

 [image: cover]

Agile Metrics in Action: How to measure and improve team performance

 Christopher W. H. Davis

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2015 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 	
 Development editor: Dan Maharry
Technical development editor: Michael Smolyak
Copyeditor: Linda Recktenwald
Proofreader: Elizabeth Martin
Technical proofreader: David Pombal
Typesetter: Marija Tudor
Cover designer: Marija Tudor

 ISBN: 9781617292484

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Measuring agile teams

 Chapter 1. Measuring agile performance

 Chapter 2. Observing a live project

 2. Collecting and analyzing your team’s data

 Chapter 3. Trends and data from project-tracking systems

 Chapter 4. Trends and data from source control

 Chapter 5. Trends and data from CI and deployment servers

 Chapter 6. Data from your production systems

 3. Applying metrics to your teams, processes, and software

 Chapter 7. Working with the data you’re collecting: the sum of the parts

 Chapter 8. Measuring the technical quality of your software

 Chapter 9. Publishing metrics

 Chapter 10. Measuring your team against the agile principles

 Appendix A. DIY analytics using ELK

 Appendix B. Collecting data from source systems with Grails

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 1. Measuring agile teams

 Chapter 1. Measuring agile performance

 1.1. Collect, measure, react, repeat—the feedback loop

 1.1.1. What are metrics?

 1.2. Why agile teams struggle with measurement

 1.2.1. Problem: agile definitions of measurement are not straightforward

 1.2.2. Problem: agile focuses on a product, not a project

 1.2.3. Problem: data is all over the place without a unified view

 1.3. What questions can metrics answer, and where do I get the data to answer them?

 1.3.1. Project tracking

 1.3.2. Source control

 1.3.3. The build system

 1.3.4. System monitoring

 1.4. Analyzing what you have and what to do with the data

 1.4.1. Figuring out what matters

 1.4.2. Visualizing your data

 1.5. Applying lessons learned

 1.6. Taking ownership and measuring your team

 1.6.1. Getting buy-in

 1.6.2. Metric naysayers

 1.7. Summary

 Chapter 2. Observing a live project

 2.1. A typical agile project

 2.1.1. How Blastamo Music used agile

 2.2. A problem arises

 2.3. Determining the right solution

 2.4. Analyzing and presenting the data

 2.4.1. Solving the problems

 2.4.2. Visualizing the final product for leadership

 2.5. Building on the system and improving their processes

 2.5.1. Using data to improve what they do every day

 2.6. Summary

 2. Collecting and analyzing your team’s data

 Chapter 3. Trends and data from project-tracking systems

 3.1. Typical agile measurements using PTS data

 3.1.1. Burn down

 3.1.2. Velocity

 3.1.3. Cumulative flow

 3.1.4. Lead time

 3.1.5. Bug counts

 3.2. Prepare for analysis; generate the richest set of data you can

 3.2.1. Tip 1: Make sure everyone uses your PTS

 3.2.2. Tip 2: Tag tasks with as much data as possible

 3.2.3. Tip 3: Estimate how long you think your tasks will take

 3.2.4. Tip 4: Clearly define when tasks are done

 3.2.5. Tip 5: Clearly define when tasks are completed in a good way

 3.3. Key project management metrics; spotting trends in data

 3.3.1. Task volume

 3.3.2. Bugs

 3.3.3. Measuring task movement; recidivism and workflow

 3.3.4. Sorting with tags and labels

 3.4. Case study: identifying tech debt trending with project tracking data

 3.5. Summary

 Chapter 4. Trends and data from source control

 4.1. What is source control management?

 4.2. Preparing for analysis: generate the richest set of data you can

 4.2.1. Tip 1: Use distributed version control and pull requests

 4.3. The data you’ll be working with; what you can get from SCM

 4.3.1. The data you can get from a DVCS

 4.3.2. Data you can get from centralized SCM

 4.3.3. What you can tell from SCM alone

 4.4. Key SCM metrics: spotting trends in your data

 4.4.1. Charting SCM activity

 4.5. Case study: moving to the pull request workflow and incorporating quality engineering

 4.6. Summary

 Chapter 5. Trends and data from CI and deployment servers

 5.1. What is continuous development?

 5.1.1. Continuous integration

 5.1.2. Continuous delivery

 5.1.3. Continuous testing

 5.2. Preparing for analysis: generate the richest set of data you can

 5.2.1. Set up a delivery pipeline

 5.3. The data you’ll be working with: what you can get from your CI APIs

 5.3.1. The data you can get from your CI server

 5.3.2. What you can tell from CI alone

 5.4. Key CI metrics: spotting trends in your data

