

 [image: cover]

 Generative Art

 Matt Pearson

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

 ©2011 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher, with the exception of the Introduction,
 Chapter 1, Chapter 6, and the source code throughout, which are available under a Creative Commons (Attribution-NonCommercial 3.0) license. See
 creativecommons.org/licenses/by-nc/3.0/. Note that Creative Commons distribution of the images in the Introduction and in
 Chapter 1 is limited to those by Matt Pearson only.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 All efforts have been made to identify and contact copyright holders for the illustrations reproduced in this book. Copyright
 holders not acknowledged here should contact the author to be acknowledged in future editions of this book.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 [image:]

	Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964

	 Development editor: Jeff Bleiel
 Copyeditor: Tiffany Taylor
Designer and Typesetter: Irene Korol Scala
 Cover design: Irene Korol Scala
 Cover image: Matt Pearson

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 — MAL — 16 15 14 13 12 11

Dedication

 dedicated to my boys, Rudy and Oz

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Artworks

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 Introduction: The Organic vs. The Mechanical

 one. Creative Coding

 Chapter 1. Generative Art: In Theory and Practice

 Chapter 2. Processing: A Programming Language for Artists

 two. Randomness & Noise

 Chapter 3. The Wrong Way to Draw a Line

 Chapter 4. The Wrong Way to Draw a Circle

 Chapter 5. Adding Dimensions

 three. Complexity

 Chapter 6. Emergence

 Chapter 7. Autonomy

 Chapter 8. Fractals

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 List of Artworks

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Author

 Introduction: The Organic vs. The Mechanical

 one. Creative Coding

 Chapter 1. Generative Art: In Theory and Practice

 1.1. Not your father’s art form

 1.2. The history of a new idea

 1.3. The digital toolset

 1.3.1. Perpetual impermanence

 1.3.2. The latest in primitive technology

 1.4. Summary

 Chapter 2. Processing: A Programming Language for Artists

 2.1. What is Processing?

 2.1.1. Bold strides and baby steps

 2.1.2. Hello World

 2.2. Programmatic drawing

 2.2.1. Functions, parameters, and color values

 2.2.2. Strokes, styles, and coordinates

 2.2.3. Variables

 2.2.4. Fills, alpha values, and drawing order

 2.3. Structure, logic, and animation

 2.3.1. The frame loop

 2.3.2. Writing your own functions

 2.3.3. Operators

 2.3.4. Conditionals

 2.4. Looping

 2.4.1. While loops

 2.4.2. Leaving traces

 2.4.3. For loops

 2.5. Saving, publishing, and distributing your work

 2.5.1. Version control

 2.5.2. Creating stills

 2.5.3. Using a still as an alt image

 2.5.4. Creating video

 2.5.5. Frame rates and screen sizes

 2.5.6. Mobile devices, iPhone/iPad, and Android

 2.6. Summary

 two. Randomness & Noise

 Chapter 3. The Wrong Way to Draw a Line

 3.1. Randomness and not-so-randomness

 3.2. Iterative variance

 3.3. Naturalistic variance

 3.3.1. Perlin noise in Processing

 3.3.2. Creating your own noise

 3.3.3. A custom random function

 3.4. Summary

 Chapter 4. The Wrong Way to Draw a Circle

 4.1. Rotational drawing

 4.1.1. Drawing your first circle

 4.1.2. Turning a circle into a spiral

 4.1.3. Noisy spirals

 4.1.4. Creating your own noise, revisited

 4.2. Case study: Wave Clock

 4.3. Summary

 Chapter 5. Adding Dimensions

 5.1. Two-dimensional noise

 5.1.1. Creating a noise grid

 5.1.2. Noise visualizations

 5.2. Noisy animation

 5.3. The third dimension

 5.3.1. Drawing in 3D space

 5.3.2. Three-dimensional noise

 5.3.3. The wrong way to draw a sphere

 5.4. Summary

 three. Complexity

 Chapter 6. Emergence

 6.1. Emergence defined

 6.1.1. Ant colonies and flocking algorithms

 6.1.2. Think locally, act locally

 6.2. Object-oriented programming

 6.2.1. Classes and instances

 6.2.2. Local knowledge (collision detection)

 6.2.3. Interaction patterns

 6.3. Summary

 Chapter 7. Autonomy

 7.1. Cellular automata

 7.1.1. Setting up the framework

 7.1.2. The Game of Life

 7.1.3. Vichniac Vote

 7.1.4. Brian’s Brain

 7.1.5. Waves (averaging)

 7.2. Simulation and visualization

 7.2.1. Software agents

 7.2.2. Human agents

 7.3. Summary

 Chapter 8. Fractals

 8.1. Infinite recursion

 8.2. Coding self-similarity

 8.2.1. Trunks and branches

 8.2.2. Animating your tree

 8.3. Exponential growth

 8.4. Case study: Sutcliffe Pentagons

 8.4.1. Construction

 8.4.2. Exploration

 8.5. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

List of Artworks

	
Matt Pearson (zenbullets)

