 10.9.2. Attaching enumerators to other objects

 10.9.3. Implicit creation of enumerators by blockless iterator calls

 10.10. Enumerator semantics and uses

 10.10.1. How to use an enumerator’s each method

 10.10.2. Protecting objects with enumerators

 10.10.3. Fine-grained iteration with enumerators

 10.10.4. Adding enumerability with an enumerator

 10.11. Enumerator method chaining

 10.11.1. Economizing on intermediate objects

 10.11.2. Indexing enumerables with with_index

 10.11.3. Exclusive-or operations on strings with enumerators

 10.12. Lazy enumerators

 10.12.1. FizzBuzz with a lazy enumerator

 Summary

 Chapter 11. Regular expressions and regexp-based string operations

 11.1. What are regular expressions?

 11.2. Writing regular expressions

 11.2.1. Seeing patterns

 11.2.2. Simple matching with literal regular expressions

 11.3. Building a pattern in a regular expression

 11.3.1. Literal characters in patterns

 11.3.2. The dot wildcard character (.)

 11.3.3. Character classes

 11.4. Matching, substring captures, and MatchData

 11.4.1. Capturing submatches with parentheses

 11.4.2. Match success and failure

 11.4.3. Two ways of getting the captures

 11.4.4. Other MatchData information

 11.5. Fine-tuning regular expressions with quantifiers, anchors, and modifiers

 11.5.1. Constraining matches with quantifiers

 11.5.2. Greedy (and non-greedy) quantifiers

 11.5.3. Regular expression anchors and assertions

 11.5.4. Modifiers

 11.6. Converting strings and regular expressions to each other

 11.6.1. String-to-regexp idioms

 11.6.2. Going from a regular expression to a string

 11.7. Common methods that use regular expressions

 11.7.1. String#scan

 11.7.2. String#split

 11.7.3. sub/sub! and gsub/gsub!

 11.7.4. Case equality and grep

 Summary

 Chapter 12. File and I/O operations

 12.1. How Ruby’s I/O system is put together

 12.1.1. The IO class

 12.1.2. IO objects as enumerables

 12.1.3. STDIN, STDOUT, STDERR

 12.1.4. A little more about keyboard input

 12.2. Basic file operations

 12.2.1. The basics of reading from files

 12.2.2. Line-based file reading

 12.2.3. Byte- and character-based file reading

 12.2.4. Seeking and querying file position

 12.2.5. Reading files with File class methods

 12.2.6. Writing to files

 12.2.7. Using blocks to scope file operations

 12.2.8. File enumerability

 12.2.9. File I/O exceptions and errors

 12.3. Querying IO and File objects

 12.3.1. Getting information from the File class and the FileTest module

 12.3.2. Deriving file information with File::Stat

 12.4. Directory manipulation with the Dir class

 12.4.1. Reading a directory’s entries

 12.4.2. Directory manipulation and querying

 12.5. File tools from the standard library

 12.5.1. The FileUtils module

 12.5.2. The Pathname class

 12.5.3. The StringIO class

 12.5.4. The open-uri library

 Summary

 3. Ruby dynamics

 Chapter 13. Object individuation

 13.1. Where the singleton methods are: the singleton class

 13.1.1. Dual determination through singleton classes

 13.1.2. Examining and modifying a singleton class directly

 13.1.3. Singleton classes on the method-lookup path

 13.1.4. The singleton_class method

 13.1.5. Class methods in (even more) depth

 13.2. Modifying Ruby’s core classes and modules

 13.2.1. The risks of changing core functionality

 13.2.2. Additive changes

 13.2.3. Pass-through overrides

 13.2.4. Per-object changes with extend

 13.2.5. Using refinements to affect core behavior

 13.3. BasicObject as ancestor and class

 13.3.1. Using BasicObject

 13.3.2. Implementing a subclass of BasicObject

 Summary

 Chapter 14. Callable and runnable objects

 14.1. Basic anonymous functions: the Proc class

 14.1.1. Proc objects

 14.1.2. Procs and blocks and how they differ

 14.1.3. Block-proc conversions

 14.1.4. Using Symbol#to_proc for conciseness

 14.1.5. Procs as closures

 14.1.6. Proc parameters and arguments

 14.2. Creating functions with lambda and ->

 The “stabby lambda” constructor, ->

 14.3. Methods as objects

 14.3.2. The rationale for methods as objects

 14.4. The eval family of methods

 14.4.1. Executing arbitrary strings as code with eval

 14.4.2. The dangers of eval

 14.4.3. The instance_eval method

 14.4.4. Using class_eval (a.k.a. module_eval)

 14.5. Concurrent execution with threads

 14.5.1. Killing, stopping, and starting threads

 14.5.2. A threaded date server

 14.5.3. Writing a chat server using sockets and threads

 14.5.4. Threads and variables

 14.5.5. Manipulating thread keys

 14.6. Issuing system commands from inside Ruby programs

 14.6.1. The system and exec methods and backticks

 14.6.2. Communicating with programs via open and popen3

 Summary

 Chapter 15. Callbacks, hooks, and runtime introspection

 15.1. Callbacks and hooks

 15.1.1. Intercepting unrecognized messages with method_missing

 15.1.2. Trapping include and prepend operations

 15.1.3. Intercepting extend

 15.1.4. Intercepting inheritance with Class#inherited

 15.1.5. The Module#const_missing method

 15.1.6. The method_added and singleton_method_added methods

 15.2. Interpreting object capability queries

 15.2.1. Listing an object’s non-private methods

 15.2.2. Listing private and protected methods

 15.2.3. Getting class and module instance methods

 15.2.4. Listing objects’ singleton methods

 15.3. Introspection of variables and constants

 15.3.1. Listing local and global variables

 15.3.2. Listing instance variables

 15.4. Tracing execution

 15.4.1. Examining the stack trace with caller

 15.4.2. Writing a tool for parsing stack traces

 15.5. Callbacks and method inspection in practice

 15.5.1. MicroTest background: MiniTest

 15.5.2. Specifying and implementing MicroTest

 Summary

 Chapter 16. Ruby and functional programming

 16.1. Understanding pure functions

 16.1.1. Methods with side effects

 16.1.2. Pure functions and referential transparency in Ruby

 16.1.3. Side effects in Ruby’s built-in methods

 16.1.4. Modifying an object’s state

 16.2. Immutability

 16.2.1. Object#freeze and Object#frozen?

 16.2.2. Frozen string literals

 16.3. Higher-order functions

 16.3.1. Method chaining

 16.3.2. Kernel#itself and Kernel#yield_self

 16.3.3. Functions that return functions

 16.3.4. Currying and partial function application

 16.4. Recursion

 16.4.1. Lazy evaluation

 16.4.2. Tail-call optimization

 Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the Second Edition

 Once again, David Black has written the definitive book on Ruby. A must have for any Rubyist!

 William Wheeler
TEKsystems

 The Well-Grounded Rubyist digs into Ruby’s quirks and provides powerful insights into how the core artifacts interact. Revelatory.

 Ted Roche
Ted Roche & Associates, LLC

 All wheat, no chaff—takes you from Ruby programmer to full-fledged Rubyist.

