

 [image: cover]

The Joy of Clojure, Second Edition

 Michael Fogus and Chris Houser

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	
 Development editor: Nermina Miller
Copyeditor: Benjamin Berg
Proofreader: Tiffany Taylor
Typesetter: Dottie Marsico
Cover designer: Marija Tudor

 ISBN 9781617291418

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14

Dedication

 To Timothy Hart—a hacker of the highest order. Rest in peace.

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Foreword to the Second Edition

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About Clojure

 About the Cover Illustration

 1. Foundations

 Chapter 1. Clojure philosophy

 Chapter 2. Drinking from the Clojure fire hose

 Chapter 3. Dipping your toes in the pool

 2. Data types

 Chapter 4. On scalars

 Chapter 5. Collection types

 3. Functional programming techniques

 Chapter 6. Being lazy and set in your ways

 Chapter 7. Functional programming

 4. Large-scale design

 Chapter 8. Macros

 Chapter 9. Combining data and code

 Chapter 10. Mutation and concurrency

 Chapter 11. Parallelism

 5. Host symbiosis

 Chapter 12. Java.next

 Chapter 13. Why ClojureScript?

 6. Tangential considerations

 Chapter 14. Data-oriented programming

 Chapter 15. Performance

 Chapter 16. Thinking programs

 Chapter 17. Clojure changes the way you think

 Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Praise for the First Edition

 Foreword to the Second Edition

 Foreword to the First Edition

 Preface

 Acknowledgments

 About this Book

 About Clojure

 About the Cover Illustration

 1. Foundations

 Chapter 1. Clojure philosophy

 1.1. The Clojure way

 1.1.1. Simplicity

 1.1.2. Freedom to focus

 1.1.3. Empowerment

 1.1.4. Clarity

 1.1.5. Consistency

 1.2. Why a(nother) Lisp?

 1.2.1. Beauty

 1.2.2. But what’s with all the parentheses?

 1.3. Functional programming

 1.3.1. A workable definition of functional programming

 1.3.2. The implications of functional programming

 1.4. Why Clojure isn’t especially object-oriented

 1.4.1. Defining terms

 1.4.2. Imperative “baked in”

 1.4.3. Most of what OOP gives you, Clojure provides

 1.5. Summary

 Chapter 2. Drinking from the Clojure fire hose

 2.1. Scalars: the base data types

 2.1.1. Numbers

 2.1.2. Integers

 2.1.3. Floating-point numbers

 2.1.4. Rationals

 2.1.5. Symbols

 2.1.6. Keywords

 2.1.7. Strings

 2.1.8. Characters

 2.2. Putting things together: collections

 2.2.1. Lists

 2.2.2. Vectors

 2.2.3. Maps

 2.2.4. Sets

 2.3. Making things happen: calling functions

 2.4. Vars are not variables

 2.5. Functions

 2.5.1. Anonymous functions

 2.5.2. Creating named functions with def and defn

 2.5.3. Functions with multiple arities

 2.5.4. In-place functions with #()

 2.6. Locals, loops, and blocks

 2.6.1. Blocks

 2.6.2. Locals

 2.6.3. Loops

 2.7. Preventing things from happening: quoting

 2.7.1. Evaluation

 2.7.2. Quoting

 2.7.3. Unquote

 2.7.4. Unquote-splicing

 2.7.5. Auto-gensym

 2.8. Using host libraries via interop

 2.8.1. Accessing static class members (Clojure only)

 2.8.2. Creating instances

 2.8.3. Accessing instance members with the . operator

 2.8.4. Setting instance fields

 2.8.5. The .. macro

 2.8.6. The doto macro

 2.8.7. Defining classes

 2.9. Exceptional circumstances

 2.9.1. Throwing and catching

 2.10. Modularizing code with namespaces

 2.10.1. Creating namespaces using ns

 2.10.2. Loading other namespaces with :require

 2.10.3. Loading and creating mappings with :refer

 2.10.4. Creating mappings with :refer

 2.10.5. Loading Java classes with :import

 2.11. Summary

 Chapter 3. Dipping your toes in the pool

 3.1. Truthiness

 3.1.1. What’s truth?

 3.1.2. Don’t create Boolean objects

 3.1.3. nil vs. false

 3.2. Nil pun with care

 3.3. Destructuring

 3.3.1. Your assignment, should you choose to accept it

 3.3.2. Destructuring with a vector

 3.3.3. Destructuring with a map

 3.3.4. Destructuring in function parameters

 3.3.5. Destructuring vs. accessor methods

 3.4. Using the REPL to experiment

 3.4.1. Experimenting with seqs

 3.4.2. Experimenting with graphics

 3.4.3. Putting it all together

 3.4.4. When things go wrong

 3.4.5. Just for fun

 3.5. Summary

 2. Data types

 Chapter 4. On scalars

 4.1. Understanding precision

 4.1.1. Truncation

 4.1.2. Promotion

 4.1.3. Overflow

 4.1.4. Underflow

 4.1.5. Rounding errors

 4.2. Trying to be rational

 4.2.1. Why be rational?

 4.2.2. How to be rational

 4.2.3. Caveats of rationality

 4.3. When to use keywords

 4.3.1. Applications of keywords

 4.3.2. Qualifying your keywords

 4.4. Symbolic resolution

 4.4.1. Metadata

 4.4.2. Symbols and namespaces

 4.4.3. Lisp-1

 4.5. Regular expressions—the second problem

 4.5.1. Syntax

 4.5.2. Regular-expression functions

 4.5.3. Beware of mutable matchers

 4.6. Summary

 Chapter 5. Collection types

 5.1. Persistence, sequences, and complexity

 5.1.1. “You keep using that word. I do not think it means what you think it means.”

