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Preface
      

      The path to here, for me (Sean), began in 2005. A friend was starting a company that would lean heavily on collaborative filtering.
         There were mature, open source packages for this purpose at the time, but they seemed in some ways too elaborate for simple
         use cases, and in other ways they seemed built for research purposes. For better or worse, I instead prototyped a simple recommender
         for my friend’s startup, from scratch. The startup, unfortunately, cancelled itself. Nevertheless, I couldn’t bring myself
         to delete the prototype. It was certainly interesting, so I cleaned and documented it and released it as an open source project
         called Taste.
      

      Nothing happened for a year. In my spare time, I added pieces and fixed problems, and then a user or two popped up with bugs
         and patches—and a few more, and then several more. By 2008, there was a small but unmistakable user base out there. And the
         Apache Lucene folks who had just spun off machine-learning-related efforts into Apache Mahout suggested we merge. This book
         project began in late 2009. I find myself surprised and pleased to still be rolling along with this growing snowball of a
         project in 2011 as it’s beginning to be used by large companies in production.
      

      So, I’m only accidentally here. While I have been a senior engineer, formerly at Google, nobody would mistake me for a expert
         researcher in the field. I am more like a museum curator than a painter—collecting, organizing, and packaging for wider use
         the great ideas of a field. It turns out that’s useful work too.
      

      Someone recently described the book, after reading a draft, as a “pop” machine learning book. It was meant as a compliment,
         and I couldn’t agree more. Machine learning is a bit of magic, though much of the research-oriented writing on the subject
         can look like arcane spells to anyone but the specialist, and can seem divorced from the reality of applying the techniques.
         Mahout in Action aims to be accessible, to unearth the interesting nuggets of insight for the enthusiast, and to save the practitioner time
         in getting work done. I hope it provides you more “a-ha!” moments than “wha...?” moments.
      

      SEAN OWEN

      My (Robin’s) interest in machine learning started during my days in college, back in 2006. At that time, I was working as
         an intern with a group of people designing a personalized recommendation engine. That group flourished and became a company
         called Minekey; I was invited to join as one of its core developers. The next four years of my life were spent implementing
         and experimenting with machine learning techniques. Somewhere along that path, I stumbled across Mahout and started contributing
         as a Google Summer of Code student. The next thing I knew, I was contributing algorithms and patches to its codebase, tuning
         and optimizing performance, and helping other folks on the mailing list.
      

      I am really fortunate to be part of a wonderful and growing community of developers, researchers, and enthusiasts of machine
         learning. As more and more companies are adopting Mahout, it is becoming a mainstream library of machine learning. I really
         hope you enjoy reading this book.
      

      ROBIN ANIL

      I (Ted) came to the application side of projects from research in machine learning. Formerly an academic, I have subsequently
         been involved in a number of startups, and I have applied machine learning to all of these practical application settings.
      

      Previously, I (Ellen) worked in research laboratories in biochemistry and molecular biology. In addition to having lots of
         experience with data, I’ve written extensively on technical subjects. Throughout it all, I’ve remained fascinated by data
         and how it speaks to us. I have tried to bring this insight to Mahout in Action.
      

      Both of us see that open source only works with input from an active and broad community of participants. A major part of
         Mahout’s success comes from those who have used the software and brought their experience back to the project via discussions
         in mailing lists, bug fixes, and suggestions.
      

      For this reason, Mahout in Action not only provides useful explanations of code, but also guidance regarding the concepts behind the code. This introduction
         to the framework behind the code will enable you to effectively join in and benefit from the interactive Mahout discussion.
         We hope this book not only helps the readers of this book, but also helps to expand and enrich Mahout itself.
      

      TED DUNNING AND ELLEN FRIEDMAN
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About this Book
      

      You may be wondering—is this a book for me?

      If you are seeking a textbook on machine learning, no. This book does not attempt to fully explain the theory and derivation
         of the various algorithms and techniques presented here. Some familiarity with machine learning techniques and related concepts,
         like matrix and vector math, is useful in reading this book, but not assumed.
      

      If you are developing modern, intelligent applications, then the answer is, yes. This book provides a practical rather than
         a theoretical treatment of these techniques, along with complete examples and recipes for solutions. It develops some insights
         gleaned by experienced practitioners in the course of demonstrating how Mahout can be deployed to solve problems.
      

      If you are a researcher in artificial intelligence, machine learning, and related areas—yes. Chances are your biggest obstacle
         is translating new algorithms into practice. Mahout provides a fertile framework and collection of patterns and ready-made
         components for testing and deploying new large-scale algorithms. This book is an express ticket to deploying machine learning
         systems on top of complex distributed computing frameworks.
      

      If you are leading a product team or startup that will leverage machine learning to create a competitive advantage, then yes,
         this book is also for you. Through real-world examples, it will plant ideas about the many ways these techniques can be deployed.
         It will also help your scrappy technical team jump directly to a cost-effective implementation that can handle volumes of
         data previously only realistic for organizations with large technology resources.
      

