

 [image:]

 Learn PowerShell in a Month of Lunches

 Fourth Edition

 Covers Windows, Linux, and macOS

 James Petty, Travis Plunk, Tyler Leonhardt, Don Jones, and Jeffery Hicks

 Foreword by Don Jones

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Frances Lefkowitz

 	
 Technical development editor:

 	
 Mike Shepard

 	
 Review editor:

 	
 Aleks Dragosavljević

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Carrie Andrews

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Shawn Bolan

 	
 Typesetter:

 	
 Gordan Salinović

 	
 Cover designer:

 	
 Leslie Haimes

 ISBN: 9781617296963

 brief contents

 1 Before you begin

 2 Meet PowerShell

 3 Using the help system

 4 Running commands

 5 Working with providers

 6 The pipeline: Connecting commands

 7 Adding commands

 8 Objects: Data by another name

 9 A practical interlude

 10 The pipeline, deeper

 11 Formatting: And why it’s done on the right

 12 Filtering and comparisons

 13 Remote control: One-to-one and one-to-many

 14 Multitasking with background jobs

 15 Working with many objects, one at a time

 16 Variables: A place to store your stuff

 17 Input and output

 18 Sessions: Remote control with less work

 19 You call this scripting?

 20 Improving your parameterized script

 21 Using regular expressions to parse text files

 22 Using someone else’s script

 23 Adding logic and loops

 24 Handling errors

 25 Debugging techniques

 26 Tips, tricks, and techniques

 27 Never the end

 Appendix. PowerShell cheat sheet

contents

 Front matter

 foreword

 preface

 acknowledgments

 about this book

 about the authors

 1 Before you begin

 1.1 Why you can no longer afford to ignore PowerShell

 Life without PowerShell

 Life with PowerShell

 1.2 Windows, Linux, and macOS, oh my

 1.3 Is this book for you?

 1.4 How to use this book

 The chapters

 Hands-on labs

 Supplementary materials

 Further exploration

 Above and beyond

 1.5 Setting up your lab environment

 1.6 Installing PowerShell

 1.7 Contacting us

 1.8 Being immediately effective with PowerShell

 2 Meet PowerShell

 2.1 PowerShell on Windows

 2.2 PowerShell on macOS

 Installation on macOS

 2.3 PowerShell on Linux (Ubuntu 18.04)

 Installation on Ubuntu 18.04

 2.4 Visual Studio Code and the PowerShell extension

 Installing Visual Studio Code and the PowerShell extension

 Getting familiar with Visual Studio Code

 Customizing Visual Studio Code and the PowerShell extension

 2.5 It’s typing class all over again

 2.6 What version is this?

 2.7 Lab

 3 Using the help system

 3.1 The help system: How you discover commands

 3.2 Updatable help

 3.3 Asking for help

 3.4 Using help to find commands

 3.5 Interpreting the help

 Parameter sets and common parameters

 Optional and mandatory parameters

 Positional parameters

 Parameter values

 Finding command examples

 3.6 Accessing “about” topics

 3.7 Accessing online help

 3.8 Lab

 3.9 Lab answers

 4 Running commands

 4.1 Let’s talk security

 Execution policy

 4.2 Not scripting, but running commands

 4.3 The anatomy of a command

 4.4 The cmdlet naming convention

 4.5 Aliases: Nicknames for commands

 4.6 Taking shortcuts

 Truncating parameter names

 Using parameter name aliases

 Using positional parameters

 4.7 Support for external commands

 4.8 Dealing with errors

 4.9 Common points of confusion

 Typing cmdlet names

 Typing parameters

 4.10 Lab

 4.11 Lab answers

 5 Working with providers

 5.1 What are providers?

 5.2 Understanding how the filesystem is organized

 5.3 Navigating the filesystem

 5.4 Using wildcards and literal paths

 5.5 Working with other providers

 Windows Registry

 5.6 Lab

 5.7 Lab answers

 6 The pipeline: Connecting commands

 6.1 Connecting one command to another: Less work for you