 5.1.2. Sequence terms and what they mean

 5.1.3. Big-O

 5.2. Vectors: creating and using them in all their varieties

 5.2.1. Building vectors

 5.2.2. Large vectors

 5.2.3. Vectors as stacks

 5.2.4. Using vectors instead of reverse

 5.2.5. Subvectors

 5.2.6. Vectors as map entries

 5.2.7. What vectors aren’t

 5.3. Lists: Clojure’s code-form data structure

 5.3.1. Lists like Lisps like

 5.3.2. Lists as stacks

 5.3.3. What lists aren’t

 5.4. How to use persistent queues

 5.4.1. A queue about nothing

 5.4.2. Putting things on

 5.4.3. Getting things

 5.4.4. Taking things off

 5.5. Persistent sets

 5.5.1. Basic properties of Clojure sets

 5.5.2. Keeping your sets in order with sorted-set

 5.5.3. The contains? function

 5.5.4. The clojure.set namespace

 5.6. Thinking in maps

 5.6.1. Hash maps

 5.6.2. Keeping your keys in order with sorted maps

 5.6.3. Keeping your insertions in order with array maps

 5.7. Putting it all together: finding the position of items in a sequence

 5.7.1. Implementation

 5.8. Summary

 3. Functional programming techniques

 Chapter 6. Being lazy and set in your ways

 6.1. On immutability: being set in your ways

 6.1.1. What is immutability?

 6.1.2. What is immutability for?

 6.2. Structural sharing: a persistent toy

 6.3. Laziness

 6.3.1. Familiar laziness with logical-and

 6.3.2. Understanding the lazy-seq recipe

 6.3.3. Losing your head

 6.3.4. Employing infinite sequences

 6.3.5. The delay and force macros

 6.4. Putting it all together: a lazy quicksort

 6.4.1. The implementation

 6.5. Summary

 Chapter 7. Functional programming

 7.1. Functions in all their forms

 7.1.1. First-class functions

 7.1.2. Higher-order functions

 7.1.3. Pure functions

 7.1.4. Named arguments

 7.1.5. Constraining functions with pre- and postconditions

 7.2. On closures

 7.2.1. Functions returning closures

 7.2.2. Closing over parameters

 7.2.3. Passing closures as functions

 7.2.4. Sharing closure context

 7.3. Thinking recursively

 7.3.1. Mundane recursion

 7.3.2. Tail calls and recur

 7.3.3. Don’t forget your trampoline

 7.3.4. Continuation-passing style

 7.4. Putting it all together: A* pathfinding

 7.4.1. The world

 7.4.2. Neighbors

 7.4.3. The A* implementation

 7.4.4. Notes about the A* implementation

 7.5. Summary

 4. Large-scale design

 Chapter 8. Macros

 8.1. Data is code is data

 8.1.1. Syntax-quote, unquote, and splicing

 8.1.2. Macro rules of thumb

 8.2. Defining control structures

 8.2.1. Defining control structures without syntax-quote

 8.2.2. Defining control structures using syntax-quote and unquoting

 8.3. Macros combining forms

 8.4. Using macros to change forms

 8.5. Using macros to control symbolic resolution time

 8.5.1. Anaphora

 8.5.2. (Arguably) useful selective name capturing

 8.6. Using macros to manage resources

 8.7. Putting it all together: macros returning functions

 8.8. Summary

 Chapter 9. Combining data and code

 9.1. Namespaces

 9.1.1. Creating namespaces

 9.1.2. Expose only what’s needed

 9.1.3. Declarative inclusions and exclusions

 9.2. Exploring Clojure multimethods with the Universal Design Pattern

 9.2.1. The parts

 9.2.2. Basic use of the Universal Design Pattern

 9.2.3. Multimethods to the rescue

 9.2.4. Ad hoc hierarchies for inherited behaviors

 9.2.5. Resolving conflict in hierarchies

 9.2.6. Arbitrary dispatch for true maximum power

 9.3. Types, protocols, and records

 9.3.1. Records

 9.3.2. Protocols

 9.3.3. Building from a more primitive base with deftype

 9.4. Putting it all together: a fluent builder for chess moves

 9.4.1. Java implementation

 9.4.2. Clojure implementation

 9.5. Summary

 Chapter 10. Mutation and concurrency

 10.1. When to use refs

 10.1.1. Using refs for a mutable game board

 10.1.2. Transactions

 10.1.3. Embedded transactions

 10.1.4. The things that STM makes easy

 10.1.5. Potential downsides

 10.1.6. The things that make STM unhappy

 10.2. Refactoring with refs

 10.2.1. Fixing the game board example

 10.2.2. Commutative change with commute

 10.2.3. Vulgar change with ref-set

 10.2.4. Refs under stress

 10.3. When to use agents

 10.3.1. In-process vs. distributed concurrency models

 10.3.2. Controlling I/O with an agent

 10.3.3. The difference between send and send-off

 10.3.4. Error handling

 10.3.5. When not to use agents

 10.4. When to use atoms

 10.4.1. Sharing across threads

 10.4.2. Using atoms in transactions

 10.5. When to use locks

 10.5.1. Safe mutation through locking

 10.5.2. Using Java’s explicit locks

 10.6. Vars and dynamic binding

 10.6.1. The binding macro

 10.6.2. Creating a named var

 10.6.3. Creating anonymous vars

 10.6.4. Dynamic scope

 10.7. Summary

 Chapter 11. Parallelism

 11.1. When to use futures

 11.1.1. Futures as callbacks

 11.2. When to use promises

 11.2.1. Parallel tasks with promises

 11.2.2. Callback API to blocking API

 11.2.3. Deterministic deadlocks

 11.3. Parallel operations

 11.3.1. The pvalues macro

 11.3.2. The pmap function

 11.3.3. The pcalls function

 11.4. A brief introduction to reducer/fold

 11.5. Summary

 5. Host symbiosis

 Chapter 12. Java.next

 12.1. Generating objects on the fly with proxy

 12.1.1. A simple dynamic web service

 12.2. Clojure gen-class and GUI programming

 12.2.1. Namespaces as class specifications

 12.2.2. The guts of namespace compilation

 12.2.3. Exploring user interface design and development with Clojure

 12.3. Clojure’s relationship to Java arrays

 12.3.1. Types of arrays: primitive and reference

 12.3.2. Array mutability

 12.3.3. Arrays’ unfortunate naming convention

 12.3.4. Multidimensional arrays

 12.3.5. Variadic method/constructor calls

 12.4. All Clojure functions implement ...

 12.4.1. The java.util.Comparator interface

 12.4.2. The java.lang.Runnable interface

 12.4.3. The java.util.concurrent.Callable interface

 12.5. Using Clojure data structures in Java APIs

 12.5.1. The java.util.List interface

 12.5.2. The java.lang.Comparable interface

 12.5.3. The java.util.RandomAccess interface

 12.5.4. The java.util.Collection interface

 12.5.5. The java.util.Set interface

 12.6. The definterface macro

 12.6.1. Generating interfaces on the fly

 12.7. Be wary of exceptions

 12.7.1. A bit of background regarding exceptions

 12.7.2. Runtime vs. compile-time exceptions

 12.7.3. Handling exceptions

 12.7.4. Custom exceptions

 12.8. Summary

 Chapter 13. Why ClojureScript?

 13.1. Implementation vs. interface

 13.2. Compiler internals: analysis vs. emission

 13.2.1. Stages of compilation

 13.2.2. Web Audio

 13.2.3. Advanced compilation

 13.2.4. Generating an externs.js file

 13.3. Compile vs. run

 13.4. Summary

 6. Tangential considerations

 Chapter 14. Data-oriented programming

 14.1. Code as code, and data as data

 14.1.1. A strict line betwixt

 14.1.2. ORMG

 14.1.3. Common ways to derive information from data

 14.1.4. PLOP

 14.2. Data as data

 14.2.1. The benefits of value

 14.2.2. Tagged literals

 14.3. Data as code

 14.3.1. The data-programmable engine

 14.3.2. Examples of data-programmable engines

 14.3.3. Case study: simple event sourcing

 14.4. Code as data as code

 14.4.1. Hart’s discovery and homoiconicity

 14.4.2. Clojure code is data

 14.4.3. Putting parentheses around the specification

 14.5. Summary

 Chapter 15. Performance

 15.1. Type hints

 15.1.1. Advantages of type adornment

 15.1.2. Type-hinting arguments and returns

 15.1.3. Type-hinting objects

 15.2. Transients

 15.2.1. Ephemeral garbage

 15.2.2. Transients compare in efficiency to mutable collections

 15.3. Chunked sequences

 15.3.1. Regaining one-at-a-time laziness

 15.4. Memoization

 15.4.1. Reexamining memoization

 15.4.2. A memoization protocol

 15.4.3. Abstraction-oriented programming

 15.5. Understanding coercion

 15.5.1. Using primitive longs

 15.5.2. Using primitive doubles

 15.5.3. Using auto-promotion

 15.6. Reducibles

 15.6.1. An example reducible collection

 15.6.2. Deriving your first reducing function transformer

 15.6.3. More reducing function transformers

 15.6.4. Reducible transformers

 15.6.5. Performance of reducibles

 15.6.6. Drawbacks of reducibles

 15.6.7. Integrating reducibles with Clojure reduce

 15.6.8. The fold function: reducing in parallel

 15.7. Summary

 Chapter 16. Thinking programs

 16.1. A problem of search

 16.1.1. A brute-force Sudoku solver

 16.1.2. Declarative is the goal

 16.2. Thinking data via unification

 16.2.1. Potential equality, or satisfiability

 16.2.2. Substitution

 16.2.3. Unification

 16.3. An introduction to core.logic

 16.3.1. It’s all about unification

 16.3.2. Relations

 16.3.3. Subgoals

 16.4. Constraints

 16.4.1. An introduction to constraint programming

 16.4.2. Limiting binding via finite domains

 16.4.3. Solving Sudoku with finite domains

 16.5. Summary

 Chapter 17. Clojure changes the way you think

 17.1. Thinking in the domain

 17.1.1. A ubiquitous DSL

 17.1.2. Implementing a SQL-like DSL to generate queries

 17.1.3. A note about Clojure’s approach to DSLs

 17.2. Testing

 17.2.1. Some useful unit-testing techniques

 17.2.2. Contracts programming

 17.3. Invisible design patterns

 17.3.1. Clojure’s first-class design patterns

 17.4. Error handling and debugging

 17.4.1. Error handling

 17.4.2. Debugging

 17.5. Fare thee well

 Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Praise for the First Edition

 The authors blaze through many of the classics of both functional programming and industry programming in a whirlwind tour
 of Clojure that feels at times more like a class-five tropical storm. You’ll learn fast!

 From the Foreword by Steve Yegge, Google

 The Joy of Clojure wants to make you a better programmer, not just a better Clojure programmer. I would absolutely recommend this to anyone I
 know who had an interest in Clojure and/or functional programming.