      
Roadmap
      

      This book is divided into three parts, covering collaborative filtering, clustering, and classification in Apache Mahout,
         respectively.
      

      First, chapter 1 introduces Apache Mahout as a whole. This chapter will get you set up for all of the chapters that follow.
      

      Part 1, which includes chapters 2 through 6, is presented by Sean Owen; it covers collaborative filtering and recommendation. Chapter 2 gives you a first chance to try a Mahout-based recommender engine and evaluate its performance. Chapter 3 discusses how you can represent the data that recommenders use in an efficient way. Then, chapter 4 presents all of the recommender algorithms available in Mahout and compares their strengths and weaknesses. Given that background,
         chapter 5 presents a case study in which you’ll apply the recommender implementations introduced in chapter 4 to a real-world problem, adapt to some particular properties of the data, and create a production-ready recommender engine.
         Chapter 6 then introduces Apache Hadoop and gives you a first look at machine learning algorithms in a distributed environment by studying
         a recommender engine based on Hadoop.
      

      Part 2 of the book, including chapters 7 through 12, explores clustering algorithms in Apache Mahout. With the techniques described in this part by Robin Anil, you can group
         together similar-looking pieces of data into a set or a cluster. Clustering helps uncover interesting groups of information
         in a large volume of data. This part begins with simple problems in clustering, with examples written in Java. It then introduces
         more real-world examples and shows how you can make Apache Mahout run as Hadoop jobs that can cluster large amounts of data
         easily.
      

      Finally, in part 3, Ted Dunning and Ellen Friedman explore classification with Mahout in chapters 13 through 17. You will first learn how to build and train a classifier model by “teaching” an algorithm with a series of examples. Then
         you will learn how to evaluate and fine tune a classifier’s model to give better answers. This part concludes with a real-world
         case study of classification in action.
      

      
Code conventions and downloads
      

      Source code in this book is printed in a monospaced font, called out in listings, and annotated with notes about important points. The code listings are intended to be brief
         and show only essentials. They will not generally show Java imports, class declarations, Java annotations, and other elements
         that are not essential to the discussion of the code.
      

      Class names in this book are generally printed in a monospaced font, inline with the text, to indicate they are classes that can be located and studied within the Apache Mahout source
         code. For example, LogLikelihoodSimilarity is a Java class in Mahout.
      

      Some listings show commands that can be executed. These are written for Unix-like environments such as Mac OS X and Linux
         distributions. They should work on Microsoft Windows if executed through the Unix-like Cygwin environment.
      

      Compilable copies of the source code in key listings throughout the book are available for download from the publisher’s website
         at www.manning.com/MahoutinAction. These are standalone Java source files and do not include a build script. For simplicity, they can be unpacked and added
         into a copy of the complete Mahout source distribution under the examples/src/java/main directory. The existing Mahout build
         environment will then be able to compile the code automatically.
      

      
Multimedia extras
      

      All four authors have recorded audio and video segments that accompany specific sections in most of the chapters and provide
         additional information on selected topics. These segments can be activated in the ebook version of Mahout in Action, which is available for free for all owners of the print book, or you can access them for free from the publisher’s website
         at www.manning.com/MahoutinAction/extras. On the printed pages, audio and video icons indicate the topics covered and who is speaking in each segment. Please refer
         to a full list of these extras that begins on page xxiii.
      

      
Author Online
      

      The purchase of Mahout in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
         questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/MahoutinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
         rules of conduct in the forum.
      

      Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
         readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
         whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging
         questions, lest their interest stray!
      

      The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
         the book is in print.
      

      



About Multimedia Extras
      

      Accompanying specific sections in this book are multimedia extras, which are available from www.manning.com/MahoutinAction/extras/ and are free for anyone to listen to or view. Audio or video icons in the margins, like the ones below, indicate which sections
         of the book have these additional features.
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Audio icon
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Video icon

      






	No. 1
               	Audio
            


	 
               	Sean introduces the Mahout project and explains his involvement
            


	No. 2
               	Audio
            


	 
               	Sean discusses the work of a recommender
            


	No. 3
               	Audio
            


	 
               	Sean describes why he thinks it’s possible to “listen” too closely to data
            


	No. 4
               	Audio
            


	 
               	Sean addresses questions about the implementation of the Pearson correlation
            


	No. 5
               	Audio
            


	 
               	Sean discusses the value of interpreting performance metrics
            


	No. 6
               	Audio
            


	 
               	Sean explains the relationship between Mahout and Hadoop
            


	No. 7
               	Audio
            


	 
               	Robin explains how to choose the right distance measure for a data set
            


	No. 8
               	Audio
            


	 
               	Robin expands on the apple analogy
            


	No. 9
               	Audio
            


	 
               	Robin explains the progression of KMeans clustering iterations
            


	No. 10
               	Audio
            


	 
               	Robin discusses strategies to improve clustering quality
            


	No. 11
               	Audio
            


	 
               	Robin explains how to improve performance of large-scale clustering
            


	No. 12
               	Video
            


	 
               	Ellen shows how training a model makes it progressively better
            


	No. 13
               	Video
            


	 
               	Ted and Ellen show what happens inside logistic regression
            


	No. 14
               	Video
            


	 
               	Ted compares the merits of using sequential and parallel algorithms
            


	No. 15
               	Audio
            


	 
               	Ted and Ellen discuss the AUC evaluation method
            


	No. 16
               	Audio
            


	 
               	Ted and Ellen discuss why log-likelihood means “never say never”
            








About the Cover Illustration
      

      On the cover of Mahout in Action is “A man from Rakov-Potok,” a village in northern Croatia. The illustration is taken from a reproduction of an album of
         Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in
         Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself
         situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around
         AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions
         of the costumes and of everyday life.
      

