

 [image: cover]

 Mahout in Action

 Sean Owen, Robin Anil, Ted Dunning & Ellen Friedman

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

	
 [image:]

 	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

 	Development editor:
Copyeditor:
Proofreader:
Typesetter:
Cover designer:

 	Katharine Osborne
Andy Carroll
Melody Dolab
Dottie Marsico
Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 16 15 14 13 12 11

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About Multimedia Extras

 About the Cover Illustration

 Chapter 1. Meet Apache Mahout

 1. Recommendations

 Chapter 2. Introducing recommenders

 Chapter 3. Representing recommender data

 Chapter 4. Making recommendations

 Chapter 5. Taking recommenders to production

 Chapter 6. Distributing recommendation computations

 2. Clustering

 Chapter 7. Introduction to clustering

 Chapter 8. Representing data

 Chapter 9. Clustering algorithms in Mahout

 Chapter 10. Evaluating and improving clustering quality

 Chapter 11. Taking clustering to production

 Chapter 12. Real-world applications of clustering

 3. Classification

 Chapter 13. Introduction to classification

 Chapter 14. Training a classifier

 Chapter 15. Evaluating and tuning a classifier

 Chapter 16. Deploying a classifier

 Chapter 17. Case study: Shop It To Me

 Appendix A. JVM tuning

 Appendix B. Mahout math

 C. Resources

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About Multimedia Extras

 About the Cover Illustration

 Chapter 1. Meet Apache Mahout

 1.1. Mahout’s story

 1.2. Mahout’s machine learning themes

 1.2.1. Recommender engines

 1.2.2. Clustering

 1.2.3. Classification

 1.3. Tackling large scale with Mahout and Hadoop

 1.4. Setting up Mahout

 1.4.1. Java and IDEs

 1.4.2. Installing Maven

 1.4.3. Installing Mahout

 1.4.4. Installing Hadoop

 1.5. Summary

 1. Recommendations

 Chapter 2. Introducing recommenders

 2.1. Defining recommendation

 2.2. Running a first recommender engine

 2.2.1. Creating the input

 2.2.2. Creating a recommender

 2.2.3. Analyzing the output

 2.3. Evaluating a recommender

 2.3.1. Training data and scoring

 2.3.2. Running RecommenderEvaluator

 2.3.3. Assessing the result

 2.4. Evaluating precision and recall

 2.4.1. Running RecommenderIRStatsEvaluator

 2.4.2. Problems with precision and recall

 2.5. Evaluating the GroupLens data set

 2.5.1. Extracting the recommender input

 2.5.2. Experimenting with other recommenders

 2.6. Summary

 Chapter 3. Representing recommender data

 3.1. Representing preference data

 3.1.1. The Preference object

 3.1.2. PreferenceArray and implementations

 3.1.3. Speeding up collections

 3.1.4. FastByIDMap and FastIDSet

 3.2. In-memory DataModels

 3.2.1. GenericDataModel

 3.2.2. File-based data

 3.2.3. Refreshable components

 3.2.4. Update files

 3.2.5. Database-based data

 3.2.6. JDBC and MySQL

 3.2.7. Configuring via JNDI

 3.2.8. Configuring programmatically

 3.3. Coping without preference values

 3.3.1. When to ignore values

 3.3.2. In-memory representations without preference values

 3.3.3. Selecting compatible implementations

 3.4. Summary

 Chapter 4. Making recommendations

 4.1. Understanding user-based recommendation

 4.1.1. When recommendation goes wrong

 4.1.2. When recommendation goes right

 4.2. Exploring the user-based recommender

 4.2.1. The algorithm

 4.2.2. Implementing the algorithm with GenericUserBasedRecommender

 4.2.3. Exploring with GroupLens

 4.2.4. Exploring user neighborhoods

 4.2.5. Fixed-size neighborhoods

 4.2.6. Threshold-based neighborhood

 4.3. Exploring similarity metrics

 4.3.1. Pearson correlation–based similarity

 4.3.2. Pearson correlation problems

 4.3.3. Employing weighting

 4.3.4. Defining similarity by Euclidean distance

 4.3.5. Adapting the cosine measure similarity

 4.3.6. Defining similarity by relative rank with the Spearman correlation

 4.3.7. Ignoring preference values in similarity with the Tanimoto coefficient

 4.3.8. Computing smarter similarity with a log-likelihood test

 4.3.9. Inferring preferences

 4.4. Item-based recommendation

 4.4.1. The algorithm

 4.4.2. Exploring the item-based recommender

 4.5. Slope-one recommender

 4.5.1. The algorithm

 4.5.2. Slope-one in practice

 4.5.3. DiffStorage and memory considerations

 4.5.4. Distributing the precomputation

 4.6. New and experimental recommenders

 4.6.1. Singular value decomposition–based recommenders

 4.6.2. Linear interpolation item–based recommendation

 4.6.3. Cluster-based recommendation

 4.7. Comparison to other recommenders

 4.7.1. Injecting content-based techniques into Mahout

 4.7.2. Looking deeper into content-based recommendation

 4.8. Comparison to model-based recommenders

 4.9. Summary

 Chapter 5. Taking recommenders to production

 5.1. Analyzing example data from a dating site

 5.2. Finding an effective recommender

 5.2.1. User-based recommenders

 5.2.2. Item-based recommenders

 5.2.3. Slope-one recommender

 5.2.4. Evaluating precision and recall

 5.2.5. Evaluating Performance

 5.3. Injecting domain-specific information

 5.3.1. Employing a custom item similarity metric

 5.3.2. Recommending based on content

 5.3.3. Modifying recommendations with IDRescorer

 5.3.4. Incorporating gender in an IDRescorer

 5.3.5. Packaging a custom recommender

 5.4. Recommending to anonymous users

 5.4.1. Temporary users with PlusAnonymousUserDataModel

 5.4.2. Aggregating anonymous users

 5.5. Creating a web-enabled recommender

 5.5.1. Packaging a WAR file

 5.5.2. Testing deployment

 5.6. Updating and monitoring the recommender

 5.7. Summary

 Chapter 6. Distributing recommendation computations

 6.1. Analyzing the Wikipedia data set

 6.1.1. Struggling with scale

 6.1.2. Evaluating benefits and drawbacks of distributing computations

 6.2. Designing a distributed item-based algorithm

 6.2.1. Constructing a co-occurrence matrix

 6.2.2. Computing user vectors

 6.2.3. Producing the recommendations

 6.2.4. Understanding the results

 6.2.5. Towards a distributed implementation

 6.3. Implementing a distributed algorithm with MapReduce

 6.3.1. Introducing MapReduce

 6.3.2. Translating to MapReduce: generating user vectors

 6.3.3. Translating to MapReduce: calculating co-occurrence

 6.3.4. Translating to MapReduce: rethinking matrix multiplication

 6.3.5. Translating to MapReduce: matrix multiplication by partial products

 6.3.6. Translating to MapReduce: making recommendations

 6.4. Running MapReduces with Hadoop

 6.4.1. Setting up Hadoop

 6.4.2. Running recommendations with Hadoop

 6.4.3. Configuring mappers and reducers

 6.5. Pseudo-distributing a recommender

 6.6. Looking beyond first steps with recommendations

 6.6.1. Running in the cloud

 6.6.2. Imagining unconventional uses of recommendations

 6.7. Summary

 2. Clustering

 Chapter 7. Introduction to clustering

 7.1. Clustering basics

 7.2. Measuring the similarity of items

 7.3. Hello World: running a simple clustering example

 7.3.1. Creating the input

 7.3.2. Using Mahout clustering

 7.3.3. Analyzing the output

 7.4. Exploring distance measures

 7.4.1. Euclidean distance measure

 7.4.2. Squared Euclidean distance measure

 7.4.3. Manhattan distance measure

 7.4.4. Cosine distance measure

 7.4.5. Tanimoto distance measure

 7.4.6. Weighted distance measure

 7.5. Hello World again! Trying out various distance measures

 7.6. Summary

 Chapter 8. Representing data

 8.1. Visualizing vectors

 8.1.1. Transforming data into vectors