 Doug Sparling
Andrews McMeel Universal

 The best way to learn Ruby fundamentals.

 Derek Sivers
sivers.org

 If you have ever read a tutorial on Ruby on Rails and wondered, ‘Okay, it works, but why and how?’ then this book is for you.
 A great book to learn Ruby from the beginning.

 Andrea Tarocchi
Istituto Clinico Città Studi (ICCS)

 Any passionate Rubyist can discover plenty of practical treasures inside.

 Marius Butuc
Influitive

Preface

 In the nearly 10 years since the first edition of The Well-Grounded Rubyist was published, Ruby has achieved wild popularity and made an indelible mark on the programming landscape. Once-fledgling
 startups that used Ruby have become dominant forces in business and technology. Trade schools and teaching programs have sprung
 up to teach Ruby to newcomers from all walks of life. The programming language with a friendly creator and a warm, inviting
 community has touched many, many programmers and changed their professional lives for the better.

 Ruby is ever changing and evolving. Not only new methods but new programming techniques have become available. Some long-existing
 techniques have either gained in popularity or fallen out of popular use. The Well-Grounded Rubyist attempts to put its finger on the pulse of the Ruby programming community to teach not only the most important principles
 but also those most commonly in use today. This edition targets Ruby 2.5.

 The Well-Grounded Rubyist has become one of the most popular and trusted texts for learning Ruby. Much of the teaching in the book is done by example,
 giving countless opportunities to follow along with your own code and build on the foundations provided in the text. Earlier
 editions established this approach, and this third edition expands on it, providing more sample code and exercises than ever
 before.

 We’re excited for you to begin your journey through this edition of The Well-Grounded Rubyist. Whether you’re reading this book for the first, second, or third time, we hope you’ll find something new and inspiring,
 and something that ignites your love of Ruby and keeps it burning!

Acknowledgments

 Thanks first of all go to everyone who contributed to the success of the first two editions. This edition wouldn’t exist if
 it weren’t for that ensemble of editors, production personnel, reviewers, publishers, and colleagues.

 For the third edition, our thanks go first and foremost to development editor Jennifer Stout, whose support and inspiration
 through the most difficult parts of writing proved invaluable. Technical development editor Arthur Zubarev provided insightful
 guidance and thought-provoking questions that made this text better. Technical proofreader René van den Berg’s critical eye
 positively impacted both the text and the code samples throughout the book.

 Copyeditor Andy Carroll contributed greatly to the process of putting an overall polish on the text. In preproduction, Céline
 Durassier kept everything on track and on time. Katie Tennant contributed numerous valuable insights and suggestions and effectively
 organized our communication. Dottie Marsico did a wonderful job of making everything look good and flow smoothly.

 Along the way, several outside reviewers contributed comments and critiques, all of which helped greatly in keeping the third
 edition relevant and compelling to our audience: Alex Lucas, Brian Daley, Burkhard Nestmann, Chris Schwartz, Chris Wayman,
 Dana Robinson, David Bradley Clements, Deshuang Tang, Doug Sparling, James Dietrich, John Kasiewicz, Jon Riddle, Luis Miguel
 Cabezas Granado, Matthew Halverson, Mohamed Lahrech, Omid Kamangar, Pierre-Michel Ansel, Prabhuti Prakash, Steven Parr, Tamara
 Fultz, and William E. Wheeler. Thanks go especially to Michael Dalessio, Mark Simpson, and Paul Ort. Our thanks go to Julia
 Macalaster and Katherine Zhao for their support and for making sure this book sees as wide an audience as possible.

 Once again, we thank Yukihiro “Matz” Matsumoto for creating the wonderful Ruby language and for setting an example of openness
 and inquisitive engagement with Ruby programmers that served as the cornerstone for the thriving, friendly community that
 has formed around the language.

 David: I would like to thank myself—specifically for having had the inspired idea of inviting Joe Leo to serve as coauthor
 on the third edition of the book! And (of course) enormous thanks to Joe for breathing new and timely life into the project.
 David Williams gives me a kind of support, in everything I do, that I never knew I needed until I got it, and now am so grateful
 for.

 Joe: I would like to thank Diana Leo for her constant support throughout my work on the third edition. She gave me the encouragement,
 love, and care I needed to bring this work to the finish line. My parents, Dorothy and Joe Leo, Jr., gave me a lifetime of
 love and support to pursue my passions. Erica, Frank, and Katie will always be my biggest fans and my best friends. Lucy is
 my sunshine and inspiration.

About this book

Welcome

 ... to the third edition of The Well-Grounded Rubyist.

 Ruby is a general-purpose, object-oriented, interpreted programming language designed by Yukihiro “Matz” Matsumoto. Ruby was
 first announced in 1993. The first public release appeared in 1995, and the language became very popular in Japan during the
 1990s. It’s known and admired for its expressiveness—its ability to do a lot with relatively little code—and for the elegance
 and visual smoothness of its syntax and style. Ruby has proven useful and productive in a wide variety of programming contexts,
 ranging from administrative scripting to device embedding, from web development to PDF document processing. Moreover, and
 at the risk of sounding non-technical, Ruby programming is fun. It’s designed that way. As Matz has said, Ruby is optimized
 for the programmer experience. Indeed, Ruby started as Matz’s pet project and gained attention and traction because so many
 other programmers got pleasure from the same kind of language design that Matz did.

 The first English-language book on Ruby (Programming Ruby by Dave Thomas and Andy Hunt [Addison-Wesley]) appeared in late 2000 and ushered in a wave of Ruby enthusiasm outside of
 Japan. Ruby’s popularity in the West has grown steadily since the appearance of the “Pickaxe book” (the nickname of the Thomas-Hunt
 work, derived from its cover illustration). Four years after the first edition of the Pickaxe, the introduction of the Ruby
 on Rails web application development framework by David Heinemeier Hansson sparked a massive surge in worldwide interest in
 Ruby. The years since 2004 have seen exponential growth in the use of Ruby, as well as books about Ruby, Ruby user groups,
 and Ruby-related conferences and other events.

 The purpose of The Well-Grounded Rubyist is to give you a broad and deep understanding of how Ruby works and a considerable toolkit of Ruby techniques and idioms
 that you can use for real programming.

How this book is organized

 The Well-Grounded Rubyist, Third Edition consists of 16 chapters and is divided into 3 parts:

 	
Part 1: Ruby foundations

 	
Part 2: Built-in classes and modules

 	
Part 3: Ruby dynamics

 Part 1 (chapters 1 through 6) introduces you to the syntax of Ruby and to a number of the key concepts and semantics on which Ruby programming builds:
 objects, methods, classes and modules, identifiers, and more. It also covers the Ruby programming lifecycle (how to prepare
 and execute code files, and writing programs that span more than one file), as well as many of the command-line tools that
 ship with Ruby and that Ruby programmers use frequently, including the interactive Ruby interpreter (irb), the RubyGems package
 manager (gem), and the Ruby interpreter (ruby).

