

 [image:]

 Learn Kubernetes in a Month of Lunches

 Elton Stoneman

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 inside front cover

 [image:]

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2021 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Becky Whitney

 	
 Technical development editor:

 	
 Kris Athi

 	
 Review editor:

 	
 Ivan Martinović

 	
 Production editor:

 	
 Lori Weidert

 	
 Copy editor:

 	
 Pamela Hunt

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 John Guthrie

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Leslie Haimes

 ISBN: 9781617297984

 dedication

 This is the second book to come out of my barn in Gloucestershire, England. Last time, I dedicated it to my wife, Nikki, and our children, Jackson and Eris. They’re still fantastic, but this time I want to say thank you to some friends, too—Andrew Price, who showed me that IT professionals can be entertainers, and Mark Smith, who helped me to stop overthinking.

contents

 preface

 acknowledgments

 about this book

 about the author

 Part 1. Fast track to Kubernetes

 1 Before you begin

 1.1 Understanding Kubernetes

 1.2 Is this book for you?

 1.3 Creating your lab environment

 1.3.1 Download the book’s source code

 1.3.2 Install Docker Desktop

 1.3.3 Install Docker Community Edition and K3s

 1.3.4 Install the Kubernetes command-line tool

 1.3.5 Run a single-node Kubernetes cluster in Azure

 1.3.6 Run a single-node Kubernetes cluster in AWS

 1.3.7 Verify your cluster

 1.4 Being immediately effective

 2 Running containers in Kubernetes with Pods and Deployments

 2.1 How Kubernetes runs and manages containers

 2.2 Running Pods with controllers

 2.3 Defining Deployments in application manifests

 2.4 Working with applications in Pods

 2.5 Understanding Kubernetes resource management

 2.6 Lab

 3 Connecting Pods over the network with Services

 3.1 How Kubernetes routes network traffic

 3.2 Routing traffic between Pods

 3.3 Routing external traffic to Pods

 3.4 Routing traffic outside Kubernetes

 3.5 Understanding Kubernetes Service resolution

 3.6 Lab

 4 Configuring applications with ConfigMaps and Secrets

 4.1 How Kubernetes supplies configuration to apps

 4.2 Storing and using configuration files in ConfigMaps

 4.3 Surfacing configuration data from ConfigMaps

 4.3 Configuring sensitive data with Secrets

 4.4 Managing app configuration in Kubernetes

 4.5 Lab

 5 Storing data with volumes, mounts, and claims

 5.1 How Kubernetes builds the container filesystem

 5.2 Storing data on a node with volumes and mounts

 5.3 Storing clusterwide data with persistent volumes and claims

 5.4 Dynamic volume provisioning and storage classes

 5.5 Understanding storage choices in Kubernetes

 5.6 Lab

 6 Scaling applications across multiple Pods with controllers

 6.1 How Kubernetes runs apps at scale

 6.2 Scaling for load with Deployments and ReplicaSets

 6.3 Scaling for high availability with DaemonSets

 6.4 Understanding object ownership in Kubernetes

 6.5 Lab

 Part 2. Kubernetes in the real world

 7 Extending applications with multicontainer Pods

 7.1 How containers communicate in a Pod

 7.2 Setting up applications with init containers

 7.3 Applying consistency with adapter containers

 7.4 Abstracting connections with ambassador containers

 7.5 Understanding the Pod environment

 7.6 Lab

 8 Running data-heavy apps with StatefulSets and Jobs

 8.1 How Kubernetes models stability with StatefulSets

 8.2 Bootstrapping Pods with init containers in StatefulSets

 8.3 Requesting storage with volume claim templates

 8.4 Running maintenance tasks with Jobs and CronJobs

 8.5 Choosing your platform for stateful apps

 8.6 Lab

 9 Managing app releases with rollouts and rollbacks

 9.1 How Kubernetes manages rollouts

 9.2 Updating Deployments with rollouts and rollbacks

 9.3 Configuring rolling updates for Deployments

 9.4 Rolling updates in DaemonSets and StatefulSets

 9.5 Understanding release strategies

 9.6 Lab

 10 Packaging and managing apps with Helm

 10.2 What Helm adds to Kubernetes

 10.3 Packaging your own apps with Helm

 10.4 Modeling dependencies in charts

 10.5 Upgrading and rolling back Helm releases

 10.6 Understanding where Helm fits in

 10.7 Lab

 11 App development—Developer workflows and CI/CD

 11.1 The Docker developer workflow

 11.2 The Kubernetes-as-a-Service developer workflow

 11.3 Isolating workloads with contexts and namespaces

 11.4 Continuous delivery in Kubernetes without Docker

 11.5 Evaluating developer workflows on Kubernetes

 11.6 Lab

 Part 3. Preparing for production

 12 Empowering self-healing apps

 12.1 Routing traffic to healthy Pods using readiness probes

 12.2 Restarting unhealthy Pods with liveness probes

 12.3 Deploying upgrades safely with Helm

 12.4 Protecting apps and nodes with resource limits

 12.5 Understanding the limits of self-healing apps

 12.6 Lab

 13 Centralizing logs with Fluentd and Elasticsearch

 13.1 How Kubernetes stores log entries

 13.2 Collecting logs from nodes with Fluentd

 13.3 Shipping logs to Elasticsearch

 13.4 Parsing and filtering log entries

 13.5 Understanding logging options in Kubernetes

 13.6 Lab

 14 Monitoring applications and Kubernetes with Prometheus

 14.1 How Prometheus monitors Kubernetes workloads

 14.2 Monitoring apps built with Prometheus client libraries

 14.3 Monitoring third-party apps with metrics exporters

 14.4 Monitoring containers and Kubernetes objects

 14.5 Understanding the investment you make in monitoring

 14.6 Lab

 15 Managing incoming traffic with Ingress

 15.1 How Kubernetes routes traffic with Ingress

 15.2 Routing HTTP traffic with Ingress rules

 15.3 Comparing ingress controllers

 15.4 Using Ingress to secure your apps with HTTPS

 15.5 Understanding Ingress and ingress controllers

 15.6 Lab

 16 Securing applications with policies, contexts, and admission control

 16.1 Securing communication with network policies

 16.2 Restricting container capabilities with security contexts

 16.3 Blocking and modifying workloads with webhooks

 16.4 Controlling admission with Open Policy Agent

 16.5 Understanding security in depth in Kubernetes

 16.6 Lab

 Part 4. Pure and applied Kubernetes

 17 Securing resources with role-based access control

 17.1 How Kubernetes secures access to resources

 17.2 Securing resource access within the cluster

 17.3 Binding roles to groups of users and service accounts

 17.4 Discovering and auditing permissions with plugins

 17.5 Planning your RBAC strategy

 17.6 Lab

 18 Deploying Kubernetes: Multinode and multiarchitecture clusters

 18.1 What’s inside a Kubernetes cluster?

 18.2 Initializing the control plane

 18.3 Adding nodes and running Linux workloads

 18.4 Adding Windows nodes and running hybrid workloads

 18.5 Understanding Kubernetes at scale

 18.6 Lab

 19 Controlling workload placement and automatic scaling

 19.1 How Kubernetes schedules workloads

 19.2 Directing Pod placement with affinity and antiaffinity

 19.3 Controlling capacity with automatic scaling

 19.4 Protecting resources with preemption and priorities

 19.5 Understanding the controls for managing workloads

 19.6 Lab

 20 Extending Kubernetes with custom resources and Operators

 20.1 How to extend Kubernetes with custom resources

 20.2 Triggering workflows with custom controllers

 20.3 Using Operators to manage third-party components

 20.4 Building Operators for your own applications

 20.5 Understanding when to extend Kubernetes

 20.6 Lab

 21 Running serverless functions in Kubernetes

 21.1 How serverless platforms work in Kubernetes

 21.2 Triggering functions from HTTP requests

 21.3 Triggering functions from events and schedules

 21.4 Abstracting serverless functions with Serverless

 21.5 Understanding where serverless functions fit

 21.6 Lab

 22 Never the end

 22.1 Further reading by chapter

 22.2 Choosing a Kubernetes platform

 22.3 Understanding how Kubernetes is built

 22.4 Joining the community

 appendix A. Packaging applications from source code into Docker Images

 appendix B. Adding observability with containerized monitoring

 appendix C. Application configuration management in containers

 appendix D. Writing and managing application logs with Docker

 index

 front matter

preface

 As I was finishing Learn Docker in a Month of Lunches, I knew that the sequel had to be about Kubernetes. For most people, that will be the next stage in their container journey, but learning Kubernetes is not easy. That’s partly because it’s such a powerful platform, with a huge feature set that is always evolving. But it’s also because it needs a reliable guide that teaches at the right level-going deep enough on the technical knowledge but keeping the focus on what the platform can do for you and your applications. I hope Learn Kubernetes in a Month of Lunches will be that guide.

 Kubernetes is a system that runs and manages applications in containers. It’s the most popular way to run containers in production, because it’s supported by all the major cloud platforms and runs equally well in the data center. It’s a world-class platform used by companies like Netflix and Apple—and you can run it on your laptop. You have to make an investment to learn Kubernetes, but the payback is a skill you can take to any project in any organization, confident that you’ll hit the ground running.

 The investment you need to make is time. It takes time to become familiar with everything that Kubernetes can do and how you express your applications in the Kubernetes modeling language. You bring the time, and Learn Kubernetes in a Month of Lunches will provide the rest. There are hands-on exercises and labs that will get you experienced in all the platform features and also in the working practices and the ecosystem of tools around Kubernetes. This is a practical book that gets you ready to use Kubernetes for real.

acknowledgments

 This is my second book for Manning, and it’s been just as much a pleasure to write as the first. A lot of people have worked hard to get this book out and to help me make it better. I’d like to thank the publishing team for all their feedback.

 To all the reviewers, Alex Davies-Moore, Anthony Staunton, Brent Honadel, Clark Dorman, Clifford Thurber, Daniel Carl, David Lloyd, Furqan Shaikh, George Onofrei, Iain Campbell, Marc-Anthony Taylor, Marcus Brown, Martin Tidman, Mike Lewis, Nicolantonio Vignola, Ondrej Krajicek, Rui Liu, Sadhana Ganapathiraju, Sai Prasad Vaddepally, Sander Stad, Tobias Getrost, Tony Sweets, Trent Whiteley, Vadim Turkov, and Yogesh Shetty, your suggestions helped make this a better book.

 I’d also like to thank everyone in the review cycles and the early-access program who tried all the exercises and let me know when things didn’t work. Thank you all for your time.

about this book

Who should read this book

 I want you to get an authentic Kubernetes experience from this book. When you’ve read all the chapters and completed the exercises, you should be confident that the skills you’ve learned are how people really use Kubernetes. This book contains a lot of content, and you’ll find a typical lunch hour won’t be enough for many of the chapters. That’s because I want to give every topic the coverage it deserves, so you really get a complete understanding and finish the book feeling like a seasoned Kubernetes professional.

 You don’t need any understanding of Kubernetes to start your journey with this book, but you should be familiar with core concepts like containers and images. If you’re new to the whole container space, you’ll find some chapters of my other book, Learn Docker in a Month of Lunches (Manning, 2020), as appendices in the ebook version of this book—they will help to set the scene.

 Kubernetes experience will help you further your career whether you’re in engineering or operations, and this book doesn’t make any assumptions about your background. Kubernetes is an advanced topic that builds on several other concepts, but I give an overview of those topics when we get to them. This is very much a practical book, and to get the most out of it, you should plan to work through the hands-on exercises. You don’t need any special hardware: a Mac or Windows laptop, or a Linux desktop, will be fine.

 GitHub is the source of truth for all the samples I use in the book. You’ll download the materials when you set up your lab in chapter 1, and you should be sure to star the repository and watch for notifications.

How to use this book

 This book follows the Month of Lunches principles: you should be able to work through each chapter in your lunchbreak and work through the whole book within a month. “Work” is the key here, because you should look at putting aside time to read the chapter, work through the try-it-now exercises, and have a go at the hands-on lab at the end. You should expect to have a few extended lunchbreaks because the chapters don’t cut any corners or skip over key details. You need a lot of muscle memory to work effectively with Kubernetes, and practicing every day will really cement the knowledge you gain in each chapter.

Your learning journey

 Kubernetes is a vast subject, but I’ve taught it for years in training sessions and workshops, both in-person and virtual, and built out an incremental learning path that I know works. We’ll start with the core concepts and gradually add more detail, saving the most complex topics for when you’re more comfortable with Kubernetes.

 Chapters 2 through 6 jump in to running apps on Kubernetes. You’ll learn how to define applications in YAML manifests, which Kubernetes runs as containers. You’ll understand how to configure network access for containers to talk to each other and for traffic from the outside world to reach your containers. You’ll learn how your apps can read configuration from Kubernetes and write data to storage units managed by Kubernetes and how you can scale your applications.

 Chapters 7 through 11 build on the basics with subjects that deal with real-world Kubernetes usage. You’ll learn how you can run containers that share a common environment and how you can use containers to run batch jobs and scheduled jobs. You’ll learn how Kubernetes supports automated rolling updates so you can release new application versions with zero downtime and how to use Helm to provide a configurable way to deploy your apps. You’ll also learn about the practicalities of building apps with Kubernetes, looking at different developer workflows and continuous integration/ continuous delivery (CI/CD) pipelines.

 Chapters 12 through 16 are all about production readiness, going beyond just running your apps in Kubernetes to running them in a way that’s good enough to go live. You’ll learn how to configure self-healing applications, collect and centralize all your logs, and build monitoring dashboards to visualize the health of your systems. Security is also in here, and you’ll learn how to secure public access to your apps as well as how to secure the applications themselves.

 Chapters 17 to 21 move into expert territory. Here you’ll learn how to work with large Kubernetes deployments and configure your applications to automatically scale up and down. You’ll learn how to implement role-based access control to secure access to Kubernetes resources, and we’ll cover some more interesting uses of Kubernetes: as a platform for serverless functions and as a multiarchitecture cluster that can run apps built for Linux and Windows, Intel, and Arm.