 8.1.2. Preparing vectors for use by Mahout

 8.2. Representing text documents as vectors

 8.2.1. Improving weighting with TF-IDF

 8.2.2. Accounting for word dependencies with n-gram collocations

 8.3. Generating vectors from documents

 8.4. Improving quality of vectors using normalization

 8.5. Summary

 Chapter 9. Clustering algorithms in Mahout

 9.1. K-means clustering

 9.1.1. All you need to know about k-means

 9.1.2. Running k-means clustering

 9.1.3. Finding the perfect k using canopy clustering

 9.1.4. Case study: clustering news articles using k-means

 9.2. Beyond k-means: an overview of clustering techniques

 9.2.1. Different kinds of clustering problems

 9.2.2. Different clustering approaches

 9.3. Fuzzy k-means clustering

 9.3.1. Running fuzzy k-means clustering

 9.3.2. How fuzzy is too fuzzy?

 9.3.3. Case study: clustering news articles using fuzzy k-means

 9.4. Model-based clustering

 9.4.1. Deficiencies of k-means

 9.4.2. Dirichlet clustering

 9.4.3. Running a model-based clustering example

 9.5. Topic modeling using latent Dirichlet allocation (LDA)

 9.5.1. Understanding latent Dirichlet analysis

 9.5.2. TF-IDF vs. LDA

 9.5.3. Tuning the parameters of LDA

 9.5.4. Case study: finding topics in news documents

 9.5.5. Applications of topic modeling

 9.6. Summary

 Chapter 10. Evaluating and improving clustering quality

 10.1. Inspecting clustering output

 10.2. Analyzing clustering output

 10.2.1. Distance measure and feature selection

 10.2.2. Inter-cluster and intra-cluster distances

 10.2.3. Mixed and overlapping clusters

 10.3. Improving clustering quality

 10.3.1. Improving document vector generation

 10.3.2. Writing a custom distance measure

 10.4. Summary

 Chapter 11. Taking clustering to production

 11.1. Quick-start tutorial for running clustering on Hadoop

 11.1.1. Running clustering on a local Hadoop cluster

 11.1.2. Customizing Hadoop configurations

 11.2. Tuning clustering performance

 11.2.1. Avoiding performance pitfalls in CPU-bound operations

 11.2.2. Avoiding performance pitfalls in I/O-bound operations

 11.3. Batch and online clustering

 11.3.1. Case study: online news clustering

 11.3.2. Case study: clustering Wikipedia articles

 11.4. Summary

 Chapter 12. Real-world applications of clustering

 12.1. Finding similar users on Twitter

 12.1.1. Data preprocessing and feature weighting

 12.1.2. Avoiding common pitfalls in feature selection

 12.2. Suggesting tags for artists on Last.fm

 12.2.1. Tag suggestion using co-occurrence

 12.2.2. Creating a dictionary of Last.fm artists

 12.2.3. Converting Last.fm tags into Vectors with musicians as features

 12.2.4. Running k-means over the Last.fm data

 12.3. Analyzing the Stack Overflow data set

 12.3.1. Parsing the Stack Overflow data set

 12.3.2. Finding clustering problems in Stack Overflow

 12.4. Summary

 3. Classification

 Chapter 13. Introduction to classification

 13.1. Why use Mahout for classification?

 13.2. The fundamentals of classification systems

 13.2.1. Differences between classification, recommendation, and clustering

 13.2.2. Applications of classification

 13.3. How classification works

 13.3.1. Models

 13.3.2. Training versus test versus production

 13.3.3. Predictor variables versus target variable

 13.3.4. Records, fields, and values

 13.3.5. The four types of values for predictor variables

 13.3.6. Supervised versus unsupervised learning

 13.4. Work flow in a typical classification project

 13.4.1. Workflow for stage 1: training the classification model

 13.4.2. Workflow for stage 2: evaluating the classification model

 13.4.3. Workflow for stage 3: using the model in production

 13.5. Step-by-step simple classification example

 13.5.1. The data and the challenge

 13.5.2. Training a model to find color-fill: preliminary thinking

 13.5.3. Choosing a learning algorithm to train the model

 13.5.4. Improving performance of the color-fill classifier

 13.6. Summary

 Chapter 14. Training a classifier

 14.1. Extracting features to build a Mahout classifier

 14.2. Preprocessing raw data into classifiable data

 14.2.1. Transforming raw data

 14.2.2. Computational marketing example

 14.3. Converting classifiable data into vectors

 14.3.1. Representing data as a vector

 14.3.2. Feature hashing with Mahout APIs

 14.4. Classifying the 20 newsgroups data set with SGD

 14.4.1. Getting started: previewing the data set

 14.4.2. Parsing and tokenizing features for the 20 newsgroups data

 14.4.3. Training code for the 20 newsgroups data

 14.5. Choosing an algorithm to train the classifier

 14.5.1. Nonparallel but powerful: using SGD and SVM

 14.5.2. The power of the naive classifier: using naive Bayes and complementary naive Bayes

 14.5.3. Strength in elaborate structure: using random forests

 14.6. Classifying the 20 newsgroups data with naive Bayes

 14.6.1. Getting started: data extraction for naive Bayes

 14.6.2. Training the naive Bayes classifier

 14.6.3. Testing a naive Bayes model

 14.7. Summary

 Chapter 15. Evaluating and tuning a classifier

 15.1. Classifier evaluation in Mahout

 15.1.1. Getting rapid feedback

 15.1.2. Deciding what “good” means

 15.1.3. Recognizing the difference in cost of errors

 15.2. The classifier evaluation API

 15.2.1. Computation of AUC

 15.2.2. Confusion matrices and entropy matrices

 15.2.3. Computing average log likelihood

 15.2.4. Dissecting a model

 15.2.5. Performance of the SGD classifier with 20 newsgroups

 15.3. When classifiers go bad

 15.3.1. Target leaks

 15.3.2. Broken feature extraction

 15.4. Tuning for better performance

 15.4.1. Tuning the problem

 15.4.2. Tuning the classifier

 15.5. Summary

 Chapter 16. Deploying a classifier

 16.1. Process for deployment in huge systems

 16.1.1. Scope out the problem

 16.1.2. Optimize feature extraction as needed

 16.1.3. Optimize vector encoding as needed

 16.1.4. Deploy a scalable classifier service

 16.2. Determining scale and speed requirements

 16.2.1. How big is big?

 16.2.2. Balancing big versus fast

 16.3. Building a training pipeline for large systems

 16.3.1. Acquiring and retaining large-scale data

 16.3.2. Denormalizing and downsampling

 16.3.3. Training pitfalls

 16.3.4. Reading and encoding data at speed

 16.4. Integrating a Mahout classifier

 16.4.1. Plan ahead: key issues for integration

 16.4.2. Model serialization

 16.5. Example: a Thrift-based classification server

 16.5.1. Running the classification server

 16.5.2. Accessing the classifier service

 16.6. Summary

 Chapter 17. Case study: Shop It To Me

 17.1. Why Shop It To Me chose Mahout

 17.1.1. What Shop It To Me does

 17.1.2. Why Shop It To Me needed a classification system

 17.1.3. Mahout outscales the rest

 17.2. General structure of the email marketing system

 17.3. Training the model

 17.3.1. Defining the goal of the classification project

 17.3.2. Partitioning by time

 17.3.3. Avoiding target leaks

 17.3.4. Learning algorithm tweaks

 17.3.5. Feature vector encoding

 17.4. Speeding up classification

 17.4.1. Linear combination of feature vectors

 17.4.2. Linear expansion of model score

 17.5. Summary

 Appendix A. JVM tuning

 Appendix B. Mahout math

 B.1. Vectors

 B.1.1. Vector implementation

 B.1.2. Vector operations

 B.1.3. Advanced Vector methods

 B.2. Matrices

 B.2.1. Matrix operations

 B.3. Mahout math and Hadoop

 C. Resources

 Sources