 Rob Friesel Dealer.com Websystems

 Teaches the Tao of Clojure and, oh boy, it’s such a joy! Simply unputdownable!

 Baishampayan Ghose (BG) Cofounder & CTO, Qotd, Inc.

 The Clojure community, present and future, will be grateful for this book.

 Andrew Oswald Chariot Solutions

 Discover the why not just the how of Clojure

 Federico Tomassetti Politecnico di Torino

 The Joy of Clojure really lives up to its name! Every page oozes with the excitement @fogus and @chrishouser have for the language and its community.
 This is exactly what makes this book such an enjoyable read, it’s hard not to get drawn into the beauty of Clojure when you
 have two convinced developers sharing their passion with you.

 Amazon Reader M.K.

 What Irma Rombauer did for cooking, Fogus and Houser have done for Clojure! By going beyond the basics, this book equips the
 reader to think like a native speaker in Clojure-land.

 Phil Hagelberg Creator of the Leiningen build tool, Heroku

 A fun exploration of functional programming and Lisp.

 Matt Revelle Cofounder, Woven, Inc.

Foreword to the Second Edition

 In this second edition of The Joy of Clojure, Michael Fogus and Chris Houser present a cornucopia of programming concepts, including many of the topics from the programming
 languages course we taught together for many years. Fundamental programming languages concepts close to our hearts that appear
 in this book include higher-order functions, lexical scope, closures, tail recursion, mutual recursion, continuations and
 continuation-passing style, trampolining, lazy sequences, macros, and relational programming. Most important, Fogus and Houser
 teach you how to define your own little languages.

 Alan J. Perlis, brilliant language designer and inaugural Turing Award recipient, famously wrote, “There will always be things
 we wish to say in our programs that in all known languages can only be said poorly.” No existing programming language can
 express precisely those concepts and abstractions needed for your specific application. The only person who can design a language
 to solve your exact problem is you.

 Creating a little language to solve a specific problem is the most effective technique yet devised for reducing complexity in software.[1] Two well-known examples are database query languages and the formula languages of spreadsheet applications. These examples
 are as notable for what they exclude as for what they include, illustrating another of Perlis’s epigrams: “A programming language
 is low level when its programs require attention to the irrelevant.” By only including features relevant to the problem, a
 well-designed little language is inherently high level.

 1 Jon Bentley popularized the concept of little languages in his article “Programming Pearls: Little Languages,” Communications of the ACM 29, no. 8 (1986):711-21.

 Database query languages illustrate another fundamental aspect of little languages: writing a complete application requires
 addressing problems in more than one domain. An application that performs database queries will also make use of other languages.
 A single little language can’t address the exact needs of a nontrivial application any more than can a single general-purpose
 language.

 For this reason, little languages work best in concert. The ideal technique for writing a complex program is to slice it into
 multiple problem-specific pieces and then define a language for each problem slice. If we slice the program vertically, the
 result is a “tower” of languages, layered atop one another. Regardless of how we slice the overall problem, we can use the
 right language, and the right paradigm, for each subproblem.

 As with recursion, the art of defining little languages encourages—and rewards—wishful thinking. You might think to yourself,
 “If only I had a language for expressing the rules for legal passwords for my login system.” A more involved example—a story,
 really—started several years ago, when we thought to ourselves, “If only we had the right relational language, we could write
 a Lisp interpreter that runs backward.”[2] What does this mean?

 2 We use Lisp to refer to any member of a large family of languages that includes Scheme, Racket, Common Lisp, Dylan, and, of course, Clojure.
 To us, a Lisp must be homoiconic, have first-class functions, and have some form of macros. (All three concepts are described
 in this book.)

 An interpreter can be thought of as a function that maps an input expression, such as (+ 5 1), onto a value—in this case, 6. We wanted to write an interpreter in the style of a relational database, in which either the
 expression being interpreted or the value of that expression, or both, can be treated as unknown variables. We can run the
 interpreter forward using the query (interpret '(+ 5 1) x), which associates the query variable x with the value 6. Better yet, we can run the interpreter backward with the query (interpret x 6), which associates x with an infinite stream of expressions that evaluate to 6, including (+ 5 1) and ((lambda (n) (* n 2)) 3). (Brainteaser: determine the behavior of the query (interpret x x).)

 Implementing a relational interpreter is tricky, but doing so can be made easier by using a little language specifically designed
 for relational programming. In the end, our wishful thinking led us to build a tower of languages: a relational Lisp interpreter,
 on top of a rich relational language, on top of a minimal relational language, on top of a rich functional language, on top
 of a minimal functional language.[3] (The Lisp interpreter accepts a minimal functional language, turning the tower of languages into a circle!) Given the power
 of this approach, it isn’t surprising that many Lisp implementations—including the Clojure compiler—are built as layers of
 languages.

 3 By relational language, we mean a pure logic programming language; or, as in this example, a pure constraint logic programming language.

 Using what you’ll learn from Fogus and Houser in The Joy of Clojure, you can begin building your own towers of languages, each with its own syntactic forms and evaluation rules, tailored to
 your specific problem domains. No technique for software development is more expressive or more joyful.

 WILLIAM E. BYRD AND DANIEL P. FRIEDMAN

 Authors of The Reasoned Schemer (MIT Press, 2005)

Foreword to the First Edition

 The authors of this book have taken an ambitious and aggressive approach to teaching Clojure. You know how everyone loves
 to say they teach using the “drinking from a fire hydrant” method? Well, at times it feels like these guys are trying to shove
 that fire hydrant right up ... let’s just say it’s a place where you don’t normally put a fire hydrant. This isn’t intended
 as a first book on programming, and it may not be an ideal first book on Clojure either. The authors assume you’re fearless
 and, importantly, equipped with a search engine. You’ll want to have Google handy as you go through the examples. The authors
 blaze through many of the classics of both functional programming and industry programming in a whirlwind tour of Clojure
 that feels at times more like a class-five tropical storm. You’ll learn fast!

 Our industry, the global programming community, is fashion-driven to a degree that would embarrass haute couture designers
 from New York to Paris. We’re slaves to fashion. Fashion dictates the programming languages people study in school, the languages
 employers hire for, the languages that get to be in books on shelves. A naive outsider might wonder if the quality of a language
 matters a little, just a teeny bit at least, but in the real world fashion trumps all.

 So nobody could be more surprised than I that a Lisp dialect has suddenly become fashionable again. Clojure has only been
 out for three years, but it’s gaining momentum at a rate that we haven’t seen in a new language in decades. And it doesn’t
 even have a “killer app” yet, in the way that browsers pushed JavaScript into the spotlight, or Rails propelled Ruby. Or maybe
 the killer app for Clojure is the JVM itself. Everyone’s fed up with the Java language, but understandably we don’t want to
 abandon our investment in the Java Virtual Machine and its capabilities: the libraries, the configuration, the monitoring,
 and all the other entirely valid reasons we still use it.

 For those of us using the JVM or .NET, Clojure feels like a minor miracle. It’s an astoundingly high-quality language, sure—in
 fact, I’m beginning to think it’s the best I’ve ever seen—yet somehow it has still managed to be fashionable. That’s quite
 a trick. It gives me renewed hope for the overall future of productivity in our industry. We might just dig ourselves out
 of this hole we’re in and get back to where every project feels like a legacy-free startup, just like it was in the early
 days of Java.

 There are still open questions about Clojure’s suitability for production shops, especially around the toolchain. That’s normal
 and expected for a new language. But Clojure shows so much promise, such beautiful and practical design principles, that everyone
 seems to be jumping in with both feet anyway. I certainly am. I haven’t had this much fun with a new language since Java arrived
 on the scene 15 years ago. There have been plenty of pretenders to the JVM throne, languages that promised to take the Java
 platform to unprecedented new levels. But until now, none of them had the right mix of expressiveness, industrial strength,
 performance, and just plain fun.

 I think maybe it’s the “fun” part that’s helped make Clojure fashionable.

 In some sense, all this was inevitable, I think. Lisp—the notion of writing your code directly in tree form—is an idea that’s
 discovered time and again. People have tried all sorts of crazy alternatives, writing code in XML or in opaque binary formats
 or using cumbersome code generators. But their artificial Byzantine empires always fall into disrepair or crush themselves
 into collapse, while Lisp, the road that wanders through time, remains simple, elegant, and pure. All we needed to get back
 on that road was a modern approach, and Rich Hickey has given it to us in Clojure.