 	

	
100 Abandoned Artworks (2008–10) Figure i.14

 	xxx–xxxi

	
Broken Mirrors 1–4 (2011) Figure i.22

 	xxxviii

	
Frosti (2010) Figures i.11, 5.10

 	
xxvii, 102

	
Mondrian Architecture (2009) Figure i.20

 	xxxvi

	
Opiamas Trangelo (2010) Figures i.1, i.2, i.3

 	xix

	
Orbitals (2009) Figure i.21

 	xxxvii

	
Spiral Stairs (2009) Figure 4.6

 	72

	
Tube Clock (2009) Figure 1.1

 	5

	
Twill (2010) Cover, Figure i.12

 	Cover, xxviii

	
Wave Clock (2009) Figures 4.10, 4.15

 	
77, 81

	zenbullets / FutureDeluxe
 	

	
Life in 2050 (2010) Figure i.10

 	xxvi

	
Perth Arts Festival Branding (2011) Figure i.8

 	xxiv

	Reza Ali
 	

	
LORMALIZED (2010) Figure i.23

 	xxxix

	Tom Beddard (subblue)
 	

	
Mandelbulb (2009) Figure 8.2

 	156

	Robert Hodgin (flight 404)
 	

	
Addition/Subtraction, Variant (2010) Figure i.4

 	xx

	
Jelly (Magnetosphere) (2007) Figure i.6

 	xxi

	
Magnetic Ink (2007) Figure i.5

 	xxi

	Aaron Koblin
 	

	
Flight Patterns (2005) Figures i.18, 7.11

 	
xxxiv, 150

	Manfred Mohr
 	

	
Lady Quark (1972) Figure 1.3

 	8

	Casey Reas
 	

	
Process 14 / Image 4 (2008) Figure i.13

 	xxix

	Jerome Saint-Clair (01010101)
 	

	
Drawing With Particles (2009) Figure i.24

 	xxxix

	Jared Tarbell
 	

	
Happy Place (2006) Figure i.25

 	xl

	Jeremy Thorp (blprnt)
 	

	
Colour Economy (2008) Figure 7.10

 	149

	Frederik Vanhoutte (w:blut)
 	

	
Strange Symmetry 2 (2008) Figure i.19

 	xxxv

	Marius Watz
 	

	
Grid Distortion 02D 0018 (2010) Figure i.15

 	xxxii

	
Illuminations B (2007) Figure i.17

 	xxxiii

	
KBGD01E 0012 (2010) Figure i.16

 	xxxii

Foreword

 The last decade has seen a significant shift in our understanding of digital tools. Not only do we now take them for granted,
 we are becoming the cyborg creatures much-prophesied in 1990s millennial theory but without the neural implants and virtual
 reality that so alienated mainstream audiences.

 Instead, we put smartphones in our pockets and walk out into the world armed with search engines, Wikipedia, social networking
 services, and advanced mapping services. Without giving it much thought, we have turned into augmented beings existing in
 a world that is simultaneously real and virtual.

 This revolution would be impossible without a new understanding of software as cultural artifact. Where we once saw text processors
 as literal typewriter replacements, we now download and exchange apps as a popular pastime. Websites that used to be closed
 domains of proprietary information now sport public APIs, enabling professionals and enthusiasts alike to create ever-popular
 “mashups” based on their data.

 In the creative field, the most significant development is the realization that software processes aren’t simply tools, but
 can become the very material from which works are made. New design disciplines like interaction design and information visualization
 are based on the application of computational solutions to design problems, while generative art has become a household term
 describing artworks articulated as code. A new generation of electronic artists has turned to code as fertile ground for conceptual
 and formal experimentation, simultaneously providing a pragmatic framework for computational creativity and a theoretical
 context for the created artwork.

 The roots of this trend can be traced back to the mid-1990s, when creatives began experimenting with HTML, Shockwave, Flash,
 and Java applets as a creative medium. Predating iPhone and Android by more than a decade, the World Wide Web was the first
 media platform to deliver computational content, authored using tools aimed at creatives rather than computer scientists.
 But despite the important work done in this “golden age” of the web, the real revolution came with the introduction of open
 source tools such as Processing.[1].