 5.4.1. Getting CI data and adding it to your charts

 5.5. Case study: measuring benefits of process change through CI data

 5.6. Summary

 Chapter 6. Data from your production systems

 6.1. Preparing for analysis: generating the richest set of data you can

 6.1.1. Adding arbitrary metrics to your development cycle

 6.1.2. Utilizing the features of your application performance monitoring system

 6.1.3. Using logging best practices

 6.1.4. Using social network interaction to connect with your consumers

 6.2. The data you’ll be working with: what you can get from your APM systems

 6.2.1. Server health statistics

 6.2.2. Consumer usage

 6.2.3. Semantic logging analysis

 6.2.4. Tools used to collect production system data

 6.3. Case study: a team moves to DevOps and continuous delivery

 6.4. Summary

 3. Applying metrics to your teams, processes, and software

 Chapter 7. Working with the data you’re collecting: the sum of the parts

 7.1. Combining data points to create metrics

 7.2. Using your data to define “good”

 7.2.1. Turning subjectivity into objectivity

 7.2.2. Working backward from good releases

 7.3. How to create metrics

 7.3.1. Step 1: explore your data

 7.3.2. Step 2: break it down—determine what to track

 7.3.3. Step 3: create formulas around multiple data points to create metrics

 7.4. Case study: creating and using a new metric to measure continuous release quality

 Normalizing changed lines of code

 Normalizing estimate health

 Normalizing recidivism

 Normalizing escaped defects

 Adding the elements together

 7.5. Summary

 Chapter 8. Measuring the technical quality of your software

 8.1. Preparing for analysis: setting up to measure your code

 8.2. Measuring the NFRs through the code “ilities”

 8.3. Measuring maintainability

 8.3.1. MTTR and lead time

 8.3.2. Adding SCM and build data

 8.3.3. Code coverage

 8.3.4. Adding static code analysis

 8.3.5. Adding more PTS data

 8.4. Measuring usability

 8.4.1. Reliability and availability

 8.4.2. Security

 8.5. Case study: finding anomalies in lead time

 8.6. Summary

 Chapter 9. Publishing metrics

 9.1. The right data for the right audience

 9.1.1. What to use on your team

 9.1.2. What managers want to see

 9.1.3. What executives care about

 9.1.4. Using metrics to prove a point or effect change

 9.2. Different publishing methods

 9.2.1. Building dashboards

 9.2.2. Using email

 9.3. Case study: driving visibility toward a strategic goal

 9.4. Summary

 Chapter 10. Measuring your team against the agile principles

 10.1. Breaking the agile principles into measurable components

 10.1.1. Aligning the principles with the delivery lifecycle

 10.2. Three principles for effective software

 10.2.1. Measuring effective software

 10.3. Four principles for effective process

 10.3.1. Measuring effective processes

 10.4. Four principles for an effective team

 10.4.1. Measuring an effective development team

 10.5. One principle for effective requirements

 10.5.1. Measuring effective requirements

 10.6. Case study: a new agile team

 10.7. Summary

 Appendix A. DIY analytics using ELK

 A.1. Setting up your system

 A.1.1. Checking the database

 A.1.2. Configuring your data collector

 A.2. Creating the dashboard

 A.3. Summary

 Appendix B. Collecting data from source systems with Grails

 B.1. Architectural overview

 B.1.1. Domain objects

 B.1.2. The data you’re working with

 B.1.3. Data collection services

 B.1.4. Scheduling jobs for data collection

 B.2. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Although it is still fairly young, the software development industry has matured considerably in the last 15 years and gone
 through several major transformations:

 	Just a short while ago, it seems, the waterfall lifecycle was pretty much the only option for software development projects.
 Today, agile methodology is also frequently used.

 	New development engineering practices have entered the game, such as SCM, issue tracking, build standardization, continuous
 integration, continuous inspection, and so on. In most organizations, it is now the norm to have a complete software factory.

 	Although they started out minimalistic, modern IDEs have become a widely adopted productivity tool for developers.

 This is all great news; and what’s more, there is strong traction to continue these efforts and make the software development
 world even better. It is amazing how many development teams are seeking a common Holy Grail: continuous delivery. In other
 words, teams want a software development process that is predictable and repeatable, and that enables a shift to production
 at any time in a controlled manner.

