

 [image: cover]

 Silverlight 5 in Action

 Pete Brown

[image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

	
 [image:]

 	Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

	
 	
 	Development editor:
 	Jeff Bleiel

	[image:]
 	Manning Publications Co.
 	Technical proofreader:
 	Thomas MacKearney

	20 Baldwin Road
 	Copyeditor:
 	Liz Welch

	PO Box 261
 	Proofreader:
 	Elizabeth Martin

	
 	Shelter Island, NY 11964
 	Typesetter:
 	Marija Tudor

	
 	
 	Cover designer:
 	Marija Tudor

Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13 12

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Core Silverlight

 Chapter 1. Introducing Silverlight

 Chapter 2. XAML and the property system

 Chapter 3. The application model and the plug-in

 Chapter 4. Working with HTML and browsers

 Chapter 5. Out-of-browser applications

 Chapter 6. The security model and elevated trust

 2. Creating the user interface

 Chapter 7. Rendering, layout, and transforming

 Chapter 8. Panels

 Chapter 9. Human input

 Chapter 10. Text fundamentals

 Chapter 11. Editing plain and rich text

 Chapter 12. Control basics and UserControls

 Chapter 13. Animation and behaviors

 Chapter 14. Resources, styles, and control templates

 Chapter 15. Extensions, converters, custom controls, and panels

 3. Working with data and services

 Chapter 16. Binding

 Chapter 17. Data controls: DataGrid and DataForm

 Chapter 18. Input validation

 Chapter 19. Networking basics

 Chapter 20. Working with SOAP services

 Chapter 21. RESTful services with the ASP.NET Web API

 Chapter 22. Working with XML, JSON, RSS, and Atom

 Chapter 23. Duplex, sockets, and local connections

 4. 2D and 3D graphics

 Chapter 24. Graphics and effects

 Chapter 25. Working with images

 Chapter 26. Introduction to 3D

 Chapter 27. 3D lighting, texturing, and animation

 5. Making the most of the platform

 Chapter 28. Pop-ups, windows, and full-screen applications

 Chapter 29. Navigation

 Chapter 30. Working with files and directories

 Chapter 31. Printing

 Chapter 32. COM, Native Extensions, and p-invoke

 6. Best practices

 Chapter 33. Structuring and testing with the MVVM pattern

 Chapter 34. Debugging your application

 Chapter 35. The install experience and preloaders

 Appendix A. Database, connection, and data model setup

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Core Silverlight

 Chapter 1. Introducing Silverlight

 1.1. A Silverlight primer

 1.1.1. Silverlight and the web

 1.1.2. Silverlight and WPF

 1.1.3. Types of Silverlight applications

 1.2. A brief history of Silverlight

 1.2.1. Features for business and client applications

 1.2.2. Media and graphics enhancements

 1.2.3. User interaction

 1.2.4. Text

 1.3. Getting started with Silverlight development

 1.3.1. Setting up your development environment

 1.3.2. Helpful sites

 1.4. Building your first Silverlight web application

 1.4.1. Project setup

 1.4.2. User interface

 1.4.3. Calling Twitter search

 1.4.4. Parsing the results and binding the ListBox

 1.4.5. Making the ListBox contents more meaningful

 1.5. Summary

 Chapter 2. XAML and the property system

 2.1. XAML basics

 2.1.1. Objects

 2.1.2. Namespaces

 2.1.3. Properties

 2.1.4. Dependency properties

 2.1.5. Attached properties

 2.1.6. Events

 2.1.7. Commands

 2.2. Object trees and namescope

 2.2.1. Object trees

 2.2.2. Namescope

 2.3. XAML type converters

 2.4. Loading XAML at runtime

 2.5. Summary

 Chapter 3. The application model and the plug-in

 3.1. The Silverlight application model

 3.1.1. Application startup process

 3.1.2. XAP

 3.1.3. The application manifest file

 3.1.4. The Silverlight application object

 3.1.5. Application dependencies

 3.1.6. Assembly caching

 3.2. Creating the Silverlight plug-in

 3.2.1. Using the object tag

 3.2.2. Using the Silverlight.js utility file

 3.2.3. Creating an instance of the Silverlight plug-in

 3.3. Integrating the Silverlight plug-in

 3.3.1. Relating the Silverlight application to the HTML DOM

 3.3.2. Clarifying the initial experience

 3.3.3. Handling plug-in events

 3.3.4. Sending initialization parameters

 3.4. Summary

 Chapter 4. Working with HTML and browsers

 4.1. Silverlight and the HTML DOM

 4.2. Working with the web page from managed code

 4.2.1. Navigating web page contents

 4.2.2. Working with element properties

 4.2.3. Handling CSS information

 4.2.4. Accessing the query string

 4.3. Working with the hosting browser window

 4.3.1. Prompting the user

 4.3.2. Navigating the browser window

 4.3.3. Discovering the browser properties

 4.4. Bridging the scripting and managed code worlds

 4.4.1. Calling managed code from JavaScript

 4.4.2. Using JavaScript from managed code

 4.5. Hosting HTML in Silverlight

 4.5.1. Hosting the WebBrowser control

 4.5.2. Using the WebBrowserBrush

 4.6. Summary

 Chapter 5. Out-of-browser applications

 5.1. Implementation specifics

 5.1.1. Process and hosting

 5.1.2. Capabilities and restrictions

 5.2. The end-user experience

 5.3. Creating out-of-browser applications

 5.3.1. The out-of-browser settings file

 5.3.2. Controlling the experience

 5.3.3. Customizing icons

 5.3.4. Updating

 5.4. Alerting the user with notification toast

 5.5. Controlling the host window

 5.5.1. Basic window properties

 5.5.2. Changing window chrome

 5.5.3. Minimizing, maximizing, restoring, and closing

 5.5.4. Moving a window

 5.5.5. Resizing

 5.6. Summary

 Chapter 6. The security model and elevated trust

 6.1. Code classifications and the transparency model

 6.2. User initiation and consent

 6.3. Elevated trust

 6.3.1. Creating elevated trust applications

 6.3.2. Enabling in-browser elevated trust applications

 6.3.3. Detecting elevated trust mode

 6.4. Summary

 2. Creating the user interface

 Chapter 7. Rendering, layout, and transforming

 7.1. The UIElement and FrameworkElement

 7.1.1. Properties

 7.1.2. Methods

 7.2. The rendering process

 7.2.1. Clock tick

 7.2.2. Per-frame rendering callback

 7.2.3. Rasterization

 7.3. The layout system

 7.3.1. Multipass layout—measuring and arranging

 7.3.2. The LayoutInformation class

 7.3.3. Performance considerations

 7.4. Render transforms

 7.4.1. RotateTransform

 7.4.2. ScaleTransform

 7.4.3. SkewTransform

 7.4.4. TranslateTransform

 7.4.5. TransformGroup

 7.4.6. CompositeTransform

 7.4.7. MatrixTransform

 7.5. 3D projection transforms

 7.5.1. PlaneProjection

 7.5.2. Matrix3dProjection

 7.6. Summary

 Chapter 8. Panels

 8.1. Canvas

 8.1.1. Setting the offsets

 8.1.2. Setting the stack order

 8.2. The StackPanel

 8.3. The WrapPanel

 8.3.1. Vertical wrapping

 8.3.2. Horizontal wrapping

 8.4. The Grid

 8.4.1. Arranging Grid content

 8.4.2. Positioning Grid content

 8.4.3. Spanning cells

 8.4.4. Sizing it up

 8.4.5. Working with the grid programmatically

 8.4.6. Customizing cell boundaries

 8.5. Summary

 Chapter 9. Human input

 9.1. Capturing the keyboard

 9.1.1. Understanding focus

 9.1.2. Handling keyboard events

 9.1.3. Dealing with modifier keys

 9.2. Mouse input

 9.2.1. Mouse movement events

 9.2.2. Mouse button events

 9.2.3. Using the mouse wheel

 9.3. Using multitouch

 9.4. Collecting ink drawings

 9.4.1. Creating the InkPresenter

 9.4.2. Collecting ink

 9.4.3. Styling the ink

 9.5. Summary

 Chapter 10. Text fundamentals

 10.1. The text system

 10.1.1. Subpixel text rendering

 10.1.2. Text hinting

 10.1.3. Text formatting

 10.1.4. Text rendering

 10.2. Displaying text

 10.2.1. Font properties

 10.2.2. Flow control

 10.2.3. Text properties

 10.2.4. Spacing

 10.3. OpenType font support

 10.3.1. Ligatures

 10.3.2. Stylistic sets

 10.3.3. Font capitals

 10.3.4. Fractions and numbers

 10.3.5. Variants, superscript, and subscript

 10.4. Embedding fonts

 10.5. Summary

 Chapter 11. Editing plain and rich text

 11.1. Handling basic text input

 11.1.1. Enabling multiline text support

 11.1.2. Mastering text selection

 11.2. Understanding input method editors

 11.3. Copying text with the Clipboard API

 11.4. Collecting sensitive data

 11.5. Entering and displaying rich text

 11.5.1. Formatting and inline elements

 11.5.2. Working with selected text

 11.6. Multicolumn and free-form linked text

 11.6.1. Multicolumn text

 11.6.2. Free-form text layout

 11.7. Summary

 Chapter 12. Control basics and UserControls

 12.1. Control

 12.1.1. Appearance

 12.1.2. Tab navigation and control state

 12.1.3. Templating

 12.2. ContentControl

 12.2.1. The ContentPresenter

 12.3. Button controls

 12.3.1. The Button

 12.3.2. The HyperlinkButton

 12.3.3. The RadioButton

 12.3.4. The CheckBox

 12.4. ItemsControls

 12.4.1. The ListBox

 12.4.2. The ComboBox

 12.4.3. The TabControl

 12.5. Creating UserControls

 12.5.1. Defining the appearance

 12.5.2. Defining behavior of a control

 12.5.3. Calling the control

 12.6. Summary

 Chapter 13. Animation and behaviors

 13.1. Animating a value over time

 13.2. Mastering the timeline

 13.2.1. What type of property are you animating?

 13.2.2. Where are you starting from and where are you going?

 13.2.3. How long should the animation run?

 13.3. Storyboards

 13.3.1. Understanding the storyboard

 13.3.2. Storyboard target

 13.3.3. Controlling the Storyboard

 13.3.4. Resources

 13.4. Keyframing

 13.5. Interpolation

 13.5.1. Linear interpolation

 13.5.2. Spline interpolation

 13.5.3. Discrete interpolation

 13.5.4. KeyTime

 13.6. Easing functions

 13.6.1. Using easing functions

 13.6.2. Creating a custom easing function

 13.7. Behaviors, triggers, and actions

 13.7.1. Using existing behaviors

 13.7.2. Creating your own behavior

 13.8. Summary

 Chapter 14. Resources, styles, and control templates

 14.1. Being resourceful

 14.1.1. Declarative resources

 14.1.2. Accessing loose resources

 14.1.3. Bundled resources

 14.2. Giving your elements style

 14.2.1. Defining the look

 14.2.2. Explicitly keyed style definitions

 14.2.3. Implicit style definitions

 14.3. Creating templates

 14.3.1. Building a control template

 14.3.2. Creating reusable templates

 14.4. Dealing with visual states

 14.4.1. Understanding the components

 14.4.2. Leveraging the VisualStateManager

 14.5. Sharing your visual states

 14.6. Summary

 Chapter 15. Extensions, converters, custom controls, and panels

 15.1. Markup extensions

 15.1.1. Creating a simple custom markup extension

 15.1.2. Creating a parameterized markup extension

 15.2. Custom type converters

 15.2.1. Creating the converter

 15.2.2. Using the converter

 15.3. Creating a custom panel

 15.3.1. Project setup

 15.3.2. The OrbitPanel class

 15.3.3. Properties

 15.3.4. Custom layout

 15.3.5. Enhancements

 15.4. Creating a custom control

 15.4.1. Choosing the base type

 15.4.2. Properties

 15.4.3. The control template contract

 15.4.4. The default template

 15.4.5. Visual states

 15.4.6. Visual states in template

 15.5. Summary

 3. Working with data and services

 Chapter 16. Binding

 16.1. Binding basics

 16.1.1. Mastering the binding syntax

 16.1.2. Choosing a binding mode

 16.2. Understanding your binding source

 16.2.1. Binding to a property

 16.2.2. Binding to an object

 16.2.3. Binding to a UI element

 16.2.4. Binding to an indexed element

 16.2.5. Binding to a keyed (string indexed) element

 16.2.6. Binding to an entire collection

 16.2.7. Deciding when to update binding

 16.3. Binding to dynamic properties

 16.3.1. ICustomTypeProvider overview

 16.3.2. Creating the helper classes

 16.3.3. Using the helper class

 16.4. Customizing the display

 16.4.1. Formatting values

 16.4.2. Converting values during binding

 16.4.3. Providing default fallback values

 16.4.4. Handling null values

 16.5. Creating explicit data templates

 16.5.1. Using a DataTemplate with a ContentControl

 16.5.2. Rendering an ItemsControl with a DataTemplate

 16.6. Creating implicit data templates

 16.7. Summary

 Chapter 17. Data controls: DataGrid and DataForm

 17.1. The DataGrid

 17.1.1. Displaying your data

 17.1.2. Editing grid data

 17.1.3. Sorting items

 17.2. The DataForm

 17.2.1. Displaying your data

 17.2.2. Binding to lists of data

 17.2.3. Customizing display

 17.2.4. Customizing edit, add, and display templates

 17.2.5. Finer control over editing and committing data

 17.3. Annotating for display

 17.3.1. The Display attribute

 17.3.2. The Editable attribute

 17.4. Summary

 Chapter 18. Input validation

 18.1. The validation example source and UI

 18.2. Exception-based property validation

 18.2.1. Handling exception validation errors

 18.2.2. Custom validation code

 18.2.3. Validation error display

 18.3. Synchronous validation with IDataErrorInfo

 18.3.1. The IDataErrorInfo interface

 18.3.2. Simple validation with IDataErrorInfo

 18.3.3. Cross-field validation with IDataErrorInfo

 18.3.4. Combining exceptions and IDataErrorInfo

 18.4. Asynchronous validation with INotifyDataErrorInfo

 18.4.1. The INotifyDataErrorInfo interface

 18.4.2. Implementing the interface

 18.4.3. Binding support

 18.4.4. Building the WCF web service

 18.4.5. Adding the client service code

 18.4.6. Property modifications

 18.5. Annotating for validation

 18.5.1. Validation attributes

 18.5.2. Annotating your entity

 18.5.3. Calling external validation functions

 18.5.4. Creating custom validators

 18.6. Comparison of validation approaches

 18.7. Summary

 Chapter 19. Networking basics

 19.1. The web request/response pattern

 19.1.1. WebRequest and HttpWebRequest

 19.1.2. WebResponse and HttpWebResponse

 19.2. Simplifying the request/response pattern with WebClient

 19.2.1. String operations

 19.2.2. Stream operations

 19.3. Asynchronous communication

 19.3.1. When async methods attack

 19.3.2. Saving your sanity with Rx

 19.3.3. Simplifying with tasks

 19.4. Trust and cross-domain network access

 19.4.1. Structuring the cross-domain file

 19.4.2. Other cross-domain policy files

 19.4.3. Locating your cross-domain policy

 19.5. The browser HTTP stack

 19.5.1. Connection count limit

 19.5.2. Cookies

 19.5.3. Caching

 19.6. The client HTTP stack

 19.6.1. Manually creating the client stack

 19.6.2. Automatically using the client stack

 19.6.3. Automatically setting the HTTP Referer and other headers

 19.6.4. Authentication credentials

 19.6.5. Managing cookies with the CookieContainer

 19.6.6. When to use the client stack

 19.7. Checking the network state

 19.8. Summary

 Chapter 20. Working with SOAP services

 20.1. Introducing ASP.NET SOAP services using ASP.NET

 20.1.1. Silverlight-compatible SOAP services

 20.1.2. Service references

 20.1.3. Receiving data with the proxy

 20.1.4. Sending data using the proxy

 20.2. Using WCF services and complex data types

 20.2.1. Creating the Silverlight-enabled WCF service

 20.2.2. Sharing type definitions

 20.2.3. Adding the service reference

 20.2.4. Using the service

 20.3. Using the configuration file

 20.4. Error handling with WCF

 20.4.1. Using an out parameter

 20.4.2. Exposing exception information for debugging

 20.4.3. Error handling with WCF SOAP faults

