

 inside front cover

 [image:]

 [image:]

 Grokking Streaming Systems

 Real-time event processing

 Josh Fischer and Ning Wang

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Becky Whitney

 	
 Technical development editor:

 	
 Nick Watts

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Christian Berk

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Karsten Strøbaek

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Leslie Hames

 ISBN: 9781617297304

 brief contents

 Part 1. Getting started with streaming

 1 Welcome to Grokking Streaming Systems

 2 Hello, streaming systems!

 3 Parallelization and data grouping

 4 Stream graph

 5 Delivery semantics

 6 Streaming systems review and a glimpse ahead

 Part 2. Stepping up

 7 Windowed computations

 8 Join operations

 9 Backpressure

 10 Stateful computation

 11 Wrap-up: Advanced concepts

 Appendix. Key concepts covered in this book

contents

 Front matter

 preface

 acknowledgments

 about this book

 about the authors

 Part 1. Getting started with streaming

 1 Welcome to Grokking Streaming Systems

 What is stream processing?

 Streaming system examples

 Streaming systems and real time

 How a streaming system works

 Applications

 Backend services

 Inside a backend service

 Batch processing systems

 Inside a batch processing system

 Stream processing systems

 Inside a stream processing system

 The advantages of multi-stage architecture

 The multi-stage architecture in batch and stream processing systems

 Compare the systems

 A model stream processing system

 2 Hello, streaming systems!

 The chief needs a fancy tollbooth

 It started as HTTP requests, and it failed

 AJ and Miranda take time to reflect

 AJ ponders about streaming systems

 Comparing backend service and streaming

 How a streaming system could fit

 Queues: A foundational concept

 Data transfer via queues

 Our streaming framework (the start of it)

 The Streamwork framework overview

 Zooming in on the Streamwork engine

 Core streaming concepts

 More details of the concepts

 The streaming job execution flow

 Your first streaming job

 Executing the job

 Inspecting the job execution

 Look inside the engine

 Keep events moving

 The life of a data element

 Reviewing streaming concepts

 3 Parallelization and data grouping

 The sensor is emitting more events

 Even in streaming, real time is hard

 New concepts: Parallelism is important

 New concepts: Data parallelism

 New concepts: Data execution independence

 New concepts: Task parallelism

 Data parallelism vs. task parallelism

 Parallelism and concurrency

 Parallelizing the job

 Parallelizing components

 Parallelizing sources

 Viewing job output

 Parallelizing operators

 Viewing job output

 Events and instances

 Event ordering

 Event grouping

 Shuffle grouping

 Shuffle grouping: Under the hood

 Fields grouping

 Fields grouping: Under the hood

 Event grouping execution

 Look inside the engine: Event dispatcher

 Applying fields grouping in your job

 Event ordering

 Comparing grouping behaviors

 4 Stream graph

 A credit card fraud detection system

 More about the credit card fraud detection system

 The fraud detection business

 Streaming isn’t always a straight line

 Zoom into the system

 The fraud detection job in detail

 New concepts

 Upstream and downstream components

 Stream fan-out and fan-in

 Graph, directed graph, and DAG

 DAG in stream processing systems

 All new concepts in one page

 Stream fan-out to the analyzers

 Look inside the engine

 There is a problem: Efficiency

 Stream fan-out with different streams

 Look inside the engine again

 Communication between the components via channels

 Multiple channels

 Stream fan-in to the score aggregator

 Stream fan-in in the engine

 A brief introduction to another stream fan-in: Join

 Look at the whole system

 Graph and streaming jobs

 The example systems

 5 Delivery semantics

 The latency requirement of the fraud detection system

 Revisit the fraud detection job

 About accuracy

 Partial result

 A new streaming job to monitor system usage

 The new system usage job

 The requirements of the new system usage job

 New concepts: (The number of) times delivered and times processed

 New concept: Delivery semantics

 Choosing the right semantics

 At-most-once

 The fraud detection job

 At-least-once

 At-least-once with acknowledging

 Track events

 Handle event processing failures

 Track early out events

 Acknowledging code in components

 New concept: Checkpointing

 New concept: State

 Checkpointing in the system usage job for the at-least-once semantic

 Checkpointing and state manipulation functions

 State handling code in the transaction source component

 Exactly-once or effectively-once?

