

 [image: cover]

Getting MEAN with Mongo, Express, Angular, and Node.js 2ED

 Simon Holmes
 Cliver Harber

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 © 2019 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Acquisitions editor: Brian Sawyer
Development editor: Kristen Watterson
Technical development editor: Luis Atencio
Review editor: Ivan Martinović
Production editor: Anthony Calcara
Copy editor: Kathy Simpson
Proofreader: Katie Tennant
Technical proofreader: Tony Mullen
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617294754

 Printed in the United States of America

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Setting the baseline

 Chapter 1. Introducing full-stack development

 Chapter 2. Designing a MEAN stack architecture

 2. Building a Node web application

 Chapter 3. Creating and setting up a MEAN project

 Chapter 4. Building a static site with Node and Express

 Chapter 5. Building a data model with MongoDB and Mongoose

 Chapter 6. Writing a REST API: Exposing the MongoDB database to the application

 Chapter 7. Consuming a REST API: Using an API from inside Express

 3. Adding a dynamic front end with Angular

 Chapter 8. Creating an Angular application with TypeScript

 Chapter 9. Building a single-page application with Angular: Foundations

 Chapter 10. Building a single-page application with Angular: The next level

 4. Managing authentication and user sessions

 Chapter 11. Authenticating users, managing sessions, and securing APIs

 Chapter 12. Using an authentication API in Angular applications

 A. Installing the stack

 B. Installing and preparing the supporting cast

 C. Dealing with all the views

 D. Reintroducing JavaScript

 Data integration differences for various approaches used by Node.js applications

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Preface

 Acknowledgments

 About this book

 About the authors

 About the cover illustration

 1. Setting the baseline

 Chapter 1. Introducing full-stack development

 1.1. Why learn the full stack?

 1.1.1. A brief history of web development

 1.1.2. The trend toward full-stack developing

 1.1.3. Benefits of full-stack development

 1.1.4. Why the MEAN stack specifically?

 1.2. Introducing Node.js: The web server/platform

 1.2.1. JavaScript: The single language through the stack

 1.2.2. Fast, efficient, and scalable

 1.2.3. Using prebuilt packages via npm

 1.3. Introducing Express: The framework

 1.3.1. Easing your server setup

 1.3.2. Routing URLs to responses

 1.3.3. Views: HTML responses

 1.3.4. Remembering visitors with session support

 1.4. Introducing MongoDB: The database

 1.4.1. Relational databases vs. document stores

 1.4.2. MongoDB documents: JavaScript data store

 1.4.3. More than just a document database

 1.4.4. What is MongoDB not good for?

 1.4.5. Mongoose for data modeling and more

 1.5. Introducing Angular: The front-end framework

 1.5.1. jQuery vs. Angular

 1.5.2. Two-way data binding: Working with data in a page

 1.5.3. Using Angular to load new pages

 1.5.4. Are there any downsides?

 1.5.5. Developing in TypeScript

 1.6. Supporting cast

 1.6.1. Twitter Bootstrap for user interface

 1.6.2. Git for source control

 1.6.3. Hosting with Heroku

 1.7. Putting it together with a practical example

 1.7.1. Introducing the example application

 1.7.2. How the MEAN stack components work together

 Summary

 Chapter 2. Designing a MEAN stack architecture

 2.1. A common MEAN stack architecture

 2.2. Looking beyond SPAs

 2.2.1. Hard to crawl

 2.2.2. Analytics and browser history

 2.2.3. Speed of initial load

 2.2.4. To SPA or not to SPA?

 2.3. Designing a flexible MEAN architecture

 2.3.1. Requirements for a blog engine

 2.3.2. A blog engine architecture

 2.3.3. Best practice: Building an internal API for a data layer

 2.4. Planning a real application

 2.4.1. Planning the application at a high level

 2.4.2. Architecting the application

 2.4.3. Wrapping everything in an Express project

 2.4.4. The end product

 2.5. Breaking the development into stages

 2.5.1. Rapid prototype development stages

 2.5.2. The steps to build Loc8r

 2.6. Hardware architecture

 2.6.1. Development hardware

 2.6.2. Production hardware

 Summary

 2. Building a Node web application

 Chapter 3. Creating and setting up a MEAN project

 3.1. A brief look at Express, Node, and npm

 3.1.1. Defining packages with package.json

 3.1.2. Working with dependency versions in package.json

 3.1.3. Installing Node dependencies with npm

 3.2. Creating an Express project

 3.2.1. Installing the pieces

 3.2.2. Verifying the installations

 3.2.3. Creating a project folder

 3.2.4. Configuring an Express installation

 3.2.5. Creating an Express project and trying it out

 3.2.6. Restarting the application

 3.3. Modifying Express for MVC

 3.3.1. A bird’s-eye view of MVC

 3.3.2. Changing the folder structure

 3.3.3. Using the views and routes relocated folders

 3.3.4. Splitting controllers from routes

 3.4. Importing Bootstrap for quick, responsive layouts

 3.4.1. Downloading Bootstrap and adding it to the application

 3.4.2. Using Bootstrap in the application

 3.5. Making it live on Heroku

 3.5.1. Getting Heroku set up

 3.5.2. Pushing the site live using Git

 Summary

 Chapter 4. Building a static site with Node and Express

 4.1. Defining the routes in Express

 4.1.1. Different controller files for different collections

 4.2. Building basic controllers

 4.2.1. Setting up controllers

 4.2.2. Testing the controllers and routes

 4.3. Creating some views

 4.3.1. A look at Bootstrap

 4.3.2. Setting up the HTML framework with Pug templates and Bootstrap

 4.3.3. Building a template

 4.4. Adding the rest of the views

 4.4.1. Details page

 4.4.2. Adding the Review page

 4.4.3. Adding the About page

 4.5. Taking the data out of the views and making them smarter

 4.5.1. Moving data from the view to the controller

 4.5.2. Dealing with complex, repeating data patterns

 4.5.3. Manipulating the data and view with code

 4.5.4. Using includes and mixins to create reusable layout components

 4.5.5. Viewing the finished homepage

 4.5.6. Updating the rest of the views and controllers

 Summary

 Chapter 5. Building a data model with MongoDB and Mongoose

 5.1. Connecting the Express application to MongoDB by using Mongoose

 5.1.1. Adding Mongoose to your application

 5.1.2. Adding a Mongoose connection to your application

 5.2. Why model the data?

 5.2.1. What is Mongoose and how does it work?

 5.2.2. How does Mongoose model data?

 5.2.3. Breaking down a schema path

 5.3. Defining simple Mongoose schemas

 5.3.1. The basics of setting up a schema

 5.3.2. Using geographic data in MongoDB and Mongoose

 5.3.3. Creating more complex schemas with subdocuments

 5.3.4. Final schema

 5.3.5. Compiling Mongoose schemas into models

 5.4. Using the MongoDB shell to create a MongoDB database and add data

 5.4.1. MongoDB shell basics

 5.4.2. Creating a MongoDB database

 5.5. Getting your database live

 5.5.1. Setting up mLab and getting the database URI

 5.5.2. Pushing up the data

 5.5.3. Making the application use the right database

 Summary

 Chapter 6. Writing a REST API: Exposing the MongoDB database to the application

 6.1. The rules of a REST API

 6.1.1. Request URLs

 6.1.2. Request methods

 6.1.3. Responses and status codes

 6.2. Setting up the API in Express

 6.2.1. Creating the routes

 6.2.2. Creating the controller placeholders

 6.2.3. Returning JSON from an Express request

 6.2.4. Including the model

 6.2.5. Testing the API

 6.3. GET methods: Reading data from MongoDB

 6.3.1. Finding a single document in MongoDB using Mongoose

 6.3.2. Finding a single subdocument based on IDs