 Despite all the good things that have happened within the industry in recent years, there is a general consensus that we are
 not quite there yet. Software development is not yet a fully mastered science, and delivery generally still is not reliable.
 Projects are often delivered late, with a reduced scope of features, generating frustration at all levels in organizations
 and justifying their reputation for being both expensive and unpredictable.

 One aspect that is missing from the recent improvements in our industry is measurement: measurement of what we produce, of course, but also measurement of the impact of the changes we make to improve delivery.
 We should be able to answer questions such as, “Did this change improve the process?” and “Are we delivering better now?”
 In many cases, these questions are not even asked, because doing so is not part of the company culture or because we know
 they are difficult to answer. If we, as an industry, want to reach the next level of maturity, we need to both ask and answer
 these questions. Many companies have realized this and have begun to move into the measurement area.

 This is the journey that Chris will take you on in this book. It will be your steadfast companion on your expedition into
 measurement. Whether you are just starting out or are already an advanced “measurer,” Agile Metrics in Action will provide you with a 360-degree guide: from theory to practice; from defining what you should be measuring, in which area
 and at which frequency, to who should be targeted with which indicators; and from how to gather the numbers and which tool
 to use to consolidate them, to how to take action on them. The book focuses mostly on agile teams, but much of it can also
 be applied in other contexts. All this is done using existing tools, most of them open source and widely used.

 But that’s not all! For each area of measurement, Chris presents a case study that makes it concrete and applicable, based
 on his own experiences. Whatever your current maturity level with regard to measuring your development process, you will learn
 from this book. Enjoy!

 OLIVIER GAUDIN

 CEO AND COFOUNDER

 SONARSOURCE

Preface

 At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

 agilemanifesto.org/principles.html

 Development teams adopt agile practices differently based on team members, time commitments, the type of project being developed,
 and the software available, to name only a few factors. As quoted from the Agile Manifesto, teams should have regular check
 and adjust periods where they can reflect on how well they’re working and how they can improve. This book demonstrates how
 to gather performance data to measure an agile team, interpret it, and react to it at check and adjust intervals so the team
 can reach their full potential.

 After years of working on agile teams, I’ve noticed that many times teams check and adjust based on gut feelings or the latest
 blog post someone read. Many times teams don’t use real data to determine what direction to go in or to rate their team or
 their process. You don’t have to go far to find the data with development, tracking, and monitoring tools used today. Applications
 have very sophisticated performance-monitoring systems; tracking systems are used to manage tasks; and build systems are flexible,
 simple, and powerful. Combine all of this with modern deployment methodologies and teams shipping code to production multiple
 times a day in an automated fashion, and you have a wealth of data you can use to measure your team in order to adjust your
 process.

 I’ve used the techniques in this book over the years, and it has been a game changer in how my teams think about their work.
 Retrospectives that start with conversations around data end up being much more productive and bring to light real issues
 to work on instead of going off of guesswork or opinion. Being able to set metrics with a team and using them in Scrums, retrospectives,
 or anywhere else throughout the development process helps the team focus on issues and filter out noise or celebrate parts
 of the process that are working well.

 Finally, having this data at their fingertips typically makes managers and leadership teams happy because it gives them real
 insight into how the teams they’re sponsoring and responsible for are really performing. They can see how their initiatives
 affect their teams and ultimately the bottom line.

 I started using these techniques as a developer who wanted to report to leadership the true picture of the performance of
 my team. As I transitioned into management, I started to look at this data from another angle and encouraged my team to do
 the same, adding data they thought was important that reflected their day-to-day work. As I transitioned into a more senior
 management position, I’ve been able to look at this data from yet another perspective to see how strategies, initiatives,
 and investments affect cross-team efforts, how to bring operating efficiencies from one team to another, and how to track
 success on a larger scale. No matter what your role is on an agile development team, I’m sure you’ll be able to apply these
 techniques with success in your organization.

Acknowledgments

 Anyone who writes a book will tell you it’s a lot of work, and they’re right. It’s been a journey just to get to a point where
 I could write a book on anything, and writing itself has been an extremely rewarding experience. You wouldn’t be reading this
 if it weren’t for the love and support of many people throughout my life who have encouraged me to try new things, picked
 me up when I’ve stumbled, and given me the confidence to keep innovating.

 To start, there have been my teachers through the years who noticed my love of writing and encouraged me to keep at it: my
 fifth-grade teacher, Mr. Rosati, who first noticed my love of writing; my seventh-grade English teacher and tennis coach,
 Mr. Nolan, who gave me the opportunity to continue working on my creative skills; and my tenth-grade English teacher, Ms.
 Kirchner, who encouraged me to publish my work. My college professors Sheila Silver, Christa Erickson, Perry Goldstein, and
 Daniel Weymouth all encouraged my creativity and put me on a path that combined my technical and creative abilities.