 Bonus concept: Idempotent operation

 Exactly-once, finally

 State handling code in the system usage analyzer component

 Comparing the delivery semantics again

 Up next...

 6 Streaming systems review and a glimpse ahead

 Streaming system pieces

 Parallelization and event grouping

 DAGs and streaming jobs

 Delivery semantics (guarantees)

 Delivery semantics used in the credit card fraud detection system

 Which way to go from here

 Windowed computations

 Joining data in real time

 Backpressure

 Stateless and stateful computations

 Part 2. Stepping up

 7 Windowed computations

 Slicing up real-time data

 Breaking down the problem in detail

 Breaking down the problem in detail (continued)

 Two different contexts

 Windowing in the fraud detection job

 What exactly are windows?

 Looking closer into the window

 New concept: Windowing strategy

 Fixed windows

 Fixed windows in the windowed proximity analyzer

 Detecting fraud with a fixed time window

 Fixed windows: Time vs. count

 Sliding windows

 Sliding windows: Windowed proximity analyzer

 Detecting fraud with a sliding window

 Session windows

 Session windows (continued)

 Detecting fraud with session windows

 Summary of windowing strategies

 Slicing an event stream into data sets

 Windowing: Concept or implementation

 Another look

 Key–value store 101

 Implement the windowed proximity analyzer

 Event time and other times for events

 Windowing watermark

 Late events

 8 Join operations

 Joining emission data on the fly

 The emissions job version 1

 The emission resolver

 Accuracy becomes an issue

 The enhanced emissions job

 Focusing on the join

 What is a join again?

 How the stream join works

 Stream join is a different kind of fan-in

 Vehicle events vs. temperature events

 Table: A materialized view of streaming

 Vehicle events are less efficient to be materialized

 Data integrity quickly became an issue

 What’s the problem with this join operator?

 Inner join

 Outer join

 The inner join vs. outer join

 Different types of joins

 Outer joins in streaming systems

 A new issue: Weak connection

 Windowed joins

 Joining two tables instead of joining a stream and table

 Revisiting the materialized view

 9 Backpressure

 Reliability is critical

 Review the system

 Streamlining streaming jobs

 New concepts: Capacity, utilization, and headroom

 More about utilization and headroom

 New concept: Backpressure

 Measure capacity utilization

 Backpressure in the Streamwork engine

 Backpressure in the Streamwork engine: Propagation

 Our streaming job during a backpressure

 Backpressure in distributed systems

 New concept: Backpressure watermarks

 Another approach to handle lagging instances: Dropping events

 Why do we want to drop events?

 Backpressure could be a symptom when the underlying issue is permanent

 Stopping and resuming may lead to thrashing if the issue is permanent

 Handle thrashing

 10 Stateful computation

 The migration of the streaming jobs

 Stateful components in the system usage job

 Revisit: State

 The states in different components

 State data vs. temporary data

 Stateful vs. stateless components: The code

 The stateful source and operator in the system usage job

 States and checkpoints

 Checkpoint creation: Timing is hard

 Event-based timing

 Creating checkpoints with checkpoint events

 A checkpoint event is handled by instance executors

 A checkpoint event flowing through a job

 Creating checkpoints with checkpoint events at the instance level

 Checkpoint event synchronization

 Checkpoint loading and backward compatibility

 Checkpoint storage

 Stateful vs. stateless components

 Manually managed instance states

 Lambda architecture

 11 Wrap-up: Advanced concepts in streaming systems

 Is this really the end?

 Windowed computations

 The major window types

 Joining data in real time

 SQL vs. stream joins

 Inner joins vs. outer joins

 Unexpected things can happen in streaming systems

 Backpressure: Slow down sources or upstream components

 Another approach to handle lagging instances: Dropping events

 Backpressure can be a symptom when the underlying issue is permanent

 Stateful components with checkpoints

 Event-based timing

 Stateful vs. stateless components

 You did it!

