

 [image: cover]

 iBatis in Action

 Clinton Begin, Brandon Goodin & Larry Meadors

[image:]

Copyright

 For online information and ordering of this and other Manning books, please go to www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact:

 Special Sales Department
Manning Publications Co.
Cherokee Station
PO Box 20386 Fax: (609) 877-8256
New York, NY 10021 email:manning@manning.com

 ©2007 Manning Publications. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books they publish printed
 on acid-free paper, and we exert our best efforts to that end.

 [image:]

 Manning Publications Co.
Cherokee Station
PO Box 20386
New York, NY 10021

 Copyeditor: Liz Welch
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 11 10 09 08 07

Dedication

 To our families

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Title

 About the Cover Illustration

 1. Introduction

 Chapter 1. The iBATIS philosophy

 Chapter 2. What is iBATIS?

 2. iBATIS basics

 Chapter 3. Installing and configuring iBATIS

 Chapter 4. Working with mapped statements

 Chapter 5. Executing nonquery statements

 Chapter 6. Using advanced query techniques

 Chapter 7. Transactions

 Chapter 8. Using Dynamic SQL

 3. iBATIS in the real world

 Chapter 9. Improving performance with caching

 Chapter 10. iBATIS data access objects

 Chapter 11. Doing more with DAO

 Chapter 12. Extending iBATIS

 4. iBATIS recipes

 Chapter 13. iBATIS best practices

 Chapter 14. Putting it all together

 Appendix iBATIS.NET Quick Start

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Authors

 About the Title

 About the Cover Illustration

 1. Introduction

 Chapter 1. The iBATIS philosophy

 1.1. A hybrid solution: combining the best of the best

 1.1.1. Exploring the roots of iBATIS

 1.1.2. Understanding the iBATIS advantage

 1.2. Where iBATIS fits

 1.2.1. The business object model

 1.2.2. The presentation layer

 1.2.3. The business logic layer

 1.2.4. The persistence layer

 1.2.5. The relational database

 1.3. Working with different database types

 1.3.1. Application databases

 1.3.2. Enterprise databases

 1.3.3. Proprietary databases

 1.3.4. Legacy databases

 1.4. How iBATIS handles common database challenges

 1.4.1. Ownership and control

 1.4.2. Access by multiple disparate systems

 1.4.3. Complex keys and relationships

 1.4.4. Denormalized or overnormalized models

 1.4.5. Skinny data models

 1.5. Summary

 Chapter 2. What is iBATIS?