 1 Processing is just one of many free development tools intended for artists. Pure Data (PD) and vvvv are both so-called visual
 patching tools, popular for video and sound manipulation. NodeBox and Scriptographer are specialized for graphic programming,
 and systems like Structure Synth and Context Free are based on recursive shape grammars.

 Written by artists for artists and initially intended as teaching tool, Processing is a simplified language built on top of
 Java, focusing on creative applications like real-time graphics and interactive systems. It eliminates tedious tasks typical
 to regular programming tools, allowing even novices to get sketching with code quickly. But despite its simplicity, Processing
 is a powerful platform capable of supporting the most demanding digital media application. It’s designed to be extended through user-contributed
 libraries that add functionality to the core framework, and is easily integrated with other systems like the popular Arduino
 microcontroller. A recent development lets users develop apps for Google’s Android OS, making Processing a veritable Swiss
 Army knife for creative computational.

	

Marius Watz is an artist working with code as his material, who has shown his work around the world. He is the founder of
 the Generator.x platform for generative art and design and is a lecturer in interaction design at the Oslo School of Architecture
 and Design. He is currently based in Oslo and New York. http://mariuswatz.com/

	

Although generative art has grown in popularity, it remains somewhat mystical as a practice, the domain of vaguely mathematical
 magic. How are these works created? How do we sketch in code? The technical aspects of writing code are tricky enough, let
 alone manipulating algorithms into serving aesthetic principles.

 Visual thinkers think in terms of logically connected workflows: take a photo, manipulate it, combine it with graphic elements,
 add typography. Coding often involves obscure steps that at first might seem completely disconnected from the aim of producing
 a visual composition: find a dataset, write a parser, analyze boundary values, write an algorithm for visual translation,
 tweak the parameters, and rewrite. Code requires identifying logical connections between elements and describing behaviors
 in terms of rules that might seem unrelated, and beginners tend to find it frustrating when the need for trigonometry invades
 even the simplest animation.

 Fortunately, most of the essential tools in the generative artist’s repertoire can be described as a set of simple principles.
 As Matt Pearson writes, generative art is easy—at least, sometimes. Using Processing as his tool of choice, Matt shows how
 to progress from primitive drawing to more complex topics like interactive animation and simulated phenomena such as cellular
 automata. But rather than just demonstrating syntax, he describes the creative process involved in designing generative systems,
 showing how manipulating parameters and tweaking algorithms can result in radically different outcomes.

 Having grown up with the ZX Spectrum and worked many years as a programmer while also being involved in the arts, Matt is
 perfectly placed at the intersection of code and creative thinking. In this book, he sets out to provide the reader with a
 toolbox of recommended practices while simultaneously introducing a deeper cultural context to the work. It should have readers
 quickly thinking beyond simple code tricks to the more complex ideas that underlie a computational model of form. My personal
 favorites are the sections on “wrong” ways to do things, showing how a simple form like a line or a circle can be transformed
 into complex systems by thinking creatively about the way they’re constructed.

 Happy coding!

 Marius Watz

Preface

 I’m going to issue a disclaimer before we proceed: I tried doing it the right way, I tried becoming a “real” programmer, I
 really did. But I failed. I started a computer science degree, but dropped out after about a year and a half. I’m sorry, but
 it bored me senseless.

 As a young man, this career shift wasn’t entirely motivated by a need to restore the right-left hemisphere balance to my young
 brain; it may also have had something to do with the worry that knowing a lot about Alan Turing and C++ was probably not the
 best way to get a girlfriend.

 My studies of early 1990s ideas of computing had so repulsed me that I made efforts to stay as far away from computers as
 I could for the next 10 years. For much of the 90s, I didn’t even own a computer; instead I had a guitar, an attitude, and
 an ill-advised haircut. I was only drawn back toward the end of the decade when the web started to take off, and a lot of
 creative people suddenly discovered that what they’d been doing recently with video cameras, photography, and hypertext was
 now being called New Media, and everyone was doing it. This rehabilitation of computing has continued unabated, to the point that today, to say you “work with computers”
 is about as meaningful as saying you breathe air.

 At the time I dropped out, I couldn’t imagine anything worse than spending the rest of my days communing with these soulless
 beasts of logic and wires. But in adulthood, I discovered a new enthusiasm for computing after stumbling across a simple realization;
 that computers and computing were not the same thing. What hadn’t been made apparent to me during my university days was that computation is everywhere,
 and it can be a thing of beauty.

 Computing is what a stream does as it finds its way downhill toward the ocean. It’s what the planets do as they move in their
 orbits. It’s what our bodies do as they maintain the balance needed to keep us upright. It’s what our DNA does as it unravels.
 Computing is what I’m doing now as I process these ideas and output them as text—and what your brain is doing as you read
 the words and form your own ideas as a result.