 By the end of the book, you should be confident about bringing Kubernetes into your daily work. The final chapter offers guidance on moving on with Kubernetes with further reading for each topic in the book and advice on choosing a Kubernetes provider.

Try-it-now exercises

 Every chapter of the book has many guided exercises for you to complete. The source code for the book is all on GitHub at https://github.com/sixeyed/kiamol—you’ll clone that when you set up your lab environment and use it for all the samples, which will have you running increasingly complex applications in Kubernetes.

 Many chapters build on work from earlier in the book, but you do not need to follow all the chapters in order, so you can follow your own learning journey. The exercises within a chapter do often build on each other, so if you skip exercises, you may find errors later on, which will help hone your troubleshooting skills. All the exercises use container images, which are publicly available on Docker Hub, and your Kubernetes cluster will download any that it needs.

 This book contains a lot of content. You’ll get the most out of it if you work through the samples as you read the chapters, and you’ll feel a lot more comfortable about using Kubernetes going forward. If you don’t have time to work through every exercise, it’s fine to skip some; a screenshot showing the output you would have seen follows each exercise, and every chapter finishes with a wrap-up section to make sure you’re confident with the topic.

Hands-on labs

 Each chapter ends with a hands-on lab that invites you to go further than the try-it-now exercises. These aren’t guided—you’ll get some instructions and some hints, and then it will be up to you to complete the lab. Sample answers for all the labs are in the sixeyed/kiamol GitHub repository, so you can check what you’ve done—or see how I’ve done it if you don’t have time for one of the labs.

Additional resources

 Kubernetes in Action by Marko Lukša (Manning, 2017) is a great book that covers a lot of the administration details that I don’t cover here. Other than that, the main resource for further reading is the official Kubernetes documentation, which you’ll find in two places. The documentation site (https://kubernetes.io/docs/home/) covers everything from the architecture of the cluster to guided walk-throughs and learning how to contribute to Kubernetes yourself. The Kubernetes API reference (https://kubernetes .io/docs/reference/generated/kubernetes-api/v1.20) contains the detailed specification for every type of object you can create—that’s a site to bookmark.

 Twitter is home to the Kubernetes @kubernetesio account, and you can also follow some of the founding members of the Kubernetes project and community, like Brendan Burns (@brendandburns), Tim Hockin (@thockin), Joe Beda (@jbeda), and Kelsey Hightower (@kelseyhightower).

 I talk about this stuff all the time, too. You can follow me on Twitter @EltonStoneman; my blog is https://blog.sixeyed.com; and I post YouTube videos at https:// youtube.com/eltonstoneman.

About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font like this to separate it from ordinary text. Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 The code for the examples in this book is available for download from the Manning website at https://www.manning.com/books/learn-kubernetes-in-a-month-of-lunches, and from GitHub at http://github.com/sixeyed/kiamol.

liveBook discussion forum

 Purchase of Learn Kubernetes in a Month of Lunches includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to https://livebook.manning.com/#!/book/learn-kubernetes-in-a-month-of-lunches/discussion. You can also learn more about Manning's forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 Elton Stoneman is a Docker Captain, a multiyear Microsoft MVP, and the author of dozens of online training courses with Pluralsight and Udemy. He spent most of his career as a consultant in the Microsoft space, designing and delivering large enterprise systems. Then he fell for containers and joined Docker, where he worked for three furiously busy and hugely fun years. Now he works as a freelance consultant and trainer, helping organizations at all stages of their container journey. Elton writes about Docker and Kubernetes at https://blog.sixeyed.com and on Twitter @EltonStoneman and runs a regular YouTube live stream at https://eltons.show.

Week 1. Fast track to Kubernetes

 Welcome to Learn Kubernetes in a Month of Lunches. This first section gets you using Kubernetes straight away, focusing on the core concepts: Deployments, Pods, Services, and volumes. You’ll learn how to model your applications using the Kubernetes YAML specification and how Kubernetes provides abstractions over compute, networking, and storage. By the end of the section, you’ll have lots of experience in all the fundamentals, and you’ll have a good understanding of how to model and deploy your own applications.

1 Before you begin

 Kubernetes is big. Really big. It was released as an open source project on GitHub in 2014, and now it averages 200 changes every week from a worldwide community of 2,500 contributors. The annual KubeCon conference has grown from 1,000 attendees in 2016 to more than 12,000 at the most recent event, and it’s now a global series with events in America, Europe, and Asia. All the major cloud services offer a managed Kubernetes service, and you can run Kubernetes in a data center or on your laptop—and they’re all the same Kubernetes.

 Independence and standardization are the main reasons Kubernetes is so popular. Once you have your apps running nicely in Kubernetes, you can deploy them anywhere, which is attractive for organizations moving to the cloud, because it enables them to move between data centers and other clouds without a rewrite. It’s also very attractive for practitioners—once you’ve mastered Kubernetes, you can move between projects and organizations and be productive quickly.

 Getting to that point is hard, though, because Kubernetes is hard. Even simple apps are deployed as multiple components, described in a custom file format that can easily span many hundreds of lines. Kubernetes brings infrastructure-level concerns like load balancing, networking, storage, and compute into app configuration, which might be new concepts, depending on your IT background. In addition, Kubernetes is always expanding-new releases come out every quarter, often bringing a ton of new functionality.

 But it’s worth it. I’ve spent many years helping people learn Kubernetes, and a common pattern arises: the question “Why is this so complicated?” transforms to “You can do that? This is amazing!” Kubernetes truly is an amazing piece of technology. The more you learn about it, the more you’ll love it—and this book will accelerate you on your journey to Kubernetes mastery.

1.1 Understanding Kubernetes

 This book provides a hands-on introduction to Kubernetes. Every chapter offers try-it-now exercises and labs for you to get lots of experience using Kubernetes. All except this one. :) We’ll jump into the practical work in the next chapter, but we need a little theory first. Let’s start by understanding what Kubernetes actually is and the problems it solves.

 Kubernetes is a platform for running containers. It takes care of starting your containerized applications, rolling out updates, maintaining service levels, scaling to meet demand, securing access, and much more. The two core concepts in Kubernetes are the API, which you use to define your applications, and the cluster, which runs your applications. A cluster is a set of individual servers that have all been configured with a container runtime like Docker, and then joined into a single logical unit with Kubernetes. Figure 1.1 shows a high-level view of the cluster.

 [image:]

 Figure 1.1 A Kubernetes cluster is a bunch of servers, which can run containers, joined into a group.

 Cluster administrators manage the individual servers, called nodes in Kubernetes. You can add nodes to expand the capacity of the cluster, take nodes offline for servicing, or roll out an upgrade of Kubernetes across the cluster. In a managed service like Microsoft Azure Kubernetes Service (AKS) or Amazon Elastic Kubernetes Service (EKS), those functions are all wrapped in simple web interfaces or command lines. In normal usage you forget about the underlying nodes and treat the cluster as a single entity.

 The Kubernetes cluster is there to run your applications. You define your apps in YAML files and send those files to the Kubernetes API. Kubernetes looks at what you’re asking for in the YAML and compares it to what’s already running in the cluster. It makes any changes it needs to get to the desired state, which could be updating a configuration, removing containers, or creating new containers. Containers are distributed around the cluster for high availability, and they can all communicate over virtual networks managed by Kubernetes. Figure 1.2 shows the deployment process, but without the nodes because we don’t really care about them at this level.

 [image:]

 Figure 1.2 When you deploy apps to a Kubernetes cluster, you can usually ignore the actual nodes.

 Defining the structure of the application is your job, but running and managing everything is down to Kubernetes. If a node in the cluster goes offline and takes some containers with it, Kubernetes sees that and starts replacement containers on other nodes. If an application container becomes unhealthy, Kubernetes can restart it. If a component is under stress because of a high load, Kubernetes can start extra copies of the component in new containers. If you put the work into your Docker images and Kubernetes YAML files, you’ll get a self-healing app that runs in the same way on any Kubernetes cluster.

 Kubernetes manages more than just containers, which is what makes it a complete application platform. The cluster has a distributed database, and you can use that to store both configuration files for your applications and secrets like API keys and connection credentials. Kubernetes delivers these seamlessly to your containers, which lets you use the same container images in every environment and apply the correct configuration from the cluster. Kubernetes also provides storage, so your applications can maintain data outside of containers, giving you high availability for stateful apps. Kubernetes also manages network traffic coming into the cluster by sending it to the right containers for processing. Figure 1.3 shows those other resources, which are the main features of Kubernetes.

 [image:]

 Figure 1.3 There’s more to Kubernetes than just containers—the cluster manages other resources, too.

 I haven’t talked about what those applications in the containers look like; that’s because Kubernetes doesn’t really care. You can run a new application built with cloud-native design across microservices in multiple containers. You can run a legacy application built as a monolith in one big container. They could be Linux apps or Windows apps. You define all types of applications in YAML files using the same API, and you can run them all on a single cluster. The joy of working with Kubernetes is that it adds a layer of consistency on top of all your apps—old .NET and Java monoliths and new Node.js and Go microservices are all described, deployed, and managed in the same way.

 That’s just about all the theory we need to get started with Kubernetes, but before we go any further, I want to put some proper names on the concepts I’ve been talking about. Those YAML files are properly called application manifests, because they’re a list of all the components that go into shipping the app. Those components are Kubernetes resources; they have proper names, too. Figure 1.4 takes the concepts from figure 1.3 and applies the correct Kubernetes resource names.

 [image:]

 Figure 1.4 The true picture: these are the most basic Kubernetes resources you need to master.

 I told you Kubernetes was hard. :) But we will cover all of these resources one at a time over the next few chapters, layering on the understanding. By the time you’ve finished chapter 6, that diagram will make complete sense, and you’ll have had lots of experience in defining those resources in YAML files and running them in your own Kubernetes cluster.

1.2 Is this book for you?

 The goal of this book is to fast-track your Kubernetes learning to the point where you have confidence defining and running your own apps in Kubernetes, and you understand what the path to production looks like. The best way to learn Kubernetes is to practice, and if you follow all the examples in the chapters and work through the labs, then you’ll have a solid understanding of all the most important pieces of Kubernetes by the time you finish the book.

 But Kubernetes is a huge topic, and I won’t be covering everything. The biggest gaps are in administration. I won’t cover cluster setup and management in any depth, because they vary across different infrastructures. If you’re planning on running Kubernetes in the cloud as your production environment, then a lot of those concerns are taken care of in a managed service anyway. If you want to get a Kubernetes certification, this book is a great place to start, but it won’t get you all the way. There are two main Kubernetes certifications: Certified Kubernetes Application Developer (CKAD) and Certified Kubernetes Administrator (CKA). This book covers about 80% of the CKAD curriculum and about 50% of CKA.

 There’s also a reasonable amount of background knowledge you’ll need to work with this book effectively. I’ll explain lots of core principles as we encounter them in Kubernetes features, but I won’t fill in any gaps about containers. If you’re not familiar with ideas like images, containers, and registries, I’d recommend starting with my book, Learn Docker in a Month of Lunches (Manning, 2020). You don’t need to use Docker with Kubernetes, but it is the easiest and most flexible way to package your apps so you can run them in containers with Kubernetes.

 If you classify yourself as a new or improving Kubernetes user, with a reasonable working knowledge of containers, then this is the book for you. Your background could be in development, operations, architecture, DevOps, or site reliability engineering (SRE)—Kubernetes touches all those roles, so they’re all welcome here, and you are going to learn an absolute ton of stuff.

1.3 Creating your lab environment

 A Kubernetes cluster can have hundreds of nodes, but for the exercises in this book, a single-node cluster is fine. We’ll get your lab environment set up now so you’re ready to get started in the next chapter. Dozens of Kubernetes platforms are available, and the exercises in this book should work with any certified Kubernetes setup. I’ll describe how to create your lab on Linux, Windows, Mac, Amazon Web Services (AWS), and Azure, which covers all the major options. I’m using Kubernetes version 1.18, but earlier or later versions should be fine, too.

 The easiest option to run Kubernetes locally is Docker Desktop, which is a single package that gives you Docker and Kubernetes and all the command-line tools. It also integrates nicely with your computer’s network and has a handy Reset Kubernetes button, which clears everything, if necessary. Docker Desktop is supported on Windows 10 and macOS, and if that doesn’t work for you, I’ll also walk through some alternatives.

 One point you should know: the components of Kubernetes itself need to run as Linux containers. You can’t run Kubernetes in Windows (although you can run Windows apps in containers with a multinode Kubernetes cluster), so you’ll need a Linux virtual machine (VM) if you’re working on Windows. Docker Desktop sets that up and manages it for you.

 And one last note for Windows users: please use PowerShell to follow along with the exercises. PowerShell supports many Linux commands, and the try-it-now exercises are built to run on Linux (and Mac) shells and PowerShell. If you try to use the classic Windows command terminal, you’re going to run into issues from the start.

1.3.1 Download the book’s source code

 Every example and exercise is in the book’s source code repository on GitHub, together with sample solutions for all of the labs. If you’re comfortable with Git and you have a Git client installed, you can clone the repository onto your computer with the following command:

 git clone https://github.com/sixeyed/kiamol

 If you’re not a Git user, you can browse to the GitHub page for the book at https:// github.com/sixeyed/kiamol and click the Clone or Download button to download a zip file, which you can expand.

 The root of the source code is a folder called kiamol, and within that is a folder for each chapter: ch02, ch03, and so on. The first exercise in the chapter usually asks you to open a terminal session and switch to the chXX directory, so you’ll need to navigate to your kiamol folder first.

 The GitHub repository is the quickest way for me to publish any corrections to the exercises, so if you do have any problems, you should check for a README file with updates in the chapter folder.