 Appendix. Key concepts covered in this book

 index

 front matter

preface

 A mentor of mine once told me, at the beginning of my tech career, “If there’s one thing you can do to better your career, it’s contributing to open source.” I’d harbored that thought in the back of my mind throughout the years but never had a reason to do so. I thought, “What could I build that would be useful for others?” While working at 1904labs I developed the ECO API for (at the time) Twitter Heron. It came from a client’s need—and from a little bit of selfishness; I really wanted to write and contribute that code. Eventually, Twitter donated Heron to the Apache Foundation, and I was invited to be a committer and part of the project management committee for Heron. The project interested me because it was the first open source project I did a deep dive on.

 About a year later, from that initial commit on Heron’s main branch at about 4 p.m. on a Monday, I received an email with the subject line, “Apache Heron Book or Course Project” from Eleonor Gardner. After a quick read, I almost discarded the email, thinking it was a hoax. After all, why would anyone want me to write a book or teach a course project? Well, how wrong was I? After a discussion with Mike Stephens, Manning’s associate publisher, and a few email exchanges with his assistant, Eleonor, I knew I needed some help. I reached out to my friend and fellow Apache Heron committer, Ning Wang, praying that he’d be interested in writing a book with me. Luckily, he was—and that was the start to our long and rewarding journey.

 Initially, the conversations about this book were for us to write specifically about Heron. But Ning had some ideas to make the book better. After all, technologies change quickly and breaking changes in software can make a book obsolete quickly. We wanted to write about a topic that would live beyond individual streaming frameworks. We agreed to write a framework-agnostic book to teach the core concepts in a way that would allow readers to be able to jump into any streaming framework’s documentation and hit the ground running.

 So, we started writing the book using only words and then Ning and I were “gently” guided to try another approach. Again. And again. And again. And again. We learned that diagrams make the content of a book much easier for readers to absorb. We created our first diagrams on paper with pen, and they were dismal:

 [image:]

 Over the course of writing the book, our primitive-looking, scrawled creations evolved into the diagrams you now see in the book. Ning and I designed and developed all of these diagrams ourselves. We are extremely proud of what we have created, and we hope that you see value in this book.

 —Josh Fischer, November 2021

acknowledgments

 First, I must thank my kids and my ever-so-wonderful partner, Melissa. She is the most patient and fabulous person anyone could ever ask for. She has helped me endure all the tough spots of life while writing this book. My kids—Aiden, Wes, Hollyn, Oliver, Declan, and Dylan—have been patient, and often self-entertaining, on the late nights or early mornings while I took time to write.

 Thank you, Ning, for sticking with me through the process of writing. Learning from you has been one of the greatest benefits of writing this book.

 I must thank Dan Tumminello, Dave Lodes, Laura Stobie, Jim Towey, Steve Willis, Mike Banocy, Sean Walsh, Pavan Veeramachineni, Robert McMillan, Chad Storm, Karthik Ramasamy, and Chandra Shekar. All of them have been a great influence on me personally and professionally.

 Last but not least, I want to thank Bert Bates. He is without a doubt the most patient, forgiving, and all-around fantastic teacher I have ever had. Becky Whitney always participated in conversations that may have been tough, but kept us on track to deliver for Manning. Thank you, Mike Stephens, for giving me a chance. Eleonor Gardner set up our initial conversations, and, finally, Andy Marinkovich and Keri Hales, who put the finishing touches on the book.

 To all the reviewers, Andres Sacco, Anto Aravinth, Anupam Sengupta, Apoorv Gupta, Beau Bender, Brent Honadel, Brynjar Smári Bjarnason, Chris Lundberg, Cicero Zandona, Damian Esteban, Deepika Fernandez, Fernando Antonio da Silva Bernardino, Johannes Lochmann, Kent R. Spillner, Kumar Unnikrishnan, Lev Andelman, Marc Roulleau, Massimo Siani, Matthias Busch, Miguel Montalvo, Sebastián Palma, Simeon Leyzerzon, Simon Seyag, and Simon Verhoeven: your comments, questions, and concerns have all made this a better book. Thank you.

 —Josh Fischer, November 2021

 Two years! I have lost count of how many people I need to thank. This book wouldn’t be possible without any of the people listed here, as well as many others not listed.