      Rakov-Potok is a picturesque village in the fertile valley of the Sava River in the foothills of the Samobor Mountains, not
         far from the city of Zagreb. The area has a rich history and you can come across many castles, churches, and ruins that date
         back to medieval and even Roman times. The figure on the cover is wearing white woolen trousers and a white woolen jacket,
         richly embroidered in red and blue—a typical costume for the mountaineers of this region.
      

      Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
         away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
         by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
         and fast-paced technological life.
      

      Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
         of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.
      

      


Chapter 1. Meet Apache Mahout
      

      This chapter covers

      

      
	What Apache Mahout is, and where it came from
         

         	A glimpse of recommender engines, clustering, and classification in the real world
         

         	Setting up Mahout
         

      

As you may have guessed from the title, this book is about putting a particular tool, Apache Mahout, to effective use in real
         life. It has three defining qualities.
      

      First, Mahout is an open source machine learning library from Apache. The algorithms it implements fall under the broad umbrella of machine learning or collective intelligence. This can mean many things, but at the moment for Mahout it means primarily recommender engines (collaborative filtering),
         clustering, and classification.
      

      It’s also scalable. Mahout aims to be the machine learning tool of choice when the collection of data to be processed is very large, perhaps
         far too large for a single machine. In its current incarnation, these scalable machine learning implementations in Mahout
         are written in Java, and some portions are built upon Apache’s Hadoop distributed computation project.
      

      Finally, it’s a Java library. It doesn’t provide a user interface, a prepackaged server, or an installer. It’s a framework of tools intended to be used
         and adapted by developers.
      

      To set the stage, this chapter will take a brief look at the sorts of machine learning that Mahout can help you perform on
         your data—using recommender engines, clustering, and classification—by looking at some familiar real-world instances.
      

      In preparation for hands-on interaction with Mahout throughout the book, you’ll also step through some necessary setup and
         installation.
      

      
1.1. Mahout’s story
      

      First, some background on Mahout itself is in order. You may be wondering how to pronounce Mahout: in the way it’s commonly Anglicized, it should rhyme with trout. It’s a Hindi word that refers to an elephant driver, and to explain that one, here’s a little history.
      

      Mahout began life in 2008 as a subproject of Apache’s Lucene project, which provides the well-known open source search engine
         of the same name. Lucene provides advanced implementations of search, text mining, and information-retrieval techniques. In
         the universe of computer science, these concepts are adjacent to machine learning techniques like clustering and, to an extent,
         classification. As a result, some of the work of the Lucene committers that fell more into these machine learning areas was
         spun off into its own subproject. Soon after, Mahout absorbed the Taste open source collaborative filtering project.
      

      Figure 1.1 shows some of Mahout’s lineage within the Apache Software Foundation. As of April 2010, Mahout became a top-level Apache
         project in its own right, and got a brand-new elephant rider logo to boot.
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      Figure 1.1. Apache Mahout and its related projects within the Apache Software Foundation
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      Much of Mahout’s work has been not only implementing these algorithms conventionally, in an efficient and scalable way, but
         also converting some of these algorithms to work at scale on top of Hadoop. Hadoop’s mascot is an elephant, which at last
         explains the project name!
      

      Mahout incubates a number of techniques and algorithms, many still in development or in an experimental phase (https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms). At this early stage in the project’s life, three core themes are evident: recommender engines (collaborative filtering),
         clustering, and classification. This is by no means all that exists within Mahout, but they are the most prominent and mature
         themes at the time of writing. These, therefore, are the focus of this book.
      

      Chances are that if you’re reading this, you’re already aware of the interesting potential of these three families of techniques.
         But just in case, read on.
      

      
1.2. Mahout’s machine learning themes
      

      Although Mahout is, in theory, a project open to implementations of all kinds of machine learning techniques, it’s in practice
         a project that focuses on three key areas of machine learning at the moment. These are recommender engines (collaborative
         filtering), clustering, and classification.
      

      1.2.1. Recommender engines
      

      Recommender engines are the most immediately recognizable machine learning technique in use today. You’ll have seen services
         or sites that attempt to recommend books or movies or articles based on your past actions. They try to infer tastes and preferences
         and identify unknown items that are of interest:
      

      

      
	Amazon.com is perhaps the most famous e-commerce site to deploy recommendations. Based on purchases and site activity, Amazon
            recommends books and other items likely to be of interest. See figure 1.2.
            Figure 1.2. A recommendation from Amazon. Based on past purchase history and other activity of customers like the user, Amazon considers
               this to be something the user is interested in. It can even list similar items that the user has bought or liked that in part
               caused the recommendation.
            