 The Joy of Clojure just might help make Clojure as fun for you as it is for us.

 STEVE YEGGE

 Google

 steve-yegge.blogspot.com

Preface

 This book is about the programming language Clojure. Specifically, this book is about how to write Clojure code “The Clojure Way.” Even more specifically, this book is about how experienced, successful Clojure programmers write Clojure code, and how
 the language itself influences the way they create software.

 You may be asking yourself, “Who are these guys, and why should I listen to them?” Rather than simply appealing to an authority
 that you know nothing about, allow us to take a few moments to explain how this book came about, who we are, and why we wrote
 this book in the first place.

 Both of us discovered Clojure early on in its life. It’s safe to say that there were times when the Clojure IRC channel #clojure
 (on Freenode) contained only ourselves along with Clojure’s designer—Rich Hickey—and a handful of other people. Our story
 in finding the language is similar to the story of many of its early adopters. That is, our path runs from modern object-oriented
 languages[4] like Java and C++, through (seemingly) simpler languages like JavaScript and Python, and then into more powerful languages
 like Scala and Common Lisp before finding Clojure. The precise details of how we found Clojure are unimportant; the point
 is that we were both searching for something that none of the other languages provided.

 4 And indeed the younger versions of ourselves were both deeply influenced by the public ponderings of Steve Yegge and Paul
 Graham.

 What does Clojure provide that none of the other languages can or do? In a nutshell, we think that when you understand Clojure’s
 nature and write code harmonious to this nature, a new perspective on the art of programming and systems construction is revealed.
 Therefore, the answer to what Clojure provides that those other languages don’t is enlightenment (so to speak). We’re not the only ones who feel this way; there are projects being developed right now that are deeply influenced
 by Clojure’s nature. From Datomic to Om[5] to Avout to Pedestal, Clojure’s influence is apparent. The Clojure Way is starting to spread to other programming languages,
 including (but not limited to) Scala, Elixir, and Haskell.

 5 Om is also deeply influenced by the works and ideas of Alan Kay and Bret Victor.

 In addition to Clojure’s influence in the language design arena, many programmers are using the language every day in their
 work. The use of Clojure and systems written in Clojure to solve hard business problems is growing every day. Since we wrote
 the first edition, we too have spent our work lives using and learning from Clojure, and naturally this learning prompted
 a desire to update this book. Although the first edition is still relevant from a factual perspective, we felt that a second
 edition should include the lessons of our professional use of this amazing language. Nothing in this book is speculative.
 Instead, we’ve used every technique and library, from reducibles to core.logic to data-oriented design, to solve real systems
 problems.

 This book is about the Way of Clojure, written by two programmers who use the language on a daily basis and have thought long
 and hard about its nature. We hope that by thoughtfully reading this book, you can come to an appreciation of Clojure’s power
 and importance.

Acknowledgments

 The authors would like to jointly thank Rich Hickey, the creator of Clojure, for his thoughtful creation, and for furthering
 the state of the art in programming language design. Without his hard work, devotion, and vision, this book would never have
 been, and our professional lives would be much the poorer.

 We’d also like to thank the brilliant members of the young Clojure community, including but not limited to: Stuart Halloway,
 Chas Emerick, David Edgar Liebke, Christophe Grand, Meikel Brandmeyer, Brian Carper, Carin Meier, Mark Engelberg, Bradford
 Cross, Aria Haghighi, Sean Devlin, Luke Vanderhart, Nada Amin, Tom Faulhaber, Stephen Gilardi, Phil Hagelberg, Konrad Hinsen,
 Tim Baldridge, George Jahad, David Miller, Bodil Stokke, Laurent Petit, Bridget Hillyer, and Stuart Sierra. We’d like to give
 special thanks to David Nolen and Sam Aaron for rocking our worlds with their wonderful software. And finally, our heartfelt
 appreciation goes to Daniel Friedman and William Byrd for writing the foreword to the second edition, for their input into
 chapter 16, and for inspiring many programmers through the years.

 Thanks to the following reviewers, who read the manuscript at various stages of its development and provided invaluable feedback:
 Alejandro Cabrera, Anders Jacob Jørgensen, Cristofer Weber, Heather Campbell, Jasper Lievisse Adriaanse, Patrick Regan, Sam
 De Backer, and Tom Geudens.

 Thanks also to the team at Manning for their guidance and support, starting with publisher Marjan Bace, associate publisher
 Michael Stephens, our development editor Nermina Miller, and the production team of Kevin Sullivan, Benjamin Berg, Tiffany
 Taylor, and Dottie Marsico. And thanks again to Christophe Grand and Ernest Friedman-Hill (the primary designer and developer
 of one of our favorite programming languages, Jess) for their technical reviewing prowess for the first and second editions,
 respectively.

Michael Fogus

 I’d like to thank my beautiful wife Yuki for her unwavering patience during the writing of this book. Without her, I would
 never have made it through either iteration. I also owe a great debt to Chris Houser, my coauthor and friend, for teaching
 me more about Clojure than I ever would’ve thought possible. I’d also like to thank Dr. Larry Albright for introducing me
 to Lisp. Additionally, the late Dr. Russel E. Kacher was an early inspiration and instilled in me a passion for learning,
 curiosity, and reflection. Likewise, the late Tim Good, a colleague and friend, inspired me to work hard and never let a bug
 rest. Finally, I’d like to thank my boys Keita and Shota for teaching me the true meaning of love and that it’s not always
 about me.

Chris Houser

 My most grateful thanks go to God, the source of all good things. To my parents, thanks for your love and support—your spirit
 of exploration launched me on a life of wonderful adventure. To my brother Bill, thanks for my earliest introduction to computers
 and the joys and challenges of programming. To my wife Heather, thanks for your constant encouragement from the very first
 moments of this book project to the last. To my friend and coauthor Michael Fogus, thanks for the brilliant inspiration and
 stunning breadth of knowledge you’ve brought to these pages.

About this Book

 The only difference between Shakespeare and you was the size of his idiom list—not the size of his vocabulary.

 Alan Perlis[6]

 6 “Epigrams in Programming,” ACM SIGPLAN Notices 17, no. 9 (September 1982).

Why learn Clojure?

 When this book was conceived, our first instinct was to create a comprehensive comparison between Clojure and its host language,
 Java. After further reflection, we reached the conclusion that such an approach would be disingenuous at best and disastrous
 at worst. Granted, some points of comparison can’t be avoided, as you’ll see occasionally in this book; but Java is very different
 from Clojure, and to try to distort one to explain the other would respect neither. Therefore, we decided a better approach
 would be to focus on “The Clojure Way” of writing code.

 When we become familiar with a programming language, the idioms and constructs of that language serve to define the way we
 think about and solve programming tasks. It’s therefore natural that when faced with an entirely new language, we find comfort
 in mentally mapping the new language onto the familiar old. But we plead with you to leave all your baggage behind; whether
 you’re from Java, Common Lisp, Scheme, Lua, C#, or Befunge, we ask you to bear in mind that Clojure is its own language and
 begs an adherence to its own set of idioms. You’ll discover concepts that you can connect between Clojure and languages you
 already know, but don’t assume that similar things are entirely the same.

 We’ll work hard to guide you through the features and semantics of Clojure to help you build the mental model needed to use
 the language effectively. Most of the samples in this book are designed to be run in Clojure’s interactive programming environment,
 commonly known as the Read-Eval-Print Loop (REPL), an extremely powerful environment for experimentation and rapid prototyping.

 By the time you’re done with this book, the Clojure Way of thinking about and solving problems will be another comfortable
 tool in your toolbox. If we succeed, then not only will you be a better Clojure programmer, but you’ll also start seeing your
 programming language of choice—be it Java, JavaScript, Elixir, Ruby, J, or Python—in an entirely different light. This reassessment
 of topics that we often take for granted is essential for personal growth.

Who should read this book?