 A special thank you goes out to my parents, Ward and Irene Davis, who have always stood by me and encouraged me to be myself.
 They gave me the freedom to grow and encouraged my efforts no matter how crazy they have been.

 I’m grateful also to my lovely wife, Heather, who tolerated my long nights and weekends of typing and gave me the encouragement
 to keep going.

 Thanks also to Grandma Davis, who taught me about the long line of inventors and writers in our family tree, which has always
 been a source of inspiration.

 Thanks to all of the great people at Manning Publications who have helped along the way: Dan Maharry for being a great editor
 and Michael Stephens, Candace Gillhoolley, and Marjan Bace for their suggestions and direction during the writing of this
 book. Thanks also to the production team and everyone else at Manning who worked behind the scenes.

 I’d like to express my gratitude to the MEAP readers and the reviewers who took time to read my manuscript at various stages
 during its development and who provided invaluable feedback, especially Boyd Meier, Chris Heneghan, Enzo Matera, Ezra Simeloff,
 Francesco Bianchi, Hamideh Iraj, James Matlock, John Tyler, Ken Fricklas, Luca Campobasso, Marcelo Lopez, Max Hemingway, Noreen
 Dertinger, Steven Parr, and Sune Lomholt.

 Special thanks to my technical proofreader, David Pombal, who checked the code and read the chapters one last time shortly
 before the book went into production, and to Olivier Gaudin for contributing the foreword to my book.

 I’d also like to thank everyone who has driven me crazy by not measuring things over the years; they ultimately pushed me
 into exploring and mastering this topic throughout my career. Conversely, I’d like to thank everyone who has found value in
 these techniques or has worked on my teams that have used them, because they have helped me hone them into useful and practical
 ways of creating great agile teams.

About this Book

 In this book I hope to show you how to use the data you’re already generating to make your teams, processes, and products
 better. The goal of the book is to teach your agile team which metrics it can use to objectively measure performance. You’ll
 learn what data really counts, along with where to find it, how to get it, and how to analyze it. Because meaningful data
 may be gathered or used by any part of an agile team, you’ll learn how all team members can publish their own metrics through
 dashboards and radiators, taking charge of communicating performance and individual accountability. Along the way, I hope
 you’ll pick up practical data analysis techniques, including a few emerging Big Data practices.

Roadmap

 This book is broken into three parts: “Measuring agile performance,” “Collecting and analyzing your team’s data,” and “Applying metrics to your teams, processes, and software.”

 The first part introduces the concepts of data-driven agile teams: how to measure your processes and how to apply it to your
 team. Chapter 2 is an extended case study that takes the concepts from the first chapter and shows them in action on a fictional team.

 The second part of this book is made up of four chapters, each focusing on a specific type of data, how to use it on your
 team, and what that data tells you by itself. We start off with project tracking system (PTS) data in chapter 3, move on to source control management (SCM) data in chapter 4, explore data from continuous integration (CI) and deployment systems in chapter 5, and finally in chapter 6 look at data you can get from application performance monitoring (APM) tools. Each chapter in this section ends in a case
 study that shows you how the data and metrics from the chapter can be applied to your team from the team’s point of view.

 The third part of this book shows you what you can do with the data you’ve learned about in the first two parts. Chapter 7 shows you how to combine different types of data to create complex metrics. Chapter 8 shows you how to measure good software and uses a variety of data and techniques to monitor your code throughout its lifecycle.
 Chapter 9 shows you how to report on your metrics, diving into dashboards and reports and how to use them across your organization.
 The final chapter in this book shows you how to measure your team against the agile principles to see how agile your team
 really is.

 Throughout the book I use primarily open source tools to demonstrate these practices. The appendixes walk you through the
 code for a data-collection system called measurementor based on Elasticsearch, Kibana, Mongo, and Grails that I’ve used to
 collect, aggregate, and display data from multiple systems.

Code conventions and downloads

 All the source code in the book, whether in code listings or snippets, is in a fixed-width font like this, which sets it off from the surrounding text. In some listings, the code is annotated to point out key concepts, and numbered
 bullets are sometimes used in the text to provide additional information about the code. The code is formatted so that it
 fits within the available page space in the book by adding line breaks and using indentation carefully.

 The code for this book is available for download from the publisher’s website at www.manning.com/AgileMetricsinAction and is also posted on GitHub at github.com/cwhd/measurementor.