 Part 2 (chapters 7 through 12) surveys the major built-in classes—including strings, arrays, hashes, numerics, ranges, dates and times, and regular expressions—and
 provides you with insight into what the various built-ins are for, as well as the nuts and bolts of how to use them. It also
 builds on your general Ruby literacy with exploration of such topics as Boolean logic in Ruby, built-in methods for converting
 objects from one class to another (for example, converting a string to an integer), Ruby’s considerable facilities for engineering
 collections and their enumeration, and techniques for comparing objects for identity and equality. You’ll also learn about
 file and console I/O as well as issuing system commands from inside Ruby programs.

 Part 3 (chapters 13 through 16) addresses the area of Ruby dynamics. Under this heading you’ll find a number of subtopics—among them some metaprogramming
 techniques—including Ruby’s facilities for runtime reflection and object introspection; ways to endow objects with individualized
 behaviors; and the handling of functions, threads, and other runnable and executable objects. This part of the book also introduces
 you to techniques for issuing system commands from inside a Ruby program and encompasses a number of Ruby’s event-triggered
 runtime hooks and callbacks, such as handlers for calls to non-existent methods and interception of events like class inheritance
 and method definition. We conclude the book with a chapter on functional programming paradigms and how they can be realized
 in Ruby.

 Ruby is a system, and presenting any system in a strictly linear way is a challenge. We meet this challenge by thinking of
 the learning process as a kind of widening spiral, building on the familiar but always opening out into the unknown. At times,
 you’ll be shown enough of a future topic to serve as a placeholder, so that you can learn the current topic in depth. Later,
 with the necessary bootstrapping already done, you’ll come back to the placeholder topic and study it in its own right. The Well-Grounded Rubyist, Third Edition is engineered to expose you to as much material as possible as efficiently as possible, consistent with its mission of providing
 you with a solid foundation in Ruby—a real and lasting understanding of how the language works.

Who should read this book

 The Well-Grounded Rubyist, Third Edition is optimized for a reader who’s done some programming and perhaps even some Ruby and wants to learn more about the Ruby language—not
 only the specific techniques (although the book includes plenty of those), but also the design principles that make Ruby what
 it is. We’re great believers in knowing what you’re doing. We also believe that knowing what you’re doing doesn’t mean you
 have to compose a treatise in your head every time you write a line of code; it means you know how to make the most out of
 the language and understand how to analyze problems when they arise.

 We’ve hedged our bets a little, in terms of targeted readership, in that we’ve included some introductory remarks about a
 number of topics and techniques that are possibly familiar to experienced programmers. We ask the indulgence of those readers.
 The remarks in question go by pretty quickly, and we believe that even a brief explanation of terms here and there can make
 a surprisingly big difference in how many people feel at home in, and welcomed by, the book. If you’re a more experienced
 programmer and see passages where we seem to be spoon-feeding, please bear with us. It’s for a good cause.

 By the same token, if this is your first foray into programming, be prepared to do a little extra self-imposed “homework”
 to get ramped up into the programming process—but by all means, give The Well-Grounded Rubyist, Third Edition a go. The book isn’t specifically an introduction to programming, but it does take you through all the practicalities, including
 the creation and running of program files, as well as explaining Ruby from the ground up.

What this book doesn’t include

 The Well-Grounded Rubyist, Third Edition is a serious, extensive look at the Ruby language, but it isn’t a complete language reference. There are core classes that
 we say little or nothing about, and we discuss only a modest number of standard library packages. That’s by design. You don’t
 need us to spell out for you how to use every standard-library API, and we don’t. What you do need, in all likelihood, is
 someone to explain to you exactly what class << self means, or why two instance variables two lines apart aren’t the same variable, or the distinction between singleton methods
 and private methods, or what an enumerator is and how it differs from an iterator. You need to know these things, and you
 need to see them in operation and to start using them. You must, of course, plunge deeply into the standard library in your
 work with Ruby, and we encourage you to do so. We’re aiming to impart a particular kind and degree of understanding in this
 book.

A word on Ruby versions

 The Well-Grounded Rubyist, Third Edition covers version 2.5 of the Ruby language, the most recent version at the time of writing. Version 2.6 is around the corner,
 and we’ve taken that into consideration by explaining what you can expect in some circumstances. By and large, version 2.6
 will be a speed optimization release with few changes to language constructs or methods.

Code conventions, examples, and downloads

 In the text, names of Ruby variables and constants are in monospacedfont. Names of classes and modules are in monospacedfont where they represent direct references to existing class or module objects; for example, “Next, we’ll reopen the class definition
 block for Person.” In all cases, you’ll be able to tell from the context that a class, module, or other Ruby entity is under discussion.

 Source code for all the working examples in this book is available from our GitHub repository (www.github.com/jleo3/twgr) and from the Manning website (https://www.manning.com/books/the-well-grounded-rubyist-third-edition). We will continue to update these examples as we get feedback from our readers.

 Names of programs, such as ruby and rails, are in monospacedfont where reference is made directly to the program executable or to command-line usage; otherwise, they appear in regular type.

 Italics or an asterisk are used for wildcard expressions; for example, to_* might indicate the general category of Ruby methods that includes to_i and to_s, whereas position_match might correspond to post_match or pre_match.

 You can run the standalone code samples in the book either by placing them in a text file and running the ruby command on them, or by typing them into the interactive Ruby interpreter irb. In chapter 1, you’ll learn these techniques. As the book progresses, it will be assumed that you can do this on your own and that you’ll
 make up names for your sample files if no names are suggested (or if you prefer different names).

 A considerable number of examples in the book are presented in the form of irb sessions. What you’ll see on the page are cut-and-pasted
 lines from a live interactive session, where the code was entered into irb, and irb responded by running the code. You’ll
 come to recognize this format easily (especially if you start using irb yourself). This mode of presentation is particularly
 suitable for short code snippets and expressions; and because irb always prints out the results of executing whatever you
 type in (rather like a calculator), it lets you see results while economizing on explicit print commands.

 In other cases, the output from code samples is printed separately after the samples, printed alongside the code (and clearly
 labeled as output), or embedded in the discussion following the appearance of the code.

 Some examples are accompanied by numbered cueballs that appear to the side of the code. These cueballs are linked to specific
 points in the ensuing discussion and give you a way to refer back quickly to the line under discussion.

 Command-line program invocations are shown with a dollar-sign ($) prompt, in the general style of shell prompts in UNIX-like environments. Most of these commands will work on Windows, even
 though the prompt may be different. (In all environments, the availability of the commands depends on the setting of the relevant
 path environment variable.)

 The use of web rather than Web to designate the World Wide Web is a Manning in-house style convention that we have followed here, although in other contexts
 we follow the W3C’s guideline, which is to use Web.

liveBook discussion forum

 Purchase of The Well-Grounded Rubyist, Third Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/the-well-grounded-rubyist-third-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the authors,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 [image:]

 David A. Black is an internationally known Ruby developer, author, trainer, speaker, and event organizer, as well as a cofounder
 of Ruby Central.

 [image:]

 Joseph Leo III is a Ruby teacher, mentor, and community advocate. He is the lead organizer of the Gotham Ruby Conference (GoRuCo)
 and founder of Def Method.