 20.5. Summary

 Chapter 21. RESTful services with the ASP.NET Web API

 21.1. Creating a RESTful service using the ASP.NET Web API

 21.1.1. Solution setup

 21.1.2. Creating the services

 21.1.3. Testing the service using the browser

 21.1.4. Adding the Silverlight project

 21.2. Consuming REST services

 21.2.1. REST service GET operations

 21.2.2. Updating resources by POSTing to the service

 21.2.3. Removing resources using DELETE

 21.3. Summary

 Chapter 22. Working with XML, JSON, RSS, and Atom

 22.1. Parsing plain old XML

 22.1.1. LINQ to XML

 22.1.2. XmlSerializer

 22.2. Working with JSON

 22.2.1. JsonObject and JsonArray

 22.2.2. DataContractJsonSerializer

 22.3. Working with RSS and Atom

 22.3.1. Reading syndication feeds

 22.3.2. Working with feed items

 22.4. Summary

 Chapter 23. Duplex, sockets, and local connections

 23.1. WCF polling duplex services

 23.1.1. Creating the project and callback contract

 23.1.2. Creating the service

 23.1.3. Creating the service logic

 23.1.4. Managing client subscriptions

 23.1.5. Using the duplex service

 23.2. Connecting to sockets

 23.2.1. Serving the policy file

 23.2.2. Opening the connection

 23.2.3. Handling the response

 23.3. Multicast sockets

 23.3.1. Any-Source Multicast/Internet Standard Multicast

 23.3.2. Source-Specific Multicast

 23.4. Connecting to other local Silverlight applications

 23.4.1. Creating the receiver

 23.4.2. Creating the sender

 23.4.3. Putting it all together

 23.5. Summary

 4. 2D and 3D graphics

 Chapter 24. Graphics and effects

 24.1. Shapes

 24.1.1. Lines

 24.1.2. Rectangle

 24.1.3. Ellipse

 24.1.4. Polyline

 24.1.5. Polygon

 24.2. Geometry

 24.2.1. Simple geometries

 24.2.2. Path geometries

 24.2.3. Composite geometries

 24.3. Brushes

 24.3.1. SolidColorBrush

 24.3.2. LinearGradientBrush

 24.3.3. RadialGradientBrush

 24.3.4. ImageBrush

 24.3.5. VideoBrush

 24.4. Effects

 24.4.1. Using built-in effects

 24.4.2. Creating custom pixel shaders

 24.5. Summary

 Chapter 25. Working with images

 25.1. Basic imaging

 25.2. Creating images at runtime

 25.2.1. Creating from existing images

 25.2.2. Creating from UI elements

 25.2.3. A Mandelbrot fractal generator

 25.3. Deep Zoom

 25.3.1. Showing an image

 25.3.2. Zooming in and out

 25.3.3. Managing the viewport

 25.3.4. Deploying multiscale images

 25.4. Dealing with dead space

 25.4.1. Filling the space

 25.4.2. Uniform sizing

 25.4.3. Fill the area

 25.4.4. UniformToFill

 25.5. Summary

 Chapter 26. Introduction to 3D

 26.1. 3D—a natural way of interacting with information

 26.2. The Silverlight/XNA 3D API

 26.2.1. Rendering pipeline

 26.2.2. Project templates

 26.3. Detecting capabilities with the GraphicsDeviceManager

 26.4. Using the DrawingSurface

 26.5. Project structure: the scene and objects

 26.5.1. The scene

 26.5.2. Renderable scene objects

 26.5.3. The camera

 26.6. Vertices

 26.6.1. Building a triangle using vertices

 26.6.2. Adding the triangle to the scene

 26.7. Primitives

 26.7.1. The TriangleList primitive

 26.7.2. The TriangleStrip primitive

 26.7.3. Tessellating a sphere

 26.7.4. Rendering the sphere with primitives

 26.8. Summary

 Chapter 27. 3D lighting, texturing, and animation

 27.1. Lighting and normal vectors

 27.1.1. Lighting the scene

 27.1.2. Sphere normal vectors

 27.1.3. Indexed vertices

 27.2. Applying a texture

 27.2.1. The ContentManager

 27.2.2. Texturing the sphere

 27.2.3. Adding and texturing a background

 27.3. Coordinate spaces and matrices

 27.3.1. The three coordinate space conversion matrices

 27.3.2. The Matrix class

 27.4. Keyframe animation

 27.4.1. The KeyFrame and KeyframeAnimation classes

 27.4.2. Using animation

 27.5. Summary

 5. Making the most of the platform

 Chapter 28. Pop-ups, windows, and full-screen applications

 28.1. Showing pop-ups and child windows

 28.1.1. The Popup control

 28.1.2. Displaying a dialog box with the ChildWindow control

 28.2. Creating native windows

 28.2.1. Creating a normal window

 28.2.2. Customizing window chrome

 28.3. Running in full screen

 28.3.1. Normal full-screen mode

 28.3.2. Elevated trust full-screen mode

 28.4. Summary

 Chapter 29. Navigation

 29.1. Browser navigation background

 29.1.1. Browser journals

 29.1.2. Anchor hashtags

 29.1.3. Back and forth

 29.2. The Navigation Application template

 29.2.1. Creating a navigation application

 29.2.2. Adding a new page

 29.2.3. Changing the application theme

 29.3. Navigating to pages

 29.3.1. The Page class

 29.3.2. The NavigationService class

 29.3.3. Frames and URIs

 29.3.4. Caching pages

 29.3.5. Navigating to pages in other assemblies

 29.4. Navigation out of the browser

 29.4.1. Providing custom navigation controls

 29.5. Summary

 Chapter 30. Working with files and directories

 30.1. Using the file open and save dialogs

 30.1.1. Working with the OpenFileDialog

 30.1.2. Saving files with the SaveFileDialog

 30.2. Working with directories

 30.2.1. Getting directory timestamps

 30.2.2. Checking for directory existence

 30.2.3. Getting the directory root

 30.2.4. Creating and deleting directories

 30.2.5. Listing directory contents

 30.2.6. Accessing special folders

 30.3. Working with individual files

 30.3.1. Creating a file

 30.3.2. Writing to a file

 30.3.3. Reading from a file

 30.3.4. Getting and setting file metadata

 30.3.5. File utility functions

 30.4. Storing data in isolated storage

 30.4.1. IsolatedStorageFile: the virtual filesystem

 30.4.2. Reading and writing files: the isolated storage way

 30.5. Summary

 Chapter 31. Printing

 31.1. How Silverlight printing works

 31.1.1. The PrintDocument class

 31.1.2. The PrintPage Event

 31.1.3. Converting to PostScript

 31.1.4. Rasterization

 31.1.5. Forcing bitmap printing

 31.1.6. Forcing vector printing

 31.2. Printing onscreen information

 31.2.1. Printing the content as is

 31.2.2. Reparenting the elements to fit

 31.2.3. Scaling content to fit

 31.3. Multipage printing dedicated trees

 31.3.1. Prerequisites

 31.3.2. Printing line items

 31.3.3. Adding multipage support

 31.3.4. Adding a header and footer

 31.4. Summary

 Chapter 32. COM, Native Extensions, and p-invoke

 32.1. COM automation

 32.1.1. Detecting COM automation availability

 32.1.2. Using COM automation to make Silverlight talk

 32.1.3. Accessing GPS data using COM automation

 32.1.4. Automating Excel

 32.2. Native Extensions for Silverlight

 32.2.1. Accessing an accelerometer

 32.2.2. Integrating with the Windows taskbar

 32.2.3. Runtime automation server installation

 32.3. P-invoke for API calls

 32.3.1. Setting up the printer application

 32.3.2. The Win32 API interface

 32.4. Summary

 6. Best practices

 Chapter 33. Structuring and testing with the MVVM pattern

 33.1. Project setup and traditional code-behind approach

 33.1.1. Project and service setup

 33.1.2. A typical code-behind solution

 33.2. Model-View-ViewModel basics

 33.2.1. Myths about MVVM Model-View-ViewModel

 33.2.2. Keep it simple: a basic ViewModel implementation

 33.3. Factoring out reusable code

 33.3.1. Business rules and logic

 33.3.2. Data access and service calls

 33.4. Better separation from the UI

 33.4.1. Using commands

 33.4.2. Using the CallMethodAction behavior

 33.4.3. View-specific entities and ViewModels

 33.4.4. Interfaces, IoC, and ViewModel locators

 33.5. Testing MVVM applications

 33.5.1. Introduction to the Silverlight Unit Testing Framework

 33.5.2. Testing the ViewModel

 33.5.3. Testing asynchronous operations

 33.6. Summary

 Chapter 34. Debugging your application

 34.1. Debugging basics

 34.1.1. Using the Debug class

 34.1.2. IDE breakpoints

 34.1.3. The good old MessageBox

 34.2. Binding debugging

 34.2.1. Viewing binding errors in the output window

 34.2.2. Debugging with custom value converters

 34.2.3. Using XAML breakpoints

 34.3. Troubleshooting network operations

 34.3.1. Installing Fiddler

 34.3.2. Monitoring and logging traffic

 34.3.3. Inspecting individual requests

 34.4. Summary

 Chapter 35. The install experience and preloaders

 35.1. Handling the ‘Silverlight not installed’ scenarios

 35.1.1. Creating your own install experience

 35.2. Using a custom preloader

 35.2.1. Creating the appearance

 35.2.2. Integrating the custom splash screen

 35.2.3. Monitoring the load progress

 35.3. Summary

 Appendix A. Database, connection, and data model setup

 A.1. Install the AdventureWorks database

 A.1.1. Installing on a dedicated SQL Server instance

 A.1.2. Installing on SQL Server Express

 A.2. Database connection and entities

 A.2.1. Choosing the entities to create

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 Coding on the client is fun. I started on the Commodore 64 in seventh grade in the 1980s; later moved to DOS with dBASE, QuickBasic,
 and C++; and eventually began Windows programming using C++, Borland Delphi 1.0, PowerBuilder, Visual Basic 3-6, and .NET.
 I like the ozone smell of making my CPU work for a living. I like being able to tap into the power of the local machine. I
 want to be able to hear the individual bits moving across the bus.

 I like client application development, and I really like XAML. I like Silverlight, WPF, and Windows 8 XAML. I even like working
 in the WPF subset on the .NET Micro Framework and Gadgeteer boards I own. Sometimes, when I’m feeling especially dangerous
 I’ll write some C++, or C, or even a little assembly. It’s all about the power.

 A year and a half ago, Manning published Silverlight 4 in Action. As proud as I am of that book, I’m even more excited to bring you this updated version. Not only because of the work involved
 in bringing you this edition, but because of how far Silverlight has come in that time. With Silverlight 5, Silverlight has
 the power.[1]

 1 And now, you have C&C Music Factory’s “I Got the Power” looping in your head. You can thank me later.

 What a difference a year and a half makes! Silverlight 4 saw significant uptake among business application developers, and
 those same developers helped drive the features that made it into Silverlight 5. These developers are writing the types of
 bread-and-butter applications that leverage Silverlight for its simple deployment and great validation and data binding capabilities.

 General adoption of Silverlight is up too, as you can see in figure 1. These unofficial third-party charts, reformatted for
 print from http://riastats.com data obtained in early 2012, show Silverlight and Adobe Flash adoption taken from a large segment of the general internet
 population. They reveal overall Silverlight adoption at a hair over 75 percent with version 4 at a bit over 67 percent and
 overall flash adoption around 96 percent, with Flash 11 at a hair over 70 percent.

 Figure 1. Adoption of Adobe Flash vs. Microsoft Silverlight in 2012

 [image:]

 I’m not a marketing person; I’m a developer. Although such a blunt numbers comparison between the two competing products may
 look dire at first glance, adoption numbers like these aren’t at all bad, considering Silverlight was a far more recent introduction
 and didn’t benefit from either the late 1990s boom in website intro apps or bundling with Internet Explorer 6. You can do
 a lot with 75 percent of the PCs out there. It’s my goal to help you do it.

 2011 was also a rocky year for Silverlight and Flash developers, with confusion over what Silverlight is to be used for and
 where it fits into the development strategy at Microsoft and in the web as a whole. The Apple position on Flash didn’t help
 Flash or plug-ins in general. Flash definitely had a reputation for websites, whereas Silverlight evolved to more of a browser-delivered
 client technology. There were as many, if not more, out-of-browser apps as in-browser apps written in Silverlight.

 With HTML5 (and JavaScript and CSS3, all of which I’ll lump into “HTML5” just as the media tends to) having picked up serious
 speed, especially on the media and casual games front on the public web, I think it’s a sure bet to become the way forward
 for broad-reach, public-facing website content. There’s so much momentum behind HTML5 that to fight it would simply land you
 behind others. HTML5 will suit you just fine, especially for run-of-the-mill, non-digital rights management (DRM), non-smooth-streaming
 media like what you see on YouTube.

 But for many, HTML5 isn’t a realistic choice. Either you can’t count on browser support for key features, or you have a behind-the-firewall
 (or other controlled network) application scenario that makes it easier for you to use technologies you’ll be more productive
 in. Two key points rise above any trendy discourse and well into the realm of GSD (Getting Stuff Done):

	
Know your audience— Develop in what your users can use (behind the firewall has more choice and control than the public web).

 	
Know your skills and requirements— Develop in what you can be most productive in—what will meet the project requirements with the least amount of fudging.

Without a doubt, most .NET developers are more productive in Silverlight when building business applications. There’s so much
 there, right in the box, that makes it easy for you to quickly create stunning, feature-rich apps. Not only that, but the
 added system integration features of Silverlight 5 (like COM and p-invoke) make it even more compelling as a platform.

 As a developer, or manager of developers, you must choose technology based not only on the longevity of that technology, but
 also on what makes it possible for you to deliver the best possible application for the most reasonable cost.

 Regardless of where Silverlight goes in the long term, you already know that XAML, C#, and Visual Basic are all here to stay.
 In addition to continued desktop support for Silverlight and WPF, Microsoft is using XAML in Windows 8 Metro and on the Windows
 Phone. I believe in XAML strongly enough to have written this book (around 1,200 pages if you include the downloadable content)
 while working at Microsoft, as well as a book dedicated to XAML on Windows 8. Given the resources dedicated to XAML development
 and tools at Microsoft, I’m glad to see they believe in it too.

 Ultimately, it’s good to have a choice. I choose XAML. I choose Silverlight.

Acknowledgments

 A book of this size and complexity takes a large number of people to write (and to lift). Though my name is on the cover,
 there’s no way I could’ve completed this without the support and hard work of many others. I’d like to thank:

	Chad Campbell and John Stockton for creating such an excellent first edition. Without their hard work covering Silverlight
 2, I’d never have thought to create a Silverlight 4 edition or this Silverlight 5 edition.

 	The Silverlight product team for their continued help in digging into the details of the runtime. There were too many helpful
 people to list here.

 	My stalwart tech reviewer Tom McKearney. I appreciate most that he didn’t just die on the spot when he was told the 800 pages
 he had to review were actually in the 1,200 neighborhood.