            [image: ]

         

         	Netflix similarly recommends DVDs that may be of interest, and famously offered a $1,000,000 prize to researchers who could
            improve the quality of their recommendations.
         

         	Dating sites like Líbímseti (discussed later) can even recommend people to people.
         

         	Social networking sites like Facebook use variants on recommender techniques to identify people most likely to be as-yet-unconnected
            friends.
         

      

As Amazon and others have demonstrated, recommenders can have concrete commercial value by enabling smart cross-selling opportunities.
         One firm reports that recommending products to users can drive an 8 to 12 percent increase in sales.[1]

      
         1 Practical eCommerce, “10 Questions on Product Recommendations,” http://mng.bz/b6A5

      

      1.2.2. Clustering
      

      Clustering is less apparent, but it turns up in equally well-known contexts. As its name implies, clustering techniques attempt
         to group a large number of things together into clusters that share some similarity. It’s a way to discover hierarchy and
         order in a large or hard-to-understand data set, and in that way reveal interesting patterns or make the data set easier to comprehend.
      

      

      
	Google News groups news articles by topic using clustering techniques, in order to present news grouped by logical story,
            rather than presenting a raw listing of all articles. Figure 1.3 illustrates this.
            Figure 1.3. A sample news grouping from Google News. A detailed snippet from one representative story is displayed, and links to a few
               other similar stories within the cluster for this topic are shown. Links to all the stories that are clustered together in
               this topic are available too.
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         	Search engines like Clusty group their search results for similar reasons.
         

         	Consumers may be grouped into segments (clusters) using clustering techniques based on attributes like income, location, and
            buying habits.
         

      

Clustering helps identify structure, and even hierarchy, among a large collection of things that may be otherwise difficult
         to make sense of. Enterprises might use this technique to discover hidden groupings among users, or to organize a large collection
         of documents sensibly, or to discover common usage patterns for a site based on logs.
      

      1.2.3. Classification
      

      Classification techniques decide how much a thing is or isn’t part of some type or category, or how much it does or doesn’t
         have some attribute. Classification, like clustering, is ubiquitous, but it’s even more behind the scenes. Often these systems
         learn by reviewing many instances of items in the categories in order to deduce classification rules. This general idea has
         many applications:
      

      

      
	Yahoo! Mail decides whether or not incoming messages are spam based on prior emails and spam reports from users, as well as
            on characteristics of the email itself. A few messages classified as spam are shown in figure 1.4.
            Figure 1.4. Spam messages as detected by Yahoo! Mail. Based on reports of email spam from users, plus other analysis, the system has learned
               certain attributes that usually identify spam. For example, messages mentioning “Viagra” are frequently spam—as are those
               with clever misspellings like “v1agra.” The presence of such terms is an example of an attribute that a spam classifier can
               learn.
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         	Google’s Picasa and other photo-management applications can decide when a region of an image contains a human face.
         

         	Optical character recognition software classifies small regions of scanned text into individual characters.
         

         	Apple’s Genius feature in iTunes reportedly uses classification to classify songs into potential playlists for users.
         

      

Classification helps decide whether a new input or thing matches a previously observed pattern or not, and it’s often used
         to classify behavior or patterns as unusual. It could be used to detect suspicious network activity or fraud. It might be
         used to figure out when a user’s message indicates frustration or satisfaction.
      

      Each of these techniques works best when provided with a large amount of good input data. In some cases, these techniques
         must not only work on large amounts of input, but must produce results quickly, and these factors make scalability a major
         issue. And, as mentioned before, one of Mahout’s key reasons for being is to produce implementations of these techniques that
         do scale up to huge input.
      

      
1.3. Tackling large scale with Mahout and Hadoop
      

      How real is the problem of scale in machine learning algorithms? Let’s consider the size of a few problems where you might
         deploy Mahout.
      

      Consider that Picasa may have hosted over half a billion photos even three years ago, according to some crude estimates.[2] This implies millions of new photos per day that must be analyzed. The analysis of one photo by itself isn’t a large problem,
         even though it’s repeated millions of times. But the learning phase can require information from each of the billions of photos
         simultaneously—a computation on a scale that isn’t feasible for a single machine.
      

      
         2Google Blogoscoped, “Overall Number of Picasa Photos” (March 12, 2007), http://blogoscoped.com/archive/2007-03-12-n67.html

      

      According to a similar analysis, Google News sees about 3.5 million new news articles per day. Although this does not seem like a large amount in absolute terms, consider that these articles must be clustered, along
         with other recent articles, in minutes in order to become available in a timely manner.
      

      The subset of rating data that Netflix published for the Netflix Prize contained 100 million ratings. Because this was just
         the data released for contest purposes, presumably the total amount of data that Netflix actually has and must process to
         create recommendations is many times larger!
      