1.3.2 Install Docker Desktop

 Docker Desktop runs on Windows 10 or macOS Sierra (version 10.12 or higher). Browse to https://www.docker.com/products/docker-desktop and choose to install the stable version. Download the installer and run it, accepting all the defaults. On Windows, that might include a reboot to add new Windows features. When Docker Desktop is running, you’ll see Docker’s whale icon near the clock on the Windows taskbar or the Mac menu bar. If you’re an experienced Docker Desktop user on Windows, you’ll need to make sure you’re in Linux container mode (which is the default for new installations).

 Kubernetes isn’t set up by default, so you’ll need to click the whale icon to open the menu and click Settings. That opens the window shown in figure 1.5; select Kubernetes from the menu and select Enable Kubernetes.

 [image:]

 Figure 1.5 Docker Desktop creates and manages a Linux VM to run containers, and it can run Kubernetes.

 Docker Desktop downloads all the container images for the Kubernetes runtime—which might take a while—and then starts up everything. When you see two green dots at the bottom of the Settings screen, your Kubernetes cluster is ready to go. Docker Desktop installs everything else you need, so you can skip to section 1.4.7.

 Other Kubernetes distributions can run on top of Docker Desktop, but they don’t integrate well with the network setup that Docker Desktop uses, so you’ll encounter problems running the exercises. The Kubernetes option in Docker Desktop has all the features you need for this book and is definitely the easiest option.

1.3.3 Install Docker Community Edition and K3s

 If you’re using a Linux machine or a Linux VM, you have several options for running a single-node cluster. Kind and minikube are popular, but my preference is K3s, which is a minimal installation but has all the features you’ll need for the exercises. (The name is a play on “K8s,” which is an abbreviation of Kubernetes. K3s trims the Kubernetes codebase, and the name indicates that it’s half the size of K8s.)

 K3s works with Docker, so first, you should install Docker Community Edition. You can check the full installation steps at https://rancher.com/docs/k3s/latest/en/ quick-start/, but this will get you up and running:

 # install Docker:
curl -fsSL https://get.docker.com | sh

install K3s:
curl -sfL https://get.k3s.io | sh -s - --docker --disable=traefik --write-kubeconfig-mode=644

 If you prefer to run your lab environment in a VM and you’re familiar with using Vagrant to manage VMs, you can use the following Vagrant setup with Docker and K3s found in the source repository for the book:

 # from the root of the Kiamol repo:
cd ch01/vagrant-k3s

provision the machine:
vagrant up

and connect:
vagrant ssh

 K3s installs everything else you need, so you can skip to section 1.4.7.

1.3.4 Install the Kubernetes command-line tool

 You manage Kubernetes with a tool called kubectl (which is pronounced “cube-cuttle” as in “cuttlefish”—don’t let anyone tell you different). It connects to a Kubernetes cluster and works with the Kubernetes API. Both Docker Desktop and K3s install kubectl for you, but if you’re using one of the other options described below, you’ll need to install it yourself.

 The full installation instructions are at https://kubernetes.io/docs/tasks/tools/ install-kubectl/. You can use Homebrew on macOS and Chocolatey on Windows, and for Linux you can download the binary:

 # macOS:
brew install kubernetes-cli

OR Windows:
choco install kubernetes-cli

OR Linux:
curl -Lo ./kubectl https://storage.googleapis.com/kubernetes-release/release/v1.18.8/bin/linux/amd64/kubectl
chmod +x ./kubectl
sudo mv ./kubectl /usr/local/bin/kubectl

1.3.5 Run a single-node Kubernetes cluster in Azure

 You can run a managed Kubernetes cluster in Microsoft Azure using AKS. This might be a good option if you want to access your cluster from multiple machines or if you have an MSDN subscription with Azure credits. You can run a minimal single-node cluster, which won’t cost a huge amount, but bear in mind that there’s no way to stop the cluster and you’ll be paying for it 24/7 until you remove it.

 The Azure portal has a nice user interface for creating an AKS cluster, but it’s much easier to use the az command. You can check the latest docs at https://docs .microsoft.com/en-us/azure/aks/kubernetes-walkthrough, but you can get started by downloading the az command-line tool and running a few commands, as follows:

 # log in to your Azure subscription:
az login

create a resource group for the cluster:
az group create --name kiamol --location eastus

create a single-code cluster with 2 CPU cores and 8GB RAM:
az aks create --resource-group kiamol --name kiamol-aks --node-count 1
 --node-vm-size Standard_DS2_v2 --kubernetes-version 1.18.8 --generate-ssh-keys

download certificates to use the cluster with kubectl:
az aks get-credentials --resource-group kiamol --name kiamol-aks

 That final command downloads the credentials to connect to the Kubernetes API from your local kubectl command line.

1.3.6 Run a single-node Kubernetes cluster in AWS

 The managed Kubernetes service in AWS is called the Elastic Kubernetes Service (EKS). You can create a single-node EKS cluster with the same caveat as Azure—that you’ll be paying for that node and associated resources all the time it’s running.

 You can use the AWS portal to create an EKS cluster, but the recommended way is with a dedicated tool called eksctl. The latest documentation for the tool is at https:// eksctl.io, but it’s pretty simple to use. First, install the latest version of the tool for your operating system as follows:

 # install on macOS:
brew tap weaveworks/tap
brew install weaveworks/tap/eksctl

OR on Windows:
choco install eksctl

OR on Linux:
curl --silent --location
 "https://github.com/weaveworks/eksctl/releases/download/latest/eksctl_$(uname -s)_amd64.tar.gz"
 | tar xz -C /tmp
sudo mv /tmp/eksctl /usr/local/bin

 Assuming you already have the AWS CLI installed, eksctl will use the credentials from the CLI (if not, then check the installation guide for authenticating eksctl). Then create a simple one-node cluster as follows:

 # create a single node cluster with 2 CPU cores and 8GB RAM:
eksctl create cluster --name=kiamol --nodes=1 --node-type=t3.large

 The tool sets up the connection from your local kubectl to the EKS cluster.

1.3.7 Verify your cluster

 Now you have a running Kubernetes cluster, and whichever option you chose, they all work in the same way. Run the following command to check that your cluster is up and running:

 kubectl get nodes

 You should see output like that shown in figure 1.6. It’s a list of all the nodes in your cluster, with some basic details like the status and Kubernetes version. The details of your cluster may be different, but as long as you see a node listed and in the ready state, then your cluster is good to go.

 [image:]

 Figure 1.6 If you can run kubectl and your nodes are ready, then you’re all set to carry on.

1.4 Being immediately effective

 “Immediately effective” is a core principle of the Month of Lunches series. In all, the focus is on learning skills and putting them into practice, in every chapter that follows.

 Each chapter starts with a short introduction to the topic, followed by try-it-now exercises where you put the ideas into practice using your own Kubernetes cluster. Then there’s a recap with some more detail, to fill in some of the questions you may have from diving in. Last, there’s a hands-on lab for you to try by yourself, to really gain confidence in your new understanding.

 All the topics center on tasks that are genuinely useful in the real world. You’ll learn how to be immediately effective with the topic during the chapter, and you’ll finish by understanding how to apply the new skill. Let’s start running some containerized apps!

2 Running containers in Kubernetes with Pods and Deployments

 Kubernetes runs containers for your application workloads, but the containers themselves are not objects you need to work with. Every container belongs to a Pod, which is a Kubernetes object for managing one or more containers, and Pods, in turn, are managed by other resources. These higher-level resources abstract away the details of the container, which powers self-healing applications and lets you use a desired-state workflow: you tell Kubernetes what you want to happen, and it decides how to make it happen.

 In this chapter, we’ll get started with the basic building blocks of Kubernetes: Pods, which run containers, and Deployments, which manage Pods. We’ll use a simple web app for the exercises, and you’ll get hands-on experience using the Kubernetes command-line tool to manage applications and using the Kubernetes YAML specification to define applications.

2.1 How Kubernetes runs and manages containers

 A container is a virtualized environment that typically runs a single application component. Kubernetes wraps the container in another virtualized environment: the Pod. A Pod is a unit of compute, which runs on a single node in the cluster. The Pod has its own virtual IP address, which is managed by Kubernetes, and Pods in the cluster can communicate with other Pods over that virtual network, even if they’re running on different nodes.

 You normally run a single container in a Pod, but you can run multiple containers in one Pod, which opens up some interesting deployment options. All the containers in a Pod are part of the same virtual environment, so they share the same network address and can communicate using localhost. Figure 2.1 shows the relationship between containers and Pods.

 [image:]

 Figure 2.1 Containers run inside Pods. You manage the Pods, and the Pods manage the containers.

 This business of multicontainer Pods is a bit much to introduce this early on, but if I glossed over it and talked only about single-container Pods, you’d be rightfully asking why Kubernetes uses Pods at all instead of just containers. Let’s run a Pod and see what it looks like to work with this abstraction over containers.

 Try it now You can run a simple Pod using the Kubernetes command line without needing a YAML specification. The syntax is similar to running a container using Docker: you state the container image you want to use and any other parameters to configure the Pod behavior.

 # run a Pod with a single container; the restart flag tells Kubernetes
to create just the Pod and no other resources:
kubectl run hello-kiamol --image=kiamol/ch02-hello-kiamol --restart=Never

wait for the Pod to be ready:
kubectl wait --for=condition=Ready pod hello-kiamol

list all the Pods in the cluster:
kubectl get pods

show detailed information about the Pod:
kubectl describe pod hello-kiamol

 You can see my output in figure 2.2, where I’ve abridged the response from the final describe pod command. When you run it yourself, you’ll see a whole lot more obscure-sounding information in there, like node selectors and tolerations. They’re all part of the Pod specification, and Kubernetes has applied default values for everything that we didn’t specify in the run command.

 [image:]

 Figure 2.2 Running the simplest of Pods and checking its status using kubectl

 Now you have a single application container in your cluster, running inside a single Pod. If you’re used to working with Docker, this is a familiar workflow, and it turns out that Pods are not as complicated as they might seem. The majority of your Pods will run single containers (until you start to explore more advanced options), and so you can effectively think of the Pod as the mechanism Kubernetes uses to run a container.

 Kubernetes doesn’t really run containers, though—it passes the responsibility for that to the container runtime installed on the node, which could be Docker or containerd or something more exotic. That’s why the Pod is an abstraction: it’s the resource that Kubernetes manages, whereas the container is managed by something outside of Kubernetes. You can get a sense of that by using kubectl to fetch specific information about the Pod.

 Try it now Kubectl returns basic information from the get pod command, but you can request more by applying an output parameter. You can name individual fields you want to see in the output parameter, and you can use the JSONPath query language or Go templates for complex output.

 # get the basic information about the Pod:
kubectl get pod hello-kiamol

specify custom columns in the output, selecting network details:
kubectl get pod hello-kiamol --output custom-columns=NAME:metadata.name,NODE_IP:status.hostIP,POD_IP:status.podIP

specify a JSONPath query in the output,
selecting the ID of the first container in the Pod:
kubectl get pod hello-kiamol -o jsonpath='{.status.containerStatuses[0].containerID}'

 My output is shown in figure 2.3. I’m running a single-node Kubernetes cluster using Docker Desktop on Windows. The node IP in the second command is the IP address of my Linux VM, and the Pod IP is the virtual address of the Pod in the cluster. The container ID returned in the third command is prefixed by the name of the container runtime; mine is Docker.

 [image:]

 Figure 2.3 Kubectl has many options for customizing its output for Pods and other objects.

 That may have felt like a pretty dull exercise, but it comes with two important takeaways. The first is that kubectl is a hugely powerful tool—as your main point of contact with Kubernetes, you’ll be spending a lot of time with it, and it’s worth getting a solid understanding of what it can do. Querying the output from commands is a useful way to see the information you care about, and because you can access all the details of the resource, it’s great for automation too. The second takeaway is a reminder that Kubernetes does not run containers—the container ID in the Pod is a reference to another system that runs containers.

 Pods are allocated to one node when they’re created, and it’s that node’s responsibility to manage the Pod and its containers. It does that by working with the container runtime using a known API called the Container Runtime Interface (CRI). The CRI lets the node manage containers in the same way for all the different container runtimes. It uses a standard API to create and delete containers and to query their state. While the Pod is running, the node works with the container runtime to ensure the Pod has all the containers it needs.

 Try it now All Kubernetes environments use the same CRI mechanism to manage containers, but not all container runtimes allow you to access containers outside of Kubernetes. This exercise shows you how a Kubernetes node keeps its Pod containers running, but you’ll only be able to follow it if you’re using Docker as your container runtime.

 # find the Pod’s container:
docker container ls -q --filter label=io.kubernetes.container.name=hello-kiamol

now delete that container:
docker container rm -f $(docker container ls -q --filter label=io.kubernetes.container.name=hello-kiamol)

check the Pod status:
kubectl get pod hello-kiamol

and find the container again:
docker container ls -q --filter label=io.kubernetes.container.name=hello-kiamol

 You can see from figure 2.4 that Kubernetes reacted when I deleted my Docker container. For an instant, the Pod had zero containers, but Kubernetes immediately created a replacement to repair the Pod and bring it back to the correct state.

 It’s the abstraction from containers to Pods that lets Kubernetes repair issues like this. A failed container is a temporary fault; the Pod still exists, and the Pod can be brought back up to spec with a new container. This is just one level of self-healing that Kubernetes provides, with further abstractions on top of Pods giving your apps even more resilience.

 [image:]

 Figure 2.4 Kubernetes makes sure Pods have all the containers they need.

 One of those abstractions is the Deployment, which we’ll look at in the next section. Before we move on, let’s see what’s actually running in that Pod. It’s a web application, but you can’t browse to it because we haven’t configured Kubernetes to route network traffic to the Pod. We can get around that using another feature of kubectl.

 Try it now Kubectl can forward traffic from a node to a Pod, which is a quick way to communicate with a Pod from outside the cluster. You can listen on a specific port on your machine—which is the single node in your cluster—and forward traffic to the application running in the Pod.