 This book isn’t a beginner’s guide to Clojure. We start fast and don’t devote much space to establishing a running Clojure
 environment, although we do provide some guidance. Additionally, this isn’t a book about Clojure’s implementation details,[7] but instead one about its semantic details. This is also not a “cookbook” for Clojure, but rather a thorough investigation
 into the ingredients that Clojure provides for creating beautiful software. Often we’ll explain how these ingredients mix
 and why they make a great match, but you won’t find complete recipes for systems. Our examples directly address the discussion
 at hand and at times leave exposed wiring for you to extend and thus further your own knowledge. It wouldn’t serve us, you,
 or Clojure to try to awkwardly mold a comprehensive lesson into the guise of a book-length project. Often, language books
 spend valuable time halfheartedly explaining “real-world” matters totally unrelated to the language itself, and we wish to
 avoid this trap. We strongly feel that if we show you the “why” of the language, then you’ll be better prepared to take that
 knowledge and apply it to your real-world problems. In short, if you’re looking for a book amenable to neophytes that will
 also show you how to migrate Clojure into existing codebases, connect to NoSQL databases, and explore other “real-world” topics,
 then we recommend the book Clojure in Action by Amit Rathore (Manning, 2011).

 7 Although such a book would be an amazing thing. If you’re interested in such a book, then drop a line to Manning asking us
 to write one.

 Having said all that, we do provide a short introduction to the language and feel that for those of you willing to work hard
 to understand Clojure, this is indeed the book for you. Further, if you already have a background in Lisp programming, then
 much of the introductory material will be familiar, thus making this book ideal for you. Additionally, this book is very much
 a guide on how to write idiomatic Clojure code. We won’t highlight every idiom used, but you can assume that if it’s in this
 book, it’s the Clojure Way of expressing programs. Although it’s by no means perfect, Clojure has a nice combination of features
 that fit together into a coherent system for solving programming problems. The way Clojure encourages you to think about problems
 may be different than you’re used to, requiring a bit of work to “get.” But once you cross that threshold, you too may experience
 a kind of euphoria, and in this book we’ll help you get there. These are exciting times, and Clojure is the language we hope
 you’ll agree is an essential tool for navigating into the future.

Roadmap

 We’re going to take you on a journey. Perhaps you’ve started on this journey yourself by exploring Clojure beforehand. Perhaps
 you’re a seasoned Java or Lisp veteran and are coming to Clojure for the first time. Perhaps you’re coming into this book
 from an entirely different background. In any case, we’re talking to you. This is a self-styled book for the adventurous and
 will require that you leave your baggage behind and approach the enclosed topics with an open mind. In many ways, Clojure
 will change the way you view programming, and in other ways it will obliterate your preconceived notions. The language has
 a lot to say about how software should be designed and implemented, and we’ll touch on these topics one by one throughout
 this book.

Foundations

 Every so often, a programming language comes along that can be considered foundational. Occasionally a language is invented
 that shakes the foundations of the software industry and dispels the collective preconceived notions of “good software practices.”
 These foundational programming languages always introduce a novel approach to software development, alleviating if not eliminating
 the difficult problems of their time. Any list of foundational languages inevitably raises the ire of language proponents
 who feel their preferences shouldn’t be ignored. But we’re willing to take this risk, and therefore table 1 lists programming languages in this category.

 Table 1. Foundational programming languages

 	
 Year

 	
 Language

 	
 Inventor(s)

 	
 Interesting reading

 	1957
 	Fortran
 	John Backus
 	John Backus, “The History of Fortran I, II, and III,” IEEE Annals of the History of Computing 20, no. 4 (1998).

 	1958
 	Lisp
 	John McCarthy
 	Richard P. Gabriel and Guy L. Steele Jr., “The Evolution of Lisp” (1992), www.dreamsongs.com/Files/HOPL2-Uncut.pdf.

 	1959
 	COBOL
 	Design by committee
 	Edsger Dijkstra, “EWD 498: How Do We Tell Truths That Might Hurt?” in Selected Writings on Computing: A Personal Perspective (New York: Springer-Verlag, 1982).

 	1968
 	Smalltalk
 	Alan Kay
 	Adele Goldberg, Smalltalk-80: The Language and Its Implementation (Reading, MA: Addison-Wesley, 1983).

 	1972
 	C
 	Dennis Ritchie
 	Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (Englewood Cliffs, NJ: Prentice Hall, 1988).

 	1972
 	Prolog
 	Alain Colmerauer
 	Ivan Bratko, PROLOG: Programming for Artificial Intelligence (New York: Addison-Wesley, 2000).

 	1975
 	Scheme
 	Guy Steele and Gerald Sussman
 	Guy Steele and Gerald Sussman, “The Lambda Papers,” http://mng.bz/sU33.

 	1983
 	C++
 	Bjarne Stroustrup
 	Bjarne Stroustrup, The Design and Evolution of C++ (Reading, MA: Addison-Wesley, 1994).

 	1986
 	Erlang
 	Telefonaktiebolaget L. M. Ericsson
 	Joe Armstrong, “A History of Erlang,” Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages (2007).

 	1987
 	Perl
 	Larry Wall
 	Larry Wall, Tom Christiansen, and Jon Orwant, Programming Perl (Cambridge, MA: O’Reilly, 2000).

 	1990
 	Haskell
 	Simon Peyton Jones
 	Miran Lipovača, “Learn You a Haskell for Great Good!” http://learnyouahaskell.com/.

 	1995
 	Java
 	Sun Microsystems
 	David Bank, “The Java Saga,” Wired 3.12 (1995).

 	2007
 	Clojure?
 	Rich Hickey
 	You’re reading it.

 Like them or not, there’s little dispute that the listed programming languages have greatly influenced the way software is
 constructed. Whether Clojure should be included in this category remains to be seen, but Clojure does borrow heavily from
 many of the foundational languages and from other influential programming languages to boot.

 Chapter 1 starts our journey and provides some of the core concepts embraced by Clojure. These concepts should be well understood by
 the time you’ve finished the chapter. Along the way, we’ll show illustrative code samples highlighting the concepts at hand
 (and sometimes even pretty pictures). Much of what’s contained in chapter 1 can be considered “The Clojure Philosophy,” so if you’ve ever wondered what inspired and constitutes Clojure, we’ll tell
 you.

 Chapter 2 provides a fast introduction to specific features and syntax of Clojure.

 Chapter 3 addresses general Clojure programming idioms that aren’t easily categorized. From matters of truthiness and style to considerations
 of packaging and nil, chapter 3 is a mixed bag but important in its own right.

Data types

 The discussion of scalar data types in chapter 4 will be relatively familiar to most programmers, but some important points beg our attention, arising from Clojure’s interesting
 nature as a functional programming language hosted on the Java Virtual Machine. Java programmers reading this book will recognize
 the points made concerning numerical precision (section 4.1), and Lisp programmers will recognize the discussion on Lisp-1 versus Lisp-2 (section 4.4). Programmers will appreciate the practical inclusion of regular expressions as first-class syntactical elements (section 4.5). Finally, longtime Clojure programmers may find that the discussion of rationals and keywords (sections 4.2 and 4.3, respectively) sheds new light on these seemingly innocent types. Regardless of your background, chapter 4 provides crucial information for understanding the nature of Clojure’s under-appreciated scalar types.

 Clojure’s novel persistent data structures are covered in chapter 5; this should be enlightening to anyone wishing to look more deeply into them. Persistent data structures lie at the heart
 of Clojure’s programming philosophy and must be understood to fully grasp the implications of Clojure’s design decisions.
 We’ll only touch briefly on the implementation details of these persistent structures, because they’re less important than
 understanding why and how to use them.

Functional programming

 Chapter 6 deals with the nebulous notions of immutability, persistence, and laziness. We’ll explore Clojure’s use of immutability as
 the key element in supporting concurrent programming. We’ll likewise show how, in the presence of immutability, many of the
 problems associated with coordinated state change disappear. Regarding laziness, we’ll explore the ways Clojure uses it to
 reduce the memory footprint and speed execution times. Finally, we’ll cover the interplay between immutability and laziness.
 For programmers coming from languages that allow unconstrained mutation and strict evaluation of expressions, chapter 6 may prove to be an initially mind-bending experience. But with this mind-bending comes enlightenment, and you’ll likely never
 view your preferred programming languages in the same light.

 Chapter 7 tackles Clojure’s approach to functional programming full-on. For those of you coming from a functional programming background,
 much of the chapter will be familiar, although Clojure presents its own unique blend. But like every programming language
 dubbed “functional,” Clojure’s implementation provides a different lens by which to view your previous experience. For those
 of you wholly unfamiliar with functional programming techniques, chapter 7 will likely be astonishing. Coming from a language that centers on object hierarchies and imperative programming techniques,
 the notion of functional programming seems alien. But we believe Clojure’s decision to base its programming model in the functional
 paradigm to be the correct one, and we hope you’ll agree.