      Machine learning techniques must be deployed in contexts like these, where the amount of input is large—so large that it isn’t
         feasible to process it all on one computer, even a powerful one. Without an implementation such as Mahout, these would be
         impossible tasks. This is why Mahout makes scalability a top priority, and why this book will focus, in a way that others
         don’t, on dealing with large data sets effectively.
      

      Sophisticated machine learning techniques, applied at scale, were until recently only something that large, advanced technology
         companies could consider using. But today computing power is cheaper than ever and more accessible via open source frameworks
         like Apache’s Hadoop. Mahout attempts to complete the puzzle by providing quality, open source implementations capable of solving problems at this scale with Hadoop, and putting this into
         the hands of all technology organizations.
      

      Some of Mahout makes use of Hadoop, which includes an open source, Java-based implementation of the MapReduce distributed
         computing framework popularized and used internally at Google (http://labs.google.com/papers/mapreduce.html). MapReduce is a programming paradigm that at first sounds odd, or too simple to be powerful. The MapReduce paradigm applies
         to problems where the input is a set of key-value pairs. A map function turns these key-value pairs into other intermediate key-value pairs. A reduce function merges in some way all values for each intermediate key to produce output. Actually, many problems can be framed
         as MapReduce problems, or as a series of them. The paradigm also lends itself quite well to parallelization: all of the processing
         is independent and so can be split across many machines. Rather than reproduce a full explanation of MapReduce here, we refer
         you to tutorials such as the one provided by Hadoop (http://hadoop.apache.org/mapreduce/docs/current/mapred_tutorial.html).
      

      Hadoop implements the MapReduce paradigm, which is no small feat, even given how simple MapReduce sounds. It manages storage
         of the input, intermediate key-value pairs, and output; this data could potentially be massive and must be available to many
         worker machines, not just stored locally on one. It also manages partitioning and data transfer between worker machines, as
         well as detection of and recovery from individual machine failures. Understanding how much work goes on behind the scenes
         will help prepare you for how relatively complex using Hadoop can seem. It’s not just a library you add to your project. It’s
         several components, each with libraries and (several) standalone server processes, which might be run on several machines.
         Operating processes based on Hadoop isn’t simple, but investing in a scalable, distributed implementation can pay dividends
         later: your data may quickly grow to great size, and this sort of scalable implementation is a way to future-proof your application.
      

      In chapter 6, this book will try to cut through some of that complexity to get you running on Hadoop quickly, after which you can explore
         the finer points and details of operating full clusters and tuning the framework. Because this complex framework that needs
         a great deal of computing power is becoming so popular, it’s not surprising that cloud computing providers are beginning to
         offer Hadoop-related services. For example, Amazon offers Elastic MapReduce (http://aws.amazon.com/elasticmapreduce/), a service that manages a Hadoop cluster, provides the computing power, and puts a friendlier interface on the otherwise
         complex task of operating and monitoring a large-scale job with Hadoop.
      

      
1.4. Setting up Mahout
      

      You’ll need to assemble some tools before you can play along at home with the code we’ll present in the coming chapters. We
         assume you’re comfortable with Java development already.
      

      Mahout and its associated frameworks are Java-based and therefore platform-independent, so you should be able to use it with
         any platform that can run a modern JVM. At times, we’ll need to give examples or instructions that will vary from platform
         to platform. In particular, command-line commands are somewhat different in a Windows shell than in a FreeBSD tcsh shell.
         We’ll use commands and syntax that work with bash, a shell found on most Unix-like platforms. This is the default on most
         Linux distributions, Mac OS X, many Unix variants, and Cygwin (a popular Unix-like environment for Windows). Windows users
         who wish to use the Windows shell are the most likely to be inconvenienced by this. Still, it should be simple to interpret
         and translate the listings given in this book to work for that shell.
      

      1.4.1. Java and IDEs
      

      Java is likely already installed on your personal computer if you’ve done any Java development so far. Note that Mahout requires
         Java 6. If you’re not sure which Java version you have, open a terminal and type java -version. If the reported version doesn’t begin with 1.6, you need to also install Java 6.
      

      Windows and Linux users can find a Java 6 JVM from Oracle at http://www.oracle.com/technetwork/java/. Apple provides a Java 6 JVM for Mac OS X 10.5 and 10.6. In Mac OS X, if it doesn’t appear that Java 6 is being used, open
         the Java Preferences application under the /Applications/Utilities folder. This will allow you to select Java 6 as the default.
      

      Most people will find it quite a bit easier to edit, compile, and run this book’s examples with the help of an IDE; this is
         strongly recommended. Eclipse (http://www.eclipse.org) is the most popular, free Java IDE. Installing and configuring Eclipse is beyond the scope of this book, but you should
         spend some time becoming familiar with it before proceeding. NetBeans (http://netbeans.org/) is also a popular, free IDE. IntelliJ IDEA (http://www.jetbrains.com/idea/index.html) is another powerful and popular IDE, and a free community version is now available.
      