 6.3.3. Finding multiple documents with geospatial queries

 Processing the $geoNear output

 6.4. POST methods: Adding data to MongoDB

 6.4.1. Creating new documents in MongoDB

 6.4.2. Validating the data using Mongoose

 6.4.3. Creating new subdocuments in MongoDB

 6.5. PUT methods: Updating data in MongoDB

 6.5.1. Using Mongoose to update a document in MongoDB

 6.5.2. Using the Mongoose save method

 6.5.3. Updating an existing subdocument in MongoDB

 6.6. DELETE method: Deleting data from MongoDB

 6.6.1. Deleting documents in MongoDB

 6.6.2. Deleting a subdocument from MongoDB

 Summary

 Chapter 7. Consuming a REST API: Using an API from inside Express

 7.1. How to call an API from Express

 7.1.1. Adding the request module to your project

 7.1.2. Setting up default options

 7.1.3. Using the request module

 7.2. Using lists of data from an API: The Loc8r homepage

 7.2.1. Separating concerns: Moving the rendering into a named function

 7.2.2. Building the API request

 7.2.3. Using the API response data

 7.2.4. Modifying data before displaying it: fixing the distances

 7.2.5. Catching errors returned by the API

 7.3. Getting single documents from an API: The Loc8r Details page

 7.3.1. Setting URLs and routes to access specific MongoDB documents

 7.3.2. Separating concerns: Moving the rendering into a named function

 7.3.3. Querying the API using a unique ID from a URL parameter

 7.3.4. Passing the data from the API to the view

 7.3.5. Debugging and fixing the view errors

 7.3.6. Formatting dates using a Pug mixin

 7.3.7. Creating status-specific error pages

 7.4. Adding data to the database via the API: add Loc8r reviews

 7.4.1. Setting up the routing and views

 7.4.2. POSTing the review data to the API

 7.5. Protecting data integrity with data validation

 7.5.1. Validating at the schema level with Mongoose

 7.5.2. Validating at the application level with Node and Express

 7.5.3. Validating in the browser with jQuery

 Summary

 3. Adding a dynamic front end with Angular

 Chapter 8. Creating an Angular application with TypeScript

 8.1. Getting up and running with Angular

 8.1.1. Using the command line to create a boilerplate Angular app

 8.1.2. Running the Angular app

 8.1.3. The source code behind the application

 8.2. Working with Angular components

 8.2.1. Creating a new home-list component

 8.2.2. Creating the HTML template

 8.2.3. Moving data out of the template into the code

 8.2.4. Using class member data in the HTML template

 8.3. Getting data from an API

 8.3.1. Creating a data service

 8.3.2. Using a data service

 8.4. Putting an Angular application into production

 8.4.1. Building an Angular application for production

 8.4.2. Using the Angular application from the Express site

 Summary

 Chapter 9. Building a single-page application with Angular: Foundations

 9.1. Adding navigation in an Angular SPA

 9.1.1. Importing the Angular router and defining the first route

 9.1.2. Routing configuration

 9.1.3. Creating a component for the framework and navigation

 9.1.4. Defining where to display the content using router-outlet

 9.1.5. Navigating between pages

 9.1.6. Adding active navigation styles

 9.2. Building a modular app using multiple nested components

 9.2.1. Creating the main homepage component

 9.2.2. Creating and using reusable subcomponents

 9.3. Adding geolocation to find places near you

 9.3.1. Creating an Angular geolocation service

 9.3.2. Adding the geolocation service to the application

 9.3.3. Using the geolocation service from the home-list component

 9.4. Safely binding HTML content

 9.4.1. Adding the About page content to the app

 9.4.2. Creating a pipe to transform the line breaks

 9.4.3. Safely binding HTML by using a property binding

 9.5. Challenge

 Summary

 Chapter 10. Building a single-page application with Angular: The next level

 10.1. Working with more-complex views and routing parameters

 10.1.1. Planning the layout

 10.1.2. Creating the required components

 10.1.3. Setting up and defining routes with URL parameters

 10.1.4. Using URL parameters in components and services

 10.1.5. Passing data to the Details page component

 10.1.6. Building the Details page view

 10.2. Working with forms and handling submitted data

 10.2.1. Creating the review form in Angular

 10.2.2. Sending submitted form data to an API

 10.3. Improving the architecture

 10.3.1. Using a separate routing-configuration file

 10.3.2. Improving the location class definition

 10.4. Using the SPA instead of the server-side application

 10.4.1. Routing Express requests to the build folder

 10.4.2. Making sure that deep URLs work

 Summary

 4. Managing authentication and user sessions

 Chapter 11. Authenticating users, managing sessions, and securing APIs

 11.1. How to approach authentication in the MEAN stack

 11.1.1. Traditional server-based application approach

 11.1.2. Using the traditional approach in the MEAN stack

 11.1.3. Full MEAN stack approach

 11.2. Creating a user schema for MongoDB

 11.2.1. One-way password encryption: Hashes and salts

 11.2.2. Building the Mongoose schema

 11.2.3. Basic user schema

 11.2.4. Setting encrypted paths using Mongoose methods

 11.2.5. Validating a submitted password

 11.2.6. Generating a JSON Web Token

 11.3. Creating an authentication API with Passport

 11.3.1. Installing and configuring Passport

 11.3.2. Creating API endpoints to return JWTs

 11.4. Securing relevant API endpoints

 11.4.1. Adding authentication middleware to Express routes

 11.4.2. Using the JWT information inside a controller

 Summary

 Chapter 12. Using an authentication API in Angular applications

 12.1. Creating an Angular authentication service

 12.1.1. Managing a user session in Angular

 12.1.2. Allowing users to sign up, sign in, and sign out

 12.1.3. Using the JWT data in the Angular service

 12.2. Creating the Register and Login pages

 12.2.1. Building the Register page

 12.2.2. Building the Login page

 12.3. Working with authentication in the Angular app

 12.3.1. Updating the navigation

 12.3.2. Adding a right-side section to the navigation

 Summary

 A. Installing the stack

 Installing Node and npm

 Long-Term Support versions of Node

 Installing Node on Windows

 Installing Node on macOS

 Installing Node on Linux

 Verifying installation by checking version

 Installing Express globally

 Installing MongoDB

 Installing MongoDB on Windows

 Installing MongoDB on macOS

 Installing MongoDB on Linux

 Running MongoDB as a service

 Checking the MongoDB version number

 Installing Angular

 B. Installing and preparing the supporting cast

 Twitter Bootstrap

 Adding some custom styles

 Font Awesome

 Installing Git

 Installing Docker

 Installing a suitable command-line interface

 Setting up Heroku

 Signing up for Heroku

 Installing the Heroku CLI

 Logging in to Heroku using terminal

 C. Dealing with all the views

 Moving the data from the views to the controllers

 Details page

 Add Review page

 About page

 Switching from Promises to Observables

 D. Reintroducing JavaScript

 Everybody knows JavaScript, right?

 Good habits or bad habits

 Variables, scope, and functions

 Working with scope and scope inheritance

 Pushing from local to global scope: The wrong way

 Pushing from local to global scope: The right way

 Referencing global variables from local scope

 Implied global scope

 The problem of variable hoisting

 Lexical scope

 Functions are variables

 Limiting use of the global scope

 Arrow functions

 Destructuring

 Logic flow and looping

 Conditional statements: Working with if

 Running loops: Working with for

 Using for loops with arrays

 Getting to know JSON

 JavaScript object literals

 Differences with JSON

 Why is JSON so good?