 Firstly, it wouldn’t be possible for me to complete this book without my daughter’s understanding and support. I owe you two years of weekends, Xinyi! It has also been more than two years since I visited my parents, Jili Wang and Shujun Liu, and my sister, Feng Wang, in China. I miss them very much.

 Many thanks to my co-author, Josh. What a ride it has been! It wouldn’t have been possible without your creativity and excellent ideas.

 I believe in the power of data processing, and I feel so grateful that I have the chance to work with many great engineers. Many of the things I have learned from you are critical for this book: thank you to Maosong Fu, Neng Lu, Huijun Wu, Dmitry Rusakov, Xiaoyao Qian, Yao Li, Zhenxiao Luo, Hao Luo, Mainak Ghosh, Da Cheng, Fred Dai, Beinan Wang, Chunxu Tang, Runhang Li, Yaliang Wang, Thoms Cooper, and Faria Kalim of the Real-Time Compute team at Twitter; Pavan Patibandla, Farshad Rostamabadi, Kurt Norwood, Julien Dubeau, Cathy Nam, Leo Zhang, Neha Bhambhani, Nick Wu, Robyn Nason, Zachery Miranda, Jeffrey Wang, and Nirmal Utwani of the Data Pipeline team at Amplitude; and many others in the Apache Heron community.

 As a first-time writer (and in English!), it would be a mission impossible for me without all the help I received from the hardworking Manning editors. Thank you so much Bert Bates, Becky Whitney, Jennifer Houle, Matthew Spaur, and the many other editors and reviewers who contributed. I have learned so much from you!

 —Ning Wang, November 2021

about this book

 Grokking Streaming Systems helps you unravel what streaming systems are, how they work, and whether they’re right for your business. Because they’re written to be tool-agnostic, you’ll be able to apply what you learn no matter which framework you choose. You’ll start with the key concepts and then work your way through increasingly complex examples, including tracking a real-time count of IoT sensor events and detecting fraudulent credit card transactions in real time. You’ll even be able to easily experiment with your own streaming system by downloading the custom-built and super-simplified streaming framework designed for this book. By the time you’re done, you’ll be able to assess the capabilities of streaming frameworks and solve common challenges that arise when building streaming systems.

 Who should read this book?

 We have written this book for developers who have at least a couple of years of experience and who are looking to improve their knowledge and expertise. If you’ve been building web clients, APIs, batch jobs, etc., and are wondering what’s next, then this book is for you.

 How this book is organized: A road map

 This book has a simple setup—just 11 chapters split into two parts; after you work your way through chapters 1 through 5 in order, you should be able to work through the remaining chapters in any order you choose. Here’s the rundown:

 	
 Chapter 1 introduces readers to streaming systems from a 1,000-foot view and compares them against other typical computer systems.

 	
 Chapter 2 delves into the fundamental ways in which streaming systems work.

 	
 Chapter 3 discusses parallelization, data grouping, and how streaming jobs can scale.

 	
 Chapter 4 covers stream graphs and how streaming jobs can be represented.

 	
 Chapter 5 walks you through delivery semantics, such as how a developer can use a streaming system to reliably deliver events (or not).

 	
 Chapter 6 reviews the core concepts and offers a preview of later chapters.

 	
 Chapter 7 discusses windows—how these systems can help you slice up endless streams of data.

 	
 Chapter 8 describes streaming joins, or bringing data together in real time.

 	
 Chapter 9 tells you all about how streaming systems handle failures.

 	
 Chapter 10 lets you know how streaming systems deal with stateful operations in real time.

 	
 Chapter 11 wraps up the later chapters and offers our advice on where to go next with your interest in streaming systems.

 About the code

 We’ve provided code for chapters 2, 3, 4, 5, 7, and 8. You can download it from https://github.com/nwangtw/GrokkingStreamingSystems. In addition, the source code can be downloaded free of charge from the Manning website at https://www.manning.com/books/grokking-streaming-systems. To run the examples, you will need Java 11, Apache Maven 3.8.1, and the command-line tool Netcat, or NMap.