      As an example of what you can do with an IDE, IDEA can create a new project from an existing Maven model; if you specify the
         root directory of the Mahout source code upon creating a project, it will automatically configure and present the entire project
         in an organized manner. It’s then possible to drop the source code found throughout this book into the examples/src/main/java/
         source root and run it from within IDEA with one click—the details of dependencies and compilation are managed automatically.
         This should prove far easier than attempting to compile and run the code manually.
      

       




	
            



Note

      If the test program uses a file with input data, it usually should run in the same directory as the file with the data. Consult
         your IDE’s guide for details about how to set up a working directory for each of the examples.
      

      


	
            



 

1.4.2. Installing Maven
      

      As with many Apache projects, Mahout’s build and release system is built around Maven (http://maven.apache.org). Maven is a command-line tool that manages dependencies, compiles code, packages releases, generates documentation, and
         publishes formal releases. Although it has some superficial resemblance to the also-popular Ant build tool, it isn’t the same.
         Ant is a flexible, lower-level scripting language, and Maven is a higher-level tool more purpose-built for dependency and
         release management. Because Mahout uses Maven, you should install Maven yourself.
      

      Mac OS X users will be pleased to find that Maven should already be installed. If not, install Apple’s Developer Tools. Type
         mvn --version on the command line. If you successfully see a version number, and the version is at least 2.2, you’re ready to go. If not,
         you should install a local copy of Maven.
      

      Users of Linux distributions with a decent package management system may be able to use it to quickly obtain a recent version
         of Maven. Otherwise, standard procedure would be to download a binary distribution, unpack it to a common location, such as
         /usr/local/maven, and then edit bash’s configuration file, ~/.bashrc, to include a line like export PATH=/usr/local/maven/bin:$PATH. This will ensure that the mvn command is always available.
      

      If you’re using an IDE like Eclipse or IntelliJ, it already includes Maven integration. Refer to its documentation to learn
         how to enable the Maven integration. This will make working with Mahout in an IDE much simpler, as the IDE can use the project’s
         Maven configuration file (pom.xml) to instantly configure and import the project.
      

       




	
            



Note

      For Eclipse, you’ll need to install the m2eclipse plugin (http://www.eclipse.org/m2e/). For NetBeans, Maven support is available out of the box starting with version 6.7; for previous versions, you’ll need to
         install a separate plugin.
      

      


	
            



 

1.4.3. Installing Mahout
      

      Mahout is still in development, and this book was written to work with the 0.5 release of Mahout. This release and others
         may be downloaded by following the instructions at https://cwiki.apache.org/confluence/display/MAHOUT/Downloads; the archive of the source code may be unpacked anywhere that’s convenient on your computer.
      

      Because Mahout is changing frequently, and bug fixes and improvements are added regularly, it may be useful to use a later
         release than 0.5 (or even the latest unreleased code from Subversion; see https://cwiki.apache.org/confluence/display/MAHOUT/Version+Control). Future point releases should be backwards compatible with the examples in this book.
      

      Once you’ve obtained the source, either from Subversion or from a release archive, create a new project for Mahout in your
         IDE. This is IDE-specific; refer to its documentation for particulars of how this can be accomplished. It will be easiest
         to use your IDE’s Maven integration to import the Maven project from the pom.xml file in the root of the project source.
      

      Once all of these setup steps are completed, you can easily create a new source directory within this project to hold the
         sample code that will be introduced in upcoming chapters. With the project properly configured, you should be able to compile
         and run the code transparently with no further effort.
      

      The source code for the examples is available from Manning’s site (http://www.manning.com/MahoutinAction/) or from GitHub (https://github.com/tdunning/MiA). Use the instructions provided with the source code to set up your work environment.
      

      1.4.4. Installing Hadoop
      

      For some activities later in this book, you’ll need your own local installation of Hadoop. You don’t need a cluster of computers
         to run Hadoop. Setting up Hadoop isn’t difficult, but it’s not trivial. Rather than repeat the procedures, we’ll direct you
         to obtain a copy of Hadoop version 0.20.2 from the Hadoop website at http://hadoop.apache.org/common/releases.html, and then set up Hadoop for pseudo-distributed operation by following the Single Node Setup documentation (http://hadoop.apache.org/common/docs/current/single_node_setup.html).
      

      
1.5. Summary
      

      Mahout is a young, open source, scalable machine learning library from Apache, and this book is a practical guide to using
         Mahout to solve real problems with machine learning techniques. In particular, you’ll soon explore recommender engines, clustering,
         and classification. If you’re a researcher familiar with machine learning theory and you’re looking for a practical how-to
         guide, or you’re a developer looking to quickly learn best practices from practitioners, this book is for you.
      

      These techniques are no longer merely theory. We’ve already noted some well-known examples of recommender engines, clustering,
         and classification deployed in the real world: e-commerce, email, videos, photos, and more involve large-scale machine learning.
         These techniques have been deployed to solve real problems and even generate value for enterprises—and they’re now accessible
         via Mahout.
      