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 The path to here, for me (Sean), began in 2005. A friend was starting a company that would lean heavily on collaborative filtering.
 There were mature, open source packages for this purpose at the time, but they seemed in some ways too elaborate for simple
 use cases, and in other ways they seemed built for research purposes. For better or worse, I instead prototyped a simple recommender
 for my friend’s startup, from scratch. The startup, unfortunately, cancelled itself. Nevertheless, I couldn’t bring myself
 to delete the prototype. It was certainly interesting, so I cleaned and documented it and released it as an open source project
 called Taste.

 Nothing happened for a year. In my spare time, I added pieces and fixed problems, and then a user or two popped up with bugs
 and patches—and a few more, and then several more. By 2008, there was a small but unmistakable user base out there. And the
 Apache Lucene folks who had just spun off machine-learning-related efforts into Apache Mahout suggested we merge. This book
 project began in late 2009. I find myself surprised and pleased to still be rolling along with this growing snowball of a
 project in 2011 as it’s beginning to be used by large companies in production.

 So, I’m only accidentally here. While I have been a senior engineer, formerly at Google, nobody would mistake me for a expert
 researcher in the field. I am more like a museum curator than a painter—collecting, organizing, and packaging for wider use
 the great ideas of a field. It turns out that’s useful work too.

 Someone recently described the book, after reading a draft, as a “pop” machine learning book. It was meant as a compliment,
 and I couldn’t agree more. Machine learning is a bit of magic, though much of the research-oriented writing on the subject
 can look like arcane spells to anyone but the specialist, and can seem divorced from the reality of applying the techniques.
 Mahout in Action aims to be accessible, to unearth the interesting nuggets of insight for the enthusiast, and to save the practitioner time
 in getting work done. I hope it provides you more “a-ha!” moments than “wha...?” moments.

 SEAN OWEN

 My (Robin’s) interest in machine learning started during my days in college, back in 2006. At that time, I was working as
 an intern with a group of people designing a personalized recommendation engine. That group flourished and became a company
 called Minekey; I was invited to join as one of its core developers. The next four years of my life were spent implementing
 and experimenting with machine learning techniques. Somewhere along that path, I stumbled across Mahout and started contributing
 as a Google Summer of Code student. The next thing I knew, I was contributing algorithms and patches to its codebase, tuning
 and optimizing performance, and helping other folks on the mailing list.

 I am really fortunate to be part of a wonderful and growing community of developers, researchers, and enthusiasts of machine
 learning. As more and more companies are adopting Mahout, it is becoming a mainstream library of machine learning. I really
 hope you enjoy reading this book.

 ROBIN ANIL

 I (Ted) came to the application side of projects from research in machine learning. Formerly an academic, I have subsequently
 been involved in a number of startups, and I have applied machine learning to all of these practical application settings.

 Previously, I (Ellen) worked in research laboratories in biochemistry and molecular biology. In addition to having lots of
 experience with data, I’ve written extensively on technical subjects. Throughout it all, I’ve remained fascinated by data
 and how it speaks to us. I have tried to bring this insight to Mahout in Action.

 Both of us see that open source only works with input from an active and broad community of participants. A major part of
 Mahout’s success comes from those who have used the software and brought their experience back to the project via discussions
 in mailing lists, bug fixes, and suggestions.

 For this reason, Mahout in Action not only provides useful explanations of code, but also guidance regarding the concepts behind the code. This introduction
 to the framework behind the code will enable you to effectively join in and benefit from the interactive Mahout discussion.
 We hope this book not only helps the readers of this book, but also helps to expand and enrich Mahout itself.

 TED DUNNING AND ELLEN FRIEDMAN

Acknowledgments

 This book wouldn’t be here without the efforts of many people. The authors gratefully acknowledge some of the many here, in
 no particular order.

	The researchers who have published key papers in the field of machine learning, elaborated on in appendix C

 	Mahout users who have spent their time trying beta software, finding and fixing bugs, and providing patches and even suggestions

 	Mahout committers, who have dedicated their time to growing, improving, and promoting Mahout

 	Manning Publications, which has invested considerable time and effort in bringing this book to market—particularly Katharine
 Osborne, Karen Tegtmeyer, Jeff Bleiel, Andy Carroll, Melody Dolab, and Dottie Marsico who have been closely involved in creating
 the final pages you read

 	The reviewers who provided valuable feedback during the writing process: Philipp K. Janert, Andrew Oswald, John Griffin, Justin
 Tyler Wiley, Deepak Vohra, Grant Ingersoll, Isabel Drost, Kenneth DeLong, Eric Raymond, David Grossman, Tom Morton, and Rick
 Wagner

 	Alex Ott who did a thorough technical review of the final manuscript shortly before it went to press

 	Manning Early Access (MEAP) readers who posted comments in the Author Online forum

 	Everybody who asked questions on the Mahout mailing lists

 	Family and friends who supported us through the many hours of writing!

About this Book

 You may be wondering—is this a book for me?

 If you are seeking a textbook on machine learning, no. This book does not attempt to fully explain the theory and derivation
 of the various algorithms and techniques presented here. Some familiarity with machine learning techniques and related concepts,
 like matrix and vector math, is useful in reading this book, but not assumed.

 If you are developing modern, intelligent applications, then the answer is, yes. This book provides a practical rather than
 a theoretical treatment of these techniques, along with complete examples and recipes for solutions. It develops some insights
 gleaned by experienced practitioners in the course of demonstrating how Mahout can be deployed to solve problems.

 If you are a researcher in artificial intelligence, machine learning, and related areas—yes. Chances are your biggest obstacle
 is translating new algorithms into practice. Mahout provides a fertile framework and collection of patterns and ready-made
 components for testing and deploying new large-scale algorithms. This book is an express ticket to deploying machine learning
 systems on top of complex distributed computing frameworks.

 If you are leading a product team or startup that will leverage machine learning to create a competitive advantage, then yes,
 this book is also for you. Through real-world examples, it will plant ideas about the many ways these techniques can be deployed.
 It will also help your scrappy technical team jump directly to a cost-effective implementation that can handle volumes of
 data previously only realistic for organizations with large technology resources.