 Formatting practices

 Indenting code

 Position of braces for functions and blocks

 Using the semicolon correctly

 Placing commas in a list

 Don’t be afraid of whitespace

 Tools to help you write good JavaScript

 String formatting

 Understanding callbacks

 Using setTimeout to run code later

 Asynchronous code

 Running a callback function

 Named callbacks

 Callbacks in Node

 Promises and async/await

 Promises

 async/await

 Writing modular JavaScript

 Closures

 Module pattern

 Revealing module pattern

 Classes

 Functional programming concepts

 Immutability

 Purity

 Declarative code style

 Partial application and function composition

 Final thoughts

 Data integration differences for various approaches used by Node.js applications

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 Looking to go full stack? Getting MEAN will take you there.

 Matt Merkes, MyNeighbor

 Fantastic explanations and up-to-date, real-world examples.

 Rambabu Posa, GL Assessment

 From novice to experienced developer, all who want to use the MEAN stack will get useful advice here.

 Davide Molin, CodingShack

 A ground-up explanation of MEAN stack layers.

 Andrea Tarocchi, Red Hat

 Maybe the best coding book I’ve ever read.

 An Amazon reviewer

 Just an awesome first book to learn the MEAN stack.

 An Amazon reviewer

Preface

 Back in 1995, I got my first taste of web development, putting together a few pages of simple HTML for a piece of university
 coursework. It was a small part of my course, which was a mixture of software engineering and communication studies—an unusual
 mixture. I learned the fundamentals of software development, database design, and programming. But I also learned about the
 importance of the audience and end user and how to communicate with them, both verbally and nonverbally.

 In 1998, on the communication-studies side of the degree, I was required to write a publication for an organization of my
 choice. I decided to write a prospectus for the school where my mother was teaching at the time. But I decided to do it as
 a website. Again, this was all front-end work. Fortunately, I no longer have a copy of it, as I shudder at the thought of
 the code. We’re talking HTML with frames, table layouts, inline styles, and a smattering of basic JavaScript. By today’s standards,
 it was shocking, but back then it was quite futuristic. I was the first person at the university to submit a website as a
 publication. I even had to tell my instructors how to open it in their browsers from the floppy disk it was submitted on!
 After it was completed and marked, I sold the website to the school it featured. I figured there was probably a future in
 this web development thing.

 During the following years, I made use of both parts of my degree working as the “web guy” in a London design agency. Because
 it was a design agency, user experience (before it was called UX) and the front end were crucial. But of course, there has
 to be a back end to support the front end. As the only web guy, I fulfilled both roles as the classic full-stack developer.
 There wasn’t much separation of concerns in those days. The database was tightly coupled to the back end. Back-end logic,
 markup, and front-end logic all wove together tightly, largely because the project was thought of as a single thing: the website.

 Many of the best practices from this book were borne from the pain of finding out the hard way during these years. Something
 that might seem harmless, most definitely easier, or sometimes even sensible at the time can come back to bite you later.
 Don’t let this put you off from diving in and having a go. Mistakes are there to be made, and—in this arena, at least—mistakes
 are a great way of learning. They say that intelligence is learning from your mistakes. This is true, but you’ll be a step
 ahead if you can also learn from others’ mistakes.

 The web development landscape changed over the years, but I was still heavily involved with creating—or managing the creation
 of—full websites and applications. I came to appreciate that there’s a real art to gluing together applications made from
 different technologies. It’s a skill in itself: knowing the technologies and what they can do is only part of the challenge.

 When Node.js came onto my radar, I jumped right in and embraced the idea full on. I had done a lot of context switching between
 various languages, and the idea of having a single language to focus on and master was extremely compelling. I figured that
 when used the right way, JavaScript could streamline development by reducing the cost of context switching between languages.
 Playing with Node, I started to create my own MVC framework before discovering Express. Express solved a lot of the problems
 and challenges I faced when trying to learn Node and use it to create a website or web application. In many ways, adopting
 it was a no-brainer.

 Naturally, behind pretty much any web application is a database. I didn’t want to fall back on my previous go-to option, Microsoft
 SQL Server, as the cost made it prohibitive to launch small personal projects. Some research led me to the leading open source
 NoSQL database: MongoDB. It worked natively with JavaScript! I was possibly more excited than I should have been about a database.
 But MongoDB was different from all the databases I’d used before. My previous experience was with relational databases; MongoDB
 is a document database, which is something quite different, making the way you approach database design quite different as
 well. I had to retrain my brain to think in this new way, and eventually, it all made sense.

 There was one piece missing. JavaScript in the browser was no longer only about enhancing functionality; it was also about
 creating the functionality and managing the application logic. Of the available options, I was already leaning toward AngularJS. When
 I heard Valeri Karpov of MongoDB coin the term “MEAN stack,” that was it. I knew that here was a next-generation stack.

 I knew that the MEAN stack would be powerful. I knew that the MEAN stack would be flexible. I knew that the MEAN stack would
 capture the imagination of developers. Each of the individual technologies is great, but when you put them all together, you
 have something exceptional on your hands. This is where Getting MEAN comes from. Getting the best out of the MEAN stack is about more than knowing the technologies; it’s also about knowing how
 to get those technologies working together.

 This second edition takes things to the next level. Angular moved from JavaScript to TypeScript, a superset of JavaScript
 that introduces typesafety. We bring the Angular component right up to date in this edition and use advances in JavaScript
 to make building applications easier and simpler to understand.

Acknowledgments

 I must start with the people who mean the world to me, who inspire me to push myself, and who ultimately make everything worthwhile.
 I’m talking about my daughters, Eri and Bel. Everything I do starts and ends with these two little ladies.

 Thanks, of course, must go to the Manning team. I know it extends beyond the people I’m about to name, so if you were involved
 in any way, thank you! Here are the people I’ve personally dealt with: Right from the beginning, there was Robin de Jongh,
 who was instrumental in getting the project started and also in shaping the book. And many thanks go to Bert Bates for providing
 great insight and challenging me to justify my thinking and opinions from an early stage. Those were fun conversations.

 Crucial to the momentum and feel of the book were my developmental editors, Toni Arritola and Kristen Watterson, and of course
 my technical developmental editor, Luis Atencio, and technical proofer, Tony Mullen. I’d also like to extend my thanks to
 Clive Harber for his important contributions to this book. Thank you all for your sharp eyes, great ideas, and positive feedback.

 The next two people really impressed me with their amount of effort and attention to detail. So thank you, Kathy Simpson and
 Katie Tennant, for the copyediting and proofreading, and for staying on top of everything on increasingly short time frames.

 Last but by no means least for the Manning team is Candace Gillhoolley, who kept up the marketing pace on the book, giving
 me the sales numbers to maintain my motivation.

 Manning must also be congratulated for its Manning Early Access Program (MEAP) and associated online discussion forum. The
 comments, corrections, ideas, and feedback from early readers proved to be invaluable in improving the quality of this book.
 I don’t have the names of everybody who contributed. You know who you are—thank you!

 Special thanks for their insights and suggestions go to the following peer reviewers who read the manuscript at various stages
 of its development: Al Krinker, Alex Saez, Avinash Kumar, Barnaby Norman, Chris Coppenbarger, Deniz Vehbi, Douglas Duncan,
 Foster Haines, Frank Krul, Giuseppe Caruso, Holger Steinhauer, James Bishop, James McGinn, Jay Ordway, Jon Machtynger, Joseph
 Tingsanchali, Ken W. Alger, Lorenzo DeLeon, Olivier Ducatteeuw, Richard Michaels, Rick Oller, Rob Green, Rob Ruetsch, and
 Stefan Trost.

 A couple of extra shout-outs to Tamas Piros and Marek Karwowski for putting up with me and my late-night technology discussions.
 Thanks, guys!