About the cover illustration

 The figure on the cover of The Well-Grounded Rubyist is a “Noble Française” or a French noblewoman. The illustration is taken from the 1805 edition of Sylvain Maréchal’s four-volume
 compendium of regional dress customs. This book was first published in Paris in 1788, one year before the French Revolution.
 Each illustration is colored by hand.

 The colorful variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and regions were
 just 200 years ago. Isolated from one another, people spoke different dialects and languages. In the streets or in the countryside,
 it was easy to identify where they lived and what their trade or station in life was just by their dress. Dress codes have
 changed since then and the diversity by region, so rich at the time, has faded away. Today, it is hard to tell apart the inhabitants
 of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied
 personal life—certainly a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Ruby foundations

 The goal of this part of the book is to give you a broad but practical foundation layer on which to build, and to which to
 anchor, the further explorations of Ruby that follow in parts 2 and 3. We’ll start with a chapter on bootstrapping your Ruby
 literacy; after working through that first chapter, you’ll be able to run Ruby programs comfortably and have a good sense
 of the layout of a typical Ruby installation. Starting with chapter 2, we’ll get into the details of the Ruby language. Ruby is an object-oriented language, and the sooner you dive into how Ruby
 handles objects, the better. Accordingly, objects will serve both as a way to bootstrap the discussion of the language (and
 your knowledge of it) and as a golden thread leading us to further topics and techniques.

 Objects are created by classes, and in chapter 3 you’ll learn how classes work. The discussion of classes is followed by a look at modules in chapter 4. Modules allow you to fine-tune classes and objects by splitting out some of the object design into separate, reusable units
 of code. To understand Ruby programs—both your own and others’—you need to know about Ruby’s notion of a current default object,
 known by the keyword self. Chapter 5 will take you deep into the concept of self, along with a treatment of Ruby’s handling of variable visibility and scope.

 In chapter 6, the last in this part of the book, you’ll learn about control flow in Rubyprograms—that is, how to steer the Ruby interpreter
 through conditional (if) logic, how to loop repeatedly through code, and even how to break away from normal program execution when an error occurs.
 By the end of chapter 6, you’ll be thinking along with Ruby as you write and develop your code.

 The title of this part is “Ruby foundations,” which obviously suggests that what’s here is to be built on later. And that’s
 true. But it doesn’t mean that the material in part 1 isn’t important in itself. As you’ll see once you read them, these six chapters present you with real Ruby techniques, real
 code, and information you’ll use every time you write or execute a Ruby program. It’s not the “foundations” because you’ll
 learn it once and then ignore it, but because there’s so much more about Ruby yet to follow!

Chapter 1. Bootstrapping your Ruby literacy

 	

 This chapter covers

 	A Ruby syntax survival kit

 	Writing, saving, running, and error-checking programs

 	A tour of the Ruby installation

 	The mechanics of Ruby extensions

 	Ruby’s command-line tools such as irb and rake

 	

 This book will give you a foundation in Ruby, and this chapter will give your foundation a foundation. The goal of the chapter
 is to bootstrap you into the study of Ruby with enough knowledge and skill to proceed comfortably into what lies beyond.

 We’ll look at basic Ruby syntax and techniques and at how Ruby works: what you do when you write a program, how you get Ruby
 to run your program, and how you split a program into more than one file. You’ll learn several of the switches that alter
 how the Ruby interpreter (the program with the name ruby, to which you feed your program files for execution) acts, as well as how to use some important auxiliary tools designed to make your life as
 a Rubyist easier and more productive.

 The chapter is based on a view of the whole Ruby landscape as being divided into three fundamental levels:

 	Core language: design principles, syntax, and semantics

 	Extensions and libraries that ship with Ruby, and the facilities for adding extensions of your own

 	Command-line tools that come with Ruby, with which you run the interpreter and some other important utilities

 It’s not always possible to talk about these three levels in isolation—after all, they’re interlocking parts of a single system—but
 we’ll discuss them separately as much as possible in this chapter. You can, in any case, use the three level descriptions
 as pegs to hang subtopics on, wherever they’re introduced.

 	

 Ruby, ruby, and ... RUBY?!

 Ruby is a programming language. We talk about things like “learning Ruby,” and we ask questions like, “Do you know Ruby?”

 The lowercase version, ruby, is a computer program. Specifically, it’s the Ruby interpreter, the program that reads your programs
 and runs them. You’ll see this name used in sentences like “I ran ruby on my file, but nothing happened,” or “What’s the full path to your ruby executable?”

 Finally, there’s RUBY—or, more precisely, there isn’t. Ruby isn’t an acronym, and it’s never correct to spell it in all capital
 letters. People do this, as they do (also incorrectly) with Perl, perhaps because they’re used to seeing language names like
 BASIC and COBOL. Ruby isn’t such a language. It’s Ruby for the language, ruby for the interpreter.

 	

 Nor does this first chapter exist solely in the service of later chapters. It has content in its own right: you’ll learn real
 Ruby techniques and important points about the design of the language.

1.1. Basic Ruby language literacy

 The goal of this section is to get you going with Ruby. It takes a breadth-first approach: we’ll walk through the whole cycle
 of learning some syntax, writing some code, and running some programs.

 1.1.1. Installing Ruby and using a text editor

 Though you’re free to install and compile Ruby from source from www.ruby-lang.org, it’s far more common for Rubyists using macOS or Linux to install versions of Ruby using a version manager. The most popular
 version managers are RVM (https://rvm.io), rbenv (https://github.com/rbenv/rbenv), and chruby (https://github.com/postmodern/chruby). Windows users are encouraged to use the RubyInstaller (https://rubyinstaller.org/). All version managers are free and all provide a safe and easy way to download and run Ruby. This book references Ruby version
 2.5.1.

 You’ll also need a text editor (any editor you like, as long as it’s a plain-text editor and not a word processor) and a directory
 (a.k.a. a folder) in which to store your Ruby program files. You might name that directory rubycode or rubysamples—any name
 is fine. Keep it separate from other work areas so that you can keep track of your practice program files.

 	

 The interactive Ruby console program (irb), your new best friend

 The irb utility ships with Ruby and is the most widely used Ruby command-line tool other than the interpreter itself. After starting
 irb, you type Ruby code into it, and it executes the code and prints out the resulting value.

 Type irb at the command line and enter sample code as you encounter it in the text. For example:

 >> 100 + 32
=> 132

 Having an open irb session means you can test Ruby snippets at any time and in any quantity. Most Ruby developers find irb indispensable, and you’ll see a few examples of its use as we proceed through this chapter.

 To exit from irb normally, you can type exit. On many systems, Ctrl-D works too.

 The irb examples you’ll see in this book use a command-line option that makes irb output easier to read:

 irb --simple-prompt

 If you want to see the effect of the --simple-prompt option, try starting irb with and without it. As you’ll see, the simple prompt keeps your screen a lot clearer. The default (nonsimple) prompt displays
 more information, such as a line-number count for your interactive session; but for the examples we’ll look at, the simple
 prompt is sufficient.

 Because irb is one of the command-line tools that ship with Ruby, it’s not discussed in detail until section 1.4.2. Feel free to jump
 to that section and have a look; it’s pretty straightforward.