      We’ve also noted the vast amount of data sometimes employed with these techniques—scalability is a uniquely persistent concern
         in this area. We took a first look at MapReduce and Hadoop and how they power some of the scalability that Mahout provides.
      

      Because this will be a hands-on, practical book, we’ve set you up to begin working with Mahout right away. At this point,
         you should have assembled the tools you’ll need to work with Mahout and be ready for action. Because this book is intended
         to be practical, let’s wrap up the opening remarks now and get on to some real code with Mahout. Read on!
      

      


Part 1. Recommendations
      

      This first part of the book, including chapters 2 through 6, explores one of the three pillars of Apache Mahout’s machine learning implementations: collaborative filtering and recommendation.
         With these techniques, you can understand a person’s tastes and find new, desirable content for them automatically. This part
         is also a warm-up for the rest of the book, which will depend heavily on the Apache Hadoop distributed computing framework.
         You’ll meet machine learning in Apache Mahout in simple Java first, and then in Hadoop.
      

      Chapter 2 introduces recommender engines, as implemented in Mahout, and covers evaluating performance in the context of a runnable
         example. Chapter 3 discusses representing recommender data efficiently in Mahout. Chapter 4 catalogs the various recommender engine implementations available in Mahout and their varying features and attributes.
      

      Chapter 5 presents a case study based on data from a dating site, which shows how you can adapt the approaches in Mahout to cope with
         real-world data and produce a production-ready recommender. Finally, chapter 6 provides a first look at Mahout’s use of Apache Hadoop to implement a large-scale distributed recommender engine.
      

      


Chapter 2. Introducing recommenders
      

      This chapter covers

      

      
	What recommenders are, within Mahout
         

         	A first look at a recommender in action
         

         	Evaluating the accuracy and quality of recommender engines
         

         	Evaluating a recommender on a real data set: GroupLens
         

      

Each day we form opinions about things we like, don’t like, and don’t even care about. It happens unconsciously. You hear
         a song on the radio and either notice it because it’s catchy, or because it sounds awful—or maybe you don’t notice it at all.
         The same thing happens with T-shirts, salads, hairstyles, ski resorts, faces, and television shows.
      

      Although people’s tastes vary, they do follow patterns. People tend to like things that are similar to other things they like.
         Because Sean loves bacon-lettuce-and-tomato sandwiches, you can guess that he would enjoy a club sandwich, which is mostly the same sandwich but with turkey. Likewise, people tend to like things that similar people like.
      

      These patterns can be used to predict such likes and dislikes. Recommendation is all about predicting these patterns of taste,
         and using them to discover new and desirable things you didn’t already know about.
      

      After introducing the idea of recommendation in more depth, this chapter will help you experiment with some Mahout code to
         run a simple recommender engine and understand how well it works, in order to give you an immediate feel for how Mahout works
         in this regard.
      

      
2.1. Defining recommendation
      

      You picked up this book from the shelf for a reason. Maybe you saw it next to other books you know and find useful, and you
         figured the bookstore put it there because people who like those books tend to like this one too. Maybe you saw this book
         on the bookshelf of a coworker, who you know shares your interest in machine learning, or perhaps they recommended it to you
         directly.
      

      These are different, but valid, strategies for discovering new things: to discover items you may like, you could look to what
         people with similar tastes seem to like. On the other hand, you could figure out what items are like the ones you already
         like, again by looking to others’ apparent preferences. In fact, these are the two broadest categories of recommender engine
         algorithms: user-based and item-based recommenders, both of which are well represented within Mahout.
      

      Strictly speaking, the preceding scenarios are examples of collaborative filtering—producing recommendations based on, and only based on, knowledge of users’ relationships to items. These techniques require
         no knowledge of the properties of the items themselves. This is, in a way, an advantage. This recommender framework doesn’t
         care whether the items are books, theme parks, flowers, or even other people, because nothing about their attributes enters
         into any of the input.
      

      There are other approaches based on the attributes of items, and these are generally referred to as content-based recommendation techniques. For example, if a friend recommended this book to you because it’s a Manning book, and the friend
         likes other Manning books, then the friend is engaging in something more like content-based recommendation. The suggestion
         is based on an attribute of the books: the publisher.
      

      There’s nothing wrong with content-based techniques; on the contrary, they can work quite well. They’re necessarily domain-specific
         approaches, and they’d be hard to meaningfully codify into a framework. To build an effective content-based book recommender,
         one would have to decide which attributes of a book—page count, author, publisher, color, font—are meaningful, and to what
         degree. None of this knowledge translates into any other domain; recommending books this way doesn’t help in the area of recommending
         pizza toppings.
      

      For this reason, Mahout won’t have much to say about content-based recommendations. These ideas can be built into, and on top of, what Mahout provides; as such, it might technically be called a collaborative filtering framework. An example of this will follow in chapter 5, where you’ll build a recommender for a dating site.
      

      For now, though, it’s time to experiment with collaborative filtering within Mahout by creating some simple input and finding
         recommendations based on the input.
      