 —SIMON HOLMES

 Opportunities like this don’t come along every day, and when Manning approached me to work on this book, how could I say no?
 I’d like to thank the team at Manning for giving me this particular title to work on and placing their trust in me to get
 it finished, especially Kristen, who has been really kind with her feedback.

 I’d also like to thank Tony Mullen for stepping in on short notice as technical proofer and saying that things weren’t terrible.

 Special thanks go to my family for supporting me and putting up with late nights and early mornings to get this book on the
 shelf.

 Finally, for those people who believed that I had some kind of book in me (you know who you are): here’s a start. Thanks.

 —CLIVE HARBER

About this book

 JavaScript has come of age. Building an entire web application from front to back with one language is now possible with JavaScript
 (even if that JavaScript is TypeScript-flavored). The MEAN stack is comprised of the best-of-breed technologies in this arena.
 You’ve got MongoDB for the database, Express for the server-side web-application framework, Angular for the client-side framework,
 and Node for the server-side platform.

 This book introduces these technologies and explains how to get them working well together as a stack. Throughout the book,
 you’ll build a working application, focusing on one technology at a time, seeing how each technology fits into the overall
 application architecture. Therefore, this is a practical book designed to get you comfortable with all the technologies and
 using them together.

 A common theme running through the book is “best practice.” This book is a springboard to building great things with the MEAN
 stack, so there’s a focus on creating good habits, doing things the right way, and planning.

 This book doesn’t teach HTML, CSS, or basic JavaScript; previous knowledge is assumed. It does include a brief primer on the
 Twitter Bootstrap CSS framework and an introduction to TypeScript. Also, see appendix D for a good, long discussion on JavaScript theory, best practice, tips, and gotchas; it’s worth checking out early.

Roadmap

 This book takes you on a journey through 12 chapters, in four parts.

 In part 1, chapter 1 takes a look at the benefits of learning full-stack development and explores the components of the MEAN stack. Chapter 2 builds on this knowledge of the components and discusses options for using them together to build things.

 In part 2, chapter 3 gets you going with creating and setting up a MEAN project, getting you acquainted with Express. Chapter 4 provides much deeper understanding of Express. You’ll build a static version of the application. Chapter 5 takes what you’ve learned about the application so far and works with MongoDB and Mongoose to design and build the data model
 you’ll need. Chapter 6 covers the benefits and processes of creating a data API. You’ll create a REST API by using Express, MongoDB, and Mongoose.
 Chapter 7 ties this REST API back into the application by consuming it from your static Express application.

 In part 3, chapter 8 introduces Angular and TypeScript to the stack. You’ll see how to use them to build components for an existing web page,
 including calling your REST API to get data. Chapter 9 covers the fundamentals of creating a single-page application (SPA) with Angular, showing how to build a modular, scalable,
 and maintainable application. Chapter 10 builds on the foundations of chapter 9, developing the SPA further by covering some critical concepts and increasing the complexity of the Angular application.

 In part 4, chapter 11 touches every part of the MEAN stack as you add an authentication API to the application, enabling users to register and
 log in. Chapter 12 builds on the API, consuming it in the Angular application, creating registered-user-only functionality, and detailing additional
 best practices for SPAs.

About the code

 All source code in listings or in the text is in a fixed-width font like this to separate it from ordinary text. Method and function names, properties, JSON elements, and attributes in the text are presented
 in this same font.

 In some cases, the original source code has been reformatted to fit on the pages. In general, the original code was written
 with page-width limitations in mind, but sometimes, you may find a slight formatting difference between the code in the book
 and that provided in the source download. In a few rare cases, when we couldn’t reformat long lines without changing their
 meaning, the book listings contain line-continuation markers ([image:]).

 Code annotations accompany many of the listings, highlighting important concepts. In many cases, numbered bullets link to
 explanations that follow in the text.

 The source code for the application built throughout the book is available to download at www.manning.com/books/getting-mean-with-mongo-express-angular-and-node-second-edition. It’s also available on GitHub at https://github.com/cliveharber/gettingMean-2.

 There’s a separate folder (branch on GitHub) for each stage of the application, typically at the end of a chapter. The folders
 (or branches) don’t include the node modules folder, as is best practice. To run the application in any of the given folders,
 you need to install the dependencies by using npm install in the command line. The book covers this instruction and shows why it’s necessary.

liveBook discussion forum

 The purchase of Getting MEAN includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/getting-mean-with-mongo-express-angular-and-node-second-edition/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the forum remain voluntary (and unpaid). We suggest you try asking them some challenging questions
 lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website
 as long as the book is in print.

About the authors

 [image:]

 SIMON HOLMES is the author of the first edition of Getting MEAN. He’s been a full-stack developer since 2000, as well as a solutions architect, trainer, team lead, and engineering manager.
 He also runs a training company, Full Stack Training Ltd. Simon has a wide range of experience from his past, and through
 his work mentoring and training, he understands where people struggle.

 [image:]

 CLIVE HARBER has been programming computers since he was thirteen. He holds a Master’s degree in Chemical Engineering from University
 of Wales, Swansea. Having written code in a number of programming languages and different paradigms over the years for the
 sports and betting industries, telecommunications, and health care and retail sectors, he’s now at a point where he feels
 he can be useful to the programming community as a whole.

 Clive has helped out on a number of other Manning titles as both a reviewer and a technical reviewer, including Vue.js in Action, Testing Vue.js Applications, React in Action, Elixir in Action, 2nd ed., Mesos in Action, Usability Matters, Testing Microservices with Mountebank, Cross-Platform Desktop Applications, and Web Components in Action.

About the cover illustration

 The figure on the cover of this book is captioned “Habit of a Lady of Constantinople ca. 1730.” The illustration is taken
 from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (four volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King George III.” He was an English cartographer
 who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies; he also
 produced a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest
 in local dress customs of the lands he surveyed and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late eighteenth century, and collections
 such as this one were popular, introducing both the tourist and the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then, and diversity by region and country, so rich at the time, has faded
 away. Now it’s often hard to tell the inhabitants of one continent from another. Perhaps, viewing the situation optimistically,
 we’ve traded cultural and visual diversity for more varied personal lives (or more varied and interesting intellectual and
 technical lives).

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of the regional life of two centuries ago, brought back to
 life by Jefferys’ pictures.

Part 1. Setting the baseline

 Full-stack development is rewarding when you get it right. An application has many moving parts, and it’s your job to get
 them working in harmony. The best first steps you can take are understanding the building blocks you have to work with and
 looking at the ways you can put them together to achieve different results.

 These steps are what part 1 is all about. In chapter 1, you’ll take a look at the benefits of learning full-stack development in some detail and explore the components of the MEAN
 stack. Chapter 2 builds on this knowledge of the components and discusses how you can use them together to build things.

 By the end of part 1, you’ll have a good understanding of possible software and hardware architectures for a MEAN stack application, as well as
 the plan for the application you’ll build throughout the book.

Chapter 1. Introducing full-stack development

 This chapter covers

 	Evaluating full-stack development

 	Getting to know the MEAN stack components

 	Examining what makes the MEAN stack so compelling

 	Previewing the application you’ll build throughout this book

 If you’re like us, you’re probably impatient to dive into some code and get on with building something. But let’s take a moment
 first to clarify what we mean by full-stack development and look at the component parts of the stack to make sure that you understand each one.

 When we talk about full-stack development, we’re really talking about developing all parts of a website or application. The
 full stack starts with the database and web server in the back end, contains application logic and control in the middle,
 and goes all the way through to the user interface at the front end.

