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preface


  A mentor of mine once told me, at the beginning of my tech career, “If there’s one thing you can do to better your career, it’s contributing to open source.” I’d harbored that thought in the back of my mind throughout the years but never had a reason to do so. I thought, “What could I build that would be useful for others?” While working at 1904labs I developed the ECO API for (at the time) Twitter Heron. It came from a client’s need—and from a little bit of selfishness; I really wanted to write and contribute that code. Eventually, Twitter donated Heron to the Apache Foundation, and I was invited to be a committer and part of the project management committee for Heron. The project interested me because it was the first open source project I did a deep dive on.


  About a year later, from that initial commit on Heron’s main branch at about 4 p.m. on a Monday, I received an email with the subject line, “Apache Heron Book or Course Project” from Eleonor Gardner. After a quick read, I almost discarded the email, thinking it was a hoax. After all, why would anyone want me to write a book or teach a course project? Well, how wrong was I? After a discussion with Mike Stephens, Manning’s associate publisher, and a few email exchanges with his assistant, Eleonor, I knew I needed some help. I reached out to my friend and fellow Apache Heron committer, Ning Wang, praying that he’d be interested in writing a book with me. Luckily, he was—and that was the start to our long and rewarding journey.


  Initially, the conversations about this book were for us to write specifically about Heron. But Ning had some ideas to make the book better. After all, technologies change quickly and breaking changes in software can make a book obsolete quickly. We wanted to write about a topic that would live beyond individual streaming frameworks. We agreed to write a framework-agnostic book to teach the core concepts in a way that would allow readers to be able to jump into any streaming framework’s documentation and hit the ground running.


  So, we started writing the book using only words and then Ning and I were “gently” guided to try another approach. Again. And again. And again. And again. We learned that diagrams make the content of a book much easier for readers to absorb. We created our first diagrams on paper with pen, and they were dismal:
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  Over the course of writing the book, our primitive-looking, scrawled creations evolved into the diagrams you now see in the book. Ning and I designed and developed all of these diagrams ourselves. We are extremely proud of what we have created, and we hope that you see value in this book.


  —Josh Fischer, November 2021
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about this book


  Grokking Streaming Systems helps you unravel what streaming systems are, how they work, and whether they’re right for your business. Because they’re written to be tool-agnostic, you’ll be able to apply what you learn no matter which framework you choose. You’ll start with the key concepts and then work your way through increasingly complex examples, including tracking a real-time count of IoT sensor events and detecting fraudulent credit card transactions in real time. You’ll even be able to easily experiment with your own streaming system by downloading the custom-built and super-simplified streaming framework designed for this book. By the time you’re done, you’ll be able to assess the capabilities of streaming frameworks and solve common challenges that arise when building streaming systems.


  Who should read this book?


  We have written this book for developers who have at least a couple of years of experience and who are looking to improve their knowledge and expertise. If you’ve been building web clients, APIs, batch jobs, etc., and are wondering what’s next, then this book is for you.


  How this book is organized: A road map


  This book has a simple setup—just 11 chapters split into two parts; after you work your way through chapters 1 through 5 in order, you should be able to work through the remaining chapters in any order you choose. Here’s the rundown:


  
    	
      Chapter 1 introduces readers to streaming systems from a 1,000-foot view and compares them against other typical computer systems.

    


    	
      Chapter 2 delves into the fundamental ways in which streaming systems work.

    


    	
      Chapter 3 discusses parallelization, data grouping, and how streaming jobs can scale.

    


    	
      Chapter 4 covers stream graphs and how streaming jobs can be represented.

    


    	
      Chapter 5 walks you through delivery semantics, such as how a developer can use a streaming system to reliably deliver events (or not).

    


    	
      Chapter 6 reviews the core concepts and offers a preview of later chapters.

    


    	
      Chapter 7 discusses windows—how these systems can help you slice up endless streams of data.

    


    	
      Chapter 8 describes streaming joins, or bringing data together in real time.

    


    	
      Chapter 9 tells you all about how streaming systems handle failures.

    


    	
      Chapter 10 lets you know how streaming systems deal with stateful operations in real time.