Roadmap

 This book is divided into three parts, covering collaborative filtering, clustering, and classification in Apache Mahout,
 respectively.

 First, chapter 1 introduces Apache Mahout as a whole. This chapter will get you set up for all of the chapters that follow.

 Part 1, which includes chapters 2 through 6, is presented by Sean Owen; it covers collaborative filtering and recommendation. Chapter 2 gives you a first chance to try a Mahout-based recommender engine and evaluate its performance. Chapter 3 discusses how you can represent the data that recommenders use in an efficient way. Then, chapter 4 presents all of the recommender algorithms available in Mahout and compares their strengths and weaknesses. Given that background,
 chapter 5 presents a case study in which you’ll apply the recommender implementations introduced in chapter 4 to a real-world problem, adapt to some particular properties of the data, and create a production-ready recommender engine.
 Chapter 6 then introduces Apache Hadoop and gives you a first look at machine learning algorithms in a distributed environment by studying
 a recommender engine based on Hadoop.

 Part 2 of the book, including chapters 7 through 12, explores clustering algorithms in Apache Mahout. With the techniques described in this part by Robin Anil, you can group
 together similar-looking pieces of data into a set or a cluster. Clustering helps uncover interesting groups of information
 in a large volume of data. This part begins with simple problems in clustering, with examples written in Java. It then introduces
 more real-world examples and shows how you can make Apache Mahout run as Hadoop jobs that can cluster large amounts of data
 easily.

 Finally, in part 3, Ted Dunning and Ellen Friedman explore classification with Mahout in chapters 13 through 17. You will first learn how to build and train a classifier model by “teaching” an algorithm with a series of examples. Then
 you will learn how to evaluate and fine tune a classifier’s model to give better answers. This part concludes with a real-world
 case study of classification in action.

Code conventions and downloads

 Source code in this book is printed in a monospaced font, called out in listings, and annotated with notes about important points. The code listings are intended to be brief
 and show only essentials. They will not generally show Java imports, class declarations, Java annotations, and other elements
 that are not essential to the discussion of the code.

 Class names in this book are generally printed in a monospaced font, inline with the text, to indicate they are classes that can be located and studied within the Apache Mahout source
 code. For example, LogLikelihoodSimilarity is a Java class in Mahout.

 Some listings show commands that can be executed. These are written for Unix-like environments such as Mac OS X and Linux
 distributions. They should work on Microsoft Windows if executed through the Unix-like Cygwin environment.

 Compilable copies of the source code in key listings throughout the book are available for download from the publisher’s website
 at www.manning.com/MahoutinAction. These are standalone Java source files and do not include a build script. For simplicity, they can be unpacked and added
 into a copy of the complete Mahout source distribution under the examples/src/java/main directory. The existing Mahout build
 environment will then be able to compile the code automatically.

Multimedia extras

 All four authors have recorded audio and video segments that accompany specific sections in most of the chapters and provide
 additional information on selected topics. These segments can be activated in the ebook version of Mahout in Action, which is available for free for all owners of the print book, or you can access them for free from the publisher’s website
 at www.manning.com/MahoutinAction/extras. On the printed pages, audio and video icons indicate the topics covered and who is speaking in each segment. Please refer
 to a full list of these extras that begins on page xxiii.

Author Online

 The purchase of Mahout in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and other users. You can access and subscribe to the forum at www.manning.com/MahoutinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the authors can take place. It isn’t a commitment to any specific amount of participation on the part of the authors,
 whose contributions to the book’s forum remain voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About Multimedia Extras

 Accompanying specific sections in this book are multimedia extras, which are available from www.manning.com/MahoutinAction/extras/ and are free for anyone to listen to or view. Audio or video icons in the margins, like the ones below, indicate which sections
 of the book have these additional features.

 [image:]

Audio icon

 [image:]

Video icon

	No. 1
 	Audio

	
 	Sean introduces the Mahout project and explains his involvement

	No. 2
 	Audio

	
 	Sean discusses the work of a recommender

	No. 3
 	Audio

	
 	Sean describes why he thinks it’s possible to “listen” too closely to data

	No. 4
 	Audio

	
 	Sean addresses questions about the implementation of the Pearson correlation

	No. 5
 	Audio

	
 	Sean discusses the value of interpreting performance metrics

	No. 6
 	Audio

	
 	Sean explains the relationship between Mahout and Hadoop

	No. 7
 	Audio

	
 	Robin explains how to choose the right distance measure for a data set

	No. 8
 	Audio

	
 	Robin expands on the apple analogy

	No. 9
 	Audio

	
 	Robin explains the progression of KMeans clustering iterations

	No. 10
 	Audio

	
 	Robin discusses strategies to improve clustering quality

	No. 11
 	Audio

	
 	Robin explains how to improve performance of large-scale clustering

	No. 12
 	Video

	
 	Ellen shows how training a model makes it progressively better

	No. 13
 	Video

	
 	Ted and Ellen show what happens inside logistic regression

	No. 14
 	Video

	
 	Ted compares the merits of using sequential and parallel algorithms

	No. 15
 	Audio

	
 	Ted and Ellen discuss the AUC evaluation method

	No. 16
 	Audio

	
 	Ted and Ellen discuss why log-likelihood means “never say never”

About the Cover Illustration

 On the cover of Mahout in Action is “A man from Rakov-Potok,” a village in northern Croatia. The illustration is taken from a reproduction of an album of
 Croatian traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in
 Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself
 situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s retirement palace from around
 AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions
 of the costumes and of everyday life.

 Rakov-Potok is a picturesque village in the fertile valley of the Sava River in the foothills of the Samobor Mountains, not
 far from the city of Zagreb. The area has a rich history and you can come across many castles, churches, and ruins that date
 back to medieval and even Roman times. The figure on the cover is wearing white woolen trousers and a white woolen jacket,
 richly embroidered in red and blue—a typical costume for the mountaineers of this region.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded
 away. It is now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated
 by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied
 and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity
 of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

Chapter 1. Meet Apache Mahout

 This chapter covers

	What Apache Mahout is, and where it came from

 	A glimpse of recommender engines, clustering, and classification in the real world

 	Setting up Mahout

As you may have guessed from the title, this book is about putting a particular tool, Apache Mahout, to effective use in real
 life. It has three defining qualities.

 First, Mahout is an open source machine learning library from Apache. The algorithms it implements fall under the broad umbrella of machine learning or collective intelligence. This can mean many things, but at the moment for Mahout it means primarily recommender engines (collaborative filtering),
 clustering, and classification.

 It’s also scalable. Mahout aims to be the machine learning tool of choice when the collection of data to be processed is very large, perhaps
 far too large for a single machine. In its current incarnation, these scalable machine learning implementations in Mahout
 are written in Java, and some portions are built upon Apache’s Hadoop distributed computation project.

 Finally, it’s a Java library. It doesn’t provide a user interface, a prepackaged server, or an installer. It’s a framework of tools intended to be used
 and adapted by developers.

 To set the stage, this chapter will take a brief look at the sorts of machine learning that Mahout can help you perform on
 your data—using recommender engines, clustering, and classification—by looking at some familiar real-world instances.