 Feel free to contribute to the project, fork it, or use the concepts to roll your own version in your language of choice.
 I tried to make it as easy as possible to use by employing open source tools for the bulk of the functionality. There’s a
 Puppet script that will install everything you need and a Vagrant file so you can get up and running in a virtual machine
 pretty quickly.

 In appendix A, I detail the architecture of the system used throughout the book.

Author Online

 Purchase of Agile Metrics in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask
 technical questions, and receive help from the author and from the community. To access the forum and subscribe to it, go
 to www.manning.com/AgileMetricsinAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between
 readers and the author can take place. It’s not a commitment to any specific amount of participation on the part of the author,
 whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions
 lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as
 the book is in print.

About the author

 Christopher W. H. Davis has been leading and working on development teams since the latter part of the twentieth century.
 Working in the travel, finance, healthcare, telecommunications, and manufacturing industries, he’s led diverse teams in several
 different environments around the world.

 An avid runner, Chris enjoys the beautiful and majestic Pacific Northwest in Portland, Oregon, with his wife and two children.

About the cover illustration

 The figure on the cover of Agile Metrics in Action is captioned “Montagnard du Nord de l’Ecosse,” which means an inhabitant of the mountainous regions in the north of Scotland.
 The mountaineer is shown wearing a long blue robe and a red hat, and is holding an older version of a traditional Scottish
 bagpipe.

 The illustration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume compendium of regional dress
 customs published in France. Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s collection
 reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other,
 people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived
 and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region and country, so rich at the time, has faded away. It is now
 hard to tell apart the inhabitants of different continents, let alone different towns, regions, or nations. Perhaps we have
 traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life
 by Maréchal’s pictures.

Part 1. Measuring agile teams

 Agile development has guidelines instead of hard-and-fast rules. Many teams that practice agile struggle with measuring their
 processes and their teams, despite having all the data they need to do the measurement.

 Chapter 1 navigates through the challenges of agile measurement. You’ll learn where you can get data to measure your team, how to break
 down problems into measureable units, and how to incorporate better agile measurement on your team.

 Chapter 2 puts what you learned in chapter 1 into action through a case study where a team uses several open source technologies to incorporate better agile measurement.
 They identify key metrics, use the tools to collect and analyze data, and check and adjust based on what they find.

Chapter 1. Measuring agile performance

 This chapter covers

 	Struggling with agile performance measurement

 	Finding objective data for measuring agile performance

 	Answering performance questions with data you’re generating

 	Adopting agile performance measurement

 There isn’t a silver-bullet metric that will tell you if your agile teams are performing as well as they can. Performance
 improvement is made possible by incorporating what you learn about your team’s performance into how your team operates at
 regular intervals. Collecting and analyzing data in the form of metrics is an objective way to learn more about your team
 and a way to measure any adjustments you decide to make to your team’s behavior.

1.1. Collect, measure, react, repeat—the feedback loop

 Working with metrics in a feedback loop in parallel with your development cycle will allow you to make smarter adjustments
 to your team and help improve communication across your organization. Here are the steps in the feedback loop:

 	
Collect —Gather all the data you can about your team and performance. Understand where you are before you change anything.

 	
Measure —Analyze your data.

 	Look for trends and relationships between data points.

 	Formulate questions about your team, workflow, or process.

 	Determine how to adjust based on your analysis.

 	
React —Apply the adjustments based on your analysis.

 	
Repeat —Keep tabs on the data you’ve determined should be affected so you can continuously analyze and adjust your team.

 The feedback loop depicted in figure 1.1 naturally fits into the operations of agile teams. As you’re developing, you’re generating and collecting data; when you
 pause to check and adjust, you’re doing your analysis; and when you start again, you’re applying lessons learned and generating
 more data.

 Figure 1.1. The feedback loop: collecting data from your process, asking questions, and tweaking your process

 [image:]

 	

 Continuous delivery and continuous improvement

 The word continuous is everywhere in agile terminology: continuous integration, continuous delivery, continuous improvement, continuous testing,
 continuous (choose your noun). No matter if you’re doing Scrum, Kanban, extreme programming (XP), or some custom form of agile,
 keeping your stream of metrics as continuous as your check-and-adjust period is key.

 	

 To begin you need to know where you stand. You’re probably already tracking something in your development process, like what
 was accomplished, how much code is changing, and how your software is performing.