      
2.2. Running a first recommender engine
      

      Mahout contains a recommender engine—several types of them, in fact, beginning with conventional user-based and item-based
         recommenders. It includes implementations of several other algorithms as well, but for now we’ll explore a simple user-based
         recommender.
      

      2.2.1. Creating the input
      

      To explore recommendations in Mahout, it’s best to start with a trivial example.

      The recommender requires input—data on which it will base its recommendations. This data takes the form of preferences in Mahout-speak. Because the recommender engines that are most familiar involve recommending items to users, it’ll be most
         convenient to talk about preferences as associations from users to items—though, as noted previously, these users and items
         could be anything. A preference consists of a user ID and an item ID, and usually a number expressing the strength of the
         user’s preference for the item. IDs in Mahout are always numbers—integers, in fact. The preference value could be anything,
         as long as larger values mean stronger positive preferences. For instance, these values might be ratings on a scale of 1 to
         5, where 1 indicates items the user can’t stand, and 5 indicates favorites.
      

      Create a text file containing data about users, who are cleverly named “1” to “5,” and their preferences for seven books,
         simply called “101” through “107.” In real life, these might be customer IDs and product IDs from a company database; Mahout
         doesn’t require that the users and items be named with numbers. Write this data in a simple comma-separated value format.
      

      Copy the following example into a file and save it as intro.csv.

      Listing 2.1. Recommender input file, intro.csv
      

      [image: ]

      With some study, trends appear. Users 1 and 5 seem to have similar tastes. They both like book 101, like 102 a little less,
         and like 103 less still. The same goes for users 1 and 4, as they seem to like 101 and 103 identically (no word on how user
         4 likes 102 though). On the other hand, users 1 and 2 have tastes that seem to run counter to each other—1 likes 101 whereas
         2 doesn’t, and 1 likes 103 but 2 is just the opposite. Users 1 and 3 don’t overlap much—the only book both express a preference
         for is 101. Figure 2.1 illustrates the relationships, both positive and negative, between users and items.
      

      Figure 2.1. Relationships between users 1 to 5 and items 101 to 107. Dashed lines represent associations that seem negative—the user doesn’t
         seem to like the item much but expresses a relationship to the item.
      

      [image: ]

      2.2.2. Creating a recommender
      

      So what book might you recommend to user 1? Not 101, 102, or 103—user 1 already knows about these books, apparently, and recommendation
         is about discovering new things. Intuition suggests that because users 4 and 5 seem similar to 1, it would be good to recommend
         something that user 4 or user 5 likes. That leaves books 104, 105, and 106 as possible recommendations. On the whole, 104
         seems to be the most liked of these possibilities, judging by the preference values of 4.5 and 4.0 for item 104.
      

      Now, run the following code.

      Listing 2.2. A simple user-based recommender program with Mahout
      

      [image: ]

      To help visualize the relationship between these basic components, see figure 2.2. Not all Mahout-based recommenders will look like this—some will employ different components with different relationships.
         But this gives a sense of what’s going on in the example.
      

      Figure 2.2. Simplified illustration of component interaction in a Mahout user-based recommender
      

      [image: ]

      We’ll discuss each of these components in more detail in the next two chapters, but we can summarize the role of each component
         now. A DataModel implementation stores and provides access to all the preference, user, and item data needed in the computation. A UserSimilarity implementation provides some notion of how similar two users are; this could be based on one of many possible metrics or
         calculations. A UserNeighborhood implementation defines a notion of a group of users that are most similar to a given user. Finally, a Recommender implementation pulls all these components together to recommend items to users.
      

      2.2.3. Analyzing the output
      

      When you run the code in listing 2.2, the output in your terminal or IDE should be as follows:
      

      RecommendedItem [item:104, value:4.257081]

      The request asked for one top recommendation, and it got one. The recommender engine recommended book 104 to user 1. Further,
         it said that the recommender engine did so because it estimated user 1’s preference for book 104 to be about 4.3, and that
         was the highest among all the items eligible for recommendation.
      

      That’s not bad. Book 107 did not appear; it was also recommendable but was only associated with a user who had different tastes.
         It picked 104 over 106, and this makes sense when you note that 104 is a bit more highly rated overall. Further, the output contained a reasonable estimate of how
         much user 1 likes item 104—something between the 4.0 and 4.5 that users 4 and 5 expressed.
      

      The right answer isn’t obvious from looking at the data, but the recommender engine made some decent sense of it and returned
         a defensible answer. If you got a pleasant tingle out of seeing this simple program give a useful and non-obvious result from
         a small pile of data, the world of machine learning is for you!
      

      For clear, small data sets, producing recommendations is as trivial as it appears in the preceding example. In real life,
         data sets are huge, and they’re noisy. For example, imagine a popular news site recommending news articles to readers. Preferences
         are inferred from article clicks, but many of these preferences may be bogus—maybe a reader clicked on an article but didn’t
         like it, or clicked on the wrong story. Perhaps many of the clicks occurred while not logged in, so they can’t be associated
         with a user. And imagine the size of the data set—perhaps billions of clicks in a month.
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