 In preparation for hands-on interaction with Mahout throughout the book, you’ll also step through some necessary setup and
 installation.

1.1. Mahout’s story

 First, some background on Mahout itself is in order. You may be wondering how to pronounce Mahout: in the way it’s commonly Anglicized, it should rhyme with trout. It’s a Hindi word that refers to an elephant driver, and to explain that one, here’s a little history.

 Mahout began life in 2008 as a subproject of Apache’s Lucene project, which provides the well-known open source search engine
 of the same name. Lucene provides advanced implementations of search, text mining, and information-retrieval techniques. In
 the universe of computer science, these concepts are adjacent to machine learning techniques like clustering and, to an extent,
 classification. As a result, some of the work of the Lucene committers that fell more into these machine learning areas was
 spun off into its own subproject. Soon after, Mahout absorbed the Taste open source collaborative filtering project.

 Figure 1.1 shows some of Mahout’s lineage within the Apache Software Foundation. As of April 2010, Mahout became a top-level Apache
 project in its own right, and got a brand-new elephant rider logo to boot.

 [image:] No. 1 Sean introduces the Mahout project and explains his involvement

 Figure 1.1. Apache Mahout and its related projects within the Apache Software Foundation

 [image:]

 Much of Mahout’s work has been not only implementing these algorithms conventionally, in an efficient and scalable way, but
 also converting some of these algorithms to work at scale on top of Hadoop. Hadoop’s mascot is an elephant, which at last
 explains the project name!

 Mahout incubates a number of techniques and algorithms, many still in development or in an experimental phase (https://cwiki.apache.org/confluence/display/MAHOUT/Algorithms). At this early stage in the project’s life, three core themes are evident: recommender engines (collaborative filtering),
 clustering, and classification. This is by no means all that exists within Mahout, but they are the most prominent and mature
 themes at the time of writing. These, therefore, are the focus of this book.

 Chances are that if you’re reading this, you’re already aware of the interesting potential of these three families of techniques.
 But just in case, read on.

1.2. Mahout’s machine learning themes

 Although Mahout is, in theory, a project open to implementations of all kinds of machine learning techniques, it’s in practice
 a project that focuses on three key areas of machine learning at the moment. These are recommender engines (collaborative
 filtering), clustering, and classification.

 1.2.1. Recommender engines

 Recommender engines are the most immediately recognizable machine learning technique in use today. You’ll have seen services
 or sites that attempt to recommend books or movies or articles based on your past actions. They try to infer tastes and preferences
 and identify unknown items that are of interest:

	Amazon.com is perhaps the most famous e-commerce site to deploy recommendations. Based on purchases and site activity, Amazon
 recommends books and other items likely to be of interest. See figure 1.2.
 Figure 1.2. A recommendation from Amazon. Based on past purchase history and other activity of customers like the user, Amazon considers
 this to be something the user is interested in. It can even list similar items that the user has bought or liked that in part
 caused the recommendation.

 [image:]

 	Netflix similarly recommends DVDs that may be of interest, and famously offered a $1,000,000 prize to researchers who could
 improve the quality of their recommendations.

 	Dating sites like Líbímseti (discussed later) can even recommend people to people.

 	Social networking sites like Facebook use variants on recommender techniques to identify people most likely to be as-yet-unconnected
 friends.

As Amazon and others have demonstrated, recommenders can have concrete commercial value by enabling smart cross-selling opportunities.
 One firm reports that recommending products to users can drive an 8 to 12 percent increase in sales.[1]

 1 Practical eCommerce, “10 Questions on Product Recommendations,” http://mng.bz/b6A5

 1.2.2. Clustering

 Clustering is less apparent, but it turns up in equally well-known contexts. As its name implies, clustering techniques attempt
 to group a large number of things together into clusters that share some similarity. It’s a way to discover hierarchy and
 order in a large or hard-to-understand data set, and in that way reveal interesting patterns or make the data set easier to comprehend.

	Google News groups news articles by topic using clustering techniques, in order to present news grouped by logical story,
 rather than presenting a raw listing of all articles. Figure 1.3 illustrates this.
 Figure 1.3. A sample news grouping from Google News. A detailed snippet from one representative story is displayed, and links to a few
 other similar stories within the cluster for this topic are shown. Links to all the stories that are clustered together in
 this topic are available too.

 [image:]

 	Search engines like Clusty group their search results for similar reasons.

 	Consumers may be grouped into segments (clusters) using clustering techniques based on attributes like income, location, and
 buying habits.

Clustering helps identify structure, and even hierarchy, among a large collection of things that may be otherwise difficult
 to make sense of. Enterprises might use this technique to discover hidden groupings among users, or to organize a large collection
 of documents sensibly, or to discover common usage patterns for a site based on logs.

 1.2.3. Classification

 Classification techniques decide how much a thing is or isn’t part of some type or category, or how much it does or doesn’t
 have some attribute. Classification, like clustering, is ubiquitous, but it’s even more behind the scenes. Often these systems
 learn by reviewing many instances of items in the categories in order to deduce classification rules. This general idea has
 many applications:

	Yahoo! Mail decides whether or not incoming messages are spam based on prior emails and spam reports from users, as well as
 on characteristics of the email itself. A few messages classified as spam are shown in figure 1.4.
 Figure 1.4. Spam messages as detected by Yahoo! Mail. Based on reports of email spam from users, plus other analysis, the system has learned
 certain attributes that usually identify spam. For example, messages mentioning “Viagra” are frequently spam—as are those
 with clever misspellings like “v1agra.” The presence of such terms is an example of an attribute that a spam classifier can
 learn.

 [image:]

 	Google’s Picasa and other photo-management applications can decide when a region of an image contains a human face.

 	Optical character recognition software classifies small regions of scanned text into individual characters.

 	Apple’s Genius feature in iTunes reportedly uses classification to classify songs into potential playlists for users.

Classification helps decide whether a new input or thing matches a previously observed pattern or not, and it’s often used
 to classify behavior or patterns as unusual. It could be used to detect suspicious network activity or fraud. It might be
 used to figure out when a user’s message indicates frustration or satisfaction.

 Each of these techniques works best when provided with a large amount of good input data. In some cases, these techniques
 must not only work on large amounts of input, but must produce results quickly, and these factors make scalability a major
 issue. And, as mentioned before, one of Mahout’s key reasons for being is to produce implementations of these techniques that
 do scale up to huge input.

1.3. Tackling large scale with Mahout and Hadoop

 How real is the problem of scale in machine learning algorithms? Let’s consider the size of a few problems where you might
 deploy Mahout.

 Consider that Picasa may have hosted over half a billion photos even three years ago, according to some crude estimates.[2] This implies millions of new photos per day that must be analyzed. The analysis of one photo by itself isn’t a large problem,
 even though it’s repeated millions of times. But the learning phase can require information from each of the billions of photos
 simultaneously—a computation on a scale that isn’t feasible for a single machine.

 2Google Blogoscoped, “Overall Number of Picasa Photos” (March 12, 2007), http://blogoscoped.com/archive/2007-03-12-n67.html

 According to a similar analysis, Google News sees about 3.5 million new news articles per day. Although this does not seem like a large amount in absolute terms, consider that these articles must be clustered, along
 with other recent articles, in minutes in order to become available in a timely manner.