Large-scale design

 Clojure can be used as the primary language for any application scale, and the discussion of macros in chapter 8 may change your ideas regarding how to develop software. Clojure as a Lisp embraces macros, and we’ll lead you through the
 process of understanding them and realizing that with great power comes great responsibility.

 In chapter 9, we’ll guide you through the use of Clojure’s built-in mechanisms for combining and relating code and data. From namespaces
 to multimethods to types and protocols, we’ll explain how Clojure fosters the design and implementation of large-scale applications.

 Clojure is built to foster the sane management of program state, which in turn facilitates concurrent programming, as you’ll
 see in chapter 10. Clojure’s simple yet powerful state model alleviates most of the headaches involved in such complicated tasks, and we’ll
 show you how and why to use each. Additionally, we’ll address the matters not directly solved by Clojure, such as how to identify
 and reduce those elements that should be protected using Clojure’s reference types.

 Finally, this part of the book concludes with a discussion of Clojure’s support for in-process parallelism in chapter 11.

Host symbiosis

 Clojure is a symbiotic programming language, meaning it’s intended to run atop a host environment. For now, the most widely
 used host is the Java Virtual Machine (JVM), but the future bodes well for ClojureScript, a Clojure implementation targeting
 JavaScript environments. In any case, Clojure provides top-notch functions and macros for interacting directly with its host
 platforms. In chapter 12, we’ll discuss the ways Clojure interoperates with the JVM, and in chapter 13 we’ll focus on ClojureScript interop. Chapter 13 also discusses how ClojureScript was implemented in the Clojure Way and is a nice example of sound program design and implementation.

Tangential considerations

 The final part of this book discusses topics that are equally important: the design and development of your application viewed
 through the lens of the Clojure philosophy. In chapter 14, we’ll discuss how Clojure fosters and motivates a data-oriented approach to program design and how such an approach simplifies
 implementation and testing. After that, we’ll show you ways to improve your application’s performance in single-threaded applications.
 Clojure provides many mechanisms for improving performance, and we’ll delve into each, including their usage and caveats where
 applicable, in Chapter 15.

 Chapter 16 is a fun chapter in which we explore the growing trend in the Clojure ecosystem to use logic programming techniques to supplement
 and extend functional programming. This chapter uses the core.logic library to explore “post-functional programming.”

 To wrap up the book, in chapter 17, we’ll address the ways that Clojure changes the ways you look at tangential development activities, such as the definition
 of your application domain language, testing, error-handling, and debugging.

Code conventions

 The source code used throughout this book is formatted in a straightforward and pragmatic fashion. Any source code listings
 inlined within the text—for example, (:lemonade :fugu)—are formatted using a fixed-width font. Source code snippets outlined as blocks of code are offset from the left margin and formatted in a fixed-width font:

 (def population {::zombies 2700 ::humans 9})
(def per-capita (/ (population ::zombies) (population ::humans)))
(println per-capita "zombies for every human!")

 Whenever a source code snippet indicates the result of an expression, the result is prefixed by the characters ;=>. If the code was added specifically for the second edition of the book, we generally use ;;=> to help you recognize newer code topics. This particular result comment serves a threefold purpose:

 	It helps the result stand out from the code expressions.

 	It indicates a Clojure comment.

 	Because of this, entire code blocks can be easily copied from an E-book or PDF version of this book and pasted into a running
 Clojure REPL:

 (def population {::zombies 2700 ::humans 9})
(/ (population ::zombies) (population ::humans))
;=> 300

 Additionally, any expected display in the REPL that’s not a returned value (such as exceptions or printouts) is denoted with
 a leading ; prior to the actual return value:

 (println population)
; {:user/zombies 2700, :user/humans 9}
;=> nil

 In the previous example, the map displayed as {:user/zombies 2700, :user/humans 9} is the printed value, whereas nil denotes the returned value from the println function. If no return value is shown after an expression, you can assume that it’s either nil or negligible to the example at hand.

Reading Clojure code

 When you’re reading Clojure code, skim it while reading left to right, paying just enough attention to note important bits
 of context (defn, binding, let, and so on). When reading from the inside out, pay careful attention to what each expression returns to be passed to the
 next outer function. This is much easier than trying to remember the entire outer context when reading the innermost expressions.

 All code formatted as either inline or block-level is intended to be typed or pasted exactly as written into Clojure source
 files or a REPL. We generally don’t show the Clojure prompt user> because it will cause copy/paste to fail. Finally, we at times use the ellipsis ... to indicate an elided result or printout.

 Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered bullets link to
 explanations that follow the listing.

Getting Clojure

 If you don’t currently have Clojure, then we recommend you retrieve the Leiningen project-automation tool created by Phil
 Hagelberg, located at http://leiningen.org/, and install it via the instructions at http://leiningen.org/#install.

The Leiningen REPL

 After downloading and installing Leiningen, run the following from your operating system’s console:

 lein repl

 You may see output from Leiningen indicating installation progress for required libraries, but this is a bootstrapping step
 needed to run lein for the first time. Once it has completed, you’ll see something like the following:

 nREPL server started on port 53337 on host 127.0.0.1
REPL-y 0.2.1
Clojure 1.5.1
 Docs: (doc function-name-here)
 (find-doc "part-of-name-here")
 Source: (source function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
 Exit: Control+D or (exit) or (quit)

user=>

 There is a point to note about the Clojure REPL provided by Leiningen. First, the REPL that lein repl executes is an enhanced version of the base Clojure REPL. In addition to greater error display, the Leiningen REPL provides
 a fairly nice command-history feature, autocomplete, parenthesis and bracket matching, and command suggestion. For example,
 if you know the command you wish to use is “update ... something,” you can type update into the REPL and press the Tab key, whereupon you’ll see the following:

 user=> (update-
update-in update-proxy
user=> (update-

 The Leiningen REPL shows all functions and named values starting with the text update currently available in the active (in
 this case, user) namespace.

 Now that Leiningen is installed and running, you can start typing code, perhaps from this book. For now, you can try this:

 (+ 1 2 3 4 5)

 Pressing the Enter key will cause the REPL to evaluate the call to the + function, displaying the result like so:

 15
user=>

 The REPL is a powerful environment in which to actively test and develop code. Most Lisp and Clojure programmers use a REPL
 of some sort to develop their code, either directly as shown here or indirectly via another development tool such as Emacs,
 Eclipse, Vim, Light Table, and so on. If you see a developer writing Lisp code, you better believe that a REPL is close at
 hand.

A Leiningen project file

 The beauty of Leiningen is in the simplicity it provides in creating and managing Clojure project dependencies. It does this
 by taking a project specification file, usually named project.cl; resolving the dependencies listed in the file; and running
 any extra tasks, such as compilation, testing, or the like. For example, the project.clj file for the source code in this
 book is shown and explained in the following listing.

 Listing 1. project.clj file for The Joy of Clojure source code

 [image:]

 The book won’t proceed under the assumption that you’re an expert in Leiningen, but we’ll mention it from time to time. We
 recommend reading up on its capabilities, especially if you plan to write Clojure code on a regular basis, because it’s the
 ubiquitous choice.

Downloading code examples

 Source code for all working examples in this book is available for download from the publisher’s website at www.manning.com/TheJoyofClojureSecondEdition. We also maintain an external version at https://github.com/joyofclojure/book-source that we update occasionally.

Author Online

 Purchase of The Joy of Clojure, Second Edition includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/TheJoyofClojureSecondEdition. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the authors

 MICHAEL FOGUS is a core contributor to Clojure and ClojureScript with experience in distributed simulation, machine vision, and expert
 system construction.

 CHRIS HOUSER is a key contributor to Clojure and ClojureScript who has implemented many of their features.

About Clojure

 To fully appreciate Clojure, we hearken back to Paul Graham’s essay “Beating the Averages,” an interesting look at the inner
 workings of his company Viaweb during the years before it was bought by Yahoo! Inc. in 1998.[8] Although the essay is interesting as a survey of startup culture, the truly memorable part is the description of how Viaweb
 used the programming language Lisp as an advantage over its competition. How could a programming language more than 50 years
 old provide any market advantage versus Viaweb’s competitors, which were surely using modern enterprise technologies? We won’t
 repeat the exact terms of the essay, but Graham makes a compelling case for the capability of Lisp to facilitate a more agile
 programming environment.