 2.1. Mapping SQL

 2.2. How it works

 2.2.1. iBATIS for small, simple systems

 2.2.2. iBATIS for large, enterprise systems

 2.3. Why use iBATIS?

 2.3.1. Simplicity

 2.3.2. Productivity

 2.3.3. Performance

 2.3.4. Separation of concerns

 2.3.5. Division of labor

 2.3.6. Portability: Java, .NET, and others

 2.3.7. Open source and honesty

 2.4. When not to use iBATIS

 2.4.1. When you have full control. . .forever

 2.4.2. When your application requires fully dynamic SQL

 2.4.3. When you’re not using a relational database

 2.4.4. When it simply does not work

 2.5. iBATIS in five minutes

 2.5.1. Setting up the database

 2.5.2. Writing the code

 2.5.3. Configuring iBATIS (a preview)

 2.5.4. Building the application

 2.5.5. Running the application

 2.6. The future: where is iBATIS going?

 2.6.1. Apache Software Foundation

 2.6.2. Simpler, smaller, with fewer dependencies

 2.6.3. More extensions and plug-ins

 2.6.4. Additional platforms and languages

 2.7. Summary

 2. iBATIS basics

 Chapter 3. Installing and configuring iBATIS

 3.1. Getting an iBATIS distribution

 3.1.1. Binary distribution

 3.1.2. Building from source

 3.2. Distribution contents

 3.3. Dependencies

 3.3.1. Bytecode enhancement for lazy loading

 3.3.2. Jakarta Commons Database Connection Pool

 3.3.3. Distributed caching

 3.4. Adding iBATIS to your application

 3.4.1. Using iBATIS with a stand-alone application

 3.4.2. Using iBATIS with a web application

 3.5. iBATIS and JDBC

 3.5.1. Releasing JDBC resources

 3.5.2. SQL injection

 3.5.3. Reducing the complexity

 3.6. iBATIS configuration continued

 3.6.1. The SQL Map configuration file

 3.6.2. The <properties> element

 3.6.3. The <settings> element

 3.6.4. The <typeAlias> elements

 3.6.5. The <transactionManager> element

 3.6.6. The <typeHandler> element

 3.6.7. The <sqlMap> element

 3.7. Summary

 Chapter 4. Working with mapped statements

 4.1. Starting with the basics

 4.1.1. Creating JavaBeans

 4.1.2. The SqlMap API

 4.1.3. Mapped statement types

 4.2. Using <select> mapped statements

 4.2.1. Using inline parameters with the # placeholders

 4.2.2. Using inline parameters with the $ placeholders

 4.2.3. A quick look at SQL injection

 4.2.4. Automatic result maps

 4.2.5. Joining related data

 4.3. Mapping parameters

 4.3.1. External parameter maps

 4.3.2. Inline parameter mapping revisited

 4.3.3. Primitive parameters

 4.3.4. JavaBean and Map parameters

 4.4. Using inline and explicit result maps

 4.4.1. Primitive results

 4.4.2. JavaBean and Map results

 4.5. Summary

 Chapter 5. Executing nonquery statements

 5.1. The building blocks for updating data

 5.1.1. The SqlMap API for nonquery SQL statements

 5.1.2. Nonquery mapped statements

 5.2. Inserting data

 5.2.1. Using inline parameter mapping

 5.2.2. Using an external parameter map

 5.2.3. Autogenerated keys

 5.3. Updating and deleting data

 5.3.1. Handling concurrent updates

 5.3.2. Updating or deleting child records

 5.4. Running batch updates

 5.5. Working with stored procedures

 5.5.1. Considering the pros and cons

 5.5.2. IN, OUT, and INOUT parameters

 5.6. Summary

 Chapter 6. Using advanced query techniques

 6.1. Using XML with iBATIS

 6.1.1. XML parameters

 6.1.2. XML results

 6.2. Relating objects with mapped statements

 6.2.1. Complex collections

 6.2.2. Lazy loading

 6.2.3. Avoiding the N+1 Selects problem

 6.3. Inheritance

 6.3.1. Mapping Inheritance

 6.4. Other miscellaneous uses

 6.4.1. Using the statement type and DDL

 6.4.2. Processing extremely large data sets

 6.5. Summary

 Chapter 7. Transactions

 7.1. What is a transaction?

 7.1.1. A simple banking example

 7.1.2. Understanding transaction properties

 7.2. Automatic transactions

 7.3. Local transactions

 7.4. Global transactions

 7.4.1. Using active or passive transactions

 7.4.2. Starting, committing, and ending the transaction

 7.4.3. Do I need a global transaction?

 7.5. Custom transactions

 7.6. Demarcating transactions

 7.6.1. Demarcating transactions at the presentation layer

 7.6.2. Demarcating transactions at the persistence layer

 7.6.3. Demarcating transactions at the business logic layer

 7.7. Summary

 Chapter 8. Using Dynamic SQL

 8.1. Dealing with Dynamic WHERE clause criteria

 8.2. Getting familiar with the dynamic tags

 8.2.1. The <dynamic> tag

 8.2.2. Binary tags

 8.2.3. Unary tags

 8.2.4. Parameter tags

 8.2.5. The <iterate> tag

 8.3. A complete simple example

 8.3.1. Defining how to retrieve and display data

 8.3.2. Determining which database structures are involved

 8.3.3. Writing the SQL in static format

 8.3.4. Applying Dynamic SQL tags to static SQL

 8.4. Advanced Dynamic SQL techniques

 8.4.1. Defining the resulting data

 8.4.2. Defining the required input

 8.4.3. Writing the SQL in static format

 8.4.4. Applying Dynamic SQL tags to static SQL

 8.5. Alternative approaches to Dynamic SQL

 8.5.1. Using Java code

 8.5.2. Using stored procedures

 8.5.3. Comparing to iBATIS

 8.6. The future of Dynamic SQL

 8.6.1. Simplified conditional tags

 8.6.2. Expression language

 8.7. Summary

 3. iBATIS in the real world

 Chapter 9. Improving performance with caching

 9.1. A simple iBATIS caching example

 9.2. iBATIS’s caching philosophy

 9.3. Understanding the cache model

 9.3.1. Type

 9.3.2. The readOnly attribute

 9.3.3. The serialize attribute

 9.3.4. Combining readOnly and serialize

 9.4. Using tags inside the cache model

 9.4.1. Cache flushing

 9.4.2. Setting cache model implementation properties

 9.5. Cache model types

 9.5.1. MEMORY

 9.5.2. LRU

 9.5.3. FIFO

 9.5.4. OSCACHE

 9.5.5. Your cache model here

 9.6. Determining a caching strategy

 9.6.1. Caching read-only, long-term data

 9.6.2. Caching read-write data

 9.6.3. Caching aging static data

 9.7. Summary

 Chapter 10. iBATIS data access objects

 10.1. Hiding implementation details

 10.1.1. Why the separation?

 10.1.2. A simple example

 10.2. Configuring the DAO

 10.2.1. The <properties> element

 10.2.2. The <context> element