 This is why I can say, without contradiction, that while I still find computers boring, I think computing is cool. The only
 place computers really come into it is in attempting to simulate these computations or creating new ones to rival those of the natural world. Which brings me to the subject in hand: generative
 art.

 As a jobbing coder, I always dabbled with generative ideas when I could. Whenever I got my hands on a new bit of kit, the
 first thing I’d run would be a few fractal creations to test its limits. But I’d never taken it seriously as an art form,
 and I was only dimly aware of the growing movement of artists who did. But this side of the millennium, that movement was
 gathering pace and becoming more visible, as the tools also became increasingly powerful and accessible.

 I’ve always believed that if you want to do something, the best way to go about it is to stop talking yourself out of it and
 just get on with it. Nothing should stop you, as long as you’re happy to work without reward. Although, as experience testifies,
 I’ve found that if you do something long enough and maintain an enthusiasm for it, sooner or later someone will end up offering
 you money for it. Or ask you to write a book about it. Admittedly, this principle may not apply to self-abuse or serial killing,
 but it’s certainly true of most artistic endeavors.

 So, you could say the genesis of the book you’re now holding (physically or virtually) was in a project I started, in accordance
 with this principle, in 2008. I decided that if I was going to take generative art seriously, I’d start a generative art blog.
 I called it 100 Abandoned Artworks and set myself the task of producing a generative artwork every week, throwing it out there in whatever state I had got it
 to (hence the abandoned) before real-life commitments intruded on my playtime. I included the source code, Creative Commons licensed, so anyone could
 take my abandoned, half-finished works and find some use in them. I pledged that I wouldn’t allow myself to stop until I reached
 100. This strict, self-imposed schedule was a conscious way to force myself to reorder my priorities. I knew that somehow
 I found time to spend hours reading comic books and watching no end of god-awful movies, yet generative art, something I enjoyed,
 was the thing I never found the time for.

 The discipline worked. Not only did I find the schedule easy to maintain, my enthusiasm for Processing (the tool I had chosen)
 keep growing. The project took me on many diversions, into print and video, and started feeding back into my day job. It was
 somewhere around the 50 mark that Christina Rudloff at Manning got in touch to discuss the possibility of a book.

 That project is now complete, as is the book. This book is a snapshot of where I am right now, of everything I’ve learned
 and unlearned in my programming career up to this point. I didn’t want to write yet another Processing book—I don’t particularly
 like programming books, and I’ve never read one from cover to cover. I wanted to write something more inspiring, something
 that was about the why as much as the how. Programming art is a different discipline than programming systems, and there should be no right or wrong way to use the
 powerful tools we have at our disposal. I wanted to get across how coding can be liberating and creative, not just structured
 and orderly, and accessible to more people than just the techies. Whether I’ve succeeded in this aim is for you to decide.

Acknowledgments

 Huge thanks go out to all the following, for the work they contributed, for making it possible, for being nice, for supporting
 the project, for putting up with my crap, for reviewing the manuscript, for giving feedback, and/or just saying the right
 thing at the right time:

 Alan Sutcliffe, Rob “SanchoTheFat” O’Rourke, Justin “Soulwire” Windle, Seb Lee Delisle, J4mie Matthews, Ron Wheedon, Robert
 Hodgin, Aaron Koblin, Jeremy Thorp, Jared Tarbell, Casey Reas, Ben Fry, Manfred Mohr, Reza Ali, Jerome “01010101” Saint-Clair,
 Dan Shiffman, Shardcore, Norman Klein, Kerry Mitchell, Orhan Alkan, Patrick Steger, Andy Dingley; at Manning: Marjan Bace,
 Emily Macel, Christina Rudloff, Jeff Bleiel, Mary Piergies, Tiffany Taylor, Barbara Mirecki, Irene Korol Scala, (and anyone
 else who had the misfortune of dealing with me); also Philip Galanter, Kevin “lomokev” Meredith, Marc Banks, Alice Eldridge,
 Rich “Text Format” Willis, Rifa Bhunnoo, Chris TT, Ewan Swain, Eric Bates, Iestyn Lloyd, Alec Morrison, everyone at dotBrighton,
 Ruth and Jo, plus my friends at FutureDeluxe and TGSi (in part for letting me leech desk space while I was writing).

 Special thanks to Marius Watz, for his artworks and foreword; Frederik “w:blut” Vanhoutte for his artworks and technical review;
 and Cliff Pickford for the Alan Watts quote.

OEBPS/manning.jpg

OEBPS/logo.jpg

OEBPS/infin.jpg

OEBPS/cover.jpg