 	

 You can now get Ruby installed and your work area created, if you haven’t already. Next we’ll continue to bootstrap your Ruby
 literacy so we have a shared ground on which to continuing building and exploring. One thing you’ll need is enough exposure
 to basic Ruby syntax to get you started.

 1.1.2. A Ruby syntax survival kit

 The following three tables summarize some Ruby features that you’ll find useful in understanding the examples in this chapter
 and in starting to experiment with Ruby. You don’t have to memorize them, but do look them over and refer back to them later
 as needed.

 Table 1.1 contains some of Ruby’s basic operations. Table 1.2 covers retrieving basic input from the keyboard, sending output to the screen, and basic conditional statements. Table 1.3 briefly details Ruby’s special objects and syntax for comments. Try executing these commands in an irb session. Are the results what you expected?

 Table 1.1. Basic operations in Ruby

 	
 Operation

 	
 Example(s)

 	
 Comments

 	Arithmetic
 	2 + 3 (addition)
 2 – 3 (subtraction)
 2 * 3 (multiplication)
 2 / 3 (division)
 2 / 3.0 (division, floating-point result)

 	All these operations work on integers or floating-point numbers (floats). Mixing integers and floats together, as some of the examples do, produces a floating-point result.

 	
 	
 10.3 + 20.25
103 - 202.5
32.9 * 10
100.0/0.23

 	Note that you need to write 0.23 rather than .23.

 	Assignment
 	
 x = 1
string="Hello"

 	This operation binds a local variable (on the left) to an object (on the right). For now, you can think of an object as a
 value represented by the variable.

 	Compare two values
 	
 x == y

 	Note the two equal signs (not just one, as in assignment).

 	Convert a numeric string to a number
 	
 x = "100".to_i
s = "100"
x = s.to_i

 	To perform arithmetic, you have to make sure you have numbers rather than strings of characters. to_i performs string-to-integer
 conversion.

 Table 1.2. Basic input/output methods and flow control in Ruby

 	
 Operation

 	
 Example(s)

 	
 Comments

 	Print something to the screen
 	
 print "Hello"
puts "Hello"
x = "Hello"
puts x
x = "Hello"
print x
x = "Hello"
p x

 	puts adds a newline to the string it outputs if there isn’t one at the end already; print doesn’t.
 print prints exactly what it’s told to and leaves the cursor at the end. (Note: On some platforms, an extra line is automatically
 output at the end of a program.)
 p outputs an inspect string, which may contain extra information about what it’s printing.

 	
Get a line of keyboard input

 	
 gets
string = gets

 	You can assign the input line directly to a variable (the variable string in the second example). Try gets in an irb session,
 and a cursor will wait for you to enter input.

 	Conditional execution
 	
 x = 1
y = 1
if x == y
 puts "Yes!"
else
 puts "No!"
end

 	Conditional statements always end with the word end. More on these in chapter 6.

 Table 1.3. Ruby’s special objects and comments

 	
 Operation

 	
 Example(s)

 	
 Comments

 	Special value objects
 	
 true
false
nil

 	The objects true and false often serve as return values for conditional expressions. The object nil is a kind of “nonobject”
 indicating the absence of a value or result. false and nil cause a conditional expression to evaluate as false; all other
 objects (including true, of course, but also including 0 and empty strings) cause it to evaluate to true. More on these in
 chapter 7.

 	Default object
 	self
 	The keyword self refers to the default object. Self is a role that different objects play, depending on the execution context.
 Method calls that don’t specify a calling object are called on self. More on this in chapter 5.

 	Put comments in code files
 	
 # A comment
x = 1 A comment

 	Comments are ignored by the interpreter.

 Next, we’ll take a look at Ruby identifiers and begin to define an object as it applies to Ruby.

 1.1.3. The variety of Ruby identifiers

 Ruby has a small number of identifier types that you’ll want to be able to spot and differentiate from each other at a glance.
 The identifier family tree looks like this:

 	Variables:

 	Local

 	Instance

 	Class

 	Global

 	
Constants

 	Keywords

 	Method names

 It’s a small family and easily learned. We’ll survey them here. Keep in mind that this section’s purpose is to teach you to
 recognize the various identifiers. You’ll learn a lot more throughout the book about when and how to use them. This is just
 the first lesson in identifier literacy.

Variables

 Local variables start with a lowercase letter or an underscore and consist of letters, underscores, and/or digits. x, string, abc, var1, start_value, and firstName are all valid local variable names. Note, however, that the Ruby convention is to use underscores rather than camel case
 when composing local variable names from multiple words—for example, first_name rather than firstName.

 Instance variables, which serve the purpose of storing information within individual objects, always start with a single at-sign (@) and consist thereafter of the same character set as local variables—for example, @age and @last_name. Although a local variable can’t start with an uppercase letter, an instance variable can have one in the first position
 after the at-sign (though it may not have a digit in this position). But usually the character after the at-sign is a lowercase
 letter.

 Class variables, which store information per class hierarchy (again, don’t worry about the semantics at this stage), follow the same rules
 as instance variables, except that they start with two at-signs—for example, @@running_total.

 Global variables are recognizable by their leading dollar sign ($)—for example, $population. The segment after the dollar sign doesn’t follow local-variable naming conventions; there are global variables called $:, $1, and $/, as well as $stdin and $LOAD_PATH. As long as it begins with a dollar sign, it’s a global variable. As for the nonalphanumeric ones, the only such identifiers
 you’re likely to see are predefined, so you don’t need to worry about which punctuation marks are legal and which aren’t.

 Table 1.4 summarizes Ruby’s variable naming rules.

 Table 1.4. Valid variable names in Ruby by variable type

 	
 Type

 	
 Ruby convention

 	
 Nonconventional

 	Local
 	first_name
 	firstName, _firstName, __firstName, name1

 	Instance
 	@first_name
 	@First_name, @firstName

 	Class
 	@@first_name
 	@@First_name, @@firstName

 	Global
 	$FIRST_NAME
 	$first_name, $firstName, $name1

Constants

 Constants begin with an uppercase letter. A, String, FirstName, and STDIN are all valid constant names. The Ruby convention is to use either camel case (FirstName) or underscore-separated all-uppercase words (FIRST_NAME) in composing constant names from multiple words.

Keywords

 Ruby has numerous keywords—predefined, reserved terms associated with specific programming tasks and contexts. Keywords include
 def (for method definitions), class (for class definitions), if (conditional execution), and __FILE__ (the name of the file currently being executed). There are about 40 of them, and they’re generally short, single-word (as
 opposed to underscore-composed) identifiers.

Method names

 Names of methods in Ruby follow the same rules and conventions as local variables (except that they can end with ?, !, or =, with significance that you’ll see later). This is by design: methods don’t call attention to themselves as methods but rather
 blend into the texture of a program as expressions that provide a value. In some contexts you can’t tell just by looking at
 an expression whether you’re seeing a local variable or a method name—and that’s intentional.

 Speaking of methods, now that you’ve got a roadmap to Ruby identifiers, let’s get back to some language semantics—in particular,
 the all-important role of the object and its methods.