 10.2.3. The <transactionManager> element

 10.2.4. The DAO elements

 10.3. Configuration tips

 10.3.1. Multiple servers

 10.3.2. Multiple database dialects

 10.3.3. Runtime configuration changes

 10.4. A SQL Map DAO implementation example

 10.4.1. Configuring the DAO in iBATIS

 10.4.2. Creating a DaoManager instance

 10.4.3. Defining the transaction manager

 10.4.4. Loading the maps

 10.4.5. Coding the DAO implementation

 10.5. Summary

 Chapter 11. Doing more with DAO

 11.1. Non-SQLMap DAO implementations

 11.1.1. A Hibernate DAO implementation

 11.1.2. A JDBC DAO implementation

 11.2. Using the DAO pattern with other data sources

 11.2.1. Example: using a DAO with LDAP

 11.2.2. Example: using a DAO with a web service

 11.3. Using the Spring DAO

 11.3.1. Writing the code

 11.3.2. Why use Spring instead of iBATIS?

 11.4. Creating your own DAO layer

 11.4.1. Separating interface from implementation

 11.4.2. Decoupling and creating a factory

 11.5. Summary

 Chapter 12. Extending iBATIS

 12.1. Understanding pluggable component design

 12.2. Working with custom type handlers

 12.2.1. Implementing a custom type handler

 12.2.2. Creating a TypeHandlerCallback

 12.2.3. Registering a TypeHandlerCallback for use

 12.3. Working with a CacheController

 12.3.1. Creating a CacheController

 12.3.2. Putting, getting, and flushing a CacheController

 12.3.3. Registering a CacheController for use

 12.4. Configuring an unsupported DataSource

 12.5. Customizing transaction management

 12.5.1. Understanding the TransactionConfig interface

 12.5.2. Understanding the Transaction interface

 12.6. Summary

 4. iBATIS recipes

 Chapter 13. iBATIS best practices

 13.1. Unit testing with iBATIS

 13.1.1. Unit-testing the mapping layer

 13.1.2. Unit-testing data access objects

 13.1.3. Unit-testing DAO consumer layers

 13.2. Managing iBATIS configuration files

 13.2.1. Keep it on the classpath

 13.2.2. Keep your files together

 13.2.3. Organize mostly by return type

 13.3. Naming conventions

 13.3.1. Naming statements

 13.3.2. Naming parameter maps

 13.3.3. Naming result maps

 13.3.4. XML files

 13.4. Beans, maps, or XML?

 13.4.1. JavaBeans

 13.4.2. Maps

 13.4.3. XML

 13.4.4. Primitives

 13.5. Summary

 Chapter 14. Putting it all together

 14.1. Design concept

 14.1.1. Account

 14.1.2. Catalog

 14.1.3. Cart

 14.1.4. Order

 14.2. Choosing technologies

 14.2.1. Presentation

 14.2.2. Service

 14.2.3. Persistence

 14.3. Tweaking Struts: the BeanAction

 14.3.1. BeanBase

 14.3.2. BeanAction

 14.3.3. ActionContext

 14.4. Laying the foundation

 14.4.1. src

 14.4.2. test

 14.4.3. web

 14.4.4. build

 14.4.5. devlib

 14.4.6. lib

 14.5. Configuring the web.xml

 14.6. Setting up the presentation

 14.6.1. The first step

 14.6.2. Utilizing a presentation bean

 14.7. Writing your service

 14.7.1. Configuring dao.xml

 14.7.2. Transaction demarcation

 14.8. Writing the DAO

 14.8.1. SQLMap configuration

 14.8.2. SQLMap

 14.8.3. Interface and implementation

 14.9. Summary

 Appendix iBATIS.NET Quick Start

 A.1. Comparing iBATIS and iBATIS.NET

 Why should Java developers care about iBATIS.NET?

 Why should .NET developers care about iBATIS.NET?

 What are the major differences?

 What are the similarities?

 A.2. Working with iBATIS.NET

 DLLs and dependencies

 The XML configuration file

 The configuration API

 SQL mapping files

 A.3. Where to go for more information

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 In my career as a software developer, I have worked in many diverse environments. Within a single company, software will often
 be developed in many different ways. When you consider the various challenges, people, and tools that make up a developer’s
 day-to-day world, you quickly realize just how diverse that world is. I never know what surprising challenges the next consulting
 project will bring, so I always keep a variety of tools in my toolbox. For a few years, iBATIS was just a little chunk of
 code that saved me some time when I would normally be handcoding JDBC.

 So how did iBATIS go from being a tool in my toolbox to an Apache project used by thousands? I had never intended to make
 iBATIS a full-blown open source project. The source was out there, but I hadn’t marketed it or actively shared it with anyone.
 Enter JPetStore.

 On July 1, 2002, I posted my response to the Pet Store story that was traveling the Internet. A large software company in
 Redmond was claiming that the C# language and the .NET platform were vastly more productive than Java, by several orders of
 magnitude. I’m a technology agnostic, and even though C# and .NET are pretty decent, I just couldn’t accept a claim like that.
 So I spent my evenings for a couple of weeks writing JPetStore in the shadow of the “monstrosities” that had been fashioned
 by the enterprise software vendors. JPetStore created much discussion in the Java community. The hottest issue was its lack
 of an Enterprise JavaBeans (EJB) persistence layer—replaced instead by a tiny little framework called iBATIS.

 I’m often asked, “Why didn’t you use other open source tools?” At the time there were no other tools like iBATIS. There were
 plenty of code generators, but I’ll spare you my soapbox rant on development-time and build-time code generation. I’ll just
 say that anything that can be generated can also be generalized into a framework. And that’s what iBATIS essentially is: a
 generalized framework for quicker JDBC coding.

 The next question often asked is, “Why not use an object/relational mapping tool?” An O/RM tool can be used in the right environment.
 It works very well when you have full control over your database and the object model: you can easily achieve ideal mappings
 and avoid nightmarish tweaking and jumping through hoops due to a mismatch between the two. However, no one would dream of
 mapping an object model to the kinds of databases that I usually work with. With a decent O/RM tool, like Hibernate or TopLink,
 you probably could. The question is, should you map it?