 # listen on port 8080 on your machine and send traffic
to the Pod on port 80:
kubectl port-forward pod/hello-kiamol 8080:80

now browse to http://localhost:8080

when you’re done press ctrl-c to end the port forward

 My output is shown in figure 2.5, and you can see it’s a pretty basic website (don’t contact me for web design consultancy). The web server and all the content are packaged into a container image on Docker Hub, which is publicly available. All the CRI-compatible container runtimes can pull the image and run a container from it, so I know that for whichever Kubernetes environment you’re using, when you run the app, it will work in the same way for you as it does for me.

 [image:]

 Figure 2.5 This app isn’t configured to receive network traffic, but kubectl can forward it.

 Now we have a good handle on the Pod, which is the smallest unit of compute in Kubernetes. You need to understand how that all works, but the Pod is a primitive resource, and in normal use, you’d never run a Pod directly; you’d always create a controller object to manage the Pod for you.

2.2 Running Pods with controllers

 It’s only the second section of the second chapter, and we’re already on to a new Kubernetes object, which is an abstraction over other objects. Kubernetes does get complicated quickly, but that complexity is a necessary part of such a powerful and configurable system. The learning curve is the entrance fee for access to a world-class container platform.

 Pods are too simple to be useful on their own; they are isolated instances of an application, and each Pod is allocated to one node. If that node goes offline, the Pod is lost, and Kubernetes does not replace it. You could try to get high availability by running several Pods, but there’s no guarantee Kubernetes won’t run them all on the same node. Even if you do get Pods spread across several nodes, you need to manage them yourself. Why do that when you have an orchestrator that can manage them for you?

 That’s where controllers come in. A controller is a Kubernetes resource that manages other resources. It works with the Kubernetes API to watch the current state of the system, compares that to the desired state of its resources, and makes any changes necessary. Kubernetes has many controllers, but the main one for managing Pods is the Deployment, which solves the problems I’ve just described. If a node goes offline and you lose a Pod, the Deployment creates a replacement Pod on another node; if you want to scale your Deployment, you can specify how many Pods you want, and the Deployment controller runs them across many nodes. Figure 2.6 shows the relationship between Deployments, Pods, and containers.

 [image:]

 Figure 2.6 Deployment controllers manage Pods, and Pods manage containers.

 You can create Deployment resources with kubectl, specifying the container image you want to run and any other configuration for the Pod. Kubernetes creates the Deployment, and the Deployment creates the Pod.

 Try it now Create another instance of the web application, this time using a Deployment. The only required parameters are the name for the Deployment and the image to run.

 # create a Deployment called "hello-kiamol-2", running the same web app:
kubectl create deployment hello-kiamol-2 --image=kiamol/ch02-hello-kiamol

list all the Pods:
kubectl get pods

 You can see my output in figure 2.7. Now you have two Pods in your cluster: the original one you created with the kubectl run command, and the new one created by the Deployment. The Deployment-managed Pod has a name generated by Kubernetes, which is the name of the Deployment followed by a random suffix.

 [image:]

 Figure 2.7 Create a controller resource, and it creates its own resources-Deployments create Pods.

 One important thing to realize from this exercise: you created the Deployment, but you did not directly create the Pod. The Deployment specification described the Pod you wanted, and the Deployment created that Pod. The Deployment is a controller that checks with the Kubernetes API to see which resources are running, realizes the Pod it should be managing doesn’t exist, and uses the Kubernetes API to create it. The exact mechanism doesn’t really matter; you can just work with the Deployment and rely on it to create your Pod.

 How the deployment keeps track of its resources does matter, though, because it’s a pattern that Kubernetes uses a lot. Any Kubernetes resource can have labels applied that are simple key-value pairs. You can add labels to record your own data. For example, you might add a label to a Deployment with the name release and the value 20.04 to indicate this Deployment is from the 20.04 release cycle. Kubernetes also uses labels to loosely couple resources, mapping the relationship between objects like a Deployment and its Pods.

 Try it now The Deployment adds labels to Pods it manages. Use kubectl as follows to print the labels the Deployment adds, and then list the Pods that match that label:

 # print the labels that the Deployment adds to the Pod:
kubectl get deploy hello-kiamol-2 -o jsonpath='{.spec.template.metadata.labels}'

list the Pods that have that matching label:
kubectl get pods -l app=hello-kiamol-2

 My output is shown in figure 2.8, where you can see some internals of how the resources are configured. Deployments use a template to create Pods, and part of that template is a metadata field, which includes the labels for the Pod(s). In this case, the Deployment adds a label called app with the value hello-kiamol-2 to the Pod. Querying Pods that have a matching label returns the single Pod managed by the Deployment.

 [image:]

 Figure 2.8 Deployments add labels when they create Pods, and you can use those labels as filters.

 Using labels to identify the relationship between resources is such a core pattern in Kubernetes that it’s worth showing a diagram to make sure it’s clear. Resources can have labels applied at creation and then added, removed, or edited during their lifetime. Controllers use a label selector to identify the resources they manage. That can be a simple query matching resources with a particular label, as shown in figure 2.9.

 [image:]

 Figure 2.9 Controllers identify the resources they manage by using labels and selectors.

 This process is flexible because it means controllers don’t need to maintain a list of all the resources they manage; the label selector is part of the controller specification, and controllers can find matching resources at any time by querying the Kubernetes API. It’s also something you need to be careful with, because you can edit the labels for a resource and end up breaking the relationship between it and its controller.

 Try it now The Deployment doesn’t have a direct relationship with the Pod it created; it only knows there needs to be one Pod with labels that match its label selector. If you edit the labels on the Pod, the Deployment no longer recognizes it.

 # list all Pods, showing the Pod name and labels:
kubectl get pods -o custom-columns=NAME:metadata.name,LABELS:metadata.labels

update the "app" label for the Deployment’s Pod:
kubectl label pods -l app=hello-kiamol-2 --overwrite app=hello-kiamol-x

fetch Pods again:
kubectl get pods -o custom-columns=NAME:metadata.name,LABELS:metadata.labels

 What did you expect to happen? You can see from the output shown in figure 2.10 that changing the Pod label effectively removes the Pod from the Deployment. At that point, the Deployment sees that no Pods that match its label selector exist, so it creates a new one. The Deployment has done its job, but by editing the Pod directly, you now have an unmanaged Pod.

 [image:]

 Figure 2.10 If you meddle with the labels on a Pod, you can remove it from the control of the Deployment.

 This can be a useful technique in debugging—removing a Pod from a controller so you can connect and investigate a problem, while the controller starts a replacement Pod, which keeps your app running at the desired scale. You can also do the opposite: editing the labels on a Pod to fool a controller into acquiring that Pod as part of the set it manages.

 Try it now Return the original Pod to the control of the Deployment by setting its app label back so it matches the label selector.

 # list all Pods with a label called "app," showing the Pod name and
labels:
kubectl get pods -l app -o custom-columns=NAME:metadata.name,LABELS:metadata.labels

update the "app" label for the the unmanaged Pod:
kubectl label pods -l app=hello-kiamol-x --overwrite app=hello-kiamol-2

fetch the Pods again:
kubectl get pods -l app -o custom-columns=NAME:metadata.name,LABELS:metadata.labels

 This exercise effectively reverses the previous exercise, setting the app label back to hello-kiamol-2 for the original Pod in the Deployment. Now when the Deployment controller checks with the API, it sees two Pods that match its label selector. It’s supposed to manage only a single Pod, however, so it deletes one (using a set of deletion rules to decide which one). You can see in figure 2.11 that the Deployment removed the second Pod and retained the original.

 [image:]

 Figure 2.11 More label meddling—you can force a Deployment to adopt a Pod if the labels match.

 Pods run your application containers, but just like containers, Pods are meant to be short-lived. You will usually use a higher-level resource like a Deployment to manage Pods for you. Doing so gives Kubernetes a better chance of keeping your app running if there are issues with containers or nodes, but ultimately the Pods are running the same containers you would run yourself, and the end-user experience for your apps will be the same.

 Try it now Kubectl’s port-forward command sends traffic to a Pod, but you don’t have to find the random Pod name for a Deployment. You can configure the port forward on the Deployment resource, and the Deployment selects one of its Pods as the target.

 # run a port forward from your local machine to the Deployment:
kubectl port-forward deploy/hello-kiamol-2 8080:80

browse to http://localhost:8080

when you’re done, exit with ctrl-c

 You can see my output, shown in figure 2.12, of the same app running in a container from the same Docker image, but this time, in a Pod managed by a Deployment.

 [image:]

 Figure 2.12 Pods and Deployments are layers on top of containers, but the app still runs in a container.

 Pods and Deployments are the only resources we’ll cover in this chapter. You can deploy very simple apps by using the kubectl run and create commands, but more complex apps need lots more configuration, and those commands won’t do. It’s time to enter the world of Kubernetes YAML.

2.3 Defining Deployments in application manifests

 Application manifests are one of the most attractive aspects of Kubernetes, but also one of the most frustrating. When you’re wading through hundreds of lines of YAML trying to find the small misconfiguration that has broken your app, it can seem like the API was deliberately written to confuse and irritate you. At those times, remember that Kubernetes manifests are a complete description of your app, which can be versioned and tracked in source control, and result in the same deployment on any Kubernetes cluster.

 Manifests can be written in JSON or YAML; JSON is the native language of the Kubernetes API, but YAML is preferred for manifests because it’s easier to read, lets you define multiple resources in a single file, and, most important, can record comments in the specification. Listing 2.1 is the simplest app manifest you can write. It defines a single Pod using the same container image we’ve already used in this chapter.

 Listing 2.1 pod.yaml, a single Pod to run a single container

 # Manifests always specify the version of the Kubernetes API
and the type of resource.
apiVersion: v1
kind: Pod

Metadata for the resource includes the name (mandatory)
and labels (optional).
metadata:
 name: hello-kiamol-3

The spec is the actual specification for the resource.
For a Pod the minimum is the container(s) to run,
with the container name and image.
spec:
 containers:
 - name: web
 image: kiamol/ch02-hello-kiamol

 That’s a lot more information than you need for a kubectl run command, but the big advantage of the application manifest is that it’s declarative. Kubectl run and create are imperative operations—it’s you telling Kubernetes to do something. Manifests are declarative—you tell Kubernetes what you want the end result to be, and it goes off and decides what it needs to do to make that happen.

 Try it now You still use kubectl to deploy apps from manifest files, but you use the apply command, which tells Kubernetes to apply the configuration in the file to the cluster. Run another pod for this chapter’s sample app using a YAML file with the same contents as listing 2.1.

 # switch from the root of the kiamol repository to the chapter 2 folder:
cd ch02

deploy the application from the manifest file:
kubectl apply -f pod.yaml

list running Pods:
kubectl get pods

 The new Pod works in the same way as a Pod created with the kubectl run command: it’s allocated to a node, and it runs a container. The output in figure 2.13 shows that when I applied the manifest, Kubernetes decided it needed to create a Pod to get the current state of the cluster up to my desired state. That’s because the manifest specifies a Pod named hello-kiamol-3, and no such Pod existed.

 [image:]

 Figure 2.13 Applying a manifest sends the YAML file to the Kubernetes API, which applies changes.

 Now that the Pod is running, you can manage it in the same way with kubectl: by listing the details of the Pod and running a port forward to send traffic to the Pod. The big difference is that the manifest is easy to share, and manifest-based Deployment is repeatable. I can run the same kubectl apply command with the same manifest any number of times, and the result will always be the same: a Pod named hello-kiamol-3 running my web container.

 Try it now Kubectl doesn’t even need a local copy of a manifest file. It can read the contents from any public URL. Deploy the same Pod definition direct from the file on GitHub.

 # deploy the application from the manifest file:
kubectl apply -f https://raw.githubusercontent.com/sixeyed/kiamol/
master/ch02/pod.yaml

 Figure 2.14 shows the output. The resource definition matches the Pod running in the cluster, so Kubernetes doesn’t need to do anything, and kubectl shows that the matching resource is unchanged.

 [image:]

 Figure 2.14 Kubectl can download manifest files from a web server and send them to the Kubernetes API.

 Application manifests start to get more interesting when you work with higher-level resources. When you define a Deployment in a YAML file, one of the required fields is the specification of the Pod that the Deployment should run. That Pod specification is the same API for defining a Pod on its own, so the Deployment definition is a composite that includes the Pod spec. Listing 2.2 shows the minimal definition for a Deployment resource, running yet another version of the same web app.

 Listing 2.2 deployment.yaml, a Deployment and Pod specification

 # Deployments are part of the apps version 1 API spec.
apiVersion: apps/v1
kind: Deployment
The Deployment needs a name.
metadata:
 name: hello-kiamol-4
The spec includes the label selector the Deployment uses
to find its own managed resources--I’m using the app label,
but this could be any combination of key-value pairs.
spec:
 selector:
 matchLabels:
 app: hello-kiamol-4
 # The template is used when the Deployment creates a Pod
 template.
 # Pods in a Deployment don’t have a name,
 # but they need to specify labels that match the selector
 # metadata.
 labels:
 app: hello-kiamol-4
 # The Pod spec lists the container name and image
 spec.
 containers:
 - name: web
 image: kiamol/ch02-hello-kiamol

 This manifest is for a completely different resource (which just happens to run the same application), but all Kubernetes manifests are deployed in the same way using kubectl apply. That gives you a nice layer of consistency across all your apps—no matter how complex they are, you’ll define them in one or more YAML files and deploy them using the same kubectl command.

 Try it now Apply the Deployment manifest to create a new Deployment, which in turn will create a new Pod.

 # run the app using the Deployment manifest:
kubectl apply -f deployment.yaml

find Pods managed by the new Deployment:
kubectl get pods -l app=hello-kiamol-4

 The output in figure 2.15 shows the same end result as creating a Deployment with kubectl create, but my whole app specification is clearly defined in a single YAML file.

 [image:]

 Figure 2.15 Applying a manifest creates the Deployment because no matching resource existed.