 The subset of rating data that Netflix published for the Netflix Prize contained 100 million ratings. Because this was just
 the data released for contest purposes, presumably the total amount of data that Netflix actually has and must process to
 create recommendations is many times larger!

 Machine learning techniques must be deployed in contexts like these, where the amount of input is large—so large that it isn’t
 feasible to process it all on one computer, even a powerful one. Without an implementation such as Mahout, these would be
 impossible tasks. This is why Mahout makes scalability a top priority, and why this book will focus, in a way that others
 don’t, on dealing with large data sets effectively.

 Sophisticated machine learning techniques, applied at scale, were until recently only something that large, advanced technology
 companies could consider using. But today computing power is cheaper than ever and more accessible via open source frameworks
 like Apache’s Hadoop. Mahout attempts to complete the puzzle by providing quality, open source implementations capable of solving problems at this scale with Hadoop, and putting this into
 the hands of all technology organizations.

 Some of Mahout makes use of Hadoop, which includes an open source, Java-based implementation of the MapReduce distributed
 computing framework popularized and used internally at Google (http://labs.google.com/papers/mapreduce.html). MapReduce is a programming paradigm that at first sounds odd, or too simple to be powerful. The MapReduce paradigm applies
 to problems where the input is a set of key-value pairs. A map function turns these key-value pairs into other intermediate key-value pairs. A reduce function merges in some way all values for each intermediate key to produce output. Actually, many problems can be framed
 as MapReduce problems, or as a series of them. The paradigm also lends itself quite well to parallelization: all of the processing
 is independent and so can be split across many machines. Rather than reproduce a full explanation of MapReduce here, we refer
 you to tutorials such as the one provided by Hadoop (http://hadoop.apache.org/mapreduce/docs/current/mapred_tutorial.html).

 Hadoop implements the MapReduce paradigm, which is no small feat, even given how simple MapReduce sounds. It manages storage
 of the input, intermediate key-value pairs, and output; this data could potentially be massive and must be available to many
 worker machines, not just stored locally on one. It also manages partitioning and data transfer between worker machines, as
 well as detection of and recovery from individual machine failures. Understanding how much work goes on behind the scenes
 will help prepare you for how relatively complex using Hadoop can seem. It’s not just a library you add to your project. It’s
 several components, each with libraries and (several) standalone server processes, which might be run on several machines.
 Operating processes based on Hadoop isn’t simple, but investing in a scalable, distributed implementation can pay dividends
 later: your data may quickly grow to great size, and this sort of scalable implementation is a way to future-proof your application.

 In chapter 6, this book will try to cut through some of that complexity to get you running on Hadoop quickly, after which you can explore
 the finer points and details of operating full clusters and tuning the framework. Because this complex framework that needs
 a great deal of computing power is becoming so popular, it’s not surprising that cloud computing providers are beginning to
 offer Hadoop-related services. For example, Amazon offers Elastic MapReduce (http://aws.amazon.com/elasticmapreduce/), a service that manages a Hadoop cluster, provides the computing power, and puts a friendlier interface on the otherwise
 complex task of operating and monitoring a large-scale job with Hadoop.

1.4. Setting up Mahout

 You’ll need to assemble some tools before you can play along at home with the code we’ll present in the coming chapters. We
 assume you’re comfortable with Java development already.

 Mahout and its associated frameworks are Java-based and therefore platform-independent, so you should be able to use it with
 any platform that can run a modern JVM. At times, we’ll need to give examples or instructions that will vary from platform
 to platform. In particular, command-line commands are somewhat different in a Windows shell than in a FreeBSD tcsh shell.
 We’ll use commands and syntax that work with bash, a shell found on most Unix-like platforms. This is the default on most
 Linux distributions, Mac OS X, many Unix variants, and Cygwin (a popular Unix-like environment for Windows). Windows users
 who wish to use the Windows shell are the most likely to be inconvenienced by this. Still, it should be simple to interpret
 and translate the listings given in this book to work for that shell.

 1.4.1. Java and IDEs

 Java is likely already installed on your personal computer if you’ve done any Java development so far. Note that Mahout requires
 Java 6. If you’re not sure which Java version you have, open a terminal and type java -version. If the reported version doesn’t begin with 1.6, you need to also install Java 6.

 Windows and Linux users can find a Java 6 JVM from Oracle at http://www.oracle.com/technetwork/java/. Apple provides a Java 6 JVM for Mac OS X 10.5 and 10.6. In Mac OS X, if it doesn’t appear that Java 6 is being used, open
 the Java Preferences application under the /Applications/Utilities folder. This will allow you to select Java 6 as the default.

 Most people will find it quite a bit easier to edit, compile, and run this book’s examples with the help of an IDE; this is
 strongly recommended. Eclipse (http://www.eclipse.org) is the most popular, free Java IDE. Installing and configuring Eclipse is beyond the scope of this book, but you should
 spend some time becoming familiar with it before proceeding. NetBeans (http://netbeans.org/) is also a popular, free IDE. IntelliJ IDEA (http://www.jetbrains.com/idea/index.html) is another powerful and popular IDE, and a free community version is now available.

 As an example of what you can do with an IDE, IDEA can create a new project from an existing Maven model; if you specify the
 root directory of the Mahout source code upon creating a project, it will automatically configure and present the entire project
 in an organized manner. It’s then possible to drop the source code found throughout this book into the examples/src/main/java/
 source root and run it from within IDEA with one click—the details of dependencies and compilation are managed automatically.
 This should prove far easier than attempting to compile and run the code manually.

	

Note

 If the test program uses a file with input data, it usually should run in the same directory as the file with the data. Consult
 your IDE’s guide for details about how to set up a working directory for each of the examples.

	

1.4.2. Installing Maven

 As with many Apache projects, Mahout’s build and release system is built around Maven (http://maven.apache.org). Maven is a command-line tool that manages dependencies, compiles code, packages releases, generates documentation, and
 publishes formal releases. Although it has some superficial resemblance to the also-popular Ant build tool, it isn’t the same.
 Ant is a flexible, lower-level scripting language, and Maven is a higher-level tool more purpose-built for dependency and
 release management. Because Mahout uses Maven, you should install Maven yourself.

 Mac OS X users will be pleased to find that Maven should already be installed. If not, install Apple’s Developer Tools. Type
 mvn --version on the command line. If you successfully see a version number, and the version is at least 2.2, you’re ready to go. If not,
 you should install a local copy of Maven.

 Users of Linux distributions with a decent package management system may be able to use it to quickly obtain a recent version
 of Maven. Otherwise, standard procedure would be to download a binary distribution, unpack it to a common location, such as
 /usr/local/maven, and then edit bash’s configuration file, ~/.bashrc, to include a line like export PATH=/usr/local/maven/bin:$PATH. This will ensure that the mvn command is always available.

 If you’re using an IDE like Eclipse or IntelliJ, it already includes Maven integration. Refer to its documentation to learn
 how to enable the Maven integration. This will make working with Mahout in an IDE much simpler, as the IDE can use the project’s
 Maven configuration file (pom.xml) to instantly configure and import the project.

	

Note

 For Eclipse, you’ll need to install the m2eclipse plugin (http://www.eclipse.org/m2e/). For NetBeans, Maven support is available out of the box starting with version 6.7; for previous versions, you’ll need to
 install a separate plugin.