 Someone once told me a story about a guy with a hammer who saw everything as a nail...you know the one. O/RM tools are frameworks.
 Frameworks are built on constraints and assumptions. Those constraints and assumptions are ideal in certain environments,
 but not in all environments...not everything is a nail. Our job as software developers is to match ideal solutions to the
 problems at hand—not to use the only solution we know or the most popular solution or the hottest solution on the Net—but
 the one that best solves the problem we are facing. For different environments, we need different tools—iBATIS is one of them.

 Today iBATIS has been implemented in three languages: Java, C#, and Ruby. It is maintained by a team of more than a dozen
 developers and it has a community of thousands of developers. You can read about it in books and articles and blogs on the
 Web. While iBATIS isn’t the top dog of persistence, and it likely never will be, it is a success story. I realized that the
 day I stopped answering questions on the mailing list: the community had taken over.

 A self-sustaining community is the true mark of success of an open source project. If you’ve read this far, I assume you’re
 part of that community. So let me join you in celebrating the success of our little framework.

 CLINTON BEGIN

Acknowledgments

 Writing books is harder than writing software. Having been through both, we, the three authors of this book, can easily agree
 on that. And when you notice the number of people who were involved in our book, we’re sure you’ll agree as well.

 The talented and committed people at Manning Publications deserve a lot of the credit. Special thanks to publisher Marjan
 Bace, production director Mary Piergies, and our development editor, Jackie Carter. Without Jackie, the book would have never
 been started—or completed. She made the call, she cracked the whip, and she put up with the three of us without prescribing
 any drugs to deal with our severe attention deficit disorder. Thanks, Jackie, for going above and beyond to make this book
 happen at both ends.

 Next, we would like to thank our reviewers, who had the tough job of reading our book and commenting on more than just technical
 errors—something software developers are good at. They also had to tell us what was good and what was bad about the book.
 They helped us to change the feel of the book, front to back; their input was essential. A big thanks to Sven Boden, Nathan
 Maves, Rick Reumann, Jeff Cunningham, Suresh Kumar, Scott Sauyet, Dick Zetterberg, Anjan Bacchu, Benjamin Gorlick, Oliver
 Zeigermann, Doug Warren, Matt Raible, Yoav Shapira, Cos DiFazio, Nick Heudecker, Ryan Breidenbach, and Patrick Peak. Special
 thanks to Sven Boden who proofread the manuscript for technical accuracy before it went to press.

 Without the iBATIS team, we would have neither the software nor the book. As of this writing, the team includes the three
 authors: Clinton Begin, Brandon Goodin, and Larry Meadors. Two of our reviewers are also on the iBATIS team: Sven Boden and
 Nathan Maves, who are joined by Jeff Butler and Brice Ruth to form the rest of the iBATIS for Java team. iBATIS also has a
 .NET implementation, originally created by Gilles Bayon, who has since assembled a highly skilled team of .NET developers,
 including Ron Grabowski and Roberto Rabe. We’ve learned a lot from the iBATIS.NET team and they’re likely to take the .NET
 world by storm. More recently, we were joined by Jon Tirsen who implemented iBATIS in Ruby and affectionately named it RBatis.
 It’s the newest member of the family and we have high hopes for its continued success alongside Rails and ActiveRecord.

 There’s one more member of our team who deserves a special thanks. Ted Husted has truly brought iBATIS from “a tool in Clinton’s
 toolbox” to the Apache project that it is today. He helped build the vision for the .NET version as well as the Apache project
 as a whole. He showed us the way. Thanks, Ted.

 Finally, there’s the community. iBATIS would be nowhere without all of the users, contributors, bug finders, documenters,
 translators, reviewers, authors, bloggers, fellow framework developers—and those of us who are just generally loud and can
 spread the word. Among these I’d like to name a few people, including Bruce Tate, Rod Johnson, and Matt Raible. We’d also
 like to thank the staff and communities of a few sites, including IBM Developerworks, JavaLobby.org, DZone.com, InfoQ.com, and TheServerSide.com.

Clinton Begin

 Open source software developers are crazy. We spend our days at work for money and our evenings at our keyboards writing open
 source software (or books) for fame and glory. We fight for the right to earn the respect of those who would just as soon
 forget us. All the while, every minute we’ve spent at our keyboards we’ve spent away from the very people who would give us
 love and respect for free. No books, no code, no keyboard necessary. For fame and glory we need only to step away from that
 keyboard, walk upstairs, and look into the eyes of our family. They are ready to offer their full support for our wild and
 crazy adventures. But with age and maturity we begin to realize that their loss of our time is not what we should worry about, but our loss of their time.

 First, I’d like to thank my wife, Jennifer. She started as the girl behind the bookstore counter, then became my college sweetheart,
 and eventually I talked her into saying “yes” by bribing her with fine jewelry. Her selflessness, strength, and support have
 made all of this possible. She’s also at least fifty percent responsible for our absolutely precious sons, Cameron and Myles.