 As the app grows in complexity, I need to specify how many replicas I want, what CPU and memory limits should apply, how Kubernetes can check whether the app is healthy, and where the application configuration settings come from and where it writes data—I can do all that just by adding to the YAML.

2.4 Working with applications in Pods

 Pods and Deployments are there to keep your app running, but all the real work is happening in the container. Your container runtime may not give you access to work with containers directly—a managed Kubernetes cluster won’t give you control of Docker or containerd—but you can still work with containers in Pods using kubectl. The Kubernetes command line lets you run commands in containers, view application logs, and copy files.

 Try it now You can run commands inside containers with kubectl and connect a terminal session, so you can connect into a Pod’s container as though you were connecting to a remote machine.

 # check the internal IP address of the first Pod we ran:
kubectl get pod hello-kiamol -o custom-columns=NAME:metadata.name,POD_IP:status.podIP

run an interactive shell command in the Pod:
kubectl exec -it hello-kiamol -- sh

inside the Pod, check the IP address:
hostname -i

and test the web app:
wget -O - http://localhost | head -n 4

leave the shell:
exit

 My output is shown in figure 2.16, where you can see that the IP address in the container environment is the one set by Kubernetes, and the web server running in the container is available at the localhost address.

 [image:]

 Figure 2.16 You can use kubectl to run commands inside Pod containers, including interactive shells.

 Running an interactive shell inside a Pod container is a useful way of seeing how the world looks to that Pod. You can read file contents to check that configuration settings are being applied correctly, run DNS queries to verify that services are resolving as expected, and ping endpoints to test the network. Those are all good troubleshooting techniques, but for ongoing administration, a simpler option is to read the application logs, and kubectl has a dedicated command just for that.

 Try it now Kubernetes fetches application logs from the container runtime. You can read logs with kubectl, and if you have access to the container runtime, you can verify that they are the same as the container logs.

 # print the latest container logs from Kubernetes:
kubectl logs --tail=2 hello-kiamol

and compare the actual container logs--if you’re using Docker:
docker container logs --tail=2 $(docker container ls -q --filter label=io.kubernetes.container.name=hello-kiamol)

 You can see from my output, shown in figure 2.17, that Kubernetes just relays log entries exactly as they come from the container runtime.

 [image:]

 Figure 2.17 Kubernetes reads logs from the container so you don’t need access to the container runtime.

 The same features are available for all Pods, no matter how they were created. Pods that are managed by controllers have random names, so you don’t refer to them directly. Instead, you can access them by their controller or by their labels.

 Try it now You can run commands in Pods that are managed by a Deployment without knowing the Pod name, and you can view the logs of all Pods that match a label selector.

 # make a call to the web app inside the container for the
Pod we created from the Deployment YAML file:
kubectl exec deploy/hello-kiamol-4 -- sh -c 'wget -O - http://localhost > /dev/null'

and check that Pod’s logs:
kubectl logs --tail=1 -l app=hello-kiamol-4

 Figure 2.18 shows the command running inside the Pod container, which causes the application to write a log entry. We see that in the Pod logs.

 [image:]

 Figure 2.18 You can work with Pods using kubectl without knowing the Pod’s name.

 In a production environment, you can have all the logs from all of your Pods collected and sent to a central storage system, but until you get there, this is a useful and easy way to read application logs. You also saw in that exercise that there are different ways to get to Pods that are managed by a controller. Kubectl lets you supply a label selector to most commands, and some commands—like exec—can be run against different targets.

 The last function you’re likely to use with Pods is to interact with the filesystem. Kubectl lets you copy files between your local machine and containers in Pods.

 Try it now Create a temporary directory on your machine, and copy a file into it from the Pod container.

 # create the local directory:
mkdir -p /tmp/kiamol/ch02

copy the web page from the Pod:
kubectl cp hello-kiamol:/usr/share/nginx/html/index.html /tmp/kiamol/ch02/index.html

check the local file contents:
cat /tmp/kiamol/ch02/index.html

 In figure 2.19, you can see that kubectl copies the file from the Pod container onto my local machine. This works whether your Kubernetes cluster is running locally or on remote servers, and it’s bidirectional, so you can use the same command to copy a local file into a Pod. That can be a useful—if hacky—way to work around an application problem.

 [image:]

 Figure 2.19 Copying files between Pod containers and the local machine is useful for troubleshooting.

 That’s about all we’re going to cover in this chapter, but before we move on, we need to delete the Pods we have running, and that is a little bit more involved than you might think.

2.5 Understanding Kubernetes resource management

 You can easily delete a Kubernetes resource using kubectl, but the resource might not stay deleted. If you created a resource with a controller, then it’s the controller’s job to manage that resource. It owns the resource life cycle, and it doesn’t expect any external interference. If you delete a managed resource, then its controller will create a replacement.

 Try it now Use the kubectl delete command to remove all Pods and verify that they’re really gone.

 # list all running Pods:
kubectl get pods

delete all Pods:
kubectl delete pods --all

check again:
kubectl get pods

 You can see my output in figure 20.20. Is it what you expected?

 [image:]

 Figure 2.20 Controllers own their resources. If something else deletes them, the controller replaces them.

 Two of those Pods were created directly with the run command and with a YAML Pod specification. They don’t have a controller managing them, so when you delete them, they stay deleted. The other two were created by Deployments, and when you delete the Pod, the Deployment controllers still exist. They see there are no Pods that match their label selectors, so they create new ones.

 It seems obvious when you know about it, but it’s a gotcha that will probably keep cropping up through all your days with Kubernetes. If you want to delete a resource that is managed by a controller, you need to delete the controller instead. Controllers clean up their resources when they are deleted, so removing a Deployment is like a cascading delete that removes all the Deployment’s Pods, too.

 Try it now Check the Deployments you have running, and then delete them and confirm that the remaining Pods have been deleted.

 # view Deployments:
kubectl get deploy

delete all Deployments:
kubectl delete deploy --all

view Pods:
kubectl get pods

check all resources:
kubectl get all

 Figure 2.21 shows my output. I was fast enough to see the Pods being removed, so they’re shown in the terminating state. A few seconds later, the Pods and the Deployment were removed, so the only resource I have running is the Kubernetes API server itself.

 [image:]

 Figure 2.21 Deleting controllers starts a cascade effect, where the controller deletes all its resources.

 Now your Kubernetes cluster isn’t running any applications, and it’s back to its original state.

 We’ve covered a lot in this chapter. You’ve got a good understanding of how Kubernetes manages containers with Pods and Deployments, had an introduction to YAML specifications, and had lots of experience using kubectl to work with the Kubernetes API. We’ve built on the core concepts gradually, but you probably have a fair idea now that Kubernetes is a complex system. If you have time to go through the following lab, that will certainly help cement what you’ve learned.

2.6 Lab

 This is your first lab; it’s a challenge for you to complete yourself. The goal is to write a Kubernetes YAML spec for a Deployment that will run an application in a Pod, and then test the app to make sure it runs as expected. Here are a few hints to get you started:

 	
 In the ch02/lab folder, there’s a file called pod.yaml that you can try out. It runs the app but defines a Pod rather than a Deployment.

 	
 The application container runs a website that listens on port 80.

 	
 When you forward traffic to the port, the web app responds with the hostname of the machine it’s running on.

 	
 That hostname is actually the Pod name, which you can verify using kubectl.

 If you find this a bit tricky, I have the following sample solution on GitHub that you can use for reference: https://github.com/sixeyed/kiamol/blob/master/ch02/lab/ README.md.

3 Connecting Pods over the network with Services

 Pods are the basic building blocks of an application running in Kubernetes. Most applications are distributed across multiple components, and you model those in Kubernetes using a Pod for each component. For example, you may have a website Pod and an API Pod, or you may have dozens of Pods in a microservice architecture. They all need to communicate, and Kubernetes supports the standard networking protocols, TCP and UDP. Both protocols use IP addresses to route traffic, but IP addresses change when Pods are replaced, so Kubernetes provides a network address discovery mechanism with Services.

 Services are flexible resources that support routing traffic between Pods, into Pods from the world outside the cluster, and from Pods to external systems. In this chapter, you’ll learn all the different Service configurations Kubernetes provides to glue systems together, and you’ll understand how they work transparently for your apps.

3.1 How Kubernetes routes network traffic

 You learned two important things about Pods in the previous chapter: a Pod is a virtual environment that has an IP address assigned by Kubernetes, and Pods are disposable resources whose lifetime is controlled by another resource. If one Pod wants to communicate with another, it can use the IP address. That’s problematic for two reasons, however: first, the IP address changes if the Pod is replaced, and second, there’s no easy way to find a Pod’s IP address—it can be discovered only using the Kubernetes API.

 Try it now If you deploy two Pods, you can ping one Pod from the other, but you first need to find its IP address.

 # start up your lab environment--run Docker Desktop if it's not running--
and switch to this chapter’s directory in your copy of the source code:
cd ch03

create two Deployments, which each run one Pod:
kubectl apply -f sleep/sleep1.yaml -f sleep/sleep2.yaml

wait for the Pod to be ready:
kubectl wait --for=condition=Ready pod -l app=sleep-2

check the IP address of the second Pod:
kubectl get pod -l app=sleep-2 --output jsonpath='{.items[0].status.podIP}'

use that address to ping the second Pod from the first:
kubectl exec deploy/sleep-1 -- ping -c 2 $(kubectl get pod -l app=sleep-2 --output jsonpath='{.items[0].status.podIP}')

 My output appears in figure 3.1. The ping inside the container works fine, and the first Pod is able to successfully reach the second Pod, but I had to find the IP address using kubectl and pass it into the ping command.

 [image:]

 Figure 3.1 Pod networking with IP addresses—you can discover an address only from the Kubernetes API.

 The virtual network in Kubernetes spans the whole cluster, so Pods can communicate via IP address even if they’re running on different nodes. This example works in the same way on a single-node K3s cluster and a 100-node AKS cluster. It’s a useful exercise to help you see that Kubernetes doesn’t do any special networking magic; it just uses the standard protocols your apps already use. You wouldn’t normally do this, because the IP address is specific to one Pod, and when the Pod is replaced, the replacement will have a new IP address.

 Try it now These Pods are managed by Deployment controllers. If you delete the second Pod, its controller will start a replacement with a new IP address.

 # check the current Pod’s IP address:
kubectl get pod -l app=sleep-2 --output jsonpath='{.items[0].status.podIP}'

delete the Pod so the Deployment replaces it:
kubectl delete pods -l app=sleep-2

check the IP address of the replacement Pod:
kubectl get pod -l app=sleep-2 --output jsonpath='{.items[0].status.podIP}'

 In figure 3.2, my output shows that the replacement Pod has a different IP address, and if I tried to ping the old address, the command would fail.

 [image:]

 Figure 3.2 The Pod IP address is not part of its specification; a replacement Pod has a new address.

 The problem of needing a permanent address for resources that can change is an old one—the internet solved it using DNS (the Domain Name System), mapping friendly names to IP addresses, and Kubernetes uses the same system. A Kubernetes cluster has a DNS server built in, which maps Service names to IP addresses. Figure 3.3 shows how a domain name lookup works for Pod-to-Pod communication.

 [image:]

 Figure 3.3 Services allow Pods to communicate using a fixed domain name.

 This type of Service is an abstraction over a Pod and its network address, just like a Deployment is an abstraction over a Pod and its container. The Service has its own IP address, which is static. When consumers make a network request to that address, Kubernetes routes it to the actual IP address of the Pod. The link between the Service and its Pods is set up with a label selector, just like the link between Deployments and Pods.

 Listing 3.1 shows the minimal YAML specification for a Service, using the app label to identify the Pod which is the ultimate target of the network traffic.

 Listing 3.1 sleep2-service.yaml, the simplest Service definition

 apiVersion: v1 # Services use the core v1 API.
kind: Service

metadata:
 name: sleep-2 # The name of a Service is used as the DNS domain name.

The specification requires a selector and a list of ports.
spec:
 selector:
 app: sleep-2 # Matches all Pods with an app label set to sleep-2.
 ports:
 - port: 80 # Listens on port 80 and sends to port 80 on the Pod

 This Service definition works with one of the Deployments we have running from the previous exercise. When you deploy it, Kubernetes creates a DNS entry called sleep-2, which routes traffic into the Pod created by the sleep-2 Deployment. Other Pods can send traffic to that Pod using the Service name as the domain name.

 Try it now You deploy a Service using a YAML file and the usual kubectl apply command. Deploy the Service, and verify the network traffic is routed to the Pod.

 # deploy the Service defined in listing 3.1:
kubectl apply -f sleep/sleep2-service.yaml

show the basic details of the Service:
kubectl get svc sleep-2

run a ping command to check connectivity--this will fail:
kubectl exec deploy/sleep-1 -- ping -c 1 sleep-2

 My output is shown in figure 3.4, where you can see that the name resolution worked correctly, although the ping command didn’t work as expected because ping uses a network protocol that isn’t supported in Kubernetes Services.

 [image:]

 Figure 3.4 Deploying a Service creates a DNS entry, giving the Service name a fixed IP address.

 That’s the basic concept behind Service discovery in Kubernetes: deploy a Service resource and use the name of the Service as the domain name for components to communicate.

 Different types of Service support different networking patterns, but you work with them all in the same way. Next, we’ll look more closely at Pod-to-Pod networking, with a working example of a simple distributed app.

3.2 Routing traffic between Pods

 The default type of Service in Kubernetes is called ClusterIP. It creates a clusterwide IP address that Pods on any node can access. The IP address works only within the cluster, so ClusterIP Services are useful only for communicating between Pods. That’s exactly what you want for a distributed system where some components are internal and shouldn’t be accessible outside of the cluster. We’ll use a simple website that uses an internal API component to demonstrate that.

 Try it now Run two Deployments, one for the web application and one for the API. This app has no Services yet, and it won’t work correctly because the website can’t find the API.