 6.2 Exporting to a file

 Exporting to CSV

 Exporting to JSON

 Exporting to XML

 Out-File

 Comparing files

 6.3 Piping to a file

 6.4 Converting to HTML

 6.5 Using cmdlets that modify the system: Killing processes

 6.6 Common points of confusion

 6.7 Lab

 6.8 Lab answers

 7 Adding commands

 7.1 How one shell can do everything

 7.2 Extensions: Finding and installing modules

 7.3 Extensions: Finding and adding modules

 7.4 Command conflicts and removing extensions

 7.5 Playing with a new module

 7.6 Common points of confusion

 7.7 Lab

 7.8 Lab answers

 8 Objects: Data by another name

 8.1 What are objects?

 8.2 Understanding why PowerShell uses objects

 8.3 Discovering objects: Get-Member

 8.4 Using object attributes, or properties

 8.5 Using object actions, or methods

 8.6 Sorting objects

 8.7 Selecting the properties you want

 8.8 Objects until the end

 8.9 Common points of confusion

 8.10 Lab

 8.11 Lab answers

 9 A practical interlude

 9.1 Defining the task

 9.2 Finding the commands

 9.3 Learning to use the commands

 9.4 Tips for teaching yourself

 9.5 Lab

 9.6 Lab answer

 10 The pipeline, deeper

 10.1 The pipeline: Enabling power with less typing

 10.2 How PowerShell passes data down the pipeline

 10.3 Plan A: Pipeline input ByValue

 10.4 Plan B: Pipeline input ByPropertyName

 10.5 When things don’t line up: Custom properties

 10.6 Working with Azure PowerShell

 10.7 Parenthetical commands

 10.8 Extracting the value from a single property

 10.9 Lab

 10.10 Lab answers

 10.11 Further exploration

 11 Formatting: And why it’s done on the right

 11.1 Formatting: Making what you see prettier

 11.2 Working with the default formatting

 11.2 Formatting tables

 11.3 Formatting lists

 11.4 Formatting wide lists

 11.5 Creating custom columns and list entries

 11.6 Going out: To a file or to the host

 11.7 Another out: GridViews

 11.8 Common points of confusion

 Always format right

 One type of object at a time, please

 11.9 Lab

 11.10 Lab answers

 11.11 Further exploration

 12 Filtering and comparisons

 12.1 Making the shell give you just what you need

 12.2 Filtering left

 12.3 Using comparison operators

 12.4 Filtering objects out of the pipeline

 12.5 Using the iterative command-line model

 12.6 Common points of confusion

 Filter left, please

 When $_ is allowed

 12.7 Lab

 12.8 Lab answers

 12.9 Further exploration

 13 Remote control: One-to-one and one-to-many

 13.1 The idea behind remote PowerShell

 Remoting on Windows devices

 Remoting on macOS and Linux devices

 Cross-platform remoting

 13.2 Setting up PSRP over SSH

 macOS and Linux

 Setting up SSH on Windows

 13.3 PSRP over SSH overview

 13.4 WinRM overview

 13.5 Using Enter-PSSession and Exit-PSSession for one-to-one remoting

 13.6 Using Invoke-ScriptBlock for one-to-many remoting

 13.7 Differences between remote and local commands

 Deserialized objects

 Local vs. remote processing

 13.8 But wait, there’s more

 13.9 Common points of confusion

 13.10 Lab

 13.11 Lab answers

 13.12 Further exploration

 14 Multitasking with background jobs

 14.1 Making PowerShell do multiple things at the same time

 14.2 Synchronous vs. asynchronous

 14.3 Creating a process job

 14.4 Creating a thread job

 14.5 Remoting, as a job

 14.6 Jobs in the wild

 14.7 Getting job results

 14.8 Working with child jobs

 14.9 Commands for managing jobs

 14.10 Common points of confusion

 14.11 Lab

 14.12 Lab answers

 15 Working with many objects, one at a time

 15.1 The preferred way: “Batch” cmdlets

 15.2 The CIM way: Invoking methods

 15.3 The backup plan: Enumerating objects

 Making the cmdlets work for you

 15.4 Let’s speed things up

 15.5 Common points of confusion

 Which way is the right way?