 	I’d like to thank my friends at Manning. People like Mary Piergies, Liz Welch, Elizabeth Martin, and others worked tirelessly
 to get this book published in time. Michael Stephens, Maureen Spencer, and of course, Marjan Bace all worked with me to help
 ensure that you, the reader, get all the text I wrote, without them having to print a multivolume set. I thank them and the
 rest of the folks at Manning.

 	Unique in this thanks is my development editor, Jeff Bleiel. A good editor can make the difference between a horrible authoring
 experience and a good one, and for the second time, Jeff definitely made that difference. He was my interface with Manning
 and my continued mentor as an author. Jeff made a positive contribution to this book and to my writing in general.

 	Thanks to the following reviewers who read the manuscript at various stages of its development; your insight and feedback
 made this a better book: Dave Campbell, Mark Monster, “Anil” Radhakrishna, Darren Neimke, Michael Crump, Dave Davis, Joe Suchy,
 and Rich Dudley.

 	I’d like to thank my mum for making sure I knew the difference between “you’re” and “your” and that spelling always counts.
 Hi, Mum!

 	Most importantly, I’d like to thank my wife Melissa and my children Ben and Abby for sticking by me as I spent day after day
 basking in the cool glow of my twin 30-inch displays staring at a mosaic of Microsoft Word, Visual Studio, and Adobe Illustrator.
 Writing a book involves the whole family, regardless of whose name goes on the cover.

 	A special thanks to my son Ben, who is now learning to read, and is super excited that his old man “makes robots and writes
 HUGE books!” for a living.

 	Finally, I’d like to thank you, my readers. Thank you again for making this possible. I’ll make it worth the trip.

About this Book

 The goal of this book is to take you, the developer who’s at least a little familiar with C# and .NET, and help you become
 an awesome Silverlight developer. If you’re already an awesome Silverlight developer, I’ve included deep topics to help you
 learn more about the platform and how things work under the covers.

 After you’ve read this book, you should be able to confidently design, develop, and deliver Silverlight applications that
 meet your application requirements. To facilitate the learning process, I’ve structured the book to get you developing as
 soon as possible, while providing quality, in-depth content.

 Within each chapter, I’ve included a collection of devices to help you build a firm understanding of Silverlight. The following
 list explains how each device helps along the journey:

	
Figures —Visual depictions that summarize data and help with the connection of complex concepts. Silverlight is highly visual.

 	
Code snippets —Small, concise pieces of code primarily used for showing syntactical formats. You’re usually not expected to type these in
 and compile, because they’re incomplete.

 	
Code listings —Code that you can type into your project in Visual Studio. In many cases, it will take multiple code listings to build a
 working example.

 	
Tables —Easy-to-read summaries.

In addition to these learning devices, my site http://10rem.net hosts some image assets and contains links to the code samples used in this book.

Audience

 This book is intended for developers who want to create nontrivial applications using Microsoft Silverlight 5.

 Though Silverlight provides numerous avenues for interactions with designers, this book primarily targets people who live
 and breathe inside Visual Studio. Team members in the integration role (those who take designs and implement in Silver-light)
 will also find the information valuable and useful.

 This book assumes you have at least a passing familiarity with common web standards such as HTML, CSS, XML, and JavaScript.
 This content comes up primarily in integrating with the browser, but also to help draw parallels with other approaches.

 In addition, and more importantly, this book assumes you have a background using the .NET Framework and Microsoft Visual Studio.
 Although I’ll be using C# as the primary development language, I won’t be reviewing the C# language or explaining basic programming
 constructs such as classes, methods, and variables.

 Experience with previous versions of Silverlight isn’t required for this book.

The bits: what you need

 This book provides ample opportunity for hands-on learning. But it also provides a great deal of flexibility by allowing you
 to learn the material without using the hands-on content or optional tools. You’ll find it equally valuable to read this book
 at the computer, on the train, or wherever else you happen to be.

 If you want to get the greatest value out of this book and use the hands-on opportunities, the following tools are recommended:

	Visual Studio 2010 Pro or higher, or Visual Studio Web Developer 2010 (free).

	You can also use Microsoft Visual Studio 11.

 	Silverlight 5 tools for Visual Studio 2010, including the Silverlight 5 SDK and WCF RIA Services.

 	The Silverlight toolkit.

 	Microsoft Expression for Silverlight 5 (optional).

 	Microsoft Expression Blend SDK for Silverlight 5 (installed with Blend) for creating and using behaviors.

You’ll find links to all of these tools at http://silverlight.net/GetStarted.

Roadmap

 Developing for Silverlight is a large topic. I’ve endeavored to cover a bit of everything here, with special emphasis on topics
 useful to professional developers. To aid your journey through this book, I’ve broken it up into six parts and a set of appendixes.

Part 1 Core Silverlight

 Part 1 covers the most important concepts to understand when learning Silverlight. It begins with a brief introduction to Silverlight
 and a step-by-step “Hello World!” example. The remaining chapters in part 1 cover XAML, the application model, the plug-ins, HTML and browsers, out-of-browser applications, and the security model and
 elevated trust mode.

Part 2 Creating the user interface

 Part 2 covers the visible parts of Silverlight applications. In this part you’ll learn about rendering, layout, panels, transformations,
 mouse and keyboard input, text display and editing, controls, animation, UI styles, and custom controls and panels.

Part 3 Working with data and services

 Most applications need to access data, whether it’s on the local machine or hiding behind a service on a remote server. Part 3 covers everything you need to know to work with all sorts of data in Silverlight, starting with binding, data controls, and
 input validation and finishing with SOAP services, RESTful services, XML, JSON, RSS, and WCF Duplex services.

Part 4 2D and 3D graphics

 Most visual elements in Silverlight are composed of graphics primitives. Part 4 starts off with working with graphics like lines and circles, and show you how to augment them using effects like blurs and
 drop shadows. You’ll even learn how to create your own effects and shaders. To round out the 2D content, part 4 also includes great information on working with bitmap graphics. The last two chapters in this part cover 3D graphics from
 the basics of points, meshes, lighting, and shading, all the way to creating your own frame-based animation system.

Part 5 Making the most of the platform

 Silverlight is a client-side technology. Because of that, it makes sense to want to integrate more deeply with the computer
 and tap some of its capabilities. Part 5 covers cross-platform integration features like full-screen applications, windows, pop-ups, navigation, file access, and
 printing, as well as Windows-only features such as p-invoke and COM automation.

Part 6 Best practices

 This book wraps up with a number of best practices you’ll want to apply once you get the basics under your belt. Specifically,
 you’ll learn about the MVVM (Model-View-ViewModel) pattern as well as customizing the installation and loading experience.
 Information on techniques for debugging applications rounds out this part.

Appendixes

 There are six appendixes in the book. One is included in the print book; the others are available as a free download from
 the publisher’s website at www.manning.com/Silverlight5inAction. These appendixes were originally written to be included as part of the print book, so they’re of the same quality as the
 rest of the book. Because of their relative niche appeal, they’ve been pulled out and made into downloadable chapters.

	Appendix A is included in the print book. It covers setup of the database and services used in some of the examples.

 	Appendix B covers the basics of media, including media advances in Silverlight 5.

 	Appendix C builds on this to describe how to generate media on the fly and capture media from the webcam and microphone.

 	Appendixes D, E, and F cover WCF RIA Services. Appendix D introduces WCF RIA Services and sets up the example project. Appendix
 E covers security, business logic, and techniques for partitioning your application. Appendix F takes all this information
 and applies the MVVM information from chapter 33, as well as advances in the latest version of WCF RIA Services, to provide the best possible structure for your WCF RIA Services
 application.

Code conventions and downloads

 All the code used in this book is presented in a monospaced font like this. This code can be in one of a variety of languages; the language used is indicated at the beginning of the code block. For
 longer lines of code, a wrapping character may be used to be technically correct while forming to the limitations of a printed
 page. Annotations accompany many of the code listings and numbered cueballs are used if longer explanations are needed.

 Longer listings of code examples appear under clear listing headers; shorter listings appear between lines of text.

 The source code for all of the examples in the book is available for download from the publisher’s website at www.manning.com/Silverlight5inAction and from the author’s website at http://10rem.net.

Author Online

 The purchase of Silverlight 5 in Action includes free access to a private forum run by Manning Publications where you can make comments about the book, ask technical
 questions, and receive help from the author and other users. You can access and subscribe to the forum at www.manning.com/Silverlight5inAction. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the
 rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between
 readers and the author can take place. It isn’t a commitment to any specific amount of participation on the part of the author,
 whose contributions to the book’s forum remains voluntary (and unpaid). We suggest you try asking the author some challenging
 questions, lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s web site as long
 as the book is in print.

 In addition to the Author Online forum available on Manning’s website, you may also contact us regarding this book, or anything
 else, through one of the following avenues:

	
Pete’s site and blog—http://10rem.net

 	
Pete’s Twitter account—http://twitter.com/pete_brown

About the author

 Pete Brown currently works for Microsoft helping to educate developers on all things XAML, as well as the .NET Micro Framework
 and programmable devices. Prior to joining Microsoft in 2009, Pete was an architect, engagement manager, and user experience
 designer at a consulting company in the Washington, DC, area, where he focused on Silverlight and WPF development. During
 that time he was also an International .NET Association (INETA) speaker, a Microsoft WPF MVP, and a Microsoft Silverlight
 MVP.

 Pete enjoys writing, woodworking, electronics, programming, making things with no practical use, acquiring huge monitors,
 cooking processors, and spending time with his wife and two children at their home in Maryland.

 Pete’s man cave ... er ... home office looks like a cross between a Commodore museum, a radio station, and Dexter’s lab (the
 one with Dee Dee as a sister, not the serial killer, honestly)!

 Pete’s site and blog is at http://10rem.net. Drop him a line.

About the title

 By combining introductions, overviews, and how-to examples, the In Action books are designed to help learning and remembering. According to research in cognitive science, the things people remember
 are things they discover during self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for learning to become permanent it must pass through
 stages of exploration, play, and, interestingly, retelling of what is being learned. People understand and remember new things,
 which is to say they master them, only after actively exploring them. Humans learn in action. An essential part of an In Action book is that it’s example driven. It encourages the reader to try things out, to play with new code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers are busy. They use books to do a job or solve
 a problem. They need books that allow them to jump in and jump out easily and learn just what they want just when they want
 it. They need books that aid them in action. The books in this series are designed for such readers.

About the Cover Illustration

 The figure on the cover of Silverlight 5 in Action is a “Janissary in Dress of Ceremony.” Janissaries were the personal troops and bodyguards of the Ottoman sultan. The illustration
 is taken from a collection of costumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old Bond Street,
 London. The title page is missing from the collection and we have been unable to track it down to date. The book’s table of
 contents identifies the figures in both English and French, and each illustration bears the names of two artists who worked
 on it, both of whom would no doubt be surprised to find their art gracing the front cover of a computer programming book ...
 two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in the “Garage” on West 26th Street in Manhattan.
 The seller was an American based in Ankara, Turkey, and the transaction took place just as he was packing up his stand for
 the day. The Manning editor did not have on his person the substantial amount of cash that was required for the purchase and
 a credit card and check were both politely turned down. With the seller flying back to Ankara that evening the situation was
 getting hopeless. What was the solution? It turned out to be nothing more than an old-fashioned verbal agreement sealed with
 a handshake. The seller simply proposed that the money be transferred to him by wire and the editor walked out with the bank
 information on a piece of paper and the portfolio of images under his arm. Needless to say, we transferred the funds the next
 day, and we remain grateful and impressed by this unknown person’s trust in one of us. It recalls something that might have
 happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that appear on our covers, bring to life the richness
 and variety of dress customs of two centuries ago. They recall the sense of isolation and distance of that period—and of every
 other historic period except our own hyperkinetic present. Dress codes have changed since then and the diversity by region,
 so rich at the time, has faded away. It is now often hard to tell the inhabitant of one continent from another. Perhaps, trying
 to view it optimistically, we have traded a cultural and visual diversity for a more varied personal life. Or a more varied
 and interesting intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the computer business with book covers based
 on the rich diversity of regional life of two centuries ago, brought back to life by the pictures from this collection.

Part 1. Core Silverlight

 When you’re learning a new technology, it’s always a good idea to start at the core: the core concepts, the core features,
 the core technologies, and the core skills. Taking that as a given, the first six chapters of this book will get you the grounding
 you need to learn about Silverlight and make good decisions about how you write your applications.

 In the first chapter, you’ll learn what Silverlight is and how it fits into the developer platforms offered by Microsoft.
 You’ll spend the remainder of the chapter building your very first Silverlight application. Believe me, it won’t be a boring
 old “Hello World!”

 XAML is the XML-based approach to defining the UI for Silverlight, WPF, Windows Phone, and Windows 8 XAML applications. These
 chapters take a deep look into XAML so that you’ll understand how it works, how to handle namespaces, how to map objects into
 XAML, and much more.

 Silverlight differs substantially from other client and web technologies when it comes to its application model and how the
 plug-in integrates with the system. It’s essential and interesting to learn how all the pieces fit together, so I’ll cover
 that next.

 Building on what you learned about the app model and web page plug-in, I’ll show you how Silverlight can integrate with web
 applications. Silverlight has deep integration with the browser and HTML while running on a web page. You’ll learn how Silverlight
 can interact with the web page on which it resides, even to the point of manipulating the page’s DOM from within Silverlight.

 From there, I’ll turn to an increasingly popular model for Silverlight: the out-of-browser application. Application developers,
 especially those developing business applications, have used Silverlight to create rich desktop applications that install from the web but otherwise look
 and behave like any other native application. It’s the best of both worlds.

 Part 1 wraps up with a look at the security model used by Silverlight, including how it determines whether code is safe to run and
 how to get elevated permissions to escape from the sandbox.

 First, you’ll explore the basics of Silverlight and build your first Silverlight application. Come with me—I think you’ll
 enjoy the ride.

Chapter 1. Introducing Silverlight

	

 This chapter covers

	
Silverlight, the web, and WPF

 	The best applications for Silverlight

 	Getting started with Silverlight

 	Changes in Silverlight since the previous edition of this book

 	Building your first Silverlight “Hello World!” application

	

First, let me thank you for starting at chapter 1. I’m one of those people who tend to read magazines back to front and skim technology books, so I appreciate it when someone
 reads a book’s chapters in order. Then again, maybe you read this book backward as well. In that case, you’ll find the “Hello
 World!” walkthrough in this chapter to be a refreshingly simple take on building Silverlight applications unencumbered with
 patterns such as Model View ViewModel (MVVM), words such as DependencyProperty, and technologies such as Windows Communication Foundation (WCF) Rich Internet Application (RIA) Services. For the rest of
 you, don’t worry—we’ll cover each of those throughout the rest of the book, steadily building our Silverlight skills as we go.

 Because you’ve picked up a Silverlight book, you’d probably like to know what Silverlight is. Luckily, I’m horrible at marketing,
 so I’ll put it simply: Silverlight is a cross-platform .NET runtime, a cross-browser plug-in, and a set of Windows-based developer
 tools for building RIAs. At its heart, Silverlight is an implementation of the concepts and standards from Windows Presentation
 Foundation (WPF) such as binding, the property system, and Extensible Application Markup Language (XAML) in a cross-platform
 version of the .NET Common Language Runtime (CLR) and libraries.

 There. I think that paragraph managed to get all of the acronyms defined for the rest of the book. Then again, this is a Microsoft
 technology, so expect more acronyms before we’re through.

 Silverlight runs on Windows and Mac through Microsoft-supplied plug-ins as well as on Linux through the Moonlight project.
 It’s the primary development platform for Windows Phone. You’ve likely seen demos of it running on set-top boxes connected
 to TVs and serving up ads and content on the Xbox. Put simply, short of ASP.NET, Silverlight is the broadest reaching technology
 ever produced by Microsoft.