 # run the website and API as separate Deployments:
kubectl apply -f numbers/api.yaml -f numbers/web.yaml

wait for the Pod to be ready:
kubectl wait --for=condition=Ready pod -l app=numbers-web

forward a port to the web app:
kubectl port-forward deploy/numbers-web 8080:80

browse to the site at http://localhost:8080 and click the Go button
--you'll see an error message

exit the port forward:
ctrl-c

 You can see from my output shown in figure 3.5 that the app fails with a message stating the API is unavailable.

 [image:]

 Figure 3.5 The web app runs but doesn’t function correctly because the network call to the API fails.

 The error page also shows the domain name where the site is expecting to find the API—http://numbers-api. That’s not a fully qualified domain name (like blog.sixeyed .com); it’s an address that should be resolved by the local network, but the DNS server in Kubernetes doesn’t resolve it because there is no Service with the name numbers-api. The specification in listing 3.2 shows a Service with the correct name and a label selector that matches the API Pod.

 Listing 3.2 api-service.yaml, a Service for the random-number API

 apiVersion: v1
kind: Service

metadata:
 name: numbers-api # The Service uses the domain name numbers-api.

spec:
 ports:
 - port: 80
 selector:
 app: numbers-api # Traffic is routed to Pods with this label.
 type: ClusterIP # This Service is available only to other Pods.

 This Service is similar to that in listing 3.1, except that the names have changed and the Service type of ClusterIP is explicitly stated. That can be omitted because it’s the default Service type, but I think it makes the spec clearer if you include it. Deploying the Service will route the traffic between the web Pod and the API Pod, fixing the app without any changes to the Deployments or Pods.

 Try it now Create a Service for the API so the domain lookup works and traffic is sent from the web Pod to the API Pod.

 # deploy the Service from listing 3.2:
kubectl apply -f numbers/api-service.yaml

check the Service details:
kubectl get svc numbers-api

forward a port to the web app:
kubectl port-forward deploy/numbers-web 8080:80

browse to the site at http://localhost:8080 and click the Go button

exit the port forward:
ctrl-c

 My output, shown in figure 3.6, shows the app working correctly, with the website displaying a random-number generated by the API.

 [image:]

 Figure 3.6 Deploying a Service fixes the broken link between the web app and the API.

 The important lesson here, beyond Services, Deployments, and Pods, is that your YAML specifications describe your whole application in Kubernetes—that’s all the components and the networking between them. Kubernetes doesn’t make assumptions about your application architecture; you need to specify it in the YAML. This simple web app needs three Kubernetes resources defined for it to work in its current state—two Deployments and a Service—but the advantage of having all these moving parts is increased resilience.

 Try it now The API Pod is managed by a Deployment controller, so you can delete the Pod and a replacement will be created. The replacement is also a match for the label selector in the API Service, so traffic is routed to the new Pod, and the app keeps working.

 # check the name and IP address of the API Pod:
kubectl get pod -l app=numbers-api -o custom-columns=NAME:metadata.name,POD_IP:status.podIP

delete that Pod:
kubectl delete pod -l app=numbers-api

check the replacement Pod:
kubectl get pod -l app=numbers-api -o custom-columns=NAME:metadata.name,POD_IP:status.podIP

forward a port to the web app:
kubectl port-forward deploy/numbers-web 8080:80

browse to the site at http://localhost:8080 and click the Go button

exit the port forward:
ctrl-c

 Figure 3.7 shows that a replacement Pod is created by the Deployment controller. It’s the same API Pod spec but running in a new Pod with a new IP address. The IP address of the API Service hasn’t changed, though, and the web Pod can reach the new API Pod at the same network address.

 [image:]

 Figure 3.7 The Service isolates the web Pod from the API Pod, so it doesn’t matter whether the API Pod changes.

 We’re manually deleting Pods in these exercises to trigger the controller to create a replacement, but in the normal life cycle of a Kubernetes application, Pod replacement happens all the time. Anytime you update a component of your app—to add features, fix bugs, or release an update to a dependency—you’re replacing Pods. Any time a node goes down, its Pods are replaced on other nodes. The Service abstraction keeps apps communicating through these replacements.

 This demo app isn’t complete yet because it doesn’t have anything configured to receive traffic from outside the cluster and send it in to the web Pod. We’ve used port forwarding so far, but that’s really a trick for debugging. The real solution is to deploy a Service for the web Pod, too.

3.3 Routing external traffic to Pods

 You have several options to configure Kubernetes to listen for traffic coming into the cluster and forward it to a Pod. We’ll start with a simple and flexible approach, which is fine for everything from local development to production. It’s a type of a Service called LoadBalancer, which solves the problem of getting traffic to a Pod that might be running on a different node from the one that received the traffic; figure 3.8 shows how it looks.

 [image:]

 Figure 3.8 LoadBalancer Services route external traffic from any node into a matching Pod.

 It looks like a tricky problem, especially because you might have many Pods that match the label selector for the Service, so the cluster needs to choose a node to send the traffic to and then choose a Pod on that node. All that trickiness is taken care of by Kubernetes—that’s world-class orchestration for you—so all you need to do is deploy a LoadBalancer Service. Listing 3.3 shows the Service specification for the web application.

 Listing 3.3 web-service.yaml, a LoadBalancer Service for external traffic

 apiVersion: v1
kind: Service
metadata:
 name: numbers-web
spec:
 ports:
 - port: 8080 # The port the Service listens on
 targetPort: 80 # The port the traffic is sent to on the Pod
 selector:
 app: numbers-web
 type: LoadBalancer # This Service is available for external traffic.

 This Service listens on port 8080 and sends traffic to the web Pod on port 80. When you deploy it, you’ll be able to use the web app without setting up a port forward in kubectl, but the exact details of how you reach the app will depend on how you’re running Kubernetes.

 Try it now Deploy the Service, and then use kubectl to find the address of the Service.

 # deploy the LoadBalancer Service for the website--if your firewall checks
that you want to allow traffic, then it is OK to say yes:
kubectl apply -f numbers/web-service.yaml

check the details of the Service:
kubectl get svc numbers-web

use formatting to get the app URL from the EXTERNAL-IP field:
kubectl get svc numbers-web -o jsonpath='http://{.status.loadBalancer.ingress[0].*}:8080'

 Figure 3.9 shows my output from running the exercise on my Docker Desktop Kubernetes cluster, where I can browse to the website at the address http://localhost:8080.

 [image:]

 Figure 3.9 Kubernetes requests an IP address for LoadBalancer Services from the platform on which it’s running.

 The output is different using K3s or a managed Kubernetes cluster in the cloud, where the Service deployment creates a dedicated external IP address for the load balancer. Figure 3.10 shows the output of the same exercise (using the same YAML specifications) using the K3s cluster on my Linux VM-here the website is at http:// 172.28.132.127:8080.

 [image:]

 Figure 3.10 Different Kubernetes platforms use different addresses for LoadBalancer Services.

 How can the results be different with the same application manifests? I said in chapter 1 that you can deploy Kubernetes in different ways and it’s all the same Kubernetes (my emphasis), but that’s not strictly true. Kubernetes contains a lot of extension points, and distributions have flexibility in how they implement certain features. LoadBalancer Services represent a good example of where implementations differ, suited to the goals of the distribution.

 	
 Docker Desktop is a local development environment. It runs on a single machine and integrates with the network stack so LoadBalancer Services are available at the localhost address. Every LoadBalancer Service publishes to localhost, so you’ll need to use different ports if you deploy many load balancers.

 	
 K3s supports LoadBalancer Services with a custom component that sets up routing tables on your machine. Every LoadBalancer Service publishes to the IP address of your machine (or VM), so you can access Services with localhost or from a remote machine on your network. Like Docker Desktop, you’ll need to use different ports for each load balancer.

 	
 Cloud Kubernetes platforms like AKS and EKS are highly available multinode clusters. Deploying a Kubernetes LoadBalancer Service creates an actual load balancer in your cloud, which spans all the nodes in your cluster—the cloud load balancer sends incoming traffic to one of the nodes and then Kubernetes routes it to a Pod. You’ll get a different IP address for each LoadBalancer Service, and it will be a public address, accessible from the internet.

 This is a pattern we’ll see again in other Kubernetes features where distributions have different resources available and different aims. Ultimately, the YAML manifests are the same and the end results are consistent, but Kubernetes allows distributions to diverge in how they get there.

 Back in the world of standard Kubernetes, there’s another Service type you can use that listens for network traffic coming into the cluster and directs it to a Pod—the NodePort. NodePort Services don’t require an external load balancer—every node in the cluster listens on the port specified in the Service and sends traffic to the target port on the Pod. Figure 3.11 shows how it works.

 [image:]

 Figure 3.11 NodePort Services also route external traffic to Pods, but they don’t require a load balancer.

 NodePort Services don’t have the flexibility of LoadBalancer Services because you need a different port for each Service, your nodes need to be publicly accessible, and you don’t achieve load-balancing across a multinode cluster. NodePort Services also have different levels of support in the distributions, so they work as expected in K3s and Docker Desktop but not so well in Kind. Listing 3.4 shows a NodePort spec for reference.

 Listing 3.4 web-service-nodePort.yaml, a NodePort Service specification

 apiVersion: v1
kind: Service
metadata:
 name: numbers-web-node
spec:
 ports:
 - port: 8080 # The port on which the Service is available to
 # other Pods
 targetPort: 80 # The port on which the traffic is sent to on
 # the Pod
 nodePort: 30080 # The port on which the Service is available
 # externally
 selector:
 app: numbers-web
 type: NodePort # This Service is available on node IP addresses.

 There isn’t an exercise to deploy this NodePort Service (although the YAML file is in the chapter’s folder if you want to try it out). This is partly because it doesn’t work in the same way on every distribution, so this section would end with lots of if branches that you’d need to try to make sense of. But there’s a more important reason—you don’t typically use NodePorts in production, and it’s good to keep your manifests as consistent as possible across different environments. Sticking with LoadBalancer Services means you have the same specs from development up to production, which means fewer YAML files to maintain and keep in sync.

 We’ll finish this chapter by digging into how Services work under the hood, but before that, we’ll look at one more way you can use Services, which is to communicate from Pods to components outside of the cluster.

3.4 Routing traffic outside Kubernetes

 You can run almost any server software in Kubernetes, but that doesn’t mean you should. Storage components like databases are typical candidates for running outside of Kubernetes, especially if you’re deploying to the cloud and you can use a managed database service instead. Or you may be running in the datacenter and need to integrate with existing systems that won’t be migrating to Kubernetes. Whatever architecture you’re using, you can still use Kubernetes Services for domain name resolution to components outside the cluster.

 The first option for that is to use an ExternalName Service, which is like an alias from one domain to another. ExternalName Services let you use local names in your application Pods, and the DNS server in Kubernetes resolves the local name to a fully qualified external name when the Pod makes a lookup request. Figure 3.12 shows how that works, with a Pod using a local name that resolves to an external system address.

 [image:]

 Figure 3.12 Using an ExternalName Service lets you use local cluster addresses for remote components.

 The demo app for this chapter expects to use a local API to generate random numbers, but it can be switched to read a static number from a text file on GitHub just by deploying an ExternalName Service.

 Try it now You can’t switch a Service from one type to another in every version of Kubernetes, so you’ll need to delete the original ClusterIP Service for the API before you can deploy the ExternalName Service.

 # delete the current API Service:
kubectl delete svc numbers-api

deploy a new ExternalName Service:
kubectl apply -f numbers-services/api-service-externalName.yaml

check the Service configuration:
kubectl get svc numbers-api

refresh the website in your browser and test with the Go button

 My output is shown in figure 3.13. You can see the app works in the same way, and it’s using the same URL for the API. If you refresh the page, however, you’ll find that it always returns the same number because it’s not using the random-number API anymore.

 [image:]

 Figure 3.13 ExternalName Services can be used as a redirect to send requests outside of the cluster.

 ExternalName Services can be a useful way to deal with differences between environments that you can’t work around in your app configuration. Maybe you have an app component that uses a hardcoded string for the name of the database server. In development environments, you could create a ClusterIP Service with the expected domain name, which resolves to a test database running in a Pod; in production environments, you can use an ExternalName Service that resolves to the real domain name of the database server. Listing 3.5 shows the YAML spec for the API external name.

 Listing 3.5 api-service-externalName.yaml, an ExternalName Service

 apiVersion: v1
kind: Service
metadata:
 name: numbers-api # The local domain name of the Service in the cluster
spec:
 type: ExternalName
 externalName: raw.githubusercontent.com # The domain to resolve

 Kubernetes implements ExternalName Services using a standard feature of DNS—canonical names (CNAMEs). When the web Pod makes a DNS lookup for the numbers-api domain name, the Kubernetes DNS server returns with the CNAME, which is raw.githubusercontent.com. Then the DNS resolution continues using the DNS server configured on the node, so it will reach out to the internet to find the IP address of the GitHub servers.

OEBPS/OEBPS/Images/2-13.jpg
The apply command tells Kubernetes to apply the state described
in the YAML file to the cluster. Kubect] shows the actions taken,
in this case, creating a single Pod.

PS> cho2

READY ~STATUS RESTARTS

hello-kiamol
123m

hello-kiamol-2-56dosdsebs-g2wig| 1/1 Running @
122m

hello-kiamol-3 11 Running @

1/1 Running @

These three Pods all have the same specification
and are running the same app, but they were
created in different ways.

OEBPS/OEBPS/Images/2-5.jpg
Port forwarding is a feature of kubectl. It starts listening for traffic on
your local machine and sends it to the Pod running in the cluster.

PS> 1 port-forward pod/hello-kiamol 8080:80
Forwarding from 127.0.0.1:8080 —> 80

Forwarding from [::1]:8e80 -> 80

Handling connection for 808e

10 Jecathost x
€@ o
Hello from Chapter 2!

This is Learn Kubernetes'in a Month of Lunches.

By Elton Stoneman.
\

“

|
Browsing to localhost sends the request to my Pod. The Pod container
processes it and sends the response, which is this exciting web page.

OEBPS/OEBPS/Images/2-21.jpg
1 have two Deployments. Kubectl supports
abbreviated resource names—you can use
deploy for Deployments and po for Pods.