 The MEAN stack is a pure JavaScript stack comprised of four main technologies, with a cast of supporting technologies:

 	
MongoDB—the database

 	
Express—the web framework

 	
Angular—the front-end framework

 	
Node.js—the web server

 MongoDB has been around since 2007 and is actively maintained by MongoDB, Inc., previously known as 10gen.

 Express was first released in 2009 by T. J. Holowaychuk and has become the most popular framework for Node.js. It’s open source,
 with more than 100 contributors, and is actively developed and supported.

 Angular is open source and backed by Google. The first version of Angular, known as AngularJS or Angular 1, has been around
 since 2010. Angular 2, now known simply as Angular, was officially released in 2016 and is continually being developed and
 extended. The current version is Angular 7.1; Angular 2+ isn’t backward-compatible with AngularJS. See the sidebar “Angular versions and release cycles” for a bit more information about the number and release cycles.

 	

 Angular versions and release cycles

 The change from Angular 1.x to Angular 2 was a big deal in the developer community. It was a long time coming, different,
 and not backward-compatible. But now Angular is releasing versions much more frequently, aiming for every six months. The
 current version is Angular 7.1, with further iterations already being heavily worked on.

 The frequency of change is nothing to worry about, though; the changes are nowhere near as big as the complete rewrite that
 happened between 1.x and 2.0. The changes are generally small, incremental changes. There may be some breaking changes between
 4 and 5, or 5 and 6, and so on, but these changes are normally small, specific items that are easy to pick up—unlike the change
 from Angular 1.x to 2.0.

 	

 Node.js was created in 2009, and its development and maintenance are currently under the purview of the Node Foundation, of
 which Joyent (the organization that created Node) is a major member. Node.js uses Google’s open source V8 JavaScript engine
 at its core.

1.1. Why learn the full stack?

 Indeed, why learn the full stack? It sounds like an awful lot of work! Well, yes, it is quite a lot of work, but it’s also rewarding, as you get to create fully functioning data-driven websites and applications
 all by yourself. And with the MEAN stack, the work isn’t as hard as you might think.

 1.1.1. A brief history of web development

 Back in the early days of the web, people didn’t have high expectations of websites. Not much emphasis was given to presentation;
 building websites was much more about what was going on behind the scenes. Typically, if you knew something like Perl and
 could string together a bit of HTML, you were a web developer.

 As use of the internet spread, businesses started to take more of an interest in how their online presence portrayed them.
 In combination with increased browser support for Cascading Style Sheets (CSS) and JavaScript, this interest led to more-complicated
 front-end implementations. It was no longer a case of being able to string together HTML; you needed to spend time on CSS
 and JavaScript, making sure that it looked right and worked as expected. And all this needed to work in different browsers,
 which were much less compliant than they are today.

 This is where the distinction between front-end developer and back-end developer came in. Figure 1.1 illustrates this separation over time.

 Figure 1.1. Divergence of front-end and back-end developers over time

 [image:]

 While back-end developers focused on the mechanics behind the scenes, front-end developers focused on building a good user
 experience. As time went on, higher expectations were made of both camps, encouraging this trend to continue. Developers often
 had to choose an area of expertise and focus on it.

Helping developers with libraries and frameworks

 During the 2000s, libraries and frameworks started to become popular and prevalent for the most common languages on both the
 front and back ends. Think Dojo and jQuery for front-end JavaScript; think Symfony for PHP and Ruby on Rails. These frameworks were designed to make life easier
 for developers, lowering the barriers to entry. A good library or framework abstracts away some of the complexities of development,
 allowing you to code faster and requiring less in-depth expertise. This trend toward simplification has resulted in a resurgence
 of full-stack developers who build both the front end and the application logic behind it, as figure 1.2 shows.

 Figure 1.2. Impact of frameworks on the separated web development factions

 [image:]

 Figure 1.2 illustrates a trend rather than proclaims a definitive “all web developers should be full-stack developers” maxim. There
 have been full-stack developers throughout the entire history of the web, and moving forward, it’s most likely that some developers
 will choose to specialize in either front-end or back-end development. The intention is to show that through the use of frameworks
 and modern tools, you no longer have to choose one end or the other to be a good web developer.

 A huge advantage in embracing the framework approach is that you can be incredibly productive, because you’ll have an all-encompassing
 vision of the application and how it ties together.

Moving the application code forward in the stack

 Continuing with the trend toward frameworks, the past few years have seen an increasing effort to move the application logic
 away from the server and into the front end. Think of this as coding the back end in the front end. Some of the most popular JavaScript frameworks doing this are Angular,
 React, and Vue.js.

 Tightly coupling the application code to the front end this way tends to blur the lines between traditional front-end and
 back-end developers. One of the reasons why people like to use this approach is that it reduces the load on the servers, thus
 reducing cost. What you’re doing in effect is crowdsourcing the computational power required for the application by pushing
 that load into users’ browsers.

 We’ll discuss the pros and cons of this approach in section 1.5 and explain when it may (or may not) be appropriate to use one of these technologies.

 1.1.2. The trend toward full-stack developing

 As discussed, the paths of front-end and back-end developers are merging; it’s entirely possible to be fully proficient in
 both disciplines. If you’re a freelancer, consultant, or part of a small team, being multiskilled is extremely useful, increasing
 the value that you can provide for your clients. Being able to develop the full scope of a website or application gives you
 better overall control and can help the parts work seamlessly together, because they haven’t been built in isolation by separate
 teams.

 If you work as part of a large team, chances are that you’ll need to specialize in (or at least focus on) one area. But it’s
 generally advisable to understand how your component fits with other components, giving you a greater appreciation of the
 requirements and goals of other teams and the overall project.

 In the end, building on the full stack yourself is rewarding. Each part comes with its own challenges and problems to solve,
 keeping things interesting. The technology and tools available today enhance this experience and empower you to build great
 web applications relatively quickly and easily.

 1.1.3. Benefits of full-stack development

 There are many benefits to learning full-stack development. For starters, there’s the enjoyment of learning new things and
 playing with new technologies, of course. Then you have the satisfaction of mastering something different and the thrill of
 being able to build and launch a full database-driven application all by yourself.

 The benefits of working in a team include the following:

 	You’re more likely to have a better view of the bigger picture by understanding the different areas and how they fit together.

 	You’ll form an appreciation of what other parts of the team are doing and what they need to be successful.

 	Like other team members, you can move around more freely.

 The additional benefits of working by yourself include

 	You can build applications end-to-end by yourself without depending on other people.

 	You develop more skills, services, and capabilities to offer customers.

 All in all, there’s a lot to be said for full-stack development. Most of the accomplished developers we’ve met have been full-stack
 developers. Their overall understanding and ability to see the bigger picture is a tremendous bonus.

 1.1.4. Why the MEAN stack specifically?

 The MEAN stack pulls together some of the “best-of-breed” modern web technologies into a powerful, flexible stack. One great
 thing about the MEAN stack is that it not only uses JavaScript in the browser, but also uses JavaScript throughout. Using
 the MEAN stack, you can code the front end and back end in the same language. That being said, it’s more common to build the
 Angular part of the stack in TypeScript. We’ll discuss this reasoning in chapter 8.

 Figure 1.3 demonstrates the principal technologies of the MEAN stack and shows where each one is commonly used.

 Figure 1.3. The principal technologies of the MEAN stack

 [image:]

 The principal technology allowing full-stack JavaScript to happen is Node.js, bringing JavaScript to the back end.

1.2. Introducing Node.js: The web server/platform

 Node.js is the N in MEAN. Being last doesn’t mean that it’s the least important: it’s the foundation of the stack!

 In a nutshell, Node.js is a software platform that allows you to create your own web server and build web applications on
 top of it. Node.js isn’t itself a web server; neither is it a language. It contains a built-in HTTP server library, meaning
 that you don’t need to run a separate web server program such as NGINX, Apache, or Internet Information Services (IIS). This
 gives you greater control of how your web server works but also increases the complexity of getting it up and running, particularly
 in a live environment.