 Silverlight applications work on the web as well as on the client. You can create virtually any type of application in Silverlight,
 from web content, to widgets, to media players, to full-blown client applications.

 By the end of this chapter, you’ll have created your first functional Silverlight application, a Twitter search client with
 nice visualization of the tweets. You’ll be introduced to XAML, binding, networking, controls, and much more—even a little
 LINQ to XML. These are all topics I’ll dive deeply into in the rest of the book. First, you’ll learn a bit about where Silverlight
 fits into the developer ecosystem. This is a big question for many and needs to be resolved up front. I’ll follow that up
 with a look at the types of applications for which Silverlight is well suited. After that, I’ll explore the features and capabilities
 that have been added since the first edition of this book.

1.1. A Silverlight primer

 Silverlight’s place in the world has evolved since its original inception. Market forces and customer preferences have both
 led to Silverlight moving more toward private web and line-of-business applications as opposed to broad-reach public websites
 and applications. Clearly both Microsoft’s customers and partners have moved to a standards-based public web. Nevertheless,
 there are great ways and reasons to use Silver-light on the public web, especially while the HTML standards are still catching
 up to what plug-ins like Silverlight can accomplish. Of course, on the desktop and in the enterprise, Silverlight is as viable
 as ever.

 In this section, I’ll introduce Silverlight in context, looking at how it fits into the developer stack both on the web and
 on the desktop. I’ll then look at some of the types of applications for which Silverlight is well suited.

 Silverlight got its start as a web page plug-in, so that’s where we’ll start as well.

 1.1.1. Silverlight and the web

 Silverlight sits in that interesting place between desktop applications and browser applications. In many ways, when in the
 browser it’s like a little traditional desktop application embedded in HTML. Of course, the same can be said of many JavaScript
 applications, themselves modeled on the code-on-the-client desktop application paradigm.

 Great frameworks such as jQuery and the oft-confused HTML5 and CSS3 further muddy the waters. Where’s Silverlight’s place
 on the web? Why should you use Silver-light instead of these other technologies?

 I’ll give you a few reasons:

	Silverlight has top-tier media support, including digital rights management (DRM), far more advanced than the proposed HTML5
 standards. It’ll be a while before HTML5 catches up across all browsers.

 	Silverlight is a no-brainer if you’re already a .NET developer looking to expand to other platforms. It’s simply easier to
 develop with and in.

 	Silverlight has best-of-class development and debugging tools.

Don’t get me wrong; I think HTML5 and CSS3 and even JavaScript are a great thing for the web—exciting and capable. Having
 said that, I contend that Silverlight has more advanced authoring tools, faster execution, and more capabilities than HTML5
 currently has. HTML5 will continue to raise the floor, driving up the quality and experience across the spectrum of platforms
 and developer tools. On the public web, HTML5 will eventually catch up to the capabilities of Silverlight for the majority
 of typical web scenarios and plug-ins won’t be needed. For many public sites and applications, we’ve already reached that
 point due to the proliferation of plug-in–hostile tablets.

 I don’t think that the code-on-the-client application development approach is going to completely disappear. Though doom has
 been forecast for many major development approaches over the years, few have declined when another rose in popularity. Silverlight
 and HTML5 will provide more options for how to implement the solution you need in the most optimal way, using the tools you’re
 comfortable with and the skills you already have. The balance of what code you put in each technology will be the real point
 of debate for development teams. In addition, the skills you learn as a Silverlight developer will port quite nicely to Windows
 8 XAML, once you decide to adopt that operating system.

 Remember that HTML/CSS/JavaScript and Silverlight aren’t mutually exclusive. Silverlight applications can happily coexist
 on a page with JavaScript applications, each complementing the other with features that play to their strengths.

 Silverlight is far more than a web technology. Though it can live on a web page, it’s also common to have out-of-browser Silverlight
 applications, either connected to services or simply using resources on the client. In those instances, you may wonder when
 to use WPF and when to use Silverlight.

 1.1.2. Silverlight and WPF

 Silverlight and WPF were born of the same ideas. WPF came first and broke the ground required to make XAML a UI-friendly markup
 language. WPF also introduced you to dependency properties and binding, storyboard-based animation, and subpixel-rendered
 vector UIs. WPF was, and continues to be, an amazingly rich platform for developing both traditional Windows and natural user
 interface (NUI) applications.

 But WPF is large and complex. It’s also deeply rooted in Windows, with no good way to substitute alternate stacks for those
 it relies on. WPF also relies on the rather outdated and web-unfriendly code access security model for application security.
 So, when Microsoft decided to enter the RIA space with a CLR-based vector UI technology, it took the concepts and some of
 the code from WPF and reimplemented them in a smaller, tighter, and more platform-independent way.

 Silverlight primarily is a subset of WPF and .NET 4 with significant additions. Some of the additions, such as the Visual
 State Manager, have been migrated back from Silverlight into WPF. Others, such as Deep Zoom, Media Stream Source, and the
 webcam and microphone APIs, are Silverlight-only features, unlikely to be ported to WPF. Others like XNA sound and 3D APIs
 are from entirely different technologies. Ignoring alternative solutions to the same problems, figure 1.1 shows this relationship using our friend, the Venn diagram.

 Figure 1.1. Silverlight is primarily a subset of WPF with extras added. Ignoring alternative solutions to the same problems, the places
 where WPF differs most are in the integration with the Windows OS and the access to the full .NET framework.

 [image:]

 I recommend that developers new to both technologies learn Silverlight before learning WPF. In general, you’ll find it easier
 to learn Silverlight first and scale up to WPF, should your needs dictate. Silverlight is smaller, typically having a single
 approach to solving a given problem, whereas WPF may have several solutions for the same task. Though Silverlight doesn’t
 have everything WPF has, Silverlight is an excellent, capable development platform and can cover many types of applications
 you would’ve previously written in Windows Forms, WPF, or even HTML.

 1.1.3. Types of Silverlight applications

 You can build just about anything you’d like using Silverlight. Of course, Silverlight is better suited for some types of
 applications over others. For example, though possible, you wouldn’t necessarily want to build an entire website using Silverlight;
 there are better tools for the job. The most common types of applications where Silverlight is a good fit are media, business,
 and games.

 Media: Silverlight excels at media. When Silverlight 1.0 was first introduced, one of the few capabilities it had was an excellent
 media stack. Silverlight through version 5 has built on that to include new media capabilities such as smooth streaming, enhanced
 navigation with trick play (media playback rate changes without pitch changes), pluggable codecs using the Media Stream Source
 API, support for remote controls and media keys, and even the DRM technologies required for the large content producers to
 adopt Silverlight.

 Silverlight’s early focus on media was both helpful and hurtful. Video on the web is a great way to gain product adoption,
 especially when you have a capable high-def video technology.

 Business: Early on, many potential Silverlight developers failed to see past the media roots and missed the rich business capabilities
 Silverlight provides. Starting with versions 3 and 4, Silverlight gained serious business capabilities. From simple things
 such as sync and async validation, to patterns such as MVVM and Prism, and entire middle-tier frameworks such as WCF RIA Services,
 Silverlight showed itself to be a mature platform, able to absorb the best practices from other areas and build on them.

 Games: Though business and media applications certainly are great staples, another fun application type is games. HTML5 will likely
 turn out to be a more popular broad-reach gaming platform, but Silverlight has good support for casual games, including the
 ability to generate bitmaps on the fly, create sound from bits, loop audio in the background, play real-time sound effects,
 manipulate and render 3D scenes, and more. The community has successfully ported over physics and gaming engines to Silverlight,
 making it even easier to create complex casual games.

 There are many other types of Silverlight applications, ranging from ads, to photo viewers, to social media clients, to analogs
 for virtually every type of major desktop and web application. Some, such as desktop applications, weren’t possible with Silverlight
 2, the version used in the first edition of this book. Let’s take a high-level view of what has changed in that time. For
 readers of the Silverlight 4 edition, I’ll mention some key new features in Silverlight 5 as well.

	

 How this book is organized
 When I turned in the first complete version of this book, it came in at over 1,200 pages. I can’t remember the last time I
 owned a 1,200-page printed book, but I’m pretty sure that’s an awful lot of paper and shelf space.

 Rather than open the publisher up to lawsuits for all the back injuries this was likely to cause, and also end up paying for
 all the damage caused by broken bookshelves sitting above your prized first-edition 1977 fine china Star Wars collector plates,
 I decided to break up the book, with all material included in the purchase price of the book. (Some reviewers suggested breaking
 up this book into a series of volumes, so perhaps I could sell Encyclopedia Silverlightica door to door.) Material that isn’t necessarily core to the book, or not really new to Silverlight 5, has been moved into
 a set of appendices. Specifically:

	Media Basics and Raw Media, Webcam and Microphone, which didn’t have substantial product updates for Silverlight 5

 	
WCF RIA Services, which—while an excellent three-chapter set of content if I do say so myself (especially the new content
 on MVVM)—simply wasn’t core knowledge required by a majority of readers.

So, both sets of chapters were voted off the island. Happily, they’re still available for all our readers.

	

If you’re reading this online or in an e-reader, you should have all the chapters already. If you’re reading this in print,
 first of all, you may stop and send me a thank-you note for your back, and after that, download the free appendices from www.manning.com/Silverlight5inAction. With those appendices, as a purchaser of this book you get the whole book. Consider it the Director’s Cut of Silverlight 5 in Action.

1.2. A brief history of Silverlight

 The first edition of this book was written for Silverlight 2. Silverlight 3, 4, and 5 have added an amazing number of new
 capabilities to the platform in all areas, from core capabilities, to device access, to the introduction of both trusted and
 sandboxed inbrowser and out-of-browser client applications. Silverlight has had five major releases in the past four years,
 as shown in table 1.1.

 Table 1.1. Silverlight versions released for the desktop

	
 Version

 	
 Release date

 	
 A few key features

	1.0
 	Sep. 5, 2007
 	Media, basic graphics; JavaScript for code

	2
 	Oct. 14, 2008
 	First release with the .NET runtime; rich media

	3
 	July 9, 2009
 	Extensible media; out-of-browser; shaders; GPU acceleration

	4
 	April 15, 2010
 	Webcam and Microphone; WCF RIA Services 1.0; validation

	5
 	Dec. 9, 2011
 	3D; vector printing; OpenType text layout; trick play; more

Table 1.1 shows some of the major enhancements delivered in each version of Silver-light over the last few years. In the remainder
 of this section, I’ll look at the features, especially those new to Silverlight 4 and 5, in more detail. The advancements
 in Silver-light can be loosely grouped into four main areas: business and client applications, media and graphics, user interaction,
 and text.

 1.2.1. Features for business and client applications

 In 2008 and 2009, Silverlight 2 was just starting to gain adoption. It was a brand-new technology from Microsoft (the managed
 code version was, anyway), one with strong competition from Flash/Flex and even Java. Though Silverlight 2 could’ve been used
 to build rich business applications, it didn’t yet have the chops to be a strong contender in that space. Three versions later,
 that story has changed. Many of the features in this section are useful in applications of all sorts; I hate to classify them
 under the heading of “business,” but that’s the largest consumer of these features.

 Input validation, covered in chapter 18, was one of the biggest new features for business applications. Silverlight didn’t add just validation but included support
 for validation through attributes, validation through exceptions, and even asynchronous validation, all of which work with
 the Silverlight controls. Silverlight even made it possible to customize the style of the validation information provided
 to the end user.

 Validation relies heavily on the binding system in Silverlight. The teams added a number of new features to binding, including
 a DataContextChanged event, finer control over when the data source is updated, and the ability to bind to properties added to objects at runtime.
 I cover all these new features in chapter 16.

 One technology that builds heavily on the validation stack is WCF RIA Services (ebook appendices D, E, and F). A good bit
 of the validation functionality rolled into the Silverlight runtime came from that project. WCF RIA Services provides a way
 to share validation and logic between the client and server as well as a framework for validation, data access, and security,
 shareable between Silverlight and other clients.

 WCF RIA Services builds on the WCF stack, but it’s not the only enhancement there. The Silverlight networking stack, described
 in chapters 19 through 23, was greatly enhanced to support in-browser and out-of-browser operation, as well as SOAP 1.2. When combined with technologies
 such as the WCF Web API (chapter 21), networking has gotten both more flexible and more interesting.

 The Silverlight team has also done a lot to optimize networking performance and reduce latency in Silverlight 5. These changes
 make it easier to use Silverlight behind a firewall where the services often have different requirements than those on the
 internet. Of course, the addition of technologies like tasks from the Task Parallel Library (TPL) and the availability of
 Reactive Extensions (Rx) all help to make network operations simpler. You’ll find out more about those in chapter 19 as well.

 Despite the promises of a paperless office, printing (covered in chapter 31) is still a staple of business applications everywhere. Printing in Silverlight 4 was optimized for relatively short reports
 or documents, as well as for the equivalent of print-screen operations. Silverlight 5 adds a new PostScript, or true vector,
 printing mode to the existing bitmap approach, making serious printing and print preview now possible.

 Silverlight has supported out-of-browser applications since version 3, with trusted out-of-browser applications added to Silverlight
 4. Silverlight 4 provided COM automation support for calling compatible APIs on Windows. Silverlight 5 expands on the capabilities
 of trusted applications by giving them more system and file access, even p-invoke access to call APIs. You’ll learn about
 out-of-browser applications in chapter 5. Because Silverlight 5 enables trusted applications to be hosted in-browser as well, we’ll take a deeper dive into system
 integration in chapter 32 and file access in chapter 30.

 For really big applications, or those that must process a lot of data, Silverlight now supports 64-bit browsers with a special
 64-bit version of the plug-in for Windows. The 64-bit support enables applications to use more memory and resources, and avoid
 the (transparent to you) thunking and virtualization required on a 32-bit browser, often resulting in a decent performance
 increase.

 One of the next major areas of enhancement for Silverlight is media.

 1.2.2. Media and graphics enhancements

 Silverlight was first and best known for its media capabilities and had strong media support built in from day 1. The Silverlight
 media team didn’t rest on that success, instead pumping out enormous advances in media in each update to Silverlight through
 Silverlight 4. Silverlight 5 includes modest, but still good, improvements in this same area.

 Silverlight 2 included a Media Stream Source API for pushing media through the pipeline. That API required that the bits be
 pre-encoded into one of the formats natively understood at the time. Though useful, this pre-encoding could lead to double-encoding—and
 made transcoding even more difficult.

 Silverlight 3 added support for pushing raw video and audio out of custom Media Stream Source implementations, as covered
 in ebook appendix C. As a result, you can write a managed codec for any type of media or even do something crazy like I did
 and use it to generate audio and video in real time for an emulator. Another option for generating video or at least images
 in real time is the bitmap API covered in chapter 25.

 Speaking of codecs, one of the new codecs added in Silverlight 4 was H.264 for video. H.264 has emerged as one of the most
 popular codecs for TV and video for devices. It was a logical choice for an additional native Silverlight format because now
 content producers can use even more of their content without re-encoding. Silverlight 5 expanded on the H.264 support by adding
 hardware decoding of non-DRM media to improve performance, especially on lower-power devices. To appeal to the same audience,
 Silverlight also continued to improve DRM capabilities, including the addition of offline DRM and seamless switching between
 DRM media sources.

 One common request in the media space was for the ability to play video at 1.x or even double speed. Commonly called “trick
 play,” this has been added to Silverlight 5 and is covered in ebook appendix B. Now you can watch my tutorial videos in 20
 minutes instead of half an hour, with automatic pitch correction so I don’t sound like a chipmunk (although I may inhale some
 helium before my next recording just to mess with you).

 Would you prefer to watch Silverlight video on your TV in your living room? Silver-light 5 adds support for remote controls
 and the media keys so many of us have on our desktop and laptop keyboards. This new feature is covered in ebook appendix B.