    


    	
      Chapter 11 wraps up the later chapters and offers our advice on where to go next with your interest in streaming systems.

    

  


  About the code


  We’ve provided code for chapters 2, 3, 4, 5, 7, and 8. You can download it from https://github.com/nwangtw/GrokkingStreamingSystems. In addition, the source code can be downloaded free of charge from the Manning website at https://www.manning.com/books/grokking-streaming-systems. To run the examples, you will need Java 11, Apache Maven 3.8.1, and the command-line tool Netcat, or NMap.


  This book contains many examples of source code, both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font to separate it from ordinary text. Sometimes code is also shown in bold to indicate that it has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code. In many cases, the original source code has been reformatted; we’ve added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Additionally, comments in the source code have often been removed from the listings when the code is described in the text. Code annotations accompany many of the listings, highlighting important concepts.


  liveBook discussion forum


  Purchase of Grokking Streaming Systems includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/grokking-streaming-systems/discussion/. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.


  Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.
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Part 1.  Getting started with streaming


  Part 1 of this book drops you head-first into the world of streaming systems. It can help you answer questions, such as “Why do streaming systems work this way?” and “Why would I ever use them?” Chapter 1 describes the high-level differences in what sets streaming systems apart from others. Chapter 2 is the hello world of streaming, where we walk you through the fundamentals of how these streaming systems work. Chapter 3 describes how to scale out these systems, and chapter 4 shows you how data can traverse streaming jobs. Chapter 5 spells out how these systems can help you reliably deliver data in real time, and chapter 6 recaps the important points from each chapter. By the end of part 1, you will have the knowledge necessary to jump into any streaming framework of your choice and hit the ground running.


  1 Welcome to Grokking Streaming Systems


  In this chapter


  
    	an introduction to stream processing


    	differentiating between stream processing systems and other systems

  


  “If it weren’t for the rocks in its bed, the stream would have no song.”


  —Carl Perkins


  In this chapter, we will try to answer a few basic questions about streaming systems, starting with “what is stream processing?” and “what are these stream processing systems, or streaming systems, used for?” The objective is to cover some basic ideas that will be discussed in later chapters.


  
What is stream processing?


  Stream processing has been one of the most popular technologies in the recent years in the big data domain. Streaming systems are the computer systems that process continuous event streams.


  A key characteristic of stream processing is that the events are processed as soon as (or almost as soon as) they are available. This is to minimize the latency between the original event’s entrance into the streaming system and the end result from processing the event. In most cases, the latency varies from a few milliseconds to seconds, which can be considered real-time or near real-time; hence, stream processing is also called real-time processing. From the usage point of view, stream processing is typically used for analyzing different types of events. As a result, the terms real-time analytics, streaming analytics, and event processing might also be used to reference stream processing systems in different scenarios. In this book, stream processing is the chosen term, which is well-adopted by the industry.


  Examples of events:


  Here are a few examples of events:


  
    	
      The mouse clicks on a computer

    


    	
      The taps and swipes on a cell phone

    


    	
      The trains arriving at and leaving a station

    


    	
      The messages and emails sent out by a person

    


    	
      The temperatures collected by sensors in a laboratory

    


    	
      The interactions on a website (page views, user logins, clicks, and so on) from all users

    


    	
      The logs generated by computer servers in a data center

    


    	
      The transactions of all accounts in a bank

    

  


  Note that, typically, there isn’t a predetermined ending time for the events processed in streaming systems. You can think of them as never-ending; hence, the events are often considered continuous and unbounded. Events are everywhere—literally. We are living in the information age. A lot of data is generated, collected, and processed all the time.


  
    Think about it


    Stream processing systems are the computer systems designed to process continuous event streams.

  


  
Streaming system examples


  Let’s look at two examples:


  
    	
      The first example is a temperature-monitoring system in a laboratory. Many sensors are installed in different locations to collect temperature data every second. The streaming system is built to process the collected data and display the real-time information in a dashboard. It can also trigger alerts when any anomaly is detected. Laboratory administrators use the system to monitor all the rooms and make sure the temperature is in the right range.
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