 I’d also like to thank my parents, Donna and Reginald, for their love and encouragement. In the ’80s few parents knew what
 a computer was, and even if they did, they could not afford one. Somehow my parents managed to find room in the family budget
 to buy me a Vic-20. They had no idea what I wanted to do with my life, but they trusted me and believed in me enough to let
 me do it. They led by example with courage and unwavering optimism to show me that success is possible against even the most
 unrealistic odds.

 Finally, I’d like to thank my Aunt Catherine for being the owner of the first x86 computer I ever used and eventually owned—and
 for trusting a 16-year-old kid enough to lend him $1,600 in 1993 to replace that old 8088.

Brandon Goodin

 I’m sure that many of us hardcore geeks share the same story. We have fond memories of our first computer and the trusting
 parents who knew somehow their investment in these confounding machines would reap some benefit. As we grow older, we find
 ourselves with spouses and children who continue to hope that our endeavors will be lucrative. I’m not sure the payoff has
 happened yet. But I’m still having a great time!

 I wouldn’t have been able to pursue my passion for software development without support and encouragement from my family and
 friends. There have been many who gave me the room to dream, play, work, and fume. To these people I owe a debt of gratitude
 for giving me the opportunity to do what I love...chuck code!

 First, I thank God for the opportunity to write code. There have been many opportunities that have come along in my career
 that I can only ascribe to providence. To write code and be able to provide for my family is a true blessing.

 To my wife, Candas, and children, Felicity, Kailey, and Amery, who have lovingly given me tons of room to spend countless
 hours noodling at my keyboard, I say thank you. You are the reason I stay motivated.

 I’d also like to say thanks to my mom and dad, Gerald and Linda Goodin. When you brought home that first Atari 400 with a
 BASIC cartridge, I was hooked. The two of you gave me my first taste.

 To my friend, Sean Dillon, thanks for all your mentorship and for giving me a huge chance to break into the world of software
 development.

 Finally, but not least, thanks, Clinton, for the golden opportunity to be a part of the iBATIS team.

Larry Meadors

 After reading the other guys’ notes, I feel like I am an echo, but we were all heading in the same direction at the same time,
 just from different places, with different people. When I received my first computer in 1983, I am sure my parents didn’t
 know what to expect, but it was a powerful addiction, and turned into a great learning tool, too.

 There have been so many people who helped me learn technology, and it would be impossible to thank all of them, so I won’t
 even try. I’ll just mention the ones who made the biggest impact.

 First, I want to thank God for putting me in a place where I have so many supportive friends, and for giving me such a great
 family who puts up with dad having his notebook on his lap for so many hours every day.

 Second, I want to thank my wife, Darla, and my two kiddos, Brandon and Micah, for being so understanding (writing a book takes
 forever!) and for all the encouragement they offered. They have spent many hours without dad and haven’t complained (well,
 not too much anyway—and not nearly as much as they deserved to).

 Last, I want to thank Brandon for introducing me to this iBATIS thing, and Clinton for being the guy who made it work, gave
 it away, and then invited me to be a part of the team. Thanks, dudes!

About this Book

 iBATIS is all about simplicity. There was a time when I said, “If I ever need to write a book about iBATIS, I’m doing something
 wrong.” And here I am, writing a book about iBATIS. It turns out that no matter how simple something is, a book is sometimes
 the best way to learn about it. There’s a lot of speculation these days that books might be replaced by e-books or by a jack
 in the back of our head that uploads information in a matter of seconds. Neither of those sounds terribly comfortable. I like
 books because they’re portable and flexible. I can write on them, bend the pages, crack the spine. Nothing would make me happier
 than to see a well-worn copy of iBATIS in Action littering the floor of a busy developer’s office. Success.

 CLINTON BEGIN

What you should know

 We hope that this book will keep the theme of iBATIS simplicity, but sometimes abstract concepts require more words. Certain
 chapters may be long and drawn out if you’re not concerned with theory. Other chapters will be quick and to the point as if
 to say, “Here’s how it works, and here’s an example—now get to it.”

 The book assumes some knowledge. We expect you to know Java. We won’t pull any punches here. This should not be the first
 or second Java book you’ve read. You should have felt the pain of using JDBC and possibly even experienced some of the pitfalls
 of O/RM.

 We also expect you to know SQL. iBATIS is a SQL-centric framework. We don’t attempt to hide the SQL; it’s not generated and
 you’re in full control of it. So you should have some SQL development experience under your belt.

 Finally, you should be familiar with XML. As much as we wish there were a better solution, XML just makes sense for iBATIS
 development. It supports authoring of large blocks of text (i.e., SQL) much better than Java (which has no multiline string
 support), and it supports rich markup, allowing for the creation of a custom configuration syntax. Future versions of iBATIS
 may have other means of configuration and development, but for now, it’s XML and you need to be familiar with it.

Who should read this book?

 The developer community is our primary target audience. We fully expect that you will skip this section, skim through most
 of the early chapters on higher-level abstract topics, and move on to the first section where you see code. We expect you
 to read through the book while coding something completely unrelated with South Park on the television in the background.

 Recovering O/RM users will enjoy iBATIS and this book. O/RM has a history of being a silver bullet solution that simply does
 not deliver. A lot of projects have started with O/RM but were finished with SQL. iBATIS focuses on solving existing problems
 without introducing new ones. We’re not against using O/RM, but chances are good that you’ve hit a snag or two when trying
 to use an O/RM solution where a different approach would have been more efficient.