 With PHP, for example, you can easily find a shared-server web host running Apache and send some files over FTP, and—all being
 well—your site is running. This works because the web host has already configured Apache for you and others to use. With Node.js,
 this isn’t the case, because you configure the Node.js server when you create your application. Many of the traditional web
 hosts are behind the curve on Node.js support, but several new Platform as a Service (PaaS) hosts are springing up to address this need, including Heroku,
 Nodejitsu, and DigitalOcean. The approach to deploying live sites on these PaaS hosts is different from the old FTP model
 but easy when you get the hang of it. You’ll be deploying a site live to Heroku as you go through the book.

 An alternative approach to hosting a Node.js application is doing it yourself on a dedicated server or virtual server from
 a cloud provider like AWS or Azure, on which you can install anything you need. But production server administration is a
 topic for another book! And although you could independently swap out any of the other components with an alternative technology,
 if you take Node.js out, everything that sits on top of it changes.

 1.2.1. JavaScript: The single language through the stack

 One of the main reasons why Node.js is gaining broad popularity is that you code it in a language that most web developers
 are already familiar with: JavaScript. Until Node was released, if you wanted to be a full-stack developer, you had to be
 proficient in at least two languages: JavaScript on the front end and something like PHP or Ruby on the back end.

 	

 Microsoft’s foray into server-side JavaScript

 In the late 1990s, Microsoft released Active Server Pages (now known as Classic ASP). ASP could be written in VBScript or
 JavaScript, but the JavaScript version didn’t take off, largely because at the time, a lot of people were familiar with Visual
 Basic, which VBScript looks like. Many books and online resources were for VBScript, so it snowballed into becoming the standard
 language for Classic ASP.

 	

 With the release of Node.js, you can use what you already know and put it to use on the server. One of the hardest parts of
 learning a new technology like this is learning the language, but if you already know some JavaScript, you’re one step ahead!

 There’s a learning curve when you’re taking on Node.js, even if you’re an experienced front-end JavaScript developer. The
 challenges and obstacles in server-side programming are different from those on the front end, but you’ll face those challenges
 no matter what technology you use. On the front end, you may be concerned about making sure that everything works in a variety
 of browsers on different devices. On the server, you’re more likely to be aware of the flow of the code to ensure that nothing
 gets held up and that you don’t waste system resources.

 1.2.2. Fast, efficient, and scalable

 Another reason for the popularity of Node.js is that, when coded correctly, it’s extremely fast and makes efficient use of
 system resources. These features enable a Node.js application to serve more users on fewer server resources than most of the
 other mainstream server technologies. Business owners also like the idea of Node.js because it can reduce their running costs,
 even at large scale.

 How does Node.js do this? Node.js is light on system resources because it’s single-threaded, whereas traditional web servers
 are multithreaded. In the following sections, we’ll look at what those terms mean, starting with the traditional multithreaded
 approach.

Traditional multithreaded web server

 Most of the current mainstream web servers are multithreaded, including Apache and IIS. What this means is that every new
 visitor (or session) is given a separate thread and associated amount of RAM, often around 8 MB.

 Thinking of a real-world analogy, imagine two people going into a bank wanting to do separate things. In a multithreaded model,
 they’d each go to a separate bank teller who would deal with their requests, as shown in figure 1.4.

 Figure 1.4. Example of a multithreaded approach: Visitors use separate resources. Visitors and their dedicated resources have no awareness
 of or contact with other visitors and their resources.

 [image:]

 You can see in figure 1.4 that Simon goes to bank teller 1, and Sally goes to bank teller 2. Neither side is aware of or affected by the other. Bank
 teller 1 deals with Simon, and nobody else, throughout the entirety of the transaction; the same goes for bank teller 2 and
 Sally.

 This approach works perfectly well as long as you have enough tellers to service the customers. When the bank gets busy and
 the customers outnumber the tellers, the service starts to slow and the customers have to wait to be seen. Although banks
 don’t always worry about this situation too much and seem happy to make you stand in line, the same isn’t true of websites.
 If a website is slow to respond, users are likely to leave and never come back.

 This is one of the reasons why web servers are often overpowered and have so much RAM, even though they don’t need it 90%
 of the time. The hardware is set up in such a way as to be prepared for a huge spike in traffic. This setup is like the bank
 hiring an additional 50 full-time tellers and moving to a bigger building because it gets busy at lunchtime.

 Surely there’s a better way—a way that’s a bit more scalable. Here’s where the single-threaded approach comes in.

Single-threaded web server

 A Node.js server is single-threaded and works differently from a multithreaded server. Rather than giving each visitor a unique
 thread and a separate silo of resources, the server has every visitor join the same thread. A visitor and thread interact
 only when necessary—when the visitor is requesting something or the thread is responding to a request.

 Returning to the bank-teller analogy, there’d be only one teller who deals with all the customers. But rather than taking
 on and managing all requests end to end, the teller delegates any time-consuming tasks to back-office staff and deals with
 the next request. Figure 1.5 illustrates how this process might work, using the two requests from the multithreaded example.

 Figure 1.5. Example of a single-threaded approach: Visitors use the same central resource. The central resource must be well disciplined
 to prevent one visitor from affecting others.

 [image:]

 In the single-threaded approach shown in figure 1.5, Sally and Simon give their requests to the same bank teller. But instead of dealing with one of them exclusively before
 the next, the teller takes the first request and passes it to the best person to deal with it before taking the next request
 and doing the same thing. When the teller is told that a requested task is complete, the teller passes the result back to
 the visitor who made the request.

 	

 Blocking vs. nonblocking code

 With the single-threaded model, it’s important to remember that all of your users use the same central process. To keep the
 flow smooth, you need to make sure that nothing in your code causes a delay, blocking another operation. An example would
 be if the bank teller has to go to the safe to deposit the money for Simon, in which case Sally would have to wait to make
 her request.

 Similarly, if your central process is responsible for reading each static file (such as CSS, JavaScript, or images), it won’t
 be able to process any other request, thus blocking the flow. Another common task that’s potentially blocking is interacting
 with a database. If your process is going to the database each time it’s asked, be it searching for data or saving data, it
 won’t be able to do anything else.

 For the single-threaded approach to work, you must make sure that your code is nonblocking. The way to achieve this is to
 make any blocking operations run asynchronously, preventing them from blocking the flow of your main process.

 	

 Despite there being a single teller, neither of the visitors is aware of the other, and neither is affected by the requests
 of the other. This approach means that the bank doesn’t need several tellers always on hand. This model isn’t infinitely scalable,
 of course, but it’s more efficient. You can do more with fewer resources. It doesn’t mean, however, that you’ll never need
 to add more resources.

 This particular approach is possible in Node.js due to the asynchronous capabilities of JavaScript, as you’ll see in action
 throughout the book. But if you’re not sure about the theory, check out appendix D (available online or in the e-book), particularly the section on callbacks.

 1.2.3. Using prebuilt packages via npm

 A package manager, npm, gets installed when you install Node.js. npm gives you the ability to download Node.js modules or
 packages to extend the functionality of your application. Currently, more than 350,000 packages are available through npm, an indication
 of how much depth of knowledge and experience you can bring to an application. This figure is up from 46,000, when the first
 edition of Getting MEAN was written four years ago!

 Packages in npm vary widely in what they give you. You’ll use some npm packages throughout this book to bring in an application
 framework and a database driver with schema support. Other examples include helper libraries such as Underscore, testing frameworks
 like Mocha, and utilities like Colors, which adds color support to Node.js console logs. You’ll look more closely at npm and
 how it works when you start building an application in chapter 3.