 1.1.4. Method calls, messages, and Ruby objects

 Ruby sees all data structures and values—from simple scalar (atomic) values like integers and strings, to complex data structures
 like arrays—as objects. Every object is capable of understanding a certain set of messages. Each message that an object understands corresponds directly to a method—a named, executable routine whose execution the object has the ability to trigger.

 Objects are represented either by literal constructors—like quotation marks for strings—or by variables to which they’ve been
 bound. Message sending is achieved via the special dot operator: the message to the right of the dot is sent to the object
 to the left of the dot. (There are other, more specialized ways to send messages to objects, but the dot is the most common
 and fundamental way.) Consider this example from table 1.1:

 x = "100".to_i

 The dot means that the message to_i is being sent to the string "100". The string "100" is called the receiver of the message. We can also say that the method to_i is being called on the string "100". The result of the method call—the integer 100—serves as the right-hand side of the assignment to the variable x.

 	

 Why the double terminology?

 Why bother saying both “sending the message to_i” and “calling the method to_i”? Why have two ways of describing the same operation? Because they aren’t quite the same.

 The more conventional vernacular is “calling the method.” In Ruby, though, it’s more correct to say you send a message to
 a receiving object, and the object executes the corresponding method. But sometimes there’s no corresponding method. You can
 put anything to the right of the dot, and there’s no guarantee that the receiver will have a method that matches the message
 you send.

 If that sounds like chaos, it isn’t, because objects can intercept unknown messages and try to make sense of them. This is
 most often achieved using the method_missing method, covered in chapter 4. The Ruby on Rails web development framework makes heavy use of the technique of sending unknown messages to objects, intercepting
 those messages with method_missing, and making sense of them on the fly based on dynamic conditions.

 	

 Methods can take arguments, which are also objects. (Almost everything in Ruby is an object, although some syntactic structures that help you create
 and manipulate objects aren’t themselves objects.) Here’s a method call with an argument:

 x = "100".to_i(9)

 Calling to_i on 100 with an argument of 9 generates a decimal integer equivalent to the base-9 number 100: x is now equal to 81 decimal.

 This example also shows the use of parentheses around method arguments. These parentheses are usually optional, but in more
 complex cases they may be required to clear up what may otherwise be ambiguities in the syntax. Many programmers use parentheses
 in most or all method calls, just to be safe.

 The whole universe of a Ruby program consists of objects and the messages that are sent to them. As a Ruby programmer, you
 spend most of your time either specifying the things you want objects to be able to do (by defining methods) or asking the
 objects to do those things (by sending them messages).

 We’ll explore all of this in much greater depth later in the book. Again, this brief sketch is just part of the process of
 bootstrapping your Ruby literacy. When you see a dot in what would otherwise be an inexplicable position, you should interpret
 it as a message (on the right) being sent to an object (on the left). Keep in mind, too, that some method calls take the form
 of bareword-style invocations, like the call to puts in this example:

 puts "Hello"

 Here, despite the lack of a message-sending dot and an explicit receiver for the message, we’re sending the message puts with the argument "Hello" to an object: the default object self. There’s always a self defined when your program is running, although which object is self changes, according to specific rules. You’ll learn much more about self in chapter 5. For now, take note of the fact that a bareword like puts can be a method call.

 The most important concept in Ruby is the concept of the object. Closely related, and playing an important supporting role,
 is the concept of the class.

The origin of objects in classes

 A class defines an object’s functionality, and every object is an instance of exactly one class. Ruby provides a large number of built-in classes, representing important foundational data types (classes
 like String, Array, and Integer). Every time you create a string object, you’ve created an instance of the class String.

 You can also write your own classes. You can even modify existing Ruby classes; if you don’t like the behavior of strings
 or arrays, you can change it. It’s almost always a bad idea to do so, but Ruby allows it. (We’ll look at the pros and cons
 of making changes to built-in classes in chapter 13.)

 Although every Ruby object is an instance of a class, the concept of class is less important than the concept of object. That’s
 because objects can change, acquiring methods and behaviors that weren’t defined in their class. The class is responsible
 for launching the object into existence, a process known as instantiation, but thereafter the object has a life of its own.

 The ability of objects to adopt behaviors that their class didn’t give them is one of the most central defining principles
 of the design of Ruby as a language. As you can surmise, we’ll come back to it frequently in a variety of contexts. For now,
 just be aware that although every object has a class, the class of an object isn’t the sole determinant of what the object
 can do.

 Armed with some Ruby literacy (and some material to refer to when in doubt), let’s walk through the steps involved in running
 a program.

 1.1.5. Writing and saving a simple program

 At this point, you can start creating program files in the Ruby sample code directory you created a little while back. Your
 first program will be a Celsius-to-Fahrenheit temperature converter.

 	

 Note

 A real-world temperature converter would, of course, use floating-point numbers. We’ll stick to integers in the input and
 output to keep our focus on matters of program structure and execution.

 	

 We’ll work through this example several times, adding to it and modifying it as we go. Subsequent iterations will

 	Tidy the program’s output

 	Accept input via the keyboard from the user

 	Read a value in from a file

 	Write the result of the program to a file

 The first version will be simple; the focus will be on the file-creation and program-running processes, rather than any elaborate
 program logic.

Creating a first program file

 Using a plain-text editor, type the code from the following listing into a text file and save it under the filename c2f.rb
 in your sample code directory.

 Listing 1.1. Simple, limited-purpose Celsius-to-Fahrenheit converter (c2f.rb)

 celsius = 100
fahrenheit = (celsius * 9 / 5) + 32
puts "The result is "
puts fahrenheit
puts "."

 	

 Note

 Depending on your operating system, you may be able to run Ruby program files standalone—that is, with just the filename,
 or with a short name (like c2f) and no file extension. Keep in mind, though, that the .rb filename extension is mandatory
 in some cases, mainly involving programs that occupy more than one file (which you’ll learn about in detail later) and that
 need a way for the files to find each other. In this book, all Ruby program filenames end in .rb to ensure that the examples
 work on as many platforms, and with as few administrative digressions, as possible.

 	

 You now have a complete (albeit tiny) Ruby program on your disk, and you can run it.

 1.1.6. Feeding the program to Ruby

 Running a Ruby program involves passing the program’s source file (or files) to the Ruby interpreter, which is called ruby. You’ll do that now ... sort of. You’ll feed the program to ruby, but instead of asking Ruby to run the program, you’ll ask it to check the program code for syntax errors.

Checking for syntax errors

 If you add 31 instead of 32 in your conversion formula, that’s a programming error. Ruby will still happily run your program
 and give you the flawed result. But if you accidentally leave out the closing parenthesis in the second line of the program,
 that’s a syntax error, and Ruby won’t run the program:

 $ ruby broken_c2f.rb
broken_c2f.rb:5: syntax error, unexpected end-of-input, expecting ')'
puts "."
 ^

 The error is reported on line 5—the last line of the program—because Ruby waits patiently to see whether you’re ever going
 to close the parenthesis before concluding that you’re not. On some systems, the last line of output includes a carat indicating
 the point at which Ruby declared the syntax error—again, at the very end of the program.