 Architects will enjoy the higher-level section, which discusses the unique approach that iBATIS takes. There is a lot of hype
 about O/RM, and architects need to be informed that O/RM is not the only way. They need to learn to draw a new box with new
 lines to that old box that sits beside the O/RM box and connects it with a line to some other box—all the while ensuring that
 the Law of Demeter is never broken, of course!

 Data modelers will probably not want to read this book, but we hope that someone will encourage them to. iBATIS was a product
 partially created in frustration with the database designs that came from people who refused to follow the rules of proper
 database normalization (and judicious denormalization). Data modelers will be familiar with the challenges of most legacy
 and ERP systems that have been built by some of the largest software companies in the world.

 Others who should read this book include managers/executives, database administrators, quality assurance/testers, and analysts.
 Of course, anyone is more than welcome to buy it, if only for the cool cover.

Roadmap

 Part 1 of this book offers a high-level introduction of iBATIS. It includes chapters 1 and 2, which describe the iBATIS philosophy and what iBATIS is. These chapters provide background for people interested in the
 foundations of iBATIS. If you’re looking for the more practical application of iBATIS and want to get right down to work,
 skip to part 2.

 Chapters 3 through 7 comprise part 2 of the book, which takes you through the basic applications of iBATIS. These chapters are essential reading if you intend
 to develop with iBATIS. Chapter 3 walks you through installation of the framework. Chapters 4, 5, and 6 teach you how to work with various kinds of statements. Chapter 7 wraps up part 2 with a detailed discussion of transaction support in iBATIS, which will help ensure that transactions are used properly in
 your application.

 Part 3 begins our discussion of advanced iBATIS topics. Chapter 8 examines Dynamic SQL, which is one of the key innovations of iBATIS and essential for introducing complex query capabilities
 into your application. Chapter 9 continues the advanced topics with a discussion of caching data. As it turns out, caching is one of the more complex challenges
 with a SQL mapping framework, and you’ll want to read this chapter to ensure that you understand how it’s implemented. iBATIS
 is actually two frameworks in one: the SQL Mapper and the DAO framework. The DAO framework is completely independent, but
 it’s always been part of iBATIS, so it’s important to discuss it here. Chapters 10 and 11 discuss the DAO framework in detail. iBATIS is also a flexible framework. Wherever possible, pluggable interfaces have been
 used so you can include your own custom behavior into the framework. Chapter 12 investigates how you can extend iBATIS to do just that.

 Part 4 places iBATIS in the real world. Chapter 13 examines a number of best practices for working with iBATIS. We wrap up the book in chapter 14 with a comprehensive web application called JGameStore. The full source of the JGameStore application is available from the
 iBATIS homepage and Manning’s website. Like all of the source code in this book, JGameStore is licensed under the Apache License
 2.0, so you’re free to download it and use it as you like.

Source code conventions and downloads

 Source code in listings or code terms in text appear in a fixed-width font like this. Code annotations accompany many of the listings, highlighting important concepts. In some cases, numbered cueballs link
 to additional explanations that follow the listing.

 You can download the source code for all of the examples in the book and for the JGameStore application from the publisher’s
 website at www.manning.com/begin.

Author Online

 Purchase of iBATIS in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web
 browser to www.manning.com/begin. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the
 rules of conduct on the forum. It also provides links to the source code for the examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the authors can take place. It is not a commitment to any specific amount of participation on the part of the
 authors, whose contribution to the AO remains voluntary (and unpaid). We suggest you try asking the authors some challenging
 questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the Authors

 CLINTON BEGIN is a Senior Developer and Agile Mentor for ThoughtWorks Canada. He has been building enterprise applications for nine years
 based on platforms such as Java and .NET. Clinton has extensive experience with agile methodologies, persistence frameworks,
 and relational databases. He is the original creator of the iBATIS persistence framework, which he designed in response to
 the challenges faced by object-oriented developers dealing with enterprise relational databases. Clinton is an experienced
 speaker, having delivered formal presentations, tutorials, and training sessions from San Francisco to New York City.

 BRANDON GOODIN is an independent consultant who has been developing enterprise applications for over seven years, utilizing a varied set
 of languages and technologies. His industry experience spans manufacturing, health care, e-commerce, real estate, and recreation.
 He has been contributing to the iBATIS project since 2003.

 LARRY MEADORS is an independent consultant offering development, support, and training services. He has been building enterprise web applications
 with multiple databases and multiple languages since the late ’90s, and became involved with the iBATIS project back in the
 1.x days.