 This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font to separate it from ordinary text. Sometimes code is also shown in bold to indicate that it has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.

 liveBook discussion forum

 Purchase of Grokking Streaming Systems includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/grokking-streaming-systems/discussion/. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 	
 [image:]

 	
 Josh Fischer, currently a team lead at 1904labs, has worked with moving large datasets in real time for other organizations, such as Monsanto and Bayer.

 	
 [image:]

 	
 Ning Wang is a software engineer at Amplitude who builds real-time data pipelines. He was a key contributor to Apache Heron on Twitter’s Real-time Compute team.

 	
 Both authors are Apache committers and are part of the project management committee for the Apache Heron distributed stream processing engine.

Part 1. Getting started with streaming

 Part 1 of this book drops you head-first into the world of streaming systems. It can help you answer questions, such as “Why do streaming systems work this way?” and “Why would I ever use them?” Chapter 1 describes the high-level differences in what sets streaming systems apart from others. Chapter 2 is the hello world of streaming, where we walk you through the fundamentals of how these streaming systems work. Chapter 3 describes how to scale out these systems, and chapter 4 shows you how data can traverse streaming jobs. Chapter 5 spells out how these systems can help you reliably deliver data in real time, and chapter 6 recaps the important points from each chapter. By the end of part 1, you will have the knowledge necessary to jump into any streaming framework of your choice and hit the ground running.

 1 Welcome to Grokking Streaming Systems

 In this chapter

 	an introduction to stream processing

 	differentiating between stream processing systems and other systems

 “If it weren’t for the rocks in its bed, the stream would have no song.”

 —Carl Perkins

 In this chapter, we will try to answer a few basic questions about streaming systems, starting with “what is stream processing?” and “what are these stream processing systems, or streaming systems, used for?” The objective is to cover some basic ideas that will be discussed in later chapters.

What is stream processing?

 Stream processing has been one of the most popular technologies in the recent years in the big data domain. Streaming systems are the computer systems that process continuous event streams.

 A key characteristic of stream processing is that the events are processed as soon as (or almost as soon as) they are available. This is to minimize the latency between the original event’s entrance into the streaming system and the end result from processing the event. In most cases, the latency varies from a few milliseconds to seconds, which can be considered real-time or near real-time; hence, stream processing is also called real-time processing. From the usage point of view, stream processing is typically used for analyzing different types of events. As a result, the terms real-time analytics, streaming analytics, and event processing might also be used to reference stream processing systems in different scenarios. In this book, stream processing is the chosen term, which is well-adopted by the industry.

 Examples of events:

 Here are a few examples of events:

 	
 The mouse clicks on a computer

 	
 The taps and swipes on a cell phone

 	
 The trains arriving at and leaving a station

 	
 The messages and emails sent out by a person

 	
 The temperatures collected by sensors in a laboratory

 	
 The interactions on a website (page views, user logins, clicks, and so on) from all users

 	
 The logs generated by computer servers in a data center

 	
 The transactions of all accounts in a bank

 Note that, typically, there isn’t a predetermined ending time for the events processed in streaming systems. You can think of them as never-ending; hence, the events are often considered continuous and unbounded. Events are everywhere—literally. We are living in the information age. A lot of data is generated, collected, and processed all the time.

 Think about it

 Stream processing systems are the computer systems designed to process continuous event streams.

Streaming system examples

 Let’s look at two examples:

 	
 The first example is a temperature-monitoring system in a laboratory. Many sensors are installed in different locations to collect temperature data every second. The streaming system is built to process the collected data and display the real-time information in a dashboard. It can also trigger alerts when any anomaly is detected. Laboratory administrators use the system to monitor all the rooms and make sure the temperature is in the right range.

OEBPS/OEBPS/Images/IFC.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/headshot_Fischer.png

OEBPS/OEBPS/Images/in-depth.png
g’i
In Depth Overview Of Job

S
s
ijr AT
el
s\ﬂ&

S P

OEBPS/cover.jpeg
Real-time event processing

Y

ALL)

g Syste,

min

Strea

Josh Fischer
Ning Wang

OEBPS/OEBPS/Images/headshot_Wang.jpg

OEBPS/OEBPS/Images/Manning_copyright.png