 Your questions will drive the analysis phase by providing a lens with which to view this data. Through this lens you can identify
 data points and metrics that help answer your questions. These data points then become the indicators of progress as you adjust
 your process to get to an ideal operating model for your team. Once you have questions you want to answer, then you can start
 identifying data points and metrics that represent them. At that point you can adjust how your team operates and track the
 metrics you’ve identified.

 1.1.1. What are metrics?

 “A method of measuring something, or the results obtained from this.”

 metrics defined by Google

 In the scope of this book metrics will represent the data you can get from your application lifecycle as it applies to the
 performance of software development teams. A metric can come from a single data source or it can be a combination of data
 from multiple data sources. Any data point that you track eventually becomes a metric that you can use to measure your team’s
 performance. Examples of common metrics are:

 	
Velocity —The relative performance of your team over time

 	
Changed lines of code (CLOC) —The number of lines of code that were changed over time

 Metrics can be used to measure anything you think is relevant, which can be a powerful tool when used to facilitate better
 communication and collaboration. These metrics in effect become key performance indicators (KPIs) that help measure what’s
 important to your team and your business.

 Using KPIs and data trends to show how certain data points affect behaviors and progress, you can tweak the behavior of your
 team and watch how the changes you make affect data that’s important to it.

1.2. Why agile teams struggle with measurement

 As you drive down the road, the gauges on your dashboard are the same as the gauges in the cars around you. There are highway
 signs that tell you how fast you should go and what you should do. Everyone on the road has gone through the same driving
 tests to get a driver’s license and knows the same basic stuff about driving.

 Agile development is nothing like this. The people involved in delivering a software product have different roles and different
 backgrounds. Their idea of what good means can vary substantially.

 	A developer might think that good means a well-engineered piece of software.

 	A product owner might define good as more features delivered.

 	A project manager may think good means it was done on time and within budget.

 Even though everyone is doing something different, they’re all headed down the same road.

 So now picture a bunch of people driving down the same road in different vehicles with totally different gauges. They all
 need to get to the same place, yet they’re all using different information to get there. They can follow each other down the
 road, but when they pull over to figure out how the trip is going, each has different ideas of what the gauges in their vehicle
 are telling them.

 Agile is a partnership between product owners and product creators. To make the most out of that partnership you need to smooth
 out the communication differences by turning the data you’re already generating in your development process into agreed-upon
 metrics that tell you how your team is doing.

 Let’s look at some universal problems that end up getting in the way of a common understanding of agile metrics:

 	Agile definitions of measurement are not straightforward.

 	Agile deviates from textbook project management.

 	Data is generated throughout the entire development process without a unified view.

 All of these are common problems that deserve exploring.

 1.2.1. Problem: agile definitions of measurement are not straightforward

 There are a few commonly accepted tenets about measuring agile that tend to be rather confusing. Let’s start with common agile
 principles:

 	
Working software is the primary measure of progress. That statement is so ambiguous and open to interpretation that it makes it very hard for teams to pinpoint exactly how to
 measure progress. Essentially the point is you are performing well if you’re delivering products to your consumers. The problem
 is the subjective nature of the term working software. Are you delivering something that works per the original requirements but has massive security holes that put your consumer’s
 data in jeopardy? Are you delivering something that is so non-performant that your consumers stop using it? If you answered
 yes to either question, then you’re probably not progressing. There’s a lot more to measuring progress than delivering working
 software.

 	
Any measurement you’re currently using has to be cheap. So what’s included in the cost associated with gathering metrics? Are licenses to software included? Are you looking at the
 hours spent by the people collecting measures? This statement belittles the value of measuring performance. When you start
 measuring something, the better thing to keep in mind is if the value you get from the improvement associated with the metric
 outweighs the cost of collecting it. This open statement is a good tenet, but like our first statement, it’s pretty ambiguous.

 	
Measure only what matters. This is a bad tenet. How do you know what matters? When do you start tracking new things and when do you stop tracking others?
 Because these are hard questions, metrics end up getting thrown by the wayside when they could be providing value. A better wording would be “measure everything and figure out why metrics change unexpectedly.”

 1.2.2. Problem: agile focuses on a product, not a project

OEBPS/common01.jpg

OEBPS/01fig01_alt.jpg
© cotect ata:

Get as much data
as you can from your
application lifecycle.

=

© Revear. © React (appiy):
Adjust your team basec
on your findings.

© Measure (analyze):
Ask questions, find
trends, make
i

OEBPS/logo.jpg
/I MANNING PUBLICATIONS

OEBPS/common02.jpg

OEBPS/cover.jpg