 8 April 2001, rev. April 2003, http://paulgraham.com/avg.html.

 As it turns out, Clojure has gained amazing inroads into industry use since its creation and release in 2007. Many developers
 use Clojure and/or ClojureScript every day to create their software systems and products. Working software developers have
 discovered, as Graham describes in his essay, the joy and power of using Lisp. Although there is little doubt that Clojure’s
 slice of the proverbial pie for industry programming language use is humble, it’s growing from month to month. These are exciting
 times for the Clojure programming language.

 Clojure is a member of the Lisp family of languages and is particularly suited for concurrent software development and supporting
 functional programming techniques. Like the Lisp described in “Beating the Averages,” Clojure provides an environment conducive
 to agility. Clojure fosters agility in ways that many popular programming languages can’t. Many programming languages are
 bewitched by most or all of the following:

 	Verbosity

 	Unavoidable boilerplate

 	A long thought-code-feedback loop

 	Incidental complexity

 	Difficulties in extension

 	Deficiencies in supporting crucial or undiscovered programming paradigms

 In contrast, Clojure provides a mixture of power and practicality that fosters rapid development cycles. But the benefits
 of Clojure don’t stop with its agile nature—as the clarion call declares, “Multicore is the new hot topic.”[9] Although the idea of multicore processors isn’t in itself new, its importance is becoming increasingly focused. Until recently,
 you could avoid concurrent and parallel programming techniques and instead ride the ever-quickening processor wave to better
 performance. Well, that ride is slowing to a stop, and Clojure is here to help.

 9 Mache Creeger, ACM Queue 3, no. 7 (2005).

 Clojure provides a unique mix of functional programming and host symbiosis—an embrace of and direct support for its platforms,
 in this case the Java Virtual Machine and JavaScript hosts. Additionally, the simplification and often elimination of the
 complexities involved in coordinated state change have positioned Clojure as an important language moving forward. All software
 developers must eventually address these problems as a matter of course, and the study, understanding, and eventual utilization
 of Clojure is an essential path toward conquering them. From topics such as software transactional memory to laziness to immutability,
 this book will guide you on your way to understanding the “why” of Clojure, in addition to the “how.”

 We’ll be your guides into a thoughtful understanding of the joyfulness in Clojure, for we believe its art is prelude to a
 new age of software development.

About the Cover Illustration

 The figure on the cover of The Joy of Clojure, Second Edition is captioned “A Janissary in Full Dress.” Janissaries were elite infantry units that formed the household troops and bodyguards
 of the Emperor of the Ottoman Empire. The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Different Nations, Ancient and Modern (4 volumes), London, published between 1757 and 1772. The title page states that these are hand-colored copperplate engravings,
 heightened with gum arabic. Thomas Jefferys (1719–1771), was called “Geographer to King George III.” He was an English cartographer
 who was the leading map supplier of his day. He engraved and printed maps for government and other official bodies and produced
 a wide range of commercial maps and atlases, especially of North America. His work as a map maker sparked an interest in local
 dress customs of the lands he surveyed and mapped, and which are brilliantly displayed in this four-volume collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenomena in the late 18th century and collections
 such as this one were popular, introducing both the tourist as well as the armchair traveler to the inhabitants of other countries.
 The diversity of the drawings in Jeffreys’ volumes speaks vividly of the uniqueness and individuality of the world’s nations
 some 200 years ago. Dress codes have changed since then and the diversity by region and country, so rich at the time, has
 faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically,
 we have traded a cultural and visual diversity for a more varied personal life. Or a more varied and interesting intellectual
 and technical life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Jefferys’ pictures.

Part 1. Foundations

 Even the most elaborate mansion must begin with a firm if humble foundation. We begin here by pouring a foundation of knowledge
 on which you’ll be able to build a solid understanding about Clojure’s less familiar ways. This foundation includes, among
 other things, the philosophy of programming underlying Clojure, sturdy walls of data and functions, and REPLs and nil puns.

Chapter 1. Clojure philosophy

 This chapter covers

 	The Clojure way

 	Why a(nother) Lisp?

 	Functional programming

 	Why Clojure isn’t especially object-oriented

 Learning a new language generally requires significant investment of thought and effort, and it’s only fair that programmers
 expect each language they consider learning to justify that investment. Clojure was born out of creator Rich Hickey’s desire
 to avoid many of the complications, both inherent and incidental, of managing state using traditional object-oriented techniques.
 Thanks to a thoughtful design based in rigorous programming language research, coupled with a fervent look toward practicality,
 Clojure has blossomed into a programming language playing an undeniably important role in the current state of the art in
 language design.

 In the grand timeline of programming language history, Clojure is an infant, but its colloquialisms (loosely translated as
 “best practices” or idioms) are rooted in 50+ years of Lisp, as well as 15+ years of Java history.[1] Additionally, the enthusiastic community that has exploded since its introduction has cultivated its own set of unique idioms.

 1 Although it draws on the traditions of Lisps (in general) and Java, Clojure in many ways stands as a direct challenge to
 them for change.

 In this chapter, we’ll discuss the weaknesses in existing languages that Clojure was designed to address, how it provides
 strength in those areas, and many of the design decisions Clojure embodies. We’ll also look at some of the ways existing languages
 have influenced Clojure, and define many of the terms used throughout the book. We assume some familiarity with Clojure, although
 if you feel like you’re getting lost, jumping to chapter 2 for a quick language tutorial will help. This chapter only scratches the surface of the topics that we’ll cover in this book,
 but it serves as a nice basis for understanding not only the “how” of Clojure, but also the “why.”

1.1. The Clojure way

 We’ll start slowly.

 Clojure is an opinionated language—it doesn’t try to cover all paradigms or provide every checklist bullet-point feature.
 Instead, it provides the features needed to solve all kinds of real-world problems the Clojure way. To reap the most benefit
 from Clojure, you’ll want to write your code with the same vision as the language itself. As we walk through the language
 features in the rest of the book, we’ll mention not just what a feature does, but also why it’s there and how best to take
 advantage of it.

 But before we get to that, we’ll first take a high-level look at some of Clojure’s most important philosophical underpinnings.
 Figure 1.1 lists some broad goals that Rich Hickey had in mind while designing Clojure and some of the more specific decisions that
 are built into the language to support these goals. As the figure illustrates, Clojure’s broad goals are formed from a confluence
 of supporting goals and functionality, which we’ll touch on in the following subsections.

 Figure 1.1. Some of the concepts that underlie the Clojure philosophy, and how they intersect

 [image:]

 1.1.1. Simplicity

 It’s hard to write simple solutions to complex problems. But every experienced programmer has also stumbled on areas where
 we’ve made things more complex than necessary—what you might call incidental complexity as opposed to complexity that’s essential to the task at hand (Moseley 2006). Clojure strives to let you tackle complex problems involving a wide variety of data requirements, multiple concurrent threads,
 independently developed libraries, and so on without adding incidental complexity. It also provides tools to reduce what at
 first glance may seem like essential complexity. Clojure is built on the premise of providing a key set of simple (consisting of few, orthogonal parts) abstractions and building blocks that you can use to form different and more powerful
 capabilities. The resulting set of features may not always seem easy (or familiar), but as you read this book, we think you’ll
 come to see how much complexity Clojure helps strip away.

 One example of incidental complexity is the tendency of modern object-oriented languages to require that every piece of runnable
 code be packaged in layers of class definitions, inheritance, and type declarations. Clojure cuts through all this by championing
 the pure function, which takes a few arguments and produces a return value based solely on those arguments. An enormous amount of Clojure is
 built from such functions, and most applications can be, too, which means there’s less to think about when you’re trying to
 solve the problem at hand.

 1.1.2. Freedom to focus

 Writing code is often a constant struggle against distraction, and every time a language requires you to think about syntax,
 operator precedence, or inheritance hierarchies, it exacerbates the problem. Clojure tries to stay out of your way by keeping
 things as simple as possible, not requiring you to go through a compile-and-run cycle to explore an idea, not requiring type
 declarations, and so on. It also gives you tools to mold the language itself so that the vocabulary and grammar available
 to you fit as well as possible to your problem domain. Clojure is expressive. It packs a punch, allowing you to perform highly complicated tasks succinctly without sacrificing comprehensibility.