 As you’ve seen, Node.js is extremely powerful and flexible, but it doesn’t give you much help when you’re trying to create
 a website or application. Express can give you a hand here. You install Express by using npm.

1.3. Introducing Express: The framework

 Express is the E in MEAN. Because Node.js is a platform, it doesn’t prescribe how it should be set up or used, which is one of its great strengths.
 But every time you create websites and web applications, quite a few common tasks need doing. Express is a web application
 framework for Node.js that’s designed to perform these tasks in a well-tested, repeatable way.

 1.3.1. Easing your server setup

 As already noted, Node.js is a platform, not a server, which allows you to get creative with your server setup and do things
 that you can’t do with other web servers. It also makes getting a basic website up and running harder.

 Express abstracts away this difficulty by setting up a web server to listen to incoming requests and return relevant responses.
 In addition, it defines a directory structure. One folder is set up to serve static files in a nonblocking way; the last thing
 you want is for your application to have to wait when someone requests a CSS file! You could configure this yourself directly
 in Node.js, but Express does it for you.

 1.3.2. Routing URLs to responses

 One of the great features of Express is that it provides a simple interface for directing an incoming URL to a certain piece
 of code. Whether this interface will serve a static HTML page, read from a database, or write to a database doesn’t matter.
 The interface is simple and consistent.

 Express abstracts away some of the complexity of creating a web server in native Node.js to make code quicker to write and
 easier to maintain.

 1.3.3. Views: HTML responses

 It’s likely that you’ll want to respond to many of the requests to your application by sending some HTML to the browser. By
 now, it will come as no surprise to you that Express makes this task easier than it is in native Node.js.

 Express provides support for many templating engines that make it easier to build HTML pages in an intelligent way, using
 reusable components as well as data from your application. Express compiles these together and serves them to the browser
 as HTML.

 1.3.4. Remembering visitors with session support

 Being single-threaded, Node.js doesn’t remember a visitor from one request to the next. It doesn’t have a silo of RAM set
 aside for you; it sees only a series of HTTP requests. HTTP is a stateless protocol, so there’s no concept of storing a session
 state. As it stands, it’s difficult to create a personalized experience in Node.js or have a secure area where a user has
 to log in; it’s not much use if the site forgets who you are on every page. You can do it, of course, but you have to code
 it yourself.

 You’ll never guess what: Express has an answer to this problem too! Express can use sessions so that you can identify individual visitors through multiple requests and pages. Thank you, Express!

 Sitting on top of Node.js, Express gives you a great helping hand and a sound starting point for building web applications.
 It abstracts away many complexities and repeatable tasks that most of us don’t need—or want—to worry about. We only want to
 build web applications.

1.4. Introducing MongoDB: The database

 The ability to store and use data is vital for most applications. In the MEAN stack, the database of choice is MongoDB, the
 M in MEAN. MongoDB fits into the stack incredibly well. Like Node.js, it’s renowned for being fast and scalable.

 1.4.1. Relational databases vs. document stores

 If you’ve used a relational database before, or even a spreadsheet, you’ll be used to the concepts of columns and rows. Typically,
 a column defines the name and data type, and each row is a different entry. See table 1.1 for an example.

 Table 1.1. An example of rows and columns in a relational database table

 	
 firstName

 	
 middleName

 	
 lastName

 	
 maidenName

 	
 nickname

 	Simon
 	David
 	Holmes
 	
 	Si

 	Sally
 	June
 	Panayiotou
 	
 	

 	Rebecca
 	
 	Norman
 	Holmes
 	Bec

 MongoDB is not like that! MongoDB is a document store. The concept of rows still exists, but columns are removed from the picture. Rather
 than a column defining what should be in the row, each row is a document, and this document both defines and holds the data
 itself. Table 1.2 shows how a collection of documents might be listed. (The indented layout is for readability, not a visualization of columns.)

 Table 1.2. Each document in a document database defines and holds the data, in no particular order.

 	firstName: "Simon"
 	middleName: "David"
 	lastName: "Holmes"
 	nickname: "Si"

 	lastName: "Panayiotou"
 	middleName: "June"
 	firstName: "Sally"
 	

 	maidenName: "Holmes"
 	firstName: "Rebecca"
 	lastName: "Norman"
 	nickname: "Bec"

 This less-structured approach means that a collection of documents could have a wide variety of data inside. In the next section,
 you’ll look at a sample document to get a better idea of what we’re talking about.

 1.4.2. MongoDB documents: JavaScript data store

 MongoDB stores documents as BSON, which is binary JSON (JavaScript Serialized Object Notation). Don’t worry for now if you’re
 not fully familiar with JSON; check out the relevant section in appendix D. In short, JSON is a JavaScript way of holding data, which is why MongoDB fits so well into the JavaScript-centric MEAN stack!

 The following code snippet shows a simple example MongoDB document:

 {
 "firstName" : "Simon",
 "lastName" : "Holmes",
 _id : ObjectId("52279effc62ca8b0c1000007")
}

 Even if you don’t know JSON well, you can probably see that this document stores the first and last names of Simon Holmes.
 Rather than a document holding a data set that corresponds to a set of columns, a document holds name/value pairs, which makes
 a document useful in its own right because it both describes and defines the data.

 A quick word about _id: You most likely noticed the _id entry alongside the names in the preceding example MongoDB document. The _id entity is a unique identifier that MongoDB assigns to any new document when it’s created.

 You’ll look at MongoDB documents in more detail in chapter 5, when you start to add data to your application.

 1.4.3. More than just a document database

 MongoDB sets itself apart from many other document databases with its support for secondary indexing and rich queries. You
 can create indexes on more than the unique identifier field, and querying indexed fields is much faster. You can also create
 some fairly complex queries against a MongoDB database—not to the level of huge SQL commands with joins all over the place,
 but powerful enough for most use cases.

 As you build an application through the course of this book, you’ll get to have some fun with MongoDB and start to appreciate
 exactly what it can do.

 1.4.4. What is MongoDB not good for?

 As of version 4, there’s little that a traditional RDBMS can do that MongoDB can’t, beyond the obvious differences we’ve already
 discussed. One of the biggest issues in earlier versions of MongoDB was lack of transaction support. MongoDB 4, the version
 used in this book, has the capability to perform multidocument transactions with ACID (atomicity, consistency, isolation,
 durability) guarantees.

 1.4.5. Mongoose for data modeling and more

 MongoDB’s flexibility in what it stores in documents is a great thing for the database. But most applications need some structure
 to their data. Note that the application needs structure, not the database. So where does it make most sense to define the structure of your application data? In
 the application itself!

 To this end, the company behind MongoDB created Mongoose. In the company’s words, Mongoose provides “elegant MongoDB object
 modeling for Node.js” (https://mongoosejs.com).

What is data modeling?

 Data modeling, in the context of Mongoose and MongoDB, defines what data can be in a document and what data must be in a document. When storing user information, you may want to be able to save the first name, last name, email address,
 and phone number. But you need only the first name and email address, and the email address must be unique. This information is defined in a schema, which is used as the basis for the data model.

What else does Mongoose offer?

 As well as modeling data, Mongoose adds an entire layer of features on top of MongoDB that are useful for building web applications.
 Mongoose makes it easier to manage the connections to your MongoDB database and to save and read data. You’ll use all of these
 features later. Also later in the book, we’ll discuss how Mongoose enables you to add data validation at the schema level,
 making sure that you allow only valid data to be saved in the database.

 MongoDB is a great choice of database for most web applications, because it provides a balance between the speed of pure document
 databases and the power of relational databases. The data is effectively stored in JSON, which makes it the perfect data store
 for the MEAN stack.