 Another exciting feature introduced in Silverlight 4 was built-in support for video and audio capture devices or, specifically,
 webcams and microphones. Though not yet quite at the level that would allow you to create a real-time video chat application,
 the support does open up a number of new possibilities for application development. Webcam and microphone support are both covered
 in ebook appendix C.

 Silverlight 4 added support for all formats of portable network graphics (PNG), something that was only partially supported
 in previous versions. The same release also introduced support for pixel shaders and a set of built-in performance-tuned effects
 such as drop shadow and blur, covered in chapter 24.

 Easily the most anticipated feature in Silverlight 5, the addition of the new GPU-accelerated 3D programming interface will
 enable all sorts of scenarios from games to data visualization to custom third-party 3D rendering and scene management systems.
 It even let me create a nice animated retro Amiga demo, as you’ll see in chapters 26 and 27.

 With all of these advancements, plus a number of performance optimizations and even additions such as the Microsoft Media
 Platform Player Framework, Silverlight continues its leadership in the media space, offering everything you need to build
 rich, media-centric applications.

 Sometimes, what you want is more than a media experience; you want an application that can be truly interactive. Silverlight
 has your back there, too.

 1.2.3. User interaction

 Since Silverlight 2, user interaction has received a number of important enhancements. Two of the most requested features,
 a mouse scroll wheel and right-click mouse support (both covered in chapter 9), are baked into the Silverlight core runtime. Silverlight 5 builds on that with the addition of mouse multiclick support
 (think double-click), also covered in the same chapter.

 One of the newer and hotter user interaction mechanisms is multitouch, also covered in chapter 9. The ability to support multipoint interaction with the UI, especially in kiosk and handheld/tablet scenarios, is quickly
 becoming a requirement for many applications. Silverlight includes core runtime support for multipoint touch interaction with
 Silverlight applications.

 Another user interaction piece missing from Silverlight 2 was the easy ability to show dialogs and pop-up windows (simulated)
 within your applications. Silverlight 5 features not only those (covered in chapter 28) but also notification toast (pop-ups typically located at the bottom right of the screen), covered in chapter 5. Also covered in chapter 28, Silverlight 5 adds in a new option—real operating system windows—which enables you to create windows that can run on different
 displays, or simply overlap and act like normal windows.

 Finally, all the interaction in the world has no value if your user can’t read the text on the screen. Happily, Silverlight
 includes plenty of improvements in text as well.

 1.2.4. Text

 By far the biggest improvement to text since Silverlight 2 is proper ClearType font rendering. Silverlight 2 performed only
 grayscale rendering, giving text a fuzzy appearance unless you carefully picked your color schemes. Silverlight 5 has expanded on this to provide better and faster text rendering,
 with performance and clarity-targeted options much like those offered by WPF 4. Chapter 10 explains how to use these new features.

 Although ClearType may be important for font rendering in general, right-to-left or bidirectional (BiDi) text is something
 that’s absolutely essential for the correct rendering of many non-European languagesSilverlight supports not only BiDi text
 but also input method editors (IMEs) for complex composite characters for many languages, especially eastern languages.

 Silverlight 5 added enhancements to better improve layout and typography. For example, multicolumn and linked text (chapter 11) now enables magazine-like layouts with simulated fluid text flow around other elements. Tracking and leading, always important
 to the typography aware (you know, the people who go around wearing shirts that say “Helvetica”), was also added.

 When it comes to typography, my favorite addition to Silverlight 5 is the excellent support for OpenType. The text team added
 support for ligatures, alternates, style sets, and much more. They even expanded on the capabilities available for eastern
 languages. Chapter 10 goes into detail on how to use many of these new features.

 Finally, one great improvement to text rendering and entry is the inclusion of the RichTextBox control and the new read-only
 RichTextBlock. These controls allow you to display or edit text that includes multiple fonts and styles. The controls can
 even embed other elements that can be interactive when the control is in read-only mode.

 ClearType, BiDi, and IME text, as well as the new text layout functionality and the rich text box, are all covered in chapter 11, along with insight into the text-rendering stack in general and how to apply these new features to text throughout Silverlight.

 Those are the major items. Of course, many more improvements are sprinkled throughout. In addition to capturing the major
 items in this book, I’ve added information based on the experience gained from working with Silverlight since its inception
 as well as knowledge gained from working closely with the Silverlight and WPF product teams. In important areas, such as layout
 and rendering, I’ve gone deeper than needed by the average developer to provide some insight into the inner workings of Silverlight.

 That was a lot to cover. I hope you enjoyed reading this list of exciting new features as much as I enjoyed writing it. Before
 we start covering individual feature areas, we’ll need to get our development environment set up and build a small “Hello
 World!” application.

1.3. Getting started with Silverlight development

 If you’re a .NET developer, you’re well on your way to becoming a Silverlight developer. Silverlight builds on the .NET Framework
 and uses the same tools as other .NET Framework applications. You’ll use Visual Studio and, optionally, Expression Blend to
 build your applications. You’ll be able to turn to CodePlex, GitHub, and other open source sites for sample code to use. And, of course, you’ll have a huge community of peers to lean on when trying to figure
 out those hard problems.

 Before you can do any of that, though, you need to make sure your development environment is set up.

 1.3.1. Setting up your development environment

 Silverlight 5 requires Visual Studio 2010, at a minimum, to work with projects and build the solutions. The multitargeting
 support of Visual Studio 2010 means that your applications can target Silverlight 3, 4, or 5, once you have the Silverlight
 5 tools installed.

 If you don’t have a version of Visual Studio 2010, you can get the free Visual Web Developer 2010 Express from Microsoft at
 www.microsoft.com/express/Web/. The free web developer tools enable you to create Silverlight 5 applications as well as ASP.NET applications. If you want
 additional features and tools as well as the ability to create more than just web applications, upgrade to Visual Studio 2010
 Pro or higher.

 Once you have installed Visual Studio 2010, visit http://silverlight.net/getstarted/ and use the Web Platform Installer or manual installer to install the Silverlight 5 tools and SDK as well as any optional
 components. The Silverlight tools for Visual Studio 2010 and the SDK contain everything you need to develop Silverlight 5
 applications, including WCF RIA Services 1.0 SP2.

 Optionally, you may want to install Microsoft Expression Blend for Silverlight 5. The link for that is also available on the
 Get Started page on Silverlight.net. Expression Blend provides a designer-friendly set of tooling that makes creating complex
 animations, behaviors, and layouts a snap.

 Microsoft and the community have created a number of helpful sites that will make your learning process go smoothly.

 1.3.2. Helpful sites

 The main MSDN home page at http://msdn.microsoft.com is a great starting point for both web-based Silverlight and desktop Silverlight applications. You’ll find videos and tutorials
 (some of which I wrote/recorded) there as well as pointers to additional resources.

 One of those additional resources is the official Microsoft Silverlight developer site at http://silverlight.net. There you’ll find videos, sample applications, tutorials, add-ons, and the community forums, all designed to help you be
 the best and most efficient Silverlight developer you can be.

 In addition to Silverlight.net, http://channel9.msdn.com includes interviews with community and product team members, as well as tutorials.

 Also, as a completely shameless plug, you may want to subscribe to my own blog at http://10rem.net. You can also follow me on Twitter; my id is @pete_brown.

 One other place you’ll want to visit is Dave Campbell’s Silverlight Cream: http://bit.ly/SilverlightCream. Dave has done a spectacular job, daily compiling the best Silverlight posts on the web. From Dave’s link blog, you’ll get an idea of what other community member blogs to subscribe
 to.

 At this point, your developer machine is set up, you’ve subscribed to a few blogs, created an account at Silverlight.net,
 and maybe even poked around a little on the sites. Before we get into the features in detail in the rest of the book, I thought
 it’d be good to see how easy it is to build your first Silverlight “Hello World!” application.

1.4. Building your first Silverlight web application

 Expectations have come a long way since the days of C, where just getting “Hello World!” to compile and output to the screen
 was considered a great accomplishment. If we were talking assembly, I’d go with that, but we’re not. Silverlight is so easy
 to use, you need a much higher bar for your first application.

 Rather than rehash the tired “Hello World!” example, I think it’d be neat if your first application did something interesting—like
 hit a public service on the web. Twitter is the ubiquitous example, and far be it for me to buck a trend.

 This application will be a Twitter search application. You’ll hard-code a search string and use that to hit a network service.
 You’ll take the results that come back and parse them using LINQ to XML. When displaying the data, you’ll use ListBox templating and binding to show the power of the lookless UI and XAML. As we’ll learn throughout this book, control implementation
 is completely independent of the XAML UI representation of the control. That is, the runtime doesn’t care what the control
 looks like as long as it behaves as expected. The term to describe this is called “lookless”. The end result will look like
 figure 1.2.

 Figure 1.2. The end result of the Twitter search “Hello World!” example. That’s a plain-old ListBox with your own template. The data came from Twitter and was parsed using LINQ to XML.

 [image:]

 This is a surprisingly functional application for your first application. You’ll also find it extremely easy to create using
 your current C# skills plus the new Silverlight skills you’ll start building in this chapter and continue to build throughout
 the rest of this book.

 1.4.1. Project setup

 Open Visual Studio 2010. Choose File > New Project and create a Silverlight Application project. The name isn’t important,
 but I chose FirstSilverlightApplication for mine. Figure 1.3 shows the dialog with the correct project type selected and named.

 Figure 1.3. Visual Studio 2010 New Project dialog with the correct project type selected and named

 [image:]

 Once you click OK, you’ll be presented with another dialog. This dialog (figure 1.4) provides options specific to the Silverlight project.

 Figure 1.4. The New Silverlight Application options dialog

 [image:]

 Typically, you’ll leave the options at their default values and click through this dialog. But it’s important to understand
 what’s available to you. Table 1.2 describes each of the options presented in this dialog.

 Table 1.2. The New Silverlight Application dialog options

	
 Option

 	
 Description

	Host in a New Website
 	Silverlight applications, even out-of-browser apps, are served from a website. You can also serve them from a static HTML
 page on the file system, but this is a limiting option, as you’ll see in chapter 4. You’ll typically want to leave this option checked, unless you have an existing website you want to use when building your
 application.

	New Web Project Name
 	Provide a project name for the website. The default is usually sufficient.

	New Web Project Type
 	If you’re an ASP.NET programmer and have a preference as to the ASP .NET project type, set it here. Otherwise, leave it set
 to the default.

	Silverlight Version
 	This option allows you to select Silverlight 3, Silverlight 4, or Silverlight 5. For this book, every example will assume
 Silverlight 5. You only have one plug-in installed, but if you target an older version, Silverlight will run in quirks mode
 to ensure compatibility.

	Enable WCF RIA Services
 	Check this option if you want to link the web project to the Silverlight project as a WCF RIA Services endpoint. Doing so
 enables additional compile-time tooling.

Once the new solution is created, you’ll see two projects. The first is the Silverlight application; the second is the website.
 The website project contains a folder ClientBin, which will contain the compiled and packaged output (XAP file) from your
 Silverlight application. That XAP file is what the webpage will download and load into the browser plug-in.

 It also contains two test pages that may be used to test your Silverlight application. By default, the ASPX page is set as
 the startup page, but you can use the HTML page if you later plan to host on a non-.NET server. (Yes, Silverlight applications
 may be hosted by any HTTP server and not just Internet Information Services [IIS] running ASP.NET.)

 If you run the application at this point, you’ll get a blank page in the browser. At first glance, it’ll look like Silverlight
 didn’t load. But right-click on that empty space and you’ll get the Silverlight menu, which shows you that you are, indeed,
 running a Silverlight application.

 With the project open and ready, it’s time to turn to the UI.

 1.4.2. User interface

 Open the MainPage.xaml file; it’s usually open by default when you create a Silver-light project. MainPage.xaml is the start
 page for your application, set as such by a single line of code inside App.xaml.cs. XAML is the markup language used by Silverlight.
 We’ll cover the basics of XAML in chapter 2, but throughout the book you’ll learn about additional features of XAML.

 One key thing to know up front is that XAML is a representation of CLR objects. Each tag you see in XAML has an equivalent
 CLR object behind it.

 Inside the opening and closing Grid tags, add the markup from listing 1.1 to add two objects to your UI, specified as elements in XAML.

 Listing 1.1. XAML Markup for the Hello World Twitter UI

 [image:]

 That markup creates two elements on the page: a Button and a ListBox. In the design view, you should end up with a form that looks like figure 1.5.

 Figure 1.5. The Visual Studio 2010 IDE showing the markup correctly entered for MainPage.xaml

 [image:]

 The editor you see is split into two parts: the top part is the XAML design surface and preview pane. The bottom part is the
 XAML markup. Depending on your settings, these may be two different tabs in the editor.

 You can drag controls into the markup or directly on to the design surface. The approach you take depends on what is more
 comfortable to you and which gets the job done more efficiently. For obvious reasons, the source listings in this book will
 list the XAML markup rather than myriad drag-and-drop instructions.

 If you run the application at this point, you’ll have a simple Silverlight UI with a button and an unpopulated ListBox. If you get any compile errors, ensure that you pasted the content into the grid as mentioned and that your tags are all
 matched and correctly closed following normal XML rules.

 That’s about as basic an application as you can get. If you want, you can even change the button content to say “Hello World!”
 instead of “Get Tweets.”

	

Tip

 The code we’ve used for the “Hello World!” example, like all code in Silverlight, will run on the client inside the Silverlight
 plug-in. In this case, it’s also running inside the browser. The web server code is simply serving up the containing page,
 and the XAP file it references. If you’re used to coding ASP.NET applications, that’s a bit of a shift. In that case, think
 of Silverlight apps more like the HTML and JavaScript on the client rather than like the server-side code.

	

If you ran the application, close the browser and stop debugging. Back in Visual Studio, double-click the Get Tweets button
 on the design surface to create an event handler in the code-behind, and automatically navigate to that code. (You could also
 do this by typing the event name into the XAML, but we’ll look more at that in later chapters.) The event handler will be
 used in the next section, where you make a call to the Twitter search API.

 1.4.3. Calling Twitter search

 The next step is to call the Twitter search API. Fill out the event handler you just created in the code-behind to include
 the code in listing 1.2.

 Listing 1.2. The event handler for the GetTweets button Click event

 [image:]

 The code here does a few interesting things. First, it creates an instance of WebClient, one of the easiest-to-use network clients in Silverlight. You’ll learn about the WebClient in detail in chapter 19. It then sets up an event handler using a lambda expression to respond to the results. Finally, it asynchronously calls the
 method to download the result string from search.twitter.com. The search is for tweets mentioning “Silverlight.”

	

Tip

 The seemingly strange lambda expression approach used here, signified by the “s,ea => {...},” simply uses an anonymous delegate
 (an unnamed function) as the event handler. The beauty of this approach is that it doesn’t clutter your code with tons of
 event handlers that are part of discrete processes. I’ll use these in a number of places throughout the book. You can learn
 more about lambda expressions in the C# language on MSDN at http://bit.ly/CSharpLambda.

	

The network call is asynchronous because all network calls in Silverlight are asynchronous. This can take a bit of getting
 used to but is easy to deal with once you’ve done it a few times. Chapter 19 goes into detail on how to use the asynchronous methods as well as the reasons behind them. It also discusses using the Task class and Reactive Extensions to manage your async code.

 If you run the application (if F5 doesn’t do it for you, right-click the test ASPX page in the web project and choose View
 in Browser), click the Get Tweets button, and view the output window (Ctrl-W, O if it isn’t visible), you’ll see that you’ve
 already built enough to call Twitter and pull back the results in XML format. Not bad for a few lines of code! Your next step
 is to parse the results and display them in the ListBox control.