\

Y

Kubectl mostly uses a consistent syntax, with
a verb followed by a noun. You use the same
delete command for all resource types.

y

\
\

This is a quick way to see everything in
your cluster. All Pods and Deployments
have been deleted now, so all that’s
left is the Kubernetes APL.

PS> get deploy

NAME READY | UP-TO-DATE AVAILABLE / AGE

hello-kiamol-2 1/1 |1 1 ah32m

hello-kiamol-4 1/1 |1 1 ah22m

s

PS> delete deploy --all

deployment.apps "hello-kiamol-2" deleted

deployment.apps "hello-kiamol-4" deleted

TS

PS> get pods

NAME READY STATUS RESTARTS AGE

hello-kiamol-2-7f6ddsabsb-onjkd ©/1 Terminating [e a6m

hello-kiamol-4-88696576b-skdnm /1 Terminating] 46m

1153 T

PS>lilec il get all \

NAME TYPE CLUSTER-IP \\ EXTERNAL-IP PORT(S) AGE

service/kubernetes ClusterIP 10.96.0.1 \\<none> 443/TCP 4d17h
T

|
These are the Pods managed by the controllers.
When Deployments are deleted, they delete

their Pods, and these are currently terminating.

OEBPS/OEBPS/Images/2-6.jpg
This deployment manages two Pods. The Pods are replicas,
created with the exact same specification, with a single
container in each. The Pods could run on different nodes.

z
5
£
3
3
8

Deployment 2

This Deployment manages a single Pod. The Pod is
running two containers, but a Pod can't be split,
so both containers will run on the same node.

OEBPS/OEBPS/Images/3-13.jpg
Changing the type of a Service involves
deleting and recreating it, 50 the Service The new Service points to GitHub.
is unavailable while the change is deployed. The demo app uses a URL for the

API that matches a file path on GitHub.

PS> delete svc numbers-ap:

service "number: deleted

apply -f numbers-services/api-service-externdlNane.yanl

PS>
service/nunbers-api created
PS>
PS> get svc numbers-api
NAME TYPE CLUSTER-1P PORT(S)
AGE
<none>

numbers-api _ ExternalName <none>

KIAMOL Random Number Generator i

Here itis: 42

Wsing AP f R mamers s ey Rl mmbersi]
T

Y

I
The web app is unchanged and uses the same API
address, but now it resolves to a static text file,
so the “random” number is always the same.

OEBPS/OEBPS/Images/3-3.jpg
Pods nicate using domain names. DNS are by the
internal kubernetes DNS server. It returns the IP address of the Service.

Pod: sleep-1
— Creating a Service
effectively
._ registers it with
~ the DNS server,
using an IP

address that is
static for the life
of the Service.

Pod: sleep-2 Service: sleep-2

IP: 10.103.77.14

selector:
app: sleep-2

i

The Service is loosely coupled to the Pod using the same label-selector approach
that Deployments use. A Service can be the virtual address for zero or more Pods.
The s1eep-1 Pod does not have a Service, so it cannot be reached with a DNS name.

OEBPS/cover_u1.jpeg
Learn

KUBERNETES
IN A MONTH OF LUNCHES

ELTON STONEMAN

/'I MANNING

OEBPS/OEBPS/Images/2-4.jpg
Kubernetes applies a Pod name label to containers, so | can filter my Docker containers to
find the Pod container. The ID returned from the pocker command is the same ID kubectl

returned in figure 2.3.
\

\
¥
PS> -1 container Is -q --filter Iabel=io.kubernetes.container
.name=hello-kiamol
aaacdedss9e3
PS>
PS>dock container rm - $(container Is -q --filter Iabe
1=io.kubernetes.container.name=hello-kiamol)
aaacdedss9e3
PS> +
PS> ubectl get pod hello-kiamol \
NAME READY STATUS RESTARTS AGE \
hello-kiamol 1/1 Running @ 3m24s \\
Lz T
PS> container 1s|-q/--filter 1abel=io.kubernetes\container

.name=hello-kiamol
d6f7e196de39
T

/

/" Querying the Pod shows that
/' the container is running.

But it’s a new container ID—Kubernetes
has replaced the deleted container.

\

|

|
This deletes the container, which means
the Pod now has zero containers instead
of the one required container.

OEBPS/OEBPS/Images/2-14.jpg
The source for a manifest to apply could be a local
file or the URL to a file stored on a web server.

The contents of the manifest are the same as the file | previously
applied, so the state defined in the YAML matches the running state
in the cluster, and Kubernetes doesn’t need to make any changes.

OEBPS/OEBPS/Images/3-2.jpg
Pods have a static IP address for their lifetime—this
sleep-2 Pod will always be accessible at 10.1.0.76.

2

PS> get pod -1 app=sleep-2 --output jsonpath='{.items[6].status.podIP}
10.1.0.76

T

PS> delete pods -1 app=sleep-2

pod "sleep-2-766bb674bg-dnmnj" deleted
T

PS> get pod -1 app=sleep-2|--output\jsonpath="{.itens[e].status.podIP})'
g 8
| N

The replacement Pod is the same spec, Delete the Pod, and the
but it has its own IP address—the new Deployment will create
s1eep-2 Pod has the address 10.1.0.78. a replacement.

OEBPS/OEBPS/Images/3-5.jpg
Deploys a web application Pod and an APl but no
Services, o the components aren’t able to communicate
A
L3
3 apply -f .\numbers\api.yaml -f .\numbers\web.yaml
Pl it LG
deployment apps/ mbers-web created

TS
P> port-forward deploy/nunbers-web 8030:30
Forwarding from 127.0.9.1:8080 -> 80

Forwarding from [::1):8080 -> 80

Handling connection for 8980

KIAMOL Random Number Generator

5
vsing ap o g mmbers .ytwc.‘,«mwm-n,m

The error message from The domain name it’s using for the
the web app shows that APl is numbers-api, a local domain

it can’t reach the API. that doesn’t exist in the Kubernetes
DNS server.

OEBPS/OEBPS/Images/1-1.jpg
. Kubernetes is a container orchestrator. A cluster is a single
logical unit composed of many server nodes. Some nodes
run the Kubernetes AP, whereas others run application

[workloads, all in containers.

Each node has a container runtime
installed. Kubernetes supports
multiple options, including Docker,
containerd, and rkt.

The Kubernetes API runs in containers on Linux nodes,
but the cluster can include other platforms. Joining
Windows nodes to your cluster lets you run Linux

and Windows apps in containers with Kubernetes.

OEBPS/OEBPS/Images/2-8.jpg
Shows the details of the Deployment, using a query that
returns the labels the Deployment applies to its Pods

\
\

\
v
PS>kube get deploy hello-kiamol-2 -o jsonpath="{.spec.temp|
late.metadata.labels}’
map[app:hello-kiamol-2]
PS>
PS> Lot get pods -1 app=hello-kiamol-2
NAME READY STATUS RESTARTS
AGE
hello-kiamol-2-56d95d56b6-g2wfg 1/1 Running @
TS T

\
Lists Pods matching the label selector—those having a label named app
with the value hello-kiamol-2, which is the label set by the Deployment

OEBPS/OEBPS/Images/3-10.jpg
Here, I'm running the same exercise on a K3s cluster,
which | created using the setup described in chapter 1.

ant@kiamol:~$ kubectl get nodes 4
STATUS ROLES — AGE VERSTON
master S5m__v1.18.8+k3s1

PORT(S) AGE
8080:30048/TCP 3m19s

CLUSTER-IP
nunbers-web LoadBalancer 10.43.220.197

\
The LoadBalancer Service is created with a real IP address. This is a local cluster, so
’s not a public IP address, but if | ran this same exercise in an AKS or EKS cluster,
the Service would have a public address assigned by the cloud provider.

OEBPS/OEBPS/Images/cover.jpeg

OEBPS/OEBPS/Images/3-11.jpg
NodePort Services have each node listening on the
Service port. There’s no external load balancer, so
traffic is routed directly to the cluster nodes.

request and direct it to Node 3, which is running the Pod.

OEBPS/OEBPS/Images/2-15.jpg
The apply command works the same way for any type of
resource defined in the YAML file. This creates only the
Deployment, and then the Deployment creates the Pod.

\

v
PS> apply -f deployment.yaml

deployment .apps/hello-kiamol-4 created

v

ps{ get pods -1 appahellorkiamﬂlrdl

NAFE TREADY — STATUS RESTARTS

AGE \
hello-kiamol-4- Sb5b7c687h-vnbsq\ 1/1 Running @
ss \

The Deployment creates a new Pod straight away. It sets the label
valie défined I the manifest: and we can use that to find the Pod:

OEBPS/OEBPS/Images/1-2.jpg
Applications are defined in YAML ‘You manage Kubernetes applications
files and deployed by I using a d-line tool

the YAML to the cluster. that talks to the Kubernetes API.

Kubernetes runs applications in containers. Containers are distributed around the nodes
One component may have multiple copies in the cluster, but they can communicate
running in separate containers to increase using standard networking, even if they are

scale and availability. on different nodes.

OEBPS/OEBPS/Images/2-20.jpg
1 have four Pods running; the two with simple names were created directly,
and the two with random suffixes were created by Deployment controllers.

|
\

PS> get pods

READY ~STATUS RESTARTS AGE
hello-kiamol 1/1 Running @ 3hsam
hello-kiamol-2-7f6ddsabsb-fapti | 1/1 Running © 3haem
hello-kiamol-3 1/1 Running @ 3h3om
hello-kiamol-4-88696576b-1bgvs | 1/1 Running @ 3h36m
1453
PS> delete pods --all
pod "hello-kiamol" deleted
pod "hello-kiamol-2-7f6dd5abob-faptj" deleted
pod “hello-kiamol-3" deleted
pod "hello-kiamol-4-88696576b-1bgvs" deleted
P
PS> get pods t
NAME READY| STATUS ~ RESTARTS AGE

hello-kiamol-2-7f6dds54bsb-onjkd [1/1 | Running @ 19s
hello-kiamol-4-88696576b-skdnm | 1/1 Running @ 195

But now | have two Pods again. The de1ete command works for different resources.
The Deployments created Using the a11 flag deletes all resources of that type.
replacements when their Pods Beware: kubect! does not ask for confirmation; it just
wore: dalsted. deletes all four Pods.

OEBPS/OEBPS/Images/3-12.jpg
ExternalName Services create a domain name alias. Here the Pod
can use the local cluster name db-service, which the Kubernetes
DNS server resolves to the public address app.mydatabase. 1.

. — Service: db-service

app.mydatabase.io

|
The Pod actually communicates with a component
outside of the cluster, but that’s transparent. The
domain.names it uses:arelocal.

OEBPS/OEBPS/Images/2-7.jpg
Creates a Deployment named hello-kiamol-2. The number of replica Pods to run
isn't specified, and the default is one, so this controller will manage a single Pod.
\

x

PS> 11 create deployment hello-kiamol-2 --image=kiamol/ch
02-hello-kiamol

deployment . apps/hello-Kiamol-2 created
PS>

PS>kubectl get pods

NAME READY STATUS RESTARTS
AGE

hello-kiamol 1/1
68

hello-kiamol-2-56d95d56b6-g2wfg | 1/1 Running @
IO T

Running @

The Deployment- managed Pod is created with a naming scheme
that begins with the controller name and ends with a random suffix.

OEBPS/OEBPS/Images/3-4.jpg
Deploys the Service that links The Service has its own IP

the domain name sleep-2 to address, which is accessible

the active s1eep-2 Pod. throughout the cluster.
\ /
] /

PS> apply -f sleep/sleep2-service.yaml

service/sleep-2 created /

T

PS> get svc sleep-2 [

NAME TYPE CLUSTER-TP EXTERNAL-IP PORT(S) AGE

sleep-2 ClusterIP 10.97.241.204 | <none> 8o/TcP 1es

TT

PS> exec deploy/sleep-1 -- ping -c 1 sleep-2

PING sleep-2 (10.97.241.204): 56 data bytes

--- sleep-2 ping statistics ---
1 packets transmitted, [0 packets received, 100% packet loss |
|command terminated with exit code 1

The s1cep-1 Pod does adomain The ping command fails because it uses the ICMP
name lookup and receives the protocol, which Kubernetes Services don’t support.
Service IP address from the Services do support standard TCP and UDP traffic.

Kubernetes DNS server.

OEBPS/OEBPS/Images/2-16.jpg
The first Pod | created is Runs a shel1 command inside the Pod container—

still running; it has the the 1t flag connects my terminal session to the
IP address 10.1.0.12. shell in the container.
b
PS> get pod hello-kiamol |-o customtcolumns=NAME :metadata.name,POD_IP:s
tatus.podIP /
NAME pOD_IP i
hello-kiamol 10.1.0.12 |
2 v
PS> exec -it hello-kiamol sh |
I#

7 # wget -0 [ttp://localhost]| head -n 4
!

Connecting to Tocalhost (127%0.0.1:80)

t

100% | *{rveerererennssserersnesaee| 353 0:00:00 ETA

dptnls \

\cbody>

\ <h1>

\ " Hello from chapter 2!
/4
/ #\exit \
| |
The container’s IP address The web server is running in the container,

is the Pod’s IP address. so | can access it using the localhost address.

OEBPS/OEBPS/Images/2-1.jpg
Every pod has an IP address assigned. All containers in the Pod
share that address. If there are multiple containers in the Pod,
they can communicate on the localhost address.

) \

/ \
v 3

Pod 1 Pod 2

1p: 10.1.0.12 1P: 10.1.0.36

Pods are connected to the virtual network managed by Kubernetes.
They can communicate by IP address, even if they are running on
oL e iy sl il

OEBPS/OEBPS/Images/1-4.jpg
Services are Kubernetes objects for managing network
access. They may send traffic to containers from the
outside world or between containers in the cluster.