 Figure 1.6 shows some of the highlights of Mongoose and how it fits between the database and the application.

 Figure 1.6. Mongoose fits between the database and the application, providing an easy-to-use interface (object models) and access to other
 functionality, such as validation.

 [image:]

1.5. Introducing Angular: The front-end framework

 Angular is the A in MEAN. In simple terms, Angular is a JavaScript framework for creating the interface for your website or application. In this book,
 you’ll be working with Angular 7, which is the most recently available version. All previous versions have been deprecated,
 and the online documentation no longer applies.

 You could use Node.js, Express, and MongoDB to build a fully functioning, data-driven web application, and you’ll do that
 in this book. But you can put some icing on the cake by adding Angular to the stack.

 The traditional way of doing things is to have all data processing and application logic on the server, which then passes
 HTML to the browser. Angular enables you to move some or all of this processing and logic to the browser, often leaving the
 server passing data from the database. We’ll take a look at this process in a moment when we discuss data binding, but first,
 we need to address the question of whether Angular is like jQuery, the leading front-end JavaScript library.

 1.5.1. jQuery vs. Angular

 If you’re familiar with jQuery, you may be wondering whether Angular works the same way. The short answer is no, not really.
 jQuery is generally added to a page to provide interactivity after the HTML has been sent to the browser and the Document
 Object Model (DOM) has completely loaded. Angular comes in a step earlier, building the HTML from templates, based on the
 data provided.

 Also, jQuery is a library and as such has a collection of features that you can use as you wish. Angular is known as an opinionated framework, which means that it forces its opinion on you as to how it needs to be used. It also abstracts away some of the underlying
 complexity, simplifying the development experience.

 As mentioned earlier, Angular helps put the HTML together based on the data provided, but it does more: it also immediately
 updates the HTML if the data changes and can update the data if the HTML changes. This feature is known as two-way data binding, which we’ll take a quick look at in the next section.

 1.5.2. Two-way data binding: Working with data in a page

 To understand two-way data binding, consider a simple example. Compare this approach with traditional one-way data binding.
 Imagine that you have a web page and some data, and you want to do the following:

 	Display that data as a list to the user

 	Allow the user to filter that list by inputting text into a form field

 In both approaches—one-way and two-way binding—step 1 is similar. You use the data to generate some HTML markup for the end
 user to see. Step 2 is where things get a bit different.

 In step 2, you want to let the user enter some text in a form field to filter the list of data being displayed. With one-way
 data binding, you have to add event listeners to the form input field manually to capture the data and update the data model (to ultimately change what’s displayed to the
 user).

 With two-way data binding, any updates to the form can be captured automatically, updating the model and changing what’s displayed
 to the user. This capability may not sound like a big deal, but to understand its power, it’s good to know that with Angular,
 you can achieve everything in steps 1 and 2 without writing a single line of JavaScript code! That’s right—it’s all done with
 Angular’s two-way data binding ... and a bit of help from some other Angular features.

 As you go through part 3 of the book, you’ll get to see—and use—this in action. Seeing is believing with this feature, and you won’t be disappointed.

 1.5.3. Using Angular to load new pages

 One thing that Angular was specifically designed for is single-page application (SPA) functionality. In real terms, an SPA runs everything inside the browser and never does a full page reload. All application
 logic, data processing, user flow, and template delivery can be managed in the browser.

 Think Gmail. That’s an SPA. Different views get shown in the page, along with a variety of data sets, but the page itself
 never fully reloads.

 This approach can reduce the amount of resources you need on your server, because you’re essentially crowdsourcing the computational
 power. Each person’s browser is doing the hard work; your server is serving up static files and data on request.

 The user experience can also be better under this approach. After the application is loaded, fewer calls are made to the server,
 reducing the potential of latency.

 All this sounds great, but surely there’s a price to pay. Why isn’t everything built into Angular?

 1.5.4. Are there any downsides?

 Despite its many benefits, Angular isn’t appropriate for every website. Front-end libraries like jQuery are best used for
 progressive enhancement. The idea is that your site will function perfectly well without JavaScript, and the JavaScript you
 use makes the experience better. That isn’t the case with Angular or indeed with any other SPA framework. Angular uses JavaScript
 to build the rendered HTML from templates and data, so if your browser doesn’t support JavaScript or there’s a bug in the
 code, the site won’t run.

 This reliance on JavaScript to build the page also causes problems with search engines. When a search engine crawls your site,
 it won’t run all JavaScript; with Angular, the only thing you get before JavaScript takes over is the base template from the
 server. If you want to be 100% certain that your content and data are indexed by search engines rather than only your templates,
 you need to think about whether Angular is right for that project.

 You have ways to combat this issue: in short, you need your server to output compiled content as well as Angular. But, if
 you don’t need to fight this battle, we recommend against doing so.

 One thing you can do is use Angular for some things and not others. There’s nothing wrong with using Angular selectively in
 your project. You might have a data-rich interactive application or section of your site that’s ideal for building in Angular,
 for example. Or you might have a blog or some marketing pages around your application. These elements don’t need to be built
 in Angular and arguably would be better served from the server in the traditional way. So part of your site is served by Node.js,
 Express, and MongoDB, and another part also has Angular doing its thing.

 This flexible approach is one of the most powerful aspects of the MEAN stack. With one stack, you can achieve a great many
 things so long as you remember to be flexible in your thinking and don’t think of the MEAN stack as being a single architecture
 stack.

 Things are improving, though. Web-crawling technologies, particularly those employed by Google, are becoming ever more capable,
 and this issue is quickly becoming part of the past.

 1.5.5. Developing in TypeScript

 Angular applications can be written in many flavors of JavaScript, including ES5, ES2015+, and Dart. But the most popular
 by far is TypeScript.

 TypeScript is a superset of JavaScript, meaning that it is JavaScript, but with added features. In this book, you’ll use TypeScript to build the Angular part of your application. But
 don’t worry: we’ll start from the ground up in part 3 and cover the parts of TypeScript you need to know.

OEBPS/01fig01_alt.jpg
Frontand

back-end
Increasing developars Increasing
back-end ¢ > frontend
complexity complexity
Specialist Specialist
back-end front-end
developers developers

Time

OEBPS/01fig02_alt.jpg
Frontand

back-end
Increasing developers Increasing
back-end 4 » front-end
complexity complexity
Specialist Specialist
back-end front-end
developers developers
introduction
of -
frameworks

Full-stack
developers

v

Time.

OEBPS/xxifig01.jpg

OEBPS/xxifig02.jpg

OEBPS/pub.jpg
e

OEBPS/enter.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common1.jpg

OEBPS/01fig03_alt.jpg
Database

)

MongoDB

Application server

Node.js and Express

Language:

JavaScript

Frontend

Angular

Language:

TypeScript

OEBPS/01fig05_alt.jpg
Simon

Put $500 in the
safe. Tell me how
much | have.

Safe manager

l

Goes to safe,
deposits $500,

Your total is
§5,000.

and counts total

Bank teller

oy

Withdraw

$100.

Cashier

Gets
$100

Here is
your $100.

Sally

OEBPS/01fig04_alt.jpg
Simon

Put $500 in the
safe. Tell me how
much | have.

.4

Bank teller 1

Your total is
$5,000.

Withdraw
$100.

Bank teller 2

Retrieves
money from
drawer

Here is
your $100.

Sally

OEBPS/cover.jpg
| | FTTHD

Angular, ang

SECOND EDITION

Simon Holmes
Clive Harber

OEBPS/01fig06_alt.jpg
MongoDB

(e

Mongoose

[|
——

Connections
Schemas
Queries
Validations
Aggregations
etc.

Application

Object models