About the Title

 By combining introductions, overviews, and how-to examples, Manning’s In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent, it must pass
 through stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember
 new things, which is to say they master them, only after actively exploring them. Humans learn in action. An essential part
 of an In Action guide is that it is example-driven. It encourages the reader to try things out, play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want, just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of iBATIS in Action is a “Geisiques,” an inhabitant of the Har-Geisa region in the Horn of Africa, in what is today the country of Somalia. The
 illustration is taken from a Spanish compendium of regional dress customs first published in Madrid in 1799. The book’s title
 page states:

 Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo desubierto, dibujados y grabados con la
 mayor exactitud por R.M.V.A.R. Obra muy util y en special para los que tienen la del viajero universal

 which we translate, as literally as possible, thus:

 General collection of costumes currently used in the nations of the known world, designed and printed with great exactitude
 by R.M.V.A.R. This work is very useful especially for those who hold themselves to be universal travelers

 Although nothing is known of the designers, engravers, and workers who colored this illustration by hand, the “exactitude”
 of their execution is evident in this drawing. The “Geisiques” is just one of many figures in this colorful collection. Their
 diversity speaks vividly of the uniqueness and individuality of the world’s towns and regions just 200 years ago. This was
 a time when the dress codes of two regions separated by a few dozen miles identified people uniquely as belonging to one or
 the other. The collection brings to life a sense of isolation and distance of that period—and of every other historic period
 except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the time, has faded away. It is now often hard
 to tell the inhabitant of one continent from another. Perhaps, trying to view it optimistically, we have traded a cultural
 and visual diversity for a more varied personal life. Or a more varied and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Introduction

 We begin this book with a high-level introduction to iBATIS. The two chapters that follow will describe the iBATIS philosophy
 and distinguish it from other persistence solutions. A lot of persistence options are available for Java, and it can be a
 challenge to know which one to use and when. After reading the chapters in this part, you should understand the principles
 and values that iBATIS was built on and where you can apply them.

Chapter 1. The iBATIS philosophy

 This chapter covers

	iBATIS history

 	Understanding iBATIS

 	Database types

Structured Query Language (SQL) has been around for a long time. It’s been over 35 years since Edgar F. Codd first suggested
 the idea that data could be normalized into sets of related tables. Since then, corporate IT has invested billions of dollars
 into relational database management systems (RDBMSs). Few software technologies can claim to have stood the test of time as
 well as the relational database and SQL. Indeed, after all this time, there is still a great deal of momentum behind relational
 technology and it is a cornerstone offering of the largest software companies in the world. All indicators suggest that SQL
 will be around for another 30 years.

 iBATIS is based on the idea that there is value in relational databases and SQL, and that it is a good idea to embrace the
 industrywide investment in SQL. We have experiences whereby the database and even the SQL itself have outlived the application
 source code, and even multiple versions of the source code. In some cases we have seen that an application was rewritten in
 a different language, but the SQL and database remained largely unchanged.

 It is for such reasons that iBATIS does not attempt to hide SQL or avoid SQL. It is a persistence layer framework that instead
 embraces SQL by making it easier to work with and easier to integrate into modern object-oriented software. These days, there
 are rumors that databases and SQL threaten our object models, but that does not have to be the case. iBATIS can help to ensure
 that it is not.

 In this chapter, we will look at the history and rationale for iBATIS, and discuss the forces that influenced its creation.

1.1. A hybrid solution: combining the best of the best

 In the modern world, hybrid solutions can be found everywhere. Taking two seemingly opposing ideas and merging them in the
 middle has proven to be an effective means to filling a niche, which in some cases has resulted in the creation of entire
 industries. This is certainly true of the automotive industry, as most of the innovation in vehicle designs has come from
 mixing various ideas. Mix a car with a cargo van and you have the ultimate family minivan. Marry a truck with an all-terrain
 vehicle, and you have an urban status symbol known as a sport utility vehicle. Cross a hotrod and a station wagon and you
 have a family car that Dad isn’t embarrassed to drive. Set a gasoline engine side by side with an electric motor, and you
 have the answer for a great deal of the North American pollution problem.

 Hybrid solutions have proven effective in the IT industry too. iBATIS is one such hybrid solution for the persistence layer
 of your application. Over time, various methods have been developed to enable applications to execute SQL against a database. iBATIS is a unique solution that borrows concepts from several other approaches. Let’s start by taking a quick look
 at these approaches.

 1.1.1. Exploring the roots of iBATIS

 iBATIS takes the best attributes and ideas from the most popular means of accessing a relational database, and finds synergy
 among them. Figure 1.1 shows how the iBATIS framework takes what was learned through years of development using different approaches to database
 integration, and combines the best of those lessons to create a hybrid solution.

 Figure 1.1. Some of the ideas that iBATIS pulls together to simplify the development process

 [image:]

 The following sections discuss these various approaches to interacting with the database and describe the parts of each that
 iBATIS leverages.

Structured Query Language

 At the heart of iBATIS is SQL. By definition, all relational databases support SQL as the primary means of interacting with
 the database. SQL is a simple, nonprocedural language for working with the database, and is really two languages in one.

 The first is Data Definition Language (DDL), which includes statements like CREATE, DROP, and ALTER. These statements are used to define the structure and design of the database, including the tables, columns, indexes, constraints,
 procedures, and foreign key relationships. DDL is not something that iBATIS supports directly. Although many people have successfully
 executed DDL using iBATIS, DDL is usually owned and controlled by a database administration group and is often beyond the
 reach of developers.

 The second part of SQL is the Data Manipulation Language (DML). It includes statements such as SELECT, INSERT, UPDATE, and DELETE. DML is used to manipulate the data directly. Originally SQL was designed to be a language simple enough for end users to
 use. It was designed so that there should be no need for a rich user interface or even an application at all. Of course, this
 was back in the day of green-screen terminals, a time when we had more hope for our end users!