 One key to delivering this freedom is a commitment to dynamic systems. Almost everything defined in a Clojure program can
 be redefined, even while the program is running: functions, multimethods, types, type hierarchies, and even Java method implementations.
 Although redefining things on the fly might be scary on a production system, it opens a world of amazing possibilities in
 how you think about writing programs. It allows for more experimentation and exploration of unfamiliar APIs, and it adds an
 element of fun that can sometimes be impeded by more static languages and long compilation cycles.

 But Clojure’s not just about having fun. The fun is a byproduct of giving programmers the power to be more productive than
 they ever thought imaginable.

 1.1.3. Empowerment

 Some programming languages have been created primarily to demonstrate a particular nugget of academia or to explore certain
 theories of computation. Clojure is not one of these. Rich Hickey has said on numerous occasions that Clojure has value to the degree that it lets you build interesting
 and useful applications.

 To serve this goal, Clojure strives to be practical—a tool for getting the job done. If a decision about some design point
 in Clojure had to weigh the trade-offs between the practical solution and a clever, fancy, or theoretically pure solution,
 usually the practical solution won out. Clojure could try to shield you from Java by inserting a comprehensive API between
 the programmer and the libraries, but this could make the use of third-party Java libraries clumsier. So Clojure went the other way: direct, wrapper-free, compiles-to-the-same-bytecode access to Java
 classes and methods. Clojure strings are Java strings, and ClojureScript strings are JavaScript strings; Clojure and ClojureScript
 function calls are native method calls—it’s simple, direct, and practical.

 The decisions to use the Java Virtual Machine (JVM) and target JavaScript are clear examples of this practicality. The JVM,
 for instance, is an amazingly practical platform—it’s mature, fast, and widely deployed. It supports a variety of hardware
 and operating systems and has a staggering number of libraries and support tools available, all of which Clojure can take
 advantage of right out of the box. Likewise, in targeting JavaScript, ClojureScript can take advantage of its near-ubiquitous
 reach into the browser, server, and mobile devices, and even as a database processing script.

 With direct method calls, proxy, gen-class, gen-interface (see chapter 10), reify, definterface, deftype, and defrecord (see section 9.3), Clojure works hard to provide a bevy of interoperability options, all in the name of helping you get your job done. Practicality
 is important to Clojure, but many other languages are practical as well. You’ll start to see some ways that Clojure sets itself
 apart by looking at how it avoids muddles.

 1.1.4. Clarity

 When beetles battle beetles in a puddle paddle battle and the beetle battle puddle is a puddle in a bottle ... they call this
 a tweetle beetle bottle puddle paddle battle muddle.

 Dr. Seuss[2]

 2 Fox in Socks (Random House, 1965).

 Consider what might be described as a simple snippet of code in a language like Python:

 # This is Python code
x = [5]
process(x)
x[0] = x[0] + 1

 After executing this code, what’s the value of x? If you assume process doesn’t change the contents of x at all, it should be [6], right? But how can you make that assumption? Without knowing exactly what process does, and what function it calls does, and so on, you can’t be sure.

 Even if you’re sure process doesn’t change the contents of x, add multithreading and now you have another set of concerns. What if some other thread changes x between the first and third lines? Worse yet, what if something is setting x at the moment the third line is doing its assignment—are you sure your platform guarantees an atomic write to that variable,
 or is it possible that the value will be a corrupted mix of multiple writes? We could continue this thought exercise in hopes
 of gaining some clarity, but the end result would be the same—what you have ends up not being clear, but the opposite: a muddle.

 Clojure strives for code clarity by providing tools to ward off several different kinds of muddles. For the one just described,
 it provides immutable locals and persistent collections, which together eliminate most of the single- and multithreaded issues.

 You can find yourself in several other kinds of muddles when the language you’re using merges unrelated behavior into a single
 construct. Clojure fights this by being vigilant about separation of concerns. When things start off separated, it clarifies
 your thinking and allows you to recombine them only when and to the extent that doing so is useful for a particular problem.
 Table 1.1 contrasts common approaches that merge concepts in some other languages with separations of similar concepts in Clojure that
 will be explained in greater detail throughout this book.

 Table 1.1. Separation of concerns in Clojure

 	
 Conflated

 	
 Separated

 	
 Where

 	Object with mutable fields
 	Values from identities

 	
Chapter 4 and section 5.1

 	Class acts as a namespace for methods
 	Function namespaces from type namespaces

 	
Sections 8.2 and 8.3

 	Inheritance hierarchy made of classes
 	Hierarchy of names from data and functions

 	Chapter 8

 	Data and methods bound together lexically
 	Data objects from functions

 	
Sections 6.1 and 6.2 and chapter 8

 	Method implementations embedded throughout the class inheritance chain
 	Interface declarations from function implementations

 	
Sections 8.2 and 8.3

 It can be hard at times to tease apart these concepts in your mind, but accomplishing it can bring remarkable clarity and
 a sense of power and flexibility that’s worth the effort. With all these different concepts at your disposal, it’s important
 that the code and data you work with express this variety in a consistent way.

 1.1.5. Consistency

 Clojure works to provide consistency in two specific ways: consistency of syntax and of data structures. Consistency of syntax is about the similarity in form between related concepts. One simple but powerful example of this is the shared syntax of
 the for and doseq macros. They don’t do the same thing—for returns a lazy seq, whereas doseq is for generating side effects—but both support the same mini-language of nested iteration, destructuring, and :when and :while guards.

 The similarities stand out when comparing the following examples of Clojure code. Each example shows all possible pairs formed
 using one of the keywords a or b and a positive odd integer less than 5. The first example uses what’s known as a for comprehension and returns a data structure of the pairs:

 (for [x [:a :b], y (range 5) :when (odd? y)]
 [x y])

;;=> ([:a 1] [:a 3] [:b 1] [:b 3])

 The second example uses a doseq to print the pairs:

 (doseq [x [:a :b], y (range 5) :when (odd? y)]
 (prn x y))

; :a 1
; :a 3
; :b 1
; :b 3
;;=> nil

 The value of this similarity is having to learn only one basic syntax for both situations, as well as the ease with which
 you can convert any particular usage of one form to the other if necessary.

 Likewise, the consistency of data structures is the deliberate design of all of Clojure’s persistent collection types to provide interfaces as similar to each other as
 possible, as well as to make them as broadly useful as possible. This is an extension of the classic Lisp “code is data” philosophy.
 Clojure data structures aren’t used just for holding large amounts of application data, but also to hold the expression elements
 of the application itself. They’re used to describe destructuring forms and to provide named options to various built-in functions.
 Where other object-oriented languages might encourage applications to define multiple incompatible classes to hold different
 kinds of application data, Clojure encourages the use of compatible map-like objects.

 The benefit of this is that the same set of functions designed to work with Clojure data structures can be applied to all
 these contexts: large data stores, application code, and application data objects. You can use into to build any of these types, seq to get a lazy seq to walk through them, filter to select elements of any of them that satisfy a particular predicate, and so on. Once you’ve grown accustomed to having
 the richness of all these functions available everywhere, dealing with a Java or C++ application’s Person

OEBPS/01fig01.jpg
Simplicity

Freedom
to focus. Empowerment

OEBPS/ivfig02.jpg

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/xxxvfig01_alt.jpg
e SR T R T
description "Example sources for the second edition of JoC*
tependencies [[org.clojure/clojure *1.5.1°]

Each project has a
" {oxg.clojure/clojurescript *0.0-2138"] el abirpiorid

Project runtime torg.clojure/core.unify “0.5.3°] .

Sependinies,| lorg.clojure/core. logic *0.8.5%1]

Where [~ :source-paths (sxe/c1j] Namespaces to precompile
the | saot (joy.gui.Dynarrame] toJVM bytecode
gowse | eplusine (loin-cisebuiid 0.3.2:11 Biirgua
et extended via
plugeins, and
e use a grea
ClojureSerip
output-to *dev-targst/all.js* build tool

soptimizations swhitespace
protey-print truel)
ource-paths (*sre/clis"]
+compiler

output-to *prod-target/all. js*
optinizations :advanced
externs [“externs.js*]
R s SR s

OEBPS/ivfig01.jpg

OEBPS/cover.jpg
| | FTTTIT

r
|
|
@

SECOND EDITION

Michael Foqus
Chris Houser
Foscwon ot
William E. Byrd & Daniel P. Friedman