Service

ReplicaSet

Deployment
Deployment

;

Kubernetes runs containers, but it wraps External resources can be managed by
them in other objects to support scale, Kubernetes and provided to containers.
rolling upgrades, and complex deployment Configuration is handled with ConfigMaps
patterns, such as Pods, ReplicaSets, and and Secrets; storage is handled with

Deployments. volumes.

OEBPS/OEBPS/Images/3-7.jpg
The original APl Pod has The replacement Pod has

the IP address 10.1.0.90. the IP address 10.1.0.91.
S Y ot T ermonee Al o R e 08
= =

Teta Pl oot
pod "numbers-api-bbdsdobfa-tahmd" deleted /"

PS> g9t pod -1 appenumbers-api. -o/custon-colums=NAVE :metadata. name, POD_
Ip:status podIP
NAE

Po0_17.
numbers-api-bbd8dobf4-8fmtp _10.1.9.91

PS> gort-forvard deploy/nunbers-veb 8a80:80
Forvarding from 127.0.0.1:

o

KIAMOL Random Number Generator

Wang A7 o i rmbers s Jeyecamotmaste cho3 mmbersg)

3\
\

The web Pod is using the Service name and Service
IP address, so the changed Pod IP doesn’t affect i

OEBPS/OEBPS/Images/2-17.jpg
Shows the logs written by the Pod container. The tail parameter
restricts the output to the two most recent log entries.

bee] "GET / HTTP/1.1" 200

127.6.0.1 - - [24/5ep/2020:69:34:34 +0000] "GET / HITP/1.1" 200

353 "-* “curl/7.55.1" "-"

PS>

PS> container logs --tail=2 $(container 1s -q --fil
0. kubernetes . container. nane=hello-kiamol)

127.0.0.1 - - [24/5ep/2020:09:34:33 +0000] "GET / HTTP/1.1" 200

353 "-" "curl/7.55.1" "-"

- - [24/sep/2020:09: 34 34 +0000] "GET / HTTP/1.1" 200
Cur1/7.55.1" ""

If you have access to the container runtime, you'll see
that the Pod logs are just a readout of the container logs.

OEBPS/OEBPS/Images/2-19.jpg
The cp command copies files between Pod containers and your
local filesystem. Here the source is a path in the he11o-kiamol
Pod, and the target is a local file path.

PS> p\/tmp/kiamol/cho2 |

7> < TeTTo-KiamoTs usr/ hare/mgin/Hem/index Tenl e kiano1/ehd]
2/ inde hea
e T
PS> /tmp/kiamo1/choz /index.htnl |
chtnl> \
<body>
<>
Wello from Chapter 2!

Internally, kubect! uses tar to compress and package files.
This is an information message, not an error, but if my
container image didn’t have the car utility installed, then
1 would get an error.

OEBPS/OEBPS/Images/2-9.jpg
These Pods were created

by a Deployment, which This Pod was created manually,
applied the app=x label. with the release label added.
i '
\
- s L
Pod-x-1 Pod-x-2 Pod 3
app=x app=x release=20.04

Deployment-x
Match: app=x

The Deployment uses a label selector to find Pods. Any
that match the selector are considered to be owned
by the Deployment.

OEBPS/OEBPS/Images/3-6.jpg
Deploys a Service called numbers-api, The Service has

own
matching the domain name the web IP address, but it is a
app uses for the API front for the API Pod.

v
53 apply -F numbers/api-service.yanl
service/numbers -api created

ps get_sve_numbers-api

AR TVPE CLUSTER-TP [EXTERMAL-IP PORT(S) AGE
nusbers-api _Clustertp 10.109.24.168 | <none> /TP 255
PS> port-foruard deploy/nunbers-web 8989:80

Forwarding from 127.0.9.1:8080 -> 80

€920 (0 0mme

m -0 MO
KIAMOL Random Number Generator
R 1 et mmbers aplserdimolmasekHO3mbersog)
T
34: a random number generated by the API,
fetched and displayed by the web application

OEBPS/OEBPS/Images/2-10.jpg
Shows Pods with the Pod name and all the labels. Labels
are shown with names and values separated by colons.

L2
PS>l ubectl get pods -o custom-columns=NAME:metadata.name, LABE|
LS:metadata.labels
NAME LABELS
hello-kiamol map[run:hello-kiamol]

hello-kiamol-2-56d95d56b6-g2wfg map[app:hello-kiamol-2 pod-
template-hash:56d95d56b6]

PS>

PS>iubectl label pods -1 app=hello-kiamol-2 --overwrite app=h
ello-kiamol-x

pod/hello-kiamol-2-56d95d56b6-g2wfg labeled *‘

PS> \

PS>l ubectl get pods -0 custom-columns=NAME:metadata.| \name,, LABE
LS:metadata.labels \

NAME LABELS
i map[run:hello-kiamo
map[app:hello-kiamol42 pod-

hello-kiamol-2-56d95d56b6-84v67
template-hash:56d95d56b6]
hello-kiamol-2-56d95d56b6-g2wfg

map[app: hello-kiamol-x\pod-
\

Finds all the Pods that have the app label set with the value
hello-kiamol-2 and overwrites that label with the value
hello-kiamol-x. This effectively breaks the link between
the Pod and the Deployment.

|
Listing Pods again shows that the Deployment has created a
new Pod to replace the one it lost when the label was changed.

OEBPS/OEBPS/Images/2-18.jpg
The exec command can target different resources. Like

port- forwazd, it can operate on Pods or Deployments. This

executes wget inside the Pod container and returns the output.
\

PS> “xec deploy/hello-Kiamol-4 - sh ¢ wget -0 - http://localhost >
/dev/nul)

| 353 ewece

/ WTTP/1.1" 200 353

Kubectl can show logs for multiple Pods. Using
a label selector means you don't need to
the random Pod name to see its logs.

OEBPS/OEBPS/Images/1-3.jpg
The cluster listens for incoming traffic to the Kubernetes API. It can also

listen for application traffic,

ding it on to containers for pr

Kubernetes can store application
configuration settings in the cluster.
These get provided to containers as
part of the container environment.

Storage can be provided for
containers. It’s physically
stored on disks in the cluster
nodes or a shared storage
system.

Configuration settings that
contain confidential data can
be managed securely in the
cluster.

OEBPS/OEBPS/Images/2-3.jpg
The default output shows the container You can specify custom columns by giving

count, Pod status, restart count, and them a name and then using JSON notation
the age of the pod. to identify the data to return.
\ \
b \
PS>kube get pod hello-kiamol
NAME READY STATUS RESTARTS AGE \
hello-kiamol 1/1 Running @ 29m \
PS>
PS>/ o~ 1| get pod hello-kiamol --output custom-columns=NAME:
metadata.name,NODE_IP:status.hostIP,POD_IP:status.podIP
NAME NODE_IP POD_IP
hello-kiamol 192.168.65.3 10.1.1.27
PS>
PS>! get pod hello-kiamol -o jsonpath='{.status.contain
erstatuses[@].containerID}'
docker://11572486e38b5cdadb56559f8c9f3befo76ee2f132ealfeal23b
d38871fafsda

T

)
JSONPath s an alternative output format that supports complex queries.
This query fetches the ID of the first container in the Pod. There is only
one in this case, but there could be many, and the first index is zero.

OEBPS/OEBPS/Images/1-6.jpg
Kubectl is the Kubernetes command-line tool.
You use it to work with local and remote clusters.

PS>kut »-¥< | get nodes

NAME STATUS ROLES AGE VERSION

docker-desktop Ready master 49d v1.18.3
4

|
This command prints basic details about all the nodes in the cluster.
I’'m using Docker Desktop, so | have a single node.

OEBPS/OEBPS/Images/2-11.jpg
Lonfirms we still have two Pods: one managed by the
Deployment and one unmanaged because of the Izhe[change

PS>iubectl get pods -1 app -o custom-columns=| NAME\ metadata.na
me, LABELS :metadata.labels
NAME LABELS

hello-kiamol-2-56d95d56b6-84v67 | map[app:hello-kiamol-2|pod-
template-hash:56d95d56b6]
hello-kiamol-2-56d95d56b6-g2wfg | map[app:hello-kiamol-x|pod-
template-hash:56d95d56b6]
PS>

PS>ubectl label pods -1 app=hello-kiamol-x --overwrite app=h
ello-kiamol-2

pod/hello-Kiamol-2-56d95d56b6-g2wg Iabeled
PS>

PS>iubectl get pods -1 app -0 custom-columns=NAME/:
me, LABELS:metadata.labels /

NAME LABELS /
[hello-kiamol-2-56d95ds6b6-gawfg| map[app: hello/ kiamol-2 pod-
+emplate hash:56d95d5666]

Ps> s“

\ |
The Deployment controller is Reverses the previous change, setting the app
supposed to manage only one label to hello-kiamol-2 from hello-kiamol-x.
Pod, and now it has two, so it This brings the original Pod back under the

deletes one. control of the Deployment.

OEBPS/OEBPS/Images/3-1.jpg
You can pass multiple files to the kubect! The JSONPath query here returns just
apply command. This deploys two Pods the IP address of the s1eep-2 Pod.
that don't do anything. |

\
PS>cil che3 |\
3 3
PS> apply -f sleep/sleepl.yaml -f sleep/sleep2.yaml
deployment .apps/sleep-1 created
deployment.apps/sleep-2 created

L2
PS> " get pod -1 app=sleep-2 --output jsonpath='{.items[6].status.podIP}'
10.1.0.76
1553
PS> o | exec deploy/sleep-1 -- ping -c 2 $(get pod -1 app=sleep-2 -
output jsonpath='{.items[0].status.podIP}')
10.1.9.76 (10.1.0.76): 56 data bytes

4 time=0.076 ms
time=0.122 ms

64 bytes from 16.1.0.76: seq=@ ttl
64 bytes from 16.1.0.76: seq=1 tt.

--- 10.1.0.76 ping statistics ---

2 packets transmitted, 2 packets received, 0% packet loss
ToUNd-Trip Win/avg/max = ©.076/0.095/0. 122 s

| |

Pods can reach each other over This uses the previous command as input to the
the network using an IP address, so kubectl exec command, passing the sleep-2
the ping command works correctly. Pod IP address to the ping command.

OEBPS/OEBPS/Images/3-9.jpg
LoadBalancer Services listen on an external

IP address to route traffic to the cluster.
LoadBalancer Services also create a The address is provided by the cluster. I'm
cluster IP, so the Service is available using Docker Desktop, which routes using the
to other Pods using the Service name. localhost addrgss.

PS> apply -f numbers/web\service.yanl |
service/numbers-web created \ ‘
PS> \ |
£ get suc numhers.weh ¥ v

NAME TYPE CLUSTER-IP EXTERNAL-IP | PORT(S) AGE

numbers-web _ LoadBalancer 10.101.42.205 | | localhost 8080:31461/TCP 85

[©sco [0 Q] = o8 moe
KIAMOLRandom Number Generator

(Using AP at:itp//nuniers: apjsveyed iamol master/ch03/mumbers/mg)
\ -
T

Now I can access the web application running in the

Pod without needing a port forward from kubect!.

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/2-2.jpg
Creates a Pod named hello-kiamol running a single container, using the
image called kiamol/ch02-hello-kiamol from Docker Hub

--restart=Never

v
PS> ubectl run hello-kiamol --image=kiamol/ch@2-hello-kiamol

pod/heIlo-kiamol created
PS>

PS>lubectl get pods

NAME READY STATUS RESTARTS AGE
hello-kiamol 1/1 Running @ 65
PS>

PS>l ibectl describe pod hello-kiamol

Name: hello-kiamol

Namespace: default

Priority:]

Node: docker-desktop/192.168.65.3
Start Time: Sat, 14 Mar 2020 20:22:36 +0000
Labels: run=hello-kiamol

Annotations: <none>

Status: Running

Ip: 10.1.1.27

Tontainers: T

hello-kiamol: \
Shows detailed information about a

single Pod, including its IP address
and the node it is running on

Shows all the Pods in the cluster. The Ready
column lists the number of containers in the
Pod and the number that are currently
ready. This pod has a single container.

OEBPS/OEBPS/Images/IFC.png
. _ Kubernetesis a container orchestrator. A cluster i a single
~~ logical unit composed of many server nodes. Some nodes
run the Kubernetes API, whereas others run application
‘workioads, allin containers.

= g !

o Vg g

The AP runs in containers on Linux nodes,
il e but the cluster can include other platforms. Joining.
multiple options including Docker, Windows nodes to your cluster lets you run Linux
containerd, and rkt. and Windows apps in containers with Kubernetes.

OEBPS/OEBPS/Images/3-8.jpg
A LoadBalancer Service integrates with an external load balancer,
which sends traffic to the cluster. The Service sends the traffic

to a Pod, using the same label-selector mechanism to identify

a target Pod. Y

!

[External load balancer]

[LoadBalancer Service |

Pod: numbers-web

—

Uignotd

|
The Service spans the whole cluster, so any node could receive
traffic. The target Pod could be running on a different node
from the one that received the request, and Kubernetes
routes it seamlessly to the correct node.

OEBPS/OEBPS/Images/2-12.jpg
Port forwarding works on different resources. For a Deployment,
it sends traffic to a Pod selected by the Deployment.

\

PS> port-forward deploy/hello-kiamol-2 8080:80

Forwarding from [-> 80
Handling connection for 8680

e

-
Hello from Chapter 2!

This is Learn Kubernetes in a Month of Lunches.

By Elton Stoneman.

I’s the same app and the same user experience.

OEBPS/OEBPS/Images/1-5.jpg
Open Docker Desktop settings using the whale icon. When you click the Enable Kubernetes option,
Docker Desktop will download all the Kubernetes components and run a single-node cluster.

2 General Kubernetes
@ Resources
© Dockertrgine

% Command ioe
O Deslo Dckerstaks o ubernetes by cefaut

S s
) Show system containers (advanced)
e

[SO o |

This button resets your Kubernetes cluster to its original state, removing
all your apps and other resources—very useful.