	

1.4.3. Installing Mahout

 Mahout is still in development, and this book was written to work with the 0.5 release of Mahout. This release and others
 may be downloaded by following the instructions at https://cwiki.apache.org/confluence/display/MAHOUT/Downloads; the archive of the source code may be unpacked anywhere that’s convenient on your computer.

 Because Mahout is changing frequently, and bug fixes and improvements are added regularly, it may be useful to use a later
 release than 0.5 (or even the latest unreleased code from Subversion; see https://cwiki.apache.org/confluence/display/MAHOUT/Version+Control). Future point releases should be backwards compatible with the examples in this book.

 Once you’ve obtained the source, either from Subversion or from a release archive, create a new project for Mahout in your
 IDE. This is IDE-specific; refer to its documentation for particulars of how this can be accomplished. It will be easiest
 to use your IDE’s Maven integration to import the Maven project from the pom.xml file in the root of the project source.

 Once all of these setup steps are completed, you can easily create a new source directory within this project to hold the
 sample code that will be introduced in upcoming chapters. With the project properly configured, you should be able to compile
 and run the code transparently with no further effort.

 The source code for the examples is available from Manning’s site (http://www.manning.com/MahoutinAction/) or from GitHub (https://github.com/tdunning/MiA). Use the instructions provided with the source code to set up your work environment.

 1.4.4. Installing Hadoop

 For some activities later in this book, you’ll need your own local installation of Hadoop. You don’t need a cluster of computers
 to run Hadoop. Setting up Hadoop isn’t difficult, but it’s not trivial. Rather than repeat the procedures, we’ll direct you
 to obtain a copy of Hadoop version 0.20.2 from the Hadoop website at http://hadoop.apache.org/common/releases.html, and then set up Hadoop for pseudo-distributed operation by following the Single Node Setup documentation (http://hadoop.apache.org/common/docs/current/single_node_setup.html).

1.5. Summary

 Mahout is a young, open source, scalable machine learning library from Apache, and this book is a practical guide to using
 Mahout to solve real problems with machine learning techniques. In particular, you’ll soon explore recommender engines, clustering,
 and classification. If you’re a researcher familiar with machine learning theory and you’re looking for a practical how-to
 guide, or you’re a developer looking to quickly learn best practices from practitioners, this book is for you.

 These techniques are no longer merely theory. We’ve already noted some well-known examples of recommender engines, clustering,
 and classification deployed in the real world: e-commerce, email, videos, photos, and more involve large-scale machine learning.
 These techniques have been deployed to solve real problems and even generate value for enterprises—and they’re now accessible
 via Mahout.

 We’ve also noted the vast amount of data sometimes employed with these techniques—scalability is a uniquely persistent concern
 in this area. We took a first look at MapReduce and Hadoop and how they power some of the scalability that Mahout provides.

 Because this will be a hands-on, practical book, we’ve set you up to begin working with Mahout right away. At this point,
 you should have assembled the tools you’ll need to work with Mahout and be ready for action. Because this book is intended
 to be practical, let’s wrap up the opening remarks now and get on to some real code with Mahout. Read on!

Part 1. Recommendations

 This first part of the book, including chapters 2 through 6, explores one of the three pillars of Apache Mahout’s machine learning implementations: collaborative filtering and recommendation.
 With these techniques, you can understand a person’s tastes and find new, desirable content for them automatically. This part
 is also a warm-up for the rest of the book, which will depend heavily on the Apache Hadoop distributed computing framework.
 You’ll meet machine learning in Apache Mahout in simple Java first, and then in Hadoop.

 Chapter 2 introduces recommender engines, as implemented in Mahout, and covers evaluating performance in the context of a runnable
 example. Chapter 3 discusses representing recommender data efficiently in Mahout. Chapter 4 catalogs the various recommender engine implementations available in Mahout and their varying features and attributes.

 Chapter 5 presents a case study based on data from a dating site, which shows how you can adapt the approaches in Mahout to cope with
 real-world data and produce a production-ready recommender. Finally, chapter 6 provides a first look at Mahout’s use of Apache Hadoop to implement a large-scale distributed recommender engine.

Chapter 2. Introducing recommenders

 This chapter covers

	What recommenders are, within Mahout

 	A first look at a recommender in action

 	Evaluating the accuracy and quality of recommender engines

 	Evaluating a recommender on a real data set: GroupLens

Each day we form opinions about things we like, don’t like, and don’t even care about. It happens unconsciously. You hear
 a song on the radio and either notice it because it’s catchy, or because it sounds awful—or maybe you don’t notice it at all.
 The same thing happens with T-shirts, salads, hairstyles, ski resorts, faces, and television shows.

 Although people’s tastes vary, they do follow patterns. People tend to like things that are similar to other things they like.
 Because Sean loves bacon-lettuce-and-tomato sandwiches, you can guess that he would enjoy a club sandwich, which is mostly the same sandwich but with turkey. Likewise, people tend to like things that similar people like.

 These patterns can be used to predict such likes and dislikes. Recommendation is all about predicting these patterns of taste,
 and using them to discover new and desirable things you didn’t already know about.

 After introducing the idea of recommendation in more depth, this chapter will help you experiment with some Mahout code to
 run a simple recommender engine and understand how well it works, in order to give you an immediate feel for how Mahout works
 in this regard.

2.1. Defining recommendation

 You picked up this book from the shelf for a reason. Maybe you saw it next to other books you know and find useful, and you
 figured the bookstore put it there because people who like those books tend to like this one too. Maybe you saw this book
 on the bookshelf of a coworker, who you know shares your interest in machine learning, or perhaps they recommended it to you
 directly.

 These are different, but valid, strategies for discovering new things: to discover items you may like, you could look to what
 people with similar tastes seem to like. On the other hand, you could figure out what items are like the ones you already
 like, again by looking to others’ apparent preferences. In fact, these are the two broadest categories of recommender engine
 algorithms: user-based and item-based recommenders, both of which are well represented within Mahout.

 Strictly speaking, the preceding scenarios are examples of collaborative filtering—producing recommendations based on, and only based on, knowledge of users’ relationships to items. These techniques require
 no knowledge of the properties of the items themselves. This is, in a way, an advantage. This recommender framework doesn’t
 care whether the items are books, theme parks, flowers, or even other people, because nothing about their attributes enters
 into any of the input.

 There are other approaches based on the attributes of items, and these are generally referred to as content-based recommendation techniques. For example, if a friend recommended this book to you because it’s a Manning book, and the friend
 likes other Manning books, then the friend is engaging in something more like content-based recommendation. The suggestion
 is based on an attribute of the books: the publisher.

 There’s nothing wrong with content-based techniques; on the contrary, they can work quite well. They’re necessarily domain-specific
 approaches, and they’d be hard to meaningfully codify into a framework. To build an effective content-based book recommender,
 one would have to decide which attributes of a book—page count, author, publisher, color, font—are meaningful, and to what
 degree. None of this knowledge translates into any other domain; recommending books this way doesn’t help in the area of recommending
 pizza toppings.

 For this reason, Mahout won’t have much to say about content-based recommendations. These ideas can be built into, and on top of, what Mahout provides; as such, it might technically be called a collaborative filtering framework. An example of this will follow in chapter 5, where you’ll build a recommender for a dating site.

 For now, though, it’s time to experiment with collaborative filtering within Mahout by creating some simple input and finding
 recommendations based on the input.