 1.4.4. Parsing the results and binding the ListBox

 If you look in the output window from your last run, you’ll see that the result format is an Atom-formatted XML document with
 an entry node for each of the results. In Silverlight, you can parse Atom a couple ways: you can use the built-in parsing of the SyndicationFeed class or you can use LINQ to XML to parse the results. Both approaches are covered in detail in chapter 22.

 LINQ to XML is a great technology and has many uses above and beyond Atom document parsing, and it’s used far more often,
 so let’s go that route. You’ll end up with a little more code than the alternative approach, but I think it’s worth it for
 this example.

Tweet Class

 Before you do the actual parsing, you’ll need to create a simple class to hold the content you’re interested in. In the Visual
 Studio Solution Explorer pane, right-click the Silverlight project and choose Add > Class. Name the class Tweet.cs and fill it out so it looks like listing 1.3.

 Listing 1.3. The Tweet class

 using System;
namespace FirstSilverlightApplication
{
 public class Tweet
 {
 public string Message { get; set; }
 public Uri Image { get; set; }
 }
}

 The Tweet class will be used to contain a tweet in your application. In Silverlight, you’re encouraged to use strongly typed classes
 to represent all your entities or model objects. If you’re familiar with using recordsets or similar loosely typed approaches,
 you’ll find they either don’t work well in Silverlight or don’t work at all.

 Save that class and move back to MainPage.xaml.cs code-behind file. Somewhere inside the MainPage class definition, add the following collection variable. Above the GetTweets_Click method would be a perfect location:

 private ObservableCollection<Tweet> _tweets =
 new ObservableCollection<Tweet>();

 Be sure to right-click the ObservableCollection type name and choose Resolve to add the appropriate using System.Collections.ObjectModel statement to your code. This collection will be the location where you place all the parsed tweets. It’s also what you’ll
 bind the ListBox to. You’ll use the ObservableCollection class in chapter 16 (when we cover binding).

Parsing with LINQ to XML

 LINQ is something you may have used on other .NET projects. If so, you’ll feel right at home because it’s supported in Silverlight
 as well. If not, it’s pretty easy to pick up. Think of it almost like SQL but in code and working on objects. Oh ... and written
 backward, with no database in sight. Okay, it’s not exactly like SQL, but it’s a great query language that lets you perform
 iterations and filters in a single line of code. In any case, you won’t need to be a LINQ expert for this example.

 Right-click the project and choose Add Reference; add a reference to System.Xml.Linq. Figure 1.6 shows the dialog with the correct reference selected. Note the location is the Silverlight 5 SDK folder.

 Figure 1.6. The Add Reference dialog with System.Xml.Linq selected for LINQ to XML functionality

 [image:]

 Once the reference is added, replace the temporary Debug.WriteLine statement and the event handler declaration in the code-behind with the code inside the braces in listing 1.4. This code performs the actual parsing of the XML document returned by the Twitter search and loads the _tweets collection with the processed results.

 Listing 1.4. Processing the Twitter search results using LINQ to XML

 [image:]

 Be sure to right-click and resolve the XDocument class in order to add the correct using System.Xml.Linq statement to the top of your code.

 The code does some interesting processing. It first loads the results into an XDocument so that it may be processed using LINQ statements. It then goes through the document selecting each entry element and creating a new Tweet object from each. The Tweet object itself is filled out by first grabbing the title element’s
 value and assigning that to the Message and then doing another LINQ query to find the link element that has a type of image/png and assigning that to the Image property. Finally, the code loops through each of the results and adds them to the _tweets collection.

 The namespace declaration at the top is necessary because the Atom namespace is the default xmlns in the document. When parsing XML, you need to have the default namespace declared or the results will be empty. Some people
 like it, but that’s my least favorite thing about XML.

 With the parsing out of the way, the next step is to bind the ListBox to the _tweets collection so that it has a place to pull the data from.

Binding the Listbox

 Silverlight is all about binding data. Chapter 16 goes into detail on how binding works and how to use it. For now, it’s important to understand that rarely in Silverlight
 will you find yourself assigning data directly to controls. Instead, you’ll set up binding relationships and let the elements
 pull the data as it becomes available.

 In this case, you want to set the ListBox’s ItemsSource property to your collection so that it knows to load its individual items from the collection when the collection is updated.
 Because you’re using an ObservableCollection, the ListBox will be alerted whenever an item is added to or removed from that collection.

 Add the following line of code to the MainPage constructor, under the Initialize-Component call:

 TweetList.ItemsSource = _tweets;

 The resulting complete code-behind should look like listing 1.5.

 Listing 1.5. The complete code-behind for MainPage

 [image:]

 [image:]

 That’s all you need to do to set up the binding relationship for the ListBox. Run the application and retrieve the tweets. You should end up with something that looks like figure 1.7.

 Figure 1.7. The default presentation for the ListBox items leaves something to be desired. It looks like WinForms or something! I demand more from our first Silverlight example.

 [image:]

 In the example, all you see are a bunch of type names. You want to display images and text. The reason you see the type name
 is because this is the default item template behavior. By default, the individual items are presented as their ToString call. This works fine for a string or numbers or similar, but with complex types? Not so much. Chapter 16 talks more about item templates and how to use them with the ListBox control.

 Your final step in this walkthrough is to pretty up the ListBox results so you can see something more meaningful.

 1.4.5. Making the ListBox contents more meaningful

 To make the ListBox present items using a format of your own choosing, you need to use a DataTemplate. DataTemplates are covered in detail in chapter 16. For now, understand that they’re a chunk of XAML that’ll be used to format each item in the list.

 The DataTemplate for this ListBox will contain two columns for each row. The first column will contain the picture of the tweeter; the second will contain
 the body of the tweet.

 Open MainPage.xaml and replace the entire ListBox declaration (not the Button, just the ListBox) with the XAML from listing 1.6.

 Listing 1.6. DataTemplate to format the tweets

 [image:]

 In this markup, you first tell the ListBox that you want its content to take up the full width of the ListBox, without any horizontal scrolling. The HorizontalContent-Alignment and HorizontalScrollBarVisibility elements do that.

 Then, you break out the ItemTemplate property and supply it with a Data-Template. Inside the DataTemplate, you define the grid with an autosized first column and a full-width second column. The template is applied to each item
 loaded into the ListBox, almost like a macro expanded for each tweet. Then, you bind an Image element to the Image property of the Tweet class and a TextBlock to the Message property of the same.

 The end result of the work you’ve done, including this fine ListBox Data-Template, is shown at the start of this section in figure 1.2.

 I’ve been working with Silverlight and WPF for well over half a decade now, but it never fails to impress me just how easy
 it is to have complete control over what your application displays. I remember the days when you had to purchase specialty
 controls to do something as simple as display an image inside a ListBox. Now, all you need to do is a little XAML. And, if you don’t feel like typing in XAML, you can crack open Expression Blend
 and use it to design the DataTemplate interactively on the design surface. As a famous dark lord of the Sith once said, “Impressive ... most impressive.”

1.5. Summary

 Silverlight is one of the most promising development platforms to come from Microsoft since the original release of .NET a
 decade ago. Silverlight fills a niche that sits solidly between traditional desktop applications and web applications, while
 offering capabilities that both lack. It does all this via a small plug-in that takes only minutes to install and runs on
 different browsers and different operating systems.

 The code you write and the skills you gain are portable between the desktop and the web, devices in your pocket, game consoles
 in your living room, and the set-top box on your TV. That’s a pretty good return on your investment.

 Silverlight has come a long way since the Silverlight 2 version covered in the original edition of this book. It’s amazing
 just how much the product teams have been able to pack into the product in those few years. In fact, even in between Silverlight
 4 and Silverlight 5, we’ve seen a huge number of great features and improvements added. Before I joined Microsoft, I heard
 rumors about people with sleeping bags in their offices and coffee delivered by the gallon. I suspect I now know which team
 they work for, and I have to say that I’m “super” impressed with the results.

 Your environment is all set up, and you’ve whet your appetite by building a basic yet nontrivial “Hello World!” Twitter application
 in Silverlight 5. In the next chapter, you’ll dive right into the meat of what makes Silverlight UI work: XAML.

 From there, you’ll take a tour of all the features this platform has to offer. By the end of this book, you’ll have all the
 knowledge you need to build awesome Silverlight applications.

Chapter 2. XAML and the property system

	

 This chapter covers

	
The basics of XAML

 	The structures Silverlight uses when working with XAML

 	The property system

 	Introduction to commands

 	Creating XAML at runtime

	

Before the sibling inventions of WPF and Silverlight, individual programming languages and platforms had a variety of ways
 of specifying the UI. Most touted the concept of separating the UI from the implementation code. In some cases, such as on
 the web with HTML and CSS, the representation of the UI was theoretically separated from its underlying implementation but
 not truly so until tried-and-true patterns, such as Model-View-Controller (MVC), were applied. In others, such as Windows
 Forms, the separation was due only to hidden autogenerated, uneditable files that contained the language-specific code necessary
 to create the UI.

 With WPF, Microsoft introduced XAML (pronounced “Zammel”) to provide a cleaner separation of concerns between the definition
 of the UI and the code that makes it work. This not only allows for some sleek design patterns such as the MVVM pattern (discussed
 in chapter 33) but also makes it easier to create tooling.

 Consider Windows Forms. The definition of the interface was so tied to the compiler and the existing tooling that it was extremely
 difficult for a third party to create a tool that designed (or assisted in the design) of the UI. The files were hidden, made
 in multiple implementation languages, and had that “don’t even think of editing this file” comment at the top of the generated
 code. It was good at the time but the world has moved on.

 XAML helps fix those problems—it lets you, not the tools, own your UI. XAML files are editable individually and in relative
 isolation from the rest of the project. You can edit XAML in Expression Blend, Visual Studio, Notepad, Kaxaml, your favorite
 XML editor, and other tools, thereby making it easier to incorporate into your own specific workflow. Even hand-edited XAML
 is round-trippable with tooling because the XAML rules are well defined and consistent internally and across implementation
 languages.

 XAML is so fundamental to Silverlight that this entire chapter is devoted to introducing you to it. Though XAML appears in
 almost every chapter in this book, I’ll cover the core concepts here and ensure sufficient understanding so that, when you
 open a XAML file in Visual Studio, you can read and understand what it’s doing, even as you’re still learning Silverlight.
 For those of you interested in the guts of XAML processing and use, I’ve included information on using tree structures and
 the property system in preparation for a later discussion on creating your own converters and XAML extensions. I’ve also included
 some introductory information on working with commands, a key concept to understand especially when following the MVVM pattern.

2.1. XAML basics

 XAML is a declarative language that enables you to create and initialize .NET objects in XML. Everything you can do in XAML
 you can do in code. But to make the most of the platform and its tooling, you’ll want to embrace the code-plus-markup philosophy
 rather than go with a 100 percent code solution. In fact, throughout this book, I’ll use “markup” and “XAML” synonymously,
 because XAML truly is the UI markup language for Silverlight just as HTML is for HTML/JS/CSS applications.

 The XAML format enables you to easily visualize a hierarchy of elements while separating presentation from code. This separation
 is possible because each XAML element maps to a .NET type. Each attribute within an element corresponds to a property within
 a .NET type. For example, these statements are equivalent:

 <TextBlock x:Name="tb" Text="Hello World!" />
TextBlock tb = new TextBlock();
tb.Text = "Hello World!";

 The TextBlock element in the XAML code corresponds to an initialization statement in code. This initialization occurs because, each time
 an element is created in XAML, the corresponding .NET type’s default constructor is called behind the scenes.

 To understand the structure of a XAML file, it’s important to understand the representation and use of objects, namespaces,
 properties, and events.

 2.1.1. Objects

 Objects (or instances of types) are represented in XAML using XML elements. The elements have the same name as the associated
 class and are considered instantiated upon declaration in the markup.

	

Note

 Any type you use in XAML must have a default (parameterless) constructor. Silverlight XAML currently has no provision for
 passing arguments into a constructor or an initialization function, so you’ll need to make sure your types can be initialized
 using defaults and properties alone.

	

Certain types of objects may contain one or more other nested objects. For example, a button may contain a single content
 object, which itself may contain one or more other objects. In listing 2.1, the UserControl contains the Grid, the Grid contains the Button, and the Button contains a StackPanel, which is a panel that by default lays its children out in a vertical list. The StackPanel itself contains three TextBlock elements.

 Listing 2.1. XAML showing a hierarchy of nested objects

 [image:]

 The UserControl and Button are both content controls, a concept I’ll discuss in greater detail in chapter 12. For now, it’s important to understand that a content control may only have one direct child element, typically a panel (StackPanel, Grid, Canvas, etc.) that holds other elements. The x:Name and x:Class properties are part of the namespace specified by the xmlns:x statement. More on that in a moment ... The Grid and StackPanel are both Panels, which is a type that has a Children collection to allow multiple contained elements. I’ll discuss panels in detail in chapter 8.

 The ability to flexibly nest objects permits a composition approach to UI design. Rather than having to purchase or custom-code
 a button control that allows, say, three lines of text and an image, you can simply compose those into an appropriate layout
 panel and make that panel the content of the button control.

 The nesting of objects is part of what gives us an object tree. I’ll cover that in more detail shortly.

 Now that you’re familiar with the basic structure of a XAML file, let’s talk about how you differentiate your SuperButton control from my SuperButton control, even though we used the same control name: namespaces.

 2.1.2. Namespaces

 A namespace provides a way of organizing related objects within a common grouping. These groupings, or namespaces, give you a way to
 define where the compiler should look for a type. Namespaces in XAML, which are simply XML namespaces, are similar to namespaces
 in other languages such as C# and Java. To specify where to look, you reference a namespace within an element of a XAML file,
 typically the root or outermost element. Listing 2.2 illustrates the use of the two default namespaces.

 Listing 2.2. A basic XAML file referencing two default namespaces

 <UserControl x:Class="XamlExample.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock x:Name="myTextBlock" Text="Hello" />
 </Grid>
</UserControl>

	

Note

 WPF supports the Name property in both the namespace prefixed with x: and the default namespace, allowing them to be specified as x:Name or just Name. Silverlight supports only x:Name. For compatibility with Silverlight markup, the recommended approach for WPF is to use x:Name.

	

As listing 2.2 illustrates, you’re permitted to reference multiple namespaces within a single XAML file. When you reference multiple namespaces,
 each must be uniquely prefixed. For instance, the x prefix in this example is used in association with the http://schemas.microsoft.com/winfx/2006/xaml namespace. At the same time, the http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace does not use a prefix.

Standard XAML Namespaces

 The two namespaces I just mentioned will be used in almost every Silverlight application you work with or see. These namespaces
 are generally defined in the following manner:

	
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"—This is the default Silverlight namespace. It provides your applications with core Silverlight elements. For that reason,
 this namespace generally omits a prefix, making it the default namespace within the page. Such an approach enables you to
 reference elements within this specific namespace without having to include the prefix.

 	
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"—This is the common XAML namespace. It provides functionality that’s common across XAML. It’s important to remember that XAML
 is used by other technologies such as WPF, Oslo, and Windows Workflow Foundation (WF), all of which need access to common
 features such as Name, Key, and Class properties.

	

Note

 In addition to the standard namespaces, the Silverlight runtime supports the Silverlight-specific http://schemas.microsoft.com/client/2007 namespace as a default namespace. But you should use the previously mentioned http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace as the default because Expression Blend, Visual Studio, and other tools are all configured to recognize that namespace
 by default. The use of standard namespaces also makes it easy to share your markup with WPF applications.

	

Referencing Other Libraries

 When another assembly is referenced, it gets copied into the configuration-specific Bin folder of your Silverlight application.
 In fact, when you compile your Silverlight application, it gets compiled into an assembly that’s placed in this directory.
 I’ll discuss the application model later; for now, in order to reference these assemblies, you need to define a new XAML namespace,
 which includes a prefix, CLR namespace, and assembly.