 These days, databases are much too complex to allow SQL to be run directly against the database by end users. Can you imagine
 handing a bunch of SQL statements to your accounting department as if to say, “Here you go, you’ll find the information you’re
 looking for in the BSHEET table.” Indeed.

 SQL alone is no longer an effective interface for end users, but it is an extremely powerful tool for developers. SQL is the
 only complete means of accessing the database; everything else is a subset of the complete set of capabilities of SQL. For
 this reason, iBATIS fully embraces SQL as the primary means of accessing the relational database. At the same time, iBATIS
 provides many of the benefits of the other approaches discussed in this chapter, including stored procedures and object/relational
 mapping tools.

Old-school stored procedures

 Stored procedures may be the oldest means of application programming with a relational database. Many legacy applications
 used what is now known as a two-tier design. A two-tier design involved a rich client interface that directly called stored procedures in the database. The stored procedures
 would contain the SQL that was to be run against the database. In addition to the SQL, the stored procedures could (and often
 would) contain business logic. Unlike SQL, these stored procedure languages were procedural and had flow control such as conditionals
 and iteration. Indeed, one could write an entire application using nothing but stored procedures. Many software vendors developed
 rich client tools, such as Oracle Forms, PowerBuilder, and Visual Basic, for developing two-tier database applications.

 The problems with two-tier applications were primarily performance and scalability. Although databases are extremely powerful
 machines, they aren’t necessarily the best choice for dealing with hundreds, thousands, or possibly millions of users. With
 modern web applications, these scalability requirements are not uncommon. Limitations, including concurrent licenses, hardware
 resources, and even network sockets, would prevent such architecture from succeeding on a massive scale. Furthermore, deployment
 of two-tier applications was a nightmare. In addition to the usual rich client deployment issues, complex runtime database
 engines often had to be deployed to the client machine as well.

Modern stored procedures

 In some circles stored procedures are still considered best practice for three-tier and N-tier applications, such as web applications.
 Stored procedures are now treated more like remote procedure calls from the middle tier, and many of the performance constraints
 are solved by pooling connections and managing database resources. Stored procedures are still a valid design choice for implementing
 the entire data access layer in a modern object-oriented application. Stored procedures have the benefit of performance on
 their side, as they can often manipulate data in the database faster than any other solution. However, there are other concerns
 beyond simply performance.

 Putting business logic in stored procedures is widely accepted as being a bad practice. The primary reason is that stored
 procedures are more difficult to develop in line with modern application architectures. They are harder to write, test, and
 deploy. To make things worse, databases are often owned by other teams and are protected by tight change controls. They may
 not be able to change as fast as they need to to keep up with modern software development methodologies. Furthermore, stored
 procedures are more limited in their capability to implement the business logic completely. If the business logic involves
 other systems, resources, or user interfaces, the stored procedure will not likely be able to handle all of the logic. Modern
 applications are very complex and require a more generic language than a stored procedure that is optimized to manipulate
 data. To deal with this, some vendors are embedding more powerful languages like Java in their database engines to allow for
 more robust stored procedures. This really doesn’t improve the situation at all. It only serves to further confuse the boundaries
 of the application and the database and puts a new burden on the database administrators: now they have to worry about Java
 and C# in their database. It’s simply the wrong tool for the job.

 A common theme in software development is overcorrection. When one problem is found, the first solution attempted is often the exact opposite approach. Instead of solving the problem,
 the result is an equal number of completely different problems. This brings us to the discussion of inline SQL.

Inline SQL

 An approach to dealing with the limitations of stored procedures was to embed SQL into more generic languages. Instead of
 moving the logic into the database, the SQL was moved from the database to the application code. This allowed SQL statements
 to interact with the language directly. In a sense, SQL became a feature of the language. This has been done with a number of languages, including COBOL, C, and even Java. The following is an example
 of SQLJ in Java:

 String name;
Date hiredate;
#sql {
 SELECT emp_name, hire_date
 INTO :name, :hiredate
 FROM employee
 WHERE emp_num = 28959
};

 Inline SQL is quite elegant in that it integrates tightly with the language. Native language variables can be passed directly
 to the SQL as parameters, and results can be selected directly into similar variables. In a sense, the SQL becomes a feature
 of the language.

 Unfortunately, inline SQL is not widely adopted and has some significant issues keeping it from gaining any ground. First,
 SQL is not a standard. There are many extensions to SQL and each only works with one particular database. This fragmentation
 of the SQL language makes it difficult to implement an inline SQL parser that is both complete and portable across database
 platforms. The second problem with inline SQL is that it is often not implemented as a true language feature. Instead, a precompiler
 is used to first translate the inline SQL into proper code for the given language. This creates problems for tools like integrated
 development environments (IDEs) that might have to interpret the code to enable advanced features like syntax highlighting
 and code completion. Code that contains inline SQL may not even be able to compile without the precompiler, a dependency that
 creates concerns around the future maintainability of the code.

OEBPS/manning.jpg

OEBPS/01fig01.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/cover.jpg