2.2. Running a first recommender engine

 Mahout contains a recommender engine—several types of them, in fact, beginning with conventional user-based and item-based
 recommenders. It includes implementations of several other algorithms as well, but for now we’ll explore a simple user-based
 recommender.

 2.2.1. Creating the input

 To explore recommendations in Mahout, it’s best to start with a trivial example.

 The recommender requires input—data on which it will base its recommendations. This data takes the form of preferences in Mahout-speak. Because the recommender engines that are most familiar involve recommending items to users, it’ll be most
 convenient to talk about preferences as associations from users to items—though, as noted previously, these users and items
 could be anything. A preference consists of a user ID and an item ID, and usually a number expressing the strength of the
 user’s preference for the item. IDs in Mahout are always numbers—integers, in fact. The preference value could be anything,
 as long as larger values mean stronger positive preferences. For instance, these values might be ratings on a scale of 1 to
 5, where 1 indicates items the user can’t stand, and 5 indicates favorites.

 Create a text file containing data about users, who are cleverly named “1” to “5,” and their preferences for seven books,
 simply called “101” through “107.” In real life, these might be customer IDs and product IDs from a company database; Mahout
 doesn’t require that the users and items be named with numbers. Write this data in a simple comma-separated value format.

 Copy the following example into a file and save it as intro.csv.

 Listing 2.1. Recommender input file, intro.csv

 [image:]

 With some study, trends appear. Users 1 and 5 seem to have similar tastes. They both like book 101, like 102 a little less,
 and like 103 less still. The same goes for users 1 and 4, as they seem to like 101 and 103 identically (no word on how user
 4 likes 102 though). On the other hand, users 1 and 2 have tastes that seem to run counter to each other—1 likes 101 whereas
 2 doesn’t, and 1 likes 103 but 2 is just the opposite. Users 1 and 3 don’t overlap much—the only book both express a preference
 for is 101. Figure 2.1 illustrates the relationships, both positive and negative, between users and items.

 Figure 2.1. Relationships between users 1 to 5 and items 101 to 107. Dashed lines represent associations that seem negative—the user doesn’t
 seem to like the item much but expresses a relationship to the item.

 [image:]

 2.2.2. Creating a recommender

 So what book might you recommend to user 1? Not 101, 102, or 103—user 1 already knows about these books, apparently, and recommendation
 is about discovering new things. Intuition suggests that because users 4 and 5 seem similar to 1, it would be good to recommend
 something that user 4 or user 5 likes. That leaves books 104, 105, and 106 as possible recommendations. On the whole, 104
 seems to be the most liked of these possibilities, judging by the preference values of 4.5 and 4.0 for item 104.

 Now, run the following code.

 Listing 2.2. A simple user-based recommender program with Mahout

 [image:]

 To help visualize the relationship between these basic components, see figure 2.2. Not all Mahout-based recommenders will look like this—some will employ different components with different relationships.
 But this gives a sense of what’s going on in the example.

 Figure 2.2. Simplified illustration of component interaction in a Mahout user-based recommender

 [image:]

 We’ll discuss each of these components in more detail in the next two chapters, but we can summarize the role of each component
 now. A DataModel implementation stores and provides access to all the preference, user, and item data needed in the computation. A UserSimilarity implementation provides some notion of how similar two users are; this could be based on one of many possible metrics or
 calculations. A UserNeighborhood implementation defines a notion of a group of users that are most similar to a given user. Finally, a Recommender implementation pulls all these components together to recommend items to users.

 2.2.3. Analyzing the output

 When you run the code in listing 2.2, the output in your terminal or IDE should be as follows:

 RecommendedItem [item:104, value:4.257081]

 The request asked for one top recommendation, and it got one. The recommender engine recommended book 104 to user 1. Further,
 it said that the recommender engine did so because it estimated user 1’s preference for book 104 to be about 4.3, and that
 was the highest among all the items eligible for recommendation.

 That’s not bad. Book 107 did not appear; it was also recommendable but was only associated with a user who had different tastes.
 It picked 104 over 106, and this makes sense when you note that 104 is a bit more highly rated overall. Further, the output contained a reasonable estimate of how
 much user 1 likes item 104—something between the 4.0 and 4.5 that users 4 and 5 expressed.

 The right answer isn’t obvious from looking at the data, but the recommender engine made some decent sense of it and returned
 a defensible answer. If you got a pleasant tingle out of seeing this simple program give a useful and non-obvious result from
 a small pile of data, the world of machine learning is for you!

 For clear, small data sets, producing recommendations is as trivial as it appears in the preceding example. In real life,
 data sets are huge, and they’re noisy. For example, imagine a popular news site recommending news articles to readers. Preferences
 are inferred from article clicks, but many of these preferences may be bogus—maybe a reader clicked on an article but didn’t
 like it, or clicked on the wrong story. Perhaps many of the clicks occurred while not logged in, so they can’t be associated
 with a user. And imagine the size of the data set—perhaps billions of clicks in a month.

OEBPS/01fig02.jpg
Hibernate Search in Action

by Emmanuel Bernard (Dec 28, 2008)
A Average Customer Review: frirfriri (v
IN A In Stock

List Price: $48:99

Price: $34.99

37 used & new from $25.51

[J1ownit [C) Notinterested x|¥r¥r¥r¥ryy Rate this item
Recommended because you rated Lucene in Action (In Action serie

OEBPS/01fig03.jpg
Obama to Name 'Smart Grid' Projects

Wall Street Journal - Rebecca Smith - 1 hour ago

The Obama administration is expected Tuesday to name 100
utility projects that will share $3.4 billion in federal stimulus
funding to speed deployment of advanced technology designed
to cut energy use and make the electric-power grid ...

Cobb firm wins "smart-grid” grant Atlanta Joumal Constitution

Obama putting $3.4B toward a 'smart' power grid The Associate
Baltimore Sun - Bloomberg - New York Times - Reuters

all 594 news articles » (-)Email this story

OEBPS/vedio.jpg

OEBPS/01fig01.jpg

OEBPS/common.jpg

OEBPS/audio.jpg
)

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common-1.jpg

OEBPS/01fig04_alt.jpg
e B Hevnerco. DishView Wed 10128, 12:34 PM.
Lo -~ Customer Service: FINAL NOTIFICATION: .Please r... Wod 10128, 4:53 AM
Contacts ada MmadDanoh From: MmODAnD Read The Fll. e 1012, 12:58 AM

OEBPS/02fig01.jpg

OEBPS/015fig01.jpg
User ID, item ID,
7 User | has preference preference value
3.0 for item 102

OEBPS/cover.jpg

OEBPS/02fig02_alt.jpg
UserSimilarity

DataMode!

Application Recommender

UserNeighborhood

OEBPS/016fig01_alt.jpg
class Reccamenderintro {
public static void main(stringl] args) throws Exception (

DataModel model =
new Filebatavodel (new File(*intro.csv®)); < Load data file

Usersimilarity similarity =
new PearsonCorrelationsSimilarity (model);
UserNeighborhood neighborhood =
new NearestNUserNeighborhood (2, similarity, model):

Recommender recommender = new GenericUserBasedRecommender (
model, neighborhood, similarity); Create

List<Recomendsdrtens zecommndations = recommender engine

recommender . recommend(1, 1); <] For user |,
for (Recomendediten recomendation recomendations) (W;mmd

System.out .println (recommendation) ;