 Listing 2.3. Using a control from an external assembly

 [image:]

 As listing 2.3 illustrates, referencing other elements, including custom elements, only requires you to provide the namespace and assembly
 name of the external element. For known assemblies, like the SDK, you can also provide a URI namespace. In either case, you
 then prefix the elements from that namespace with the prefix you declared. Of course, you’ll still need to reference the external
 assembly so that its types are accessible to code and to the XAML parser/compiler. The name my was used as a convenience here; you can use any identifier you want.

 If the referenced type is defined in the same assembly as the markup, you’ll still need to create a XAML namespace reference
 for it. But the ;assembly= clause of the namespace definition may optionally be left out, as illustrated in listing 2.4.

 Listing 2.4. Using a control from a different namespace in the same assembly

 [image:]

 Namespaces are typically declared within the outermost element of a XAML file, as in listing 2.4, but that doesn’t always need to be the case. When using XAML generated by tools, you’ll sometimes find namespaces defined
 at lower levels, particularly within control templates (covered in chapter 14). In those cases, the namespace only applies to the elements within the enclosing type (and the enclosing element itself)
 rather than to the XAML document as a whole.

 Listing 2.5 shows the definition of a namespace at the Grid level rather than at the UserControl level. The namespace could also have been defined at the MyControl level, but then you’d need to do it for each instance of MyControl. This approach is sometimes taken when using control templates and other situations where you want to minimize possible namespace
 prefix collisions while still preserving the ability to reference external code.

 Listing 2.5. Namespace declaration at a level lower than the root

 [image:]

 The namespace shown in listing 2.5 will only apply to the grid LayoutRoot and its children. Controls outside of that hierarchy won’t have access to the controls namespace or prefix. You’ll typically find this inside complex styles in resource dictionaries. The same approaches to referencing
 namespaces and assemblies apply to resource dictionaries, pages, and other types commonly associated with XAML. Though it’s
 important to understand the rules for referencing namespaces, in practice the tooling will create the namespaces for you either
 by IntelliSense or when you drag and drop items into the markup editor or onto the design surface.

 2.1.3. Properties

 There are two ways to reference properties in XAML: inline with the element as you would any XML attribute, and as a nested
 subelement. Which method you should choose depends on what you need to represent. Simple values are typically represented
 with inline properties, whereas complex values are typically represented with element properties.

Inline Properties

 The use of an inline property requires a type converter that will convert the string representation—for example, the "Black" in Background="Black"—into a correct underlying .NET type (in this case, a SolidColorBrush). I’ll cover type converters in chapter 15. The example in listing 2.6 shows a built-in type converter in use to convert the string "Black" for the inline property Background.

 Listing 2.6. Specifying a property value inline using an XML attribute

 [image:]

 Another way to specify properties is to use the expanded property element syntax. Although this can generally be used for
 any property, it’s typically required only when you need to specify something more complex than the inline syntax will easily
 allow. The syntax for element properties is <Type.PropertyName>value</Type.PropertyName>, as seen in listing 2.7.

 Listing 2.7. Specifying a property value using property element syntax

 [image:]

 The use of the string to invoke the type converter is, in its end result, identical to using <SolidColorBrush Color="Black" /> in place of "Black". Though these examples are rarely seen in practice, the more complex example of setting the background to a LinearGradientBrush is common, so I’ll cover that next.

 Rather than have the brush represented as a simple string such as "Black" as shown in the previous listing, the value can be an element containing a complex set of elements and properties such as
 the <LinearGradientBrush> in listing 2.8.

 Listing 2.8. A more complex example of the property element syntax

 [image:]

 In this example, you’ve expanded the Background property using property element syntax. You then have the ability to nest a complex type, such as the LinearGradient-Brush, within it.

 Now that you know how to specify properties in markup, let’s dive deeper into how those properties work.

 2.1.4. Dependency properties

 Dependency properties are part of the property system introduced with WPF and used in Silverlight. In markup and in consuming code, they’re indistinguishable
 from standard .NET CLR properties, except that they can be data bound, serve as the target of an animation, or set by a style.

	

Tip

 A property can’t be the target of an animation or obtain its value through binding unless it’s a dependency property. Chapter 16 covers binding in detail.

	

To have dependency properties in a class, the class must derive from Dependency-Object or one of its subclasses. Typically, you’ll do this only for visuals and other elements that you’ll use within XAML and not
 in classes defined outside the UI.

 In regular .NET code, when you create a property you typically back it by a private field in the containing class. Storing
 a dependency property differs in that the location of its backing value depends on its current state. The way that location
 is determined is called value precedence.

Value Precedence

 Dependency properties obtain their value from a variety of inputs. What follows is the order the Silverlight property system
 uses when assigning the runtime values of dependency properties, with the highest precedence listed first:

	
Active or hold animations —Animations will operate on the base value for the dependency property, determined by evaluating the precedence for other
 inputs. In order for an animation to have any effect, it must be highest in precedence. Animations may operate on a single
 dependency property from multiple levels of precedence (for example, an animation defined in the control template and an animation
 defined locally). The value typically results from the composite of all animations, depending on the type being animated.
 If you think about animating the position of an element, you’ll want that animated value to take precedence over one set in
 code or markup. The property system helps ensure that happens.

 	
Local value —Local values are specified directly in the markup and are accessed via the CLR property wrappers for the dependency property.
 Because local values are higher in precedence than styles and templates, they’re capable of overriding values such as the
 font style or foreground color defined in the default style for a control.

 	
Templated properties —Used specifically for elements created within a control or data template, their value is taken from the template itself.

 	
Style setters— These are values set in a style in your application via resources defined in or merged into the UserControl or application resource dictionaries. I’ll explore styles in chapter 14.

 	
Default value —This is the value provided or assigned when the dependency property was first created. If no default value was provided,
 normal CLR defaults typically apply.

The strict precedence rules allow you to depend on behaviors within Silverlight, such as being able to override elements of
 a style by setting them as local values from within the element itself. In listing 2.9, the foreground of the button will be red as set in the local value and not black as set in the style. The local value has
 a higher precedence than the applied style.

 Listing 2.9. Dependency property precedence rules in practice

 [image:]

 The Style tag in UserControl.Resources is a reusable asset that sets some key properties for your button.

 I’ll cover creating dependency properties in chapter 15 when you create your own controls. For the purposes of this chapter, it’s sufficient to understand that the majority of the
 properties you’ll refer to in XAML are dependency properties. One type of dependency property that has a slightly odd appearance
 is an attached property.

 2.1.5. Attached properties

 Attached properties are a specialized type of dependency property that’s immediately recognizable in markup due to the TypeName.AttachedPropertyName syntax. For example, Canvas.Left is an attached property defined by the Canvas type. What makes attached properties interesting is that they’re not defined by the type you use them with; instead, they’re
 defined by another type in a potentially different class hierarchy.

 Attached properties allow flexibility when defining classes because the classes don’t need to take into account every possible
 scenario in which they’ll be used and define properties for those scenarios. Layout is a great example of this. The flexibility
 of the Silverlight layout system allows you to create new panels that may never have been implemented in other technologies—for
 example, a panel that lays elements out by degrees and levels in a circular or radial fashion versus something like the built-in
 Canvas that lays elements out by Left and Top positions.

 Rather than have all elements define Left, Top, Level, and Degrees properties (as well as GridRow and GridColumn properties for grids), you can use attached properties. The buttons in listing 2.10, for example, are contained in panels that have greatly differing layout algorithms, requiring different positioning information.
 In this case, I’ll show a fictional RadialPanel in use.

 Listing 2.10. Attached properties in use

 [image:]

 Attached properties aren’t limited to layout. You’ll find them in the animation engine for things such as Storyboard.TargetProperty as well as in other places of the framework.

Property Paths

 Before I wrap up this discussion of properties, there’s one concept left for you to understand: property paths. Property paths provide a way to reference properties of objects in XAML both when you have a name for an element and when
 you need to indirectly refer to an element by its position in the tree.

 Property paths can take several forms, and may dot-down into properties of an object. They can also use parentheticals for
 indirect property targeting as well as for specifying attached properties. Here are some examples of property paths for the
 Storyboard target property:

 <DoubleAnimation Storyboard.TargetName="MyButton"
 Storyboard.TargetProperty="(Canvas.Left)" ... />
<DoubleAnimation Storyboard.TargetName="MyButton"
 Storyboard.TargetProperty="Width" ... />
...
<Button x:Name="MyButton"
 Canvas.Top="50" Canvas.Left="100" />

 I’ll cover property paths in detail in chapter 16 when I discuss binding.

 Properties are one of the pieces that define an object’s interface. Because XAML (without the addition of something like the
 CallMethodAction behavior, discussed in chapter 33) doesn’t allow you to do anything specifically with methods, the only other part of the interface left is the definition
 of events.

 2.1.6. Events

 Events in Silverlight are used much like events in any other .NET technology. The sender of the event wants to notify zero or more
 receivers of something that happened. Silverlight enhances that, though, to make it possible for events to work their way
 up the object tree, from the event source to the root element.

 Silverlight and WPF introduce the concepts of routed events and event bubbling. These allow events to be generated at one level of the tree, then provide an opportunity to be handled
 by each level above, until reaching the root of the tree—an effect known as bubbling.

 The main difference between routed events and standard CLR events, to the handler of the event, is that the event sender isn’t
 necessarily the original source of the event. To get the original source of the event, you need to check the OriginalSource property of the RoutedEventArgs supplied to the handler.

 User-created events, such as the ones you might create in your own code, can’t bubble. Bubbling is reserved only for built-in
 core events such as MouseLeftButton-Down. Bubbled events include a Handled property in the event arguments, as well as the standard RoutedEventArgs information.

WPF Routed Events

 If you’re familiar with the eventing system in WPF, you may wonder what happened to the Tunneling and Direct types of routed events. Silverlight doesn’t currently implement these. In fact, Silverlight doesn’t include the EventManager available in WPF, so routed events can’t be created in user code. Some clever folks at control vendors have implemented their
 own analog that allows for user-created routed events but isn’t built into the core Silverlight runtime.

Events Referenced in XAML

 In XAML, referencing an event handler defined in code-behind is simple. If you use Visual Studio when doing so, the event
 handler in the code-behind can be created for you automatically.

 Say you have a button in XAML:

 <Button Click="MyButton_Click" />

 You can wire it up to an appropriate event handler in the code-behind:

 private void MyButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Click event");
}

 The approach is a good shortcut for hooking up events. When working in XAML, the tooling in Visual Studio will even let you
 define a new event handler or use an existing one. One slight advantage of this approach is that you don’t necessarily need
 to define a name for your button.

Events Referenced in Code

 To attach an event handler from code, follow the same approach you would for any normal CLR event: create an event handler
 and add it to the event using the += syntax. So, if you have the same button as earlier and give it a name that can be referenced from the code-behind:

 <Button x:Name="MyButton" />

 you can then wire up the event handler in the constructor. Do this after the InitializeComponent call so that MyButton is valid:

 public MainPage()
{
 InitializeComponent();
 MyButton.Click += new RoutedEventHandler(MyButton_Click);
}
private void MyButton_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Click event");
}

 Both approaches are equally valid. The approach you use will depend primarily on your personal style. My preferred approach
 when not using commands is to wire up events in the code-behind, in the constructor as shown.

 Silverlight 4 added the ability to use commands as a way to clean up event handling and wire-up code. Rather than specify
 an event handler, you can specify one or more command properties in XAML.

 2.1.7. Commands

 One of the more architecturally significant additions to Silverlight 4 was the addition of WPF-style commands. Commands allow
 you to remove the event handler middleman from your code-behind when you want something other than the code-behind to handle
 the action. For example, if you follow the MVVM pattern covered in chapter 33, you probably want the button clicks to be handled by the view model and not the code-behind. Typical event handler code
 to forward the event might look like this:

 private void Save_Click(object sender, RoutedEventArgs e)
{
 _viewModel.Save();
}

 That’s extra goo that you don’t necessarily want in your view. It complicates unit testing and makes the code-behind an essential
 ingredient. It also requires separate view-model properties to set the IsEnabled property on the Save button. It’s not terrible, but it’s not great. The command code that eliminates the code-behind goo
 might look like this:

 // no code in code-behind required :)

 I love the code I don’t have to write. It’s all handled in the markup and the view model, so you don’t need any forwarding
 code at all. The controls in the view bind to a command that exists somewhere in the binding path. Assuming you have the page’s
 data context set to the view model, the markup to bind to the exposed view-model command looks like this:

 <Button x:Name="SaveButton"
 Height="25" Width="75" Content="Save"
 Command="{Binding SaveCommand}" />

 The related bits of the view model might look something like this, assuming you’ve implemented an EmployeeSaveCommand that implements ICommand:

 private EmployeeSaveCommand _saveCommand;
public ICommand SaveCommand
{
 get { return _saveCommand; }
}

 In this way, you avoid having your code-behind stand in the way of separating your view from your view model. Commands also
 provide other capabilities such as automatically disabling the associated controls if the command can’t be run at that time
 via an implicit binding of the ICommand.CanExecute method with IsEnabled property of the Button.

 Commands are supported on any control that inherits from ButtonBase as well as on the Hyperlink control (not to be confused with HyperlinkButton, which inherits from ButtonBase).

 You’ll create your own commands in chapter 33 when I explain how to build applications using the MVVM pattern.

 Objects, properties, events, and commands make up the majority of what you’ll see when you look at a XAML file. At this point,
 you should be able to read XAML and have a general understanding of what you’re looking at. Another thing you may see in XAML
 is object and property names inside curly braces. I’ll explore that later in this chapter, but first I’ll go through what
 Silverlight sees when it looks at XAML source and builds the in-memory representation of the elements.

2.2. Object trees and namescope

 In the previous sections, I mentioned the concept of an object tree. To understand the object tree, you need to grasp the
 layout and contents of XAML files. Once you do, it’s easier to conceptualize the object tree and its related concept, namescope.

 A common misconception is that Silverlight creates XAML for any objects you create in code. In fact, the opposite is what
 happens: Silverlight creates objects from XAML. Objects you create in code go right into the trees as their native .NET object
 form. Elements in XAML are processed and turned into objects that go into the same tree.

 2.2.1. Object trees

 Now that you’re familiar with the structure of a XAML file, you can look at one and quickly realize it represents a hierarchical
 tree of objects starting from the root (typically a UserControl or Page) and going all the way down to the various shapes, panels, and other elements that make up the control templates in use.
 That hierarchical structure is known as an object tree. Figure 2.1 shows a hypothetical object tree.

 Figure 2.1. A hypothetical object tree showing not only the visual elements such as TextBlock s and ListBoxes, but also the internal collections used to contain child elements.

 [image:]

 Each element has the concept of a parent (the containing element) and may have a child or children in panel-type collection
 properties, content properties, or other general-purpose properties.

	

Note

 Unlike WPF, Silver-light doesn’t expose the concept of a logical tree. Operations that in WPF might return logical tree information
 will in Silverlight return visual tree information. This distinction is only important if you’re coming from the WPF world
 or porting code from WPF that happened to use tree traversal functions.

	

The visual tree is a filtered view of the object tree. Whereas the object tree contains all types regardless of whether they participate
 in rendering (collections, for example), the visual tree contains only those objects with a visual representation. Figure 2.2 shows the visual tree; note the lack of nonvisual objects such as collections.

 Figure 2.2. The visual tree representation of the object tree from figure 2.1. Note that only visual elements, not collections, are represented.

 [image:]

Walking the Visual Tree

 Silverlight includes the VisualTreeHelper static class to assist in examining the visual tree. Using the GetChild and GetChildrenCount methods, you can recursively walk the tree from any element down as deeply as you want. The GetParent method allows you to trace the tree from a given element up to the visual tree root.