 Conveniently, the Ruby interpreter can check programs for syntax errors without running the programs. It reads through the
 file and tells you whether the syntax is okay. To run a syntax check on your file, do this:

 $ ruby -cw c2f.rb

 The -cw command-line flag is shorthand for two flags: -c and -w. The -c flag means check for syntax errors. The -w flag activates a higher level of warning: Ruby will fuss at you if you’ve done things that are legal Ruby but are questionable
 on grounds other than syntax.

 Assuming you’ve typed the file correctly, you should see the message

 Syntax OK

 printed on your screen.

Running the program

 To run the program, pass the file once more to the interpreter, but this time without the combined -c and -w flags:

 $ ruby c2f.rb

 If all goes well, you’ll see the output of the calculation:

 The result is
212
.

 The result of the calculation is correct, but having the output spread over three lines looks bad.

Second converter iteration

 The problem can be traced to the difference between the puts command and the print command. puts adds a newline to the end of the string it prints out, if the string doesn’t end with one already. print, on the other hand, prints out the string you ask it to and then stops; it doesn’t automatically jump to the next line.

 To fix the problem, change the first two puts commands to print:

 print "The result is "
print fahrenheit
puts "."

 (Note the blank space after is, which ensures that a space appears between is and the number.) Now the output looks like this:

 The result is 212.

 puts is short for put string. Although put may not intuitively invoke the notion of skipping down to the next line, that’s what puts does: like print, it prints what you tell it to, but then it also automatically goes to the next line. If you ask puts to print a line that already ends with a newline, it doesn’t bother adding one.

 If you’re used to print facilities in languages that don’t automatically add a newline, such as Perl’s print function, you may find yourself writing code like this in Ruby when you want to print a value followed by a newline:

 print fahrenheit, "\n"

 You almost never have to do this, though, because puts adds a newline for you. You’ll pick up the puts habit, along with other Ruby idioms and conventions, as you go along.

 	

 Warning

 On some platforms (Windows, in particular), an extra newline character is printed out at the end of the run of a program.
 This means a print that should really be a puts will be hard to detect, because it will act like a puts. Being aware of the difference between the two and using the one you want based on the usual behavior should be sufficient
 to ensure you get the desired results.

 	

 Having looked a little at screen output, let’s widen the I/O field a bit to include keyboard input and file operations.

 1.1.7. Keyboard and file I/O

 Ruby offers lots of techniques for reading data during the course of program execution, both from the keyboard and from disk
 files. You’ll find uses for them—if not in the course of writing every application, then almost certainly while writing Ruby
 code to maintain, convert, housekeep, or otherwise manipulate the environment in which you work. We’ll look at some of these
 input techniques here; an expanded look at I/O operations can be found in chapter 12.

Keyboard input

 A program that tells you over and over again that 100° Celsius equals 212° Fahrenheit has limited value. A more valuable program
 lets you specify a Celsius temperature and tells you the Fahrenheit equivalent.

 Modifying the program to allow for this functionality involves adding a couple of steps and using one method each from tables 1.1 and 1.2: gets (get a line of keyboard input) and to_i (convert to an integer), one of which you’re familiar with already. Because this is a new program, not just a correction,
 you can put the code in the following listing into a new file: c2fi.rb (the i stands for interactive).

 Listing 1.2. Interactive temperature converter (c2fi.rb)

 print "Hello. Please enter a Celsius value: "
celsius = gets
fahrenheit = (celsius.to_i * 9 / 5) + 32
print "The Fahrenheit equivalent is "
print fahrenheit
puts "."

 A couple of sample runs demonstrate the new program in action:

 $ ruby c2fi.rb
Hello. Please enter a Celsius value: 100
The Fahrenheit equivalent is 212.
$ ruby c2fi.rb
Hello. Please enter a Celsius value: 23
The Fahrenheit equivalent is 73.

 	

 Shortening the code

 You can shorten the code in listing 1.2 considerably by consolidating the operations of input, calculation, and output. A compressed rewrite looks like this:

 print "Hello. Please enter a Celsius value: "
print "The Fahrenheit equivalent is ", gets.to_i * 9 / 5 + 32, ".\n"

 This version economizes on variables—there aren’t any—but it requires anyone reading it to follow a somewhat denser (but shorter)
 set of expressions. Any given program usually has several or many spots where you’ll have to decide between writing longer
 (but maybe clearer) and shorter (but perhaps a bit cryptic) code. And sometimes, shorter can be clearer. It’s all part of
 developing a Ruby coding style.

 	

 We now have a generalized, if not terribly nuanced, solution to the problem of converting from Celsius to Fahrenheit. Let’s
 widen the circle to include file input.

Reading from a file

 Reading a file from a Ruby program isn’t much more difficult, at least in many cases, than reading a line of keyboard input.
 The next version of our temperature converter will read one number from a file and convert it from Celsius to Fahrenheit.
 First, create a new file called temp.dat (temperature data), containing one line with one number on it:

 100

 Now, create a third program file, called c2fin.rb (in for file input).

 Listing 1.3. Temperature converter using file input (c2fin.rb)

 puts "Reading Celsius temperature value from data file..."
num = File.read("temp.dat")
celsius = num.to_i
fahrenheit = (celsius * 9 / 5) + 32
puts "The number is " + num
print "Result: "
puts fahrenheit

 This time, the sample run and its output look like this:

 $ ruby c2fin.rb
Reading Celsius temperature value from data file...
The number is 100
Result: 212

 Naturally, if you change the number in the file, the result will be different. What about writing the result of the calculation
 to a file?

Writing to a file

 The simplest file-writing operation is just a little more elaborate than the simplest file-reading operation. As you can see
 in the following listing, the main extra step when you write to a file is specifying a file mode—in this case, w (for write). Save the version of the program from this listing to c2fout.rb, and run it.

 Listing 1.4. Temperature converter with file output (c2fout.rb)

 print "Hello. Please enter a Celsius value: "
celsius = gets.to_i
fahrenheit = (celsius * 9 / 5) + 32
puts "Saving result to output file 'temp.out'"
fh = File.new("temp.out", "w")
fh.puts fahrenheit
fh.close

 The method call fh.puts fahrenheit has the effect of printing the value of fahrenheit to the file for which fh is a write handle. If you inspect the file temp.out, you should see that it contains the Fahrenheit equivalent of whatever
 number you typed in.

 	

 Exercises

 	Use the code in listings 1.3 and 1.4 to create c2fio.rb, a program that reads a number from a file and writes the Fahrenheit conversion to a different file. The
 resulting program will print the following output, and temp.out will contain the Fahrenheit equivalent of the value in temp.dat:

Reading Celsius temperature value from data file...
Saving result to output file 'temp.out'

 	Now convert from Fahrenheit to Celsius using the same techniques. Consider changing the names of your variables (celsius, fahrenheit) to match the new conversion. You can use the same input and output files (temp.dat and temp.out). The resulting program
 will print the following output:

Reading Fahrenheit temperature value from data file...
Saving result to output file 'temp.out'

 Try entering the following values into temp.dat and ensure that the corresponding values are written to temp.out:

 	
 temp.dat

 	
 temp.out

 	212
 	100

 	50
 	10

 	5
 	-15

 	

 Now that you understand some basic Ruby syntax, our next stop will be to examine the Ruby installation. This, in turn, will
 equip us to look at how Ruby manages extensions and libraries.

1.2. Anatomy of the Ruby installation

 Having Ruby installed on your system means having several disk directories’ worth of Ruby-language libraries and support files.
 Most of the time, Ruby knows how to find what it needs without being prompted. But knowing your way around the Ruby installation
 is part of a good Ruby grounding.

 	

 Looking at the Ruby source code

 In addition to the Ruby installation directory tree, you may also have the Ruby source code tree on your machine; if not,
 you can download it from the Ruby homepage. The source code tree contains a lot of Ruby files that end up in the eventual
 installation and a lot of C-language files that get compiled into object files that are then installed. In addition, the source
 code tree contains informational files like the ChangeLog and software licenses.

 	

 Ruby can tell you where its installation files are located. To get the information while in an irb session, you need to preload a Ruby library package called rbconfig into your irb session. rbconfig is an interface to a lot of compiled-in configuration information about your Ruby installation, and you can get irb to load it by using irb’s -r command-line flag and the name of the package:

 $ irb --simple-prompt -r rbconfig

 Now you can request information. For example, you can find out where the Ruby executable files (including ruby and irb) have been installed:

 >> RbConfig::CONFIG["bindir"]

 RbConfig::CONFIG is a constant referring to the hash (a kind of data structure) where Ruby keeps its configuration knowledge. The string "bindir" is a hash key. Querying the hash with the "bindir" key gives you the corresponding hash value, which is the name of the binary-file installation directory.

 The rest of the configuration information is made available the same way: as values inside the configuration data structure
 that you can access with specific hash keys. To get additional installation information, you need to replace bindir in the irb command with other terms. But each time you use the same basic formula: RbConfig:: CONFIG["term"]. Table 1.5 outlines the terms and the directories they refer to.

 Table 1.5. Key RbConfig terms and indicated Ruby directories

 	
 Term

 	
 Directory contents

 	rubylibdir
 	Ruby standard library

 	bindir
 	Ruby command-line tools

 	archdir
 	Architecture-specific extensions and libraries (compiled, binary files)

 	sitedir
 	Your own or third-party extensions and libraries (written in Ruby)

 	vendordir
 	Third-party extensions and libraries (written in Ruby)

 	sitelibdir
 	Your own Ruby language extensions (written in Ruby)

 	sitearchdir
 	Your own Ruby language extensions (written in C)

 The following subsections offer a rundown of the major installation directories and what they contain. You don’t have to memorize
 them, but you should be aware of how to find them if you need them (or, if you’re curious, to look through them and check
 out some examples of Ruby code).

 1.2.1. The Ruby standard library subdirectory (RbConfig::CONFIG[“rubylibdir”])

 In rubylibdir you’ll find program files written in Ruby. These files provide standard library facilities, which you can require
 from your own programs if you need the functionality they provide.

 Here’s a sampling of the files you’ll find in this directory:

 	
uri.rb—Tools for uniform handling of URIs

 	
fileutils.rb—Utilities for manipulating files easily from Ruby programs

 	
tempfile.rb—A mechanism for automating the creation of temporary files

 	
benchmark.rb—A library for measuring program performance

 Some of the standard libraries, such as the uri library, span more than one file; you’ll see both a uri.rb file and a whole
 uri subdirectory containing components of the uri library.

 Browsing your rubylibdir directory will give you a good (if perhaps initially overwhelming) sense of the many tasks for which
 Ruby provides programming facilities. Most programmers use only a subset of these capabilities, but even a subset of such
 a large collection of programming libraries gives you a lot to work with.

 1.2.2. The C extensions directory (RbConfig::CONFIG[“archdir”])

 Usually located one level down from rubylibdir, archdir contains architecture-specific extensions and libraries. The files
 in this directory typically have names ending in .so, .dll, or .bundle (depending on your hardware and operating system).
 These files are C extensions: binary, runtime-loadable files generated from Ruby’s C-language extension code, compiled into binary form as
 part of the Ruby installation process.

 Like the Ruby-language program files in rubylibdir, the files in archdir contain standard library components that you can
 load into your own programs. (Among others, you’ll see the file for the rbconfig extension—the extension you’re using with
 irb to uncover the directory names.) These files aren’t human-readable, but the Ruby interpreter knows how to load them when
 asked to do so. From the perspective of the Ruby programmer, all standard libraries are equally usable, whether written in
 Ruby or written in C and compiled to binary format.

 The files installed in archdir vary from one installation to another, depending on which extensions were compiled, which in
 turn depends on a mixture of what the person doing the compiling asked for and which extensions Ruby was able to compile.

 1.2.3. The site_ruby (RbConfig::CONFIG[“sitedir”]) and vendor_ruby (RbCo- onfig::CONFIG[“vendordir”]) directories

 Your Ruby installation includes a subdirectory called site_ruby, where you or your system administrator can store third-party
 extensions and libraries. Some of these may be code you write, and others will be tools you download from other people’s sites
 and archives of Ruby libraries.

 The site_ruby directory parallels the main Ruby installation directory in the sense that it has its own subdirectories for
 Ruby-language and C-language extensions (sitelibdir and sitearchdir, respectively, in RbConfig::CONFIG terms). When you require an extension, the Ruby interpreter checks for it in these subdirectories of site_ruby, as well as
 in both the main rubylibdir and the main archdir.

 Alongside site_ruby you’ll find the directory vendor_ruby with the same subdirectory structure as site_ruby. Some third-party
 extensions install themselves here.

 1.2.4. Standard Ruby gems and the gems directory

 The RubyGems utility is the standard way to package and distribute Ruby libraries. During a Ruby installation, several gems
 (as the packages are called) are installed for you:

 	did_you_mean

 	minitest

 	net-telnet

 	power_assert

 	rake

 	rdoc

 	test-unit

 	xmlrpc

 Some of these libraries began as third-party Ruby libraries and have since been incorporated into the Ruby language because
 of their usefulness in the Ruby ecosystem. When Ruby installation is complete, the code in these gems is immediately available for use.

 When you install gems, the unbundled library files land in the same gems directory as the preceding gems. This directory isn’t
 listed in the config data structure, but it’s usually at the same level as site_ruby; if you’ve found site_ruby, look for
 a directory called “gems” next to it. You’ll learn more about using gems in section 1.4.4.

 Let’s look now at the mechanics and semantics of how Ruby uses its own extensions as well as those you may write or install.

 	

 Working with multiple versions of Ruby

 The Ruby programming language is regularly updated and maintained. New versions are released frequently, and developers often
 want more than one version of Ruby around, particularly if different projects require different versions. The advent of Ruby
 version managers—RVM, rbenv, and chruby are the most popular—has made installing multiple versions of Ruby easy. Bear in mind,
 however, that installing Ruby multiple times on one machine may affect what’s listed in your gem directory in your Ruby installation.

 This is because Ruby takes advantage of RubyGems mechanics to only install what’s necessary. The first time Ruby is installed,
 all the gems listed above will be installed. When you install the next version of the language, Ruby will check first to see
 which of the gems are installed. If, for example, it sees that a minimum acceptable version of rake is already installed,
 it won’t proceed to install another rake gem.