 Listing 2.11. Using the VisualTree

 [image:]

 [image:]

 You start the tree walk in the Loaded event handler because the tree isn’t valid until the UserControl has been loaded. You know the walk is complete when you hit an element with a null parent—the root of the tree.

 You’ll notice that, when you generate an object tree for an entire application, you’ll have multiple instances of controls,
 each of which contains elements with the same name. Namescope, the next topic, is how Silverlight ensures that the names remain
 uniquely addressable across the breadth of the object tree.

 2.2.2. Namescope

 Earlier in this chapter you saw that you can define an x:Name for elements in XAML. This provides a way to find the control via code and perform operations on it, or handle its events.

 Consider the idea of having multiple controls on the same page, each of which contains named elements. To handle this situation,
 XAML introduces the concept of a namescope. A namescope ensures that the names across instances of controls don’t collide. This is similar in concept to the approach
 taken by ASP.NET to mangle control names to ensure they remain unique. Listing 2.12 shows an example where name-scope is required to prevent duplicate control names.

 Listing 2.12. Without namescope, the name MyButton would be duplicated in the tree

 [image:]

 With three instances of the user control in listing 2.12, how does the XAML parser prevent naming collisions among all the MyButtons in the object tree but still allow you to uniquely reference each one? Namescope. As you’d expect, using the same name twice
 within the same XAML namescope will result in a parsing error. This is similar to the compile-time error you’d receive if you gave two variables the same name within the same scope level in a C# application.

	

Note

 Silverlight 2 had a namescope bug that manifested itself when you named an element inside a tool tip (or pop-up) attached
 to items in an ItemsControl such as a ListBox. The resulting error indicated that there were duplicate names in the object tree. This was fixed in Silverlight 3.

	

In practice, you typically don’t need to worry about namescopes unless you’re loading and parsing XAML at runtime using the
 createFromXaml JavaScript API or XamlReader.Load managed API. The namescopes are created for you automatically at runtime when you instantiate your controls.

 Now that you understand namescope, let’s go back to one of the other things you’ll run into in XAML: the curly brace syntax
 for markup extensions.

2.3. XAML type converters

 Now that you know the structure and rules for XAML files, let’s look at something that allows you to bend those rules: type converters.

 Type converters give you a powerful way to extend XAML using your own code; they’re also used throughout the entire .NET Framework
 to handle translation of one CLR type to another. Specifically in the context of XAML, type converters are used to convert
 string representations such as “Black” into their equivalent .NET CLR objects. In the case of the example in listing 2.12,
 a SolidColorBrush with Color set to Black is converted to a string that resolves to the color Red=0, Green=0, Blue=0, Alpha=255. This is shown in listing 2.13.

 Listing 2.13. A type converter in action

 [image:]

 There are enough built-in type converters that you may never have to write a new one yourself. But they’re an extensibility
 point in XAML and, therefore, provide you with flexibility to do some things that XAML may not handle natively. Chapter 15 covers how to create your own custom type converters.

 Markup extensions and type converters are important tools you’ll use when working in XAML. You’ll run across their use, both
 implicit as with most type converters, and explicit with markup extensions, in every nontrivial XAML file you look at. It’s
 important to understand how they extend XAML to provide additional functionality.

 When you’re working with XAML, not everything is necessarily available at compile time. With the exception of the support
 classes for converters and extensions, the rest of XAML can be loaded from text at runtime. Section 2.4 covers that process.

2.4. Loading XAML at runtime

 You can use dynamically loaded XAML to create entire sections of the object tree at runtime. This approach can be useful for
 rendering user-generated content such as shapes drawn on a screen and saved in a database or for creating highly dynamic controls.

 The process of loading XAML at runtime is incredibly easy. You only need to rely on the XamlReader class, which belongs to the System.Windows.Markup namespace. This class empowers you to parse XAML and convert it into an in-memory object. This object can be created by a
 statically visible method called Load. This method takes a string of XAML and converts it to the appropriate object. Then you can insert this object into another
 UIElement. Listing 2.14 shows this entire process in action.

 Listing 2.14. Loading and parsing XAML at runtime

 [image:]

 [image:]

 This example dynamically creates a rectangle and adds it to the object tree. The code in CreateRectangle simply builds up a string with XAML similar to what you’d have inside a regular XAML file. Note that you need to specify
 the namespaces used for any segment of XAML you’ll pass into XamlReader.Load. The code that adds the generated XAML to the object tree can be seen inside the loaded event.

 You can do more with the element than just add it to the LayoutRoot. Listing 2.15 illustrates how you can take the XAML and integrate it with the managed code representations of XAML constructs to create
 multiple instances of the rectangle.

 Listing 2.15. Mixing dynamic XAML with code

 [image:]

 [image:]

 In this example, you loop to create four instances of the rectangle object. You then dynamically create grid row definitions
 (see chapter 8) in code rather than in parsed XAML and assign them via attached properties to your rectangle object.

 This shows a mix of the CLR representations of elements such as the grid row and the XAML representations of elements such
 as the rectangle. In practice, you’ll rarely create visual elements in code except for specific circumstances, but the power
 and flexibility to do so is available to you.

2.5. Summary

 Silverlight development is all about code plus markup. To make the most of the platform, you’ll want to learn how to leverage
 the capabilities that XAML provides, while keeping a balance between what you write in code and what you put in the markup.
 Learning the markup language will allow you to use tooling to quickly create great user interfaces, work on a team including
 designers and developers without friction, and help enforce the separation of the view from the rest of the application architecture.

 A basic understanding of XAML is fundamental to getting the most from the rest of this book and from Silverlight itself. In
 later chapters, I’ll expand on what you’ve learned here to encompass topics such as brushes, shapes, controls, animation,
 and all the other things that make Silverlight such a great presentation platform.

 In chapter 3, I’ll cover the Silverlight plug-in and show you how to use it to create applications that run inside and outside the browser.

Chapter 3. The application model and the plug-in

	

 This chapter covers

	Understanding the XAP and the Silverlight application model

 	Creating the Silverlight plug-in control in the browser

 	Initializing the plug-in and responding to plug-in events

	

Application is an overloaded term that means different things to different people. Some may question what level of footprint, functionality,
 or other metrics you need to meet before something can be called an application. For example, is the weather tracker sidebar
 gadget in Windows an application? What about Notepad? The code for the sidebar gadget is almost certainly more complex than
 Notepad, but most people would see Notepad as an application and the sidebar gadget as, well, a gadget.

 In my participation in the Silverlight community, I’ve been asked on a number of occasions what to call the Silverlight “thing”
 that the plug-in loads in the browser. How I answer depends on the context of the question and the nature of the Silver-light
 thing. In this chapter I’m going to talk about Silverlight applications. I’ll use the term application in the technical sense of the word: a compiled runnable Silverlight project. The application can be as small as a tiny menu
 widget or a “punch the monkey” ad on a web page or as complex as some of the Microsoft and Adobe tools I’ve used to write
 this book. I’ll leave the other question of when something can be called an application open so you can have something interesting
 to debate at code camp.

 Regardless of your own definition of application, a Silverlight application consists of a XAP (pronounced “zap”) file with
 your compiled code, entry-point information, potentially some resources, and a host for the Silverlight plug-in.

 As you saw in chapter 1, you can get up and running with Silverlight with little understanding of these concepts, thanks to the great templates provided
 by Microsoft. But as a developer, you have a natural curiosity to dig deeper and learn more about what’s going on when the
 magic happens and the Silverlight content lights up on the web page, both because you’ll need the knowledge once your applications
 reach more than “Hello World!” complexity and also because it’s neat stuff. The core information on which I’ll build in the
 rest of this book is the Silverlight application model and the Silverlight plug-in.

3.1. The Silverlight application model

 Silverlight applications consist of at least one or more compiled .NET dynamic link libraries (DLLs) and a manifest file,
 all compressed into a file known as XAP. This is all loaded into the plug-in at runtime and then executed at a specific entry
 point to start your application.

 The XAP file is the key deployment mechanism for all Silverlight managed code applications. When you talk about deploying
 a Silverlight application, you’re really talking about:

	Surfacing the XAP to the client via some URI

 	Instantiating the Silverlight plug-in on the web page or within a hosting out-of-browser process

That’s it. There’s no additional installation, no MSI to install, no registry entries, no elevation prompts (unless you request
 elevated rights). It’s all about getting content down to the end user and instantiated in the plug-in with as little friction
 as possible. The subtleties of how that process works are what I find particularly interesting.

 When I first learned ASP.NET—back when a 17-inch display would take up your whole desk, contain more glass than your car,
 and weigh about 200 lbs.—one of the things I was most curious about was the startup cycle and the order of events when a request
 was made. If you want to understand how to target a particular application platform, you need to know how it’s going to run
 your application, when things get loaded, when they’re rendered, and how key decisions are made—the application startup process.

 3.1.1. Application startup process

 What happens when you enter a web page that contains a Silverlight application? The application startup process is shown in
 figure 3.1. The flowchart includes the details for Silverlight 1 through 5 but doesn’t address dynamic languages. The “XAML or XAP?”
 step is what makes the decision between the old Silverlight 1.0 model and the current Silverlight 2+ model. That decision
 is based on a combination of the source (a XAML or XAP file) and the specified type property of the plug-in.

 Figure 3.1. The Silverlight startup process. This flowchart describes the loading process from the load of the HTML page to the execution
 of the events on the root visual of a Silverlight application.

 [image:]

 The dotted line between the JavaScript and the managed code event handlers is there because, though you typically wouldn’t
 do it, you can have both JavaScript and managed handlers active for the load event of the application. The order in which
 they fire in relation to each other isn’t guaranteed.

 Some additional parts of the process aren’t displayed in figure 3.1 but are interesting nonetheless. For example, when the Silverlight plug-in determines it’ll have a managed code XAP file
 to work with, it loads the Silverlight .NET CLR (CoreCLR) into the memory space of the browser.

	

 CoreCLR
 Silverlight uses a version of the CLR known as CoreCLR. This is a version of the .NET CLR that has been optimized for size
 and use for client-side RIAs. The CoreCLR shares code with the full .NET CLR for core bits such as the type system, the workstation-optimized
 garbage collector, and the just-in-time (JIT) compiler. These size optimizations and intelligent decisions on what is and
 isn’t necessary for a client-side RIA allow the Silverlight plug-in, including the CoreCLR, to come in at around 8 MB total
 size. For more details on CoreCLR, see Andrew Pardoe’s CoreCLR MSDN article at http://msdn.microsoft.com/en-us/magazine/cc721609.aspx.

	

Apparent in all this is that the most important artifact in the process is the Silverlight application itself: the XAP file.

 3.1.2. XAP

 A managed code Silverlight application is packaged into a XAP when built. A XAP is simply a zip file and may be inspected
 by renaming it to .zip and opening it with any zip-compatible archiver. The contents of a typical XAP file are shown in figure 3.2.

 Figure 3.2. Structure of a typical XAP file showing the types of files that are normally included

 [image:]

 This compressed file will always contain a manifest file named AppManifest.xaml. In addition, there will always be a DLL file
 that serves as the entry point to the Silverlight application. This application may require other Silverlight libraries, service
 connection information, or other types of content. Content items and additional libraries may be in the application XAP file
 or downloaded at runtime; either way, they represent the dependencies of the application.

 Because the XAP file is a zip-compatible compressed archive, you may alter its contents and rezip it after compilation. Reasons
 for doing this include updating the service references to move from (for example) a test environment to a production environment
 or altering other environment or customer-specific XML configuration files, branding assets, or other content.

 You can also slightly decrease a XAP file’s size by rezipping it with an efficient zip tool such as the open source 7-Zip,
 at the expense of a slightly slower decompression and application startup time on older machines. This may be important in
 situations where bandwidth is at an extreme premium.

 The XAP contains a number of different files, one of which is the file that tells Silverlight what other files the XAP contains
 and where to find the application entry point—the application manifest file.

 3.1.3. The application manifest file

 The manifest file is responsible for describing the Silverlight application to the Silver-light runtime. This file is created
 at build time by Visual Studio and is almost never hand edited.

 The Silverlight runtime reads the AppManifest.xaml file beginning with the root-most element, Deployment. This element exposes two attributes that tell the Silver-light runtime how to start the Silverlight application, as shown
 here:

 <Deployment
 xmlns="http://schemas.microsoft.com/client/2007/deployment"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 EntryPointAssembly="MyApp" EntryPointType="MyApp.App"
 RuntimeVersion="5.0.61027.0">
 <Deployment.Parts>
 <AssemblyPart x:Name="MyApp" Source="MyApp.dll" />
 </Deployment.Parts>
</Deployment>

 This example shows a basic manifest file, which uses the EntryPointAssembly and EntryPointType attributes to launch the Silverlight application. (61027 will correspond to the build you use. This number gets updated with
 service releases.) The first attribute, EntryPointAssembly, will always reference one of the AssemblyPart elements in the Deployment.Parts section. The second attribute, EntryPointType, explains which class should be used to start the Silverlight application. The third attribute, called RuntimeVersion, broadcasts the version of the Silverlight runtime that the Silverlight application was built with.

	

Note

 AppManifest.xaml is generated during project compilation based on the settings found in the project’s property pages. If you
 change the name and/or namespace of the startup application class (App), you must adjust the startup object setting in the Silverlight property page. If you forget to make these changes, you’ll
 get a runtime error mentioning an invalid or missing Silverlight application. Also note that an appmanifest file with no deployment
 parts, entrypoint, or runtime version is the default behavior for simple Silver-light applications.

	

The Deployment section of the manifest contains two sections:

	Deployment.Parts

 	Deployment.ExternalParts

I’ll cover Deployment.ExternalParts in section 3.1.6 when I discuss assembly caching because it’s only used in caching situations. Deployment.Parts is used regardless of the caching strategy used.

Deployment.Parts

 The Deployment.Parts section includes a collection of AssemblyPart entries, each of which corresponds to a DLL in our application. In a complete application, at least one of the DLLs will
 be the entry point assembly.

 As you saw here, the application manifest contains a reference to the startup object type and assembly. The startup object
 is always the Silverlight application object.

 3.1.4. The Silverlight application object

 The entry point into the Silverlight application is the App object. This object is defined in the App.xaml and App.xaml.cs files and derives from the System.Windows.Application type. This type allows you to interact with the three events affecting the application’s lifecycle—the start of the application,
 the unhandled errors in the application, and the exit of the application. In addition to these events, you can read the settings
 of the hosting plug-in.

Managing the Start of a Silverlight Application

 Once the App object has been created, the Startup event fires. By default, this event loads the default XAML page into view. You can also use this event to perform any other
 type of application initialization task. For instance, you may want to use this event to set application-wide resources or
 properties. Or you may want to use this event to load the initParams that were passed into the application (see section 3.3.4). Either way, this type of task can be accomplished by using the
 Startup event:

 private void Application_Startup(object sender, StartupEventArgs e)
{
 foreach (string key in e.InitParams.Keys)
 {
 // Process the initParam from the createObjectEx function
 }
 this.RootVisual = new MainPage();
}

 This particular event handler shows how to parse the initParams that may have been passed into the application. The Startup event creates a StartupEventArgs variable that assists in the initialization tasks. The first iterates through the initialization parameters. You could access
 the individual dictionary entries by a string key. The second task in this listing displays the first page of the application.
 Both of these tasks introduce important facts about the Silverlight application lifecycle.

 The first important fact is that the StartupEventArgs type is created only by the Startup event. No other event in Silverlight will create a StartupEventArgs object. Because of this, it’s logical to deduce that the InitParams used in the preceding code are only available during application startup. If you’re going to use initialization parameters,
 the Startup