 Diminishing returns of Parallel ForEach

 Method documentation

 ForEach-Object confusion

 15.6 Lab

 15.7 Lab answers

 16 Variables: A place to store your stuff

 16.1 Introduction to variables

 16.2 Storing values in variables

 16.3 Using variables: Fun tricks with quotes

 16.4 Storing many objects in a variable

 Working with single objects in a variable

 Working with multiple objects in a variable

 Other ways to work with multiple objects

 Unrolling properties and methods in PowerShell

 16.5 More tricks with double quotes

 16.6 Declaring a variable’s type

 16.7 Commands for working with variables

 16.8 Variable best practices

 16.9 Common points of confusion

 16.10 Lab

 16.11 Lab answers

 16.12 Further exploration

 17 Input and output

 17.1 Prompting for, and displaying, information

 17.2 Read-Host

 17.3 Write-Host

 17.4 Write-Output

 17.5 Other ways to write

 17.6 Lab

 17.7 Lab answers

 17.8 Further exploration

 18 Sessions: Remote control with less work

 18.1 Creating and using reusable sessions

 18.2 Enter-PSSession with session objects

 18.3 Invoke-Command with session objects

 18.4 Implicit remoting: Importing a session

 18.5 Using disconnected sessions

 18.6 Lab

 18.7 Lab answers

 18.8 Further exploration

 19 You call this scripting?

 19.1 Not programming, more like batch files

 19.2 Making commands repeatable

 19.3 Parameterizing commands

 19.4 Creating a parameterized script

 19.5 Documenting your script

 19.6 One script, one pipeline

 19.7 A quick look at scope

 19.8 Lab

 19.9 Lab answer

 20 Improving your parameterized script

 20.1 Starting point

 20.2 Getting PowerShell to do the hard work

 20.3 Making parameters mandatory

 20.4 Adding parameter aliases

 20.5 Validating parameter input

 20.6 Adding the warm and fuzzies with verbose output

 20.7 Lab

 20.8 Lab answer

 21 Using regular expressions to parse text files

 21.1 The purpose of regular expressions

 21.2 A regex syntax primer

 21.3 Using regex with -Match

 21.4 Using regex with Select-String

 21.5 Lab

 21.6 Lab answers

 21.7 Further exploration

 22 Using someone else’s script

 22.1 The script

 Parameter block

 Process block

 22.2 It’s a line-by-line examination

 22.3 Lab

 22.4 Lab answer

 23 Adding logic and loops

 23.1 Foreach and Foreach-Object

 Foreach

 Foreach-Object

 Foreach-Object -Parallel

 23.2 While

 23.3 Do While

 23.4 Lab

 23.5 Lab answers

 24 Handling errors

 24.1 Understanding errors and exceptions

 24.2 Bad handling

 24.3 Two reasons for exception handling

 24.4 Handling exceptions

 24.5 Handling exceptions for noncommands

 24.6 Going further with exception handling

 24.7 Lab

 24.8 Lab answer

 25 Debugging techniques

 25.1 Output everything

 25.2 One line at a time

 25.3 Hey, script, stop right there with breakpoints

 25.4 Lab

 26 Tips, tricks, and techniques

 26.1 Profiles, prompts, and colors: Customizing the shell

 PowerShell profiles

 Customizing the prompt

 Tweaking colors

 26.2 Operators: -as, -is, -replace, -join, -split, -contains, -in

 -as and -is

 -replace

 -join and -split

 -contains and -in

 26.3 String manipulation

 26.4 Date manipulation

 26.5 Dealing with WMI dates

 26.6 Setting default parameter values

 26.7 Playing with script blocks

 26.8 More tips, tricks, and techniques

 27 Never the end

 27.1 Ideas for further exploration

 27.2 “Now that I’ve read the book, where do I start?”

 27.3 Other resources you’ll grow to love

 Appendix. PowerShell cheat sheet

 index

 Front matter

foreword

 Sitting down to write this foreword, my first thought was, “Wow, there’s a lot to unpack here.” My own time with PowerShell started in 2005, about a year before the shell was unleashed at TechEd Barcelona 2006. Learn Windows PowerShell in a Month of Lunches, the progenitor of this book, was far from my first PowerShell tome. Jeff Hicks and I wrote three editions of Windows PowerShell: TFM with SAPIEN Technologies first. After those, I actually made a decision, if you can imagine it, to not write any more PowerShell books! But I quickly came to realize that the existing selection of PowerShell books—well over a dozen by then—was missing a major audience need. The books of the time were teaching PowerShell as a programming language, aiming for the fairly large audience of VBScript coders that existed at the time. But PowerShell itself was aiming for a far larger and broader audience: nonprogrammers.

 That’s when I took the narratives I’d been using in live PowerShell classes and started constructing a new book: one that wouldn’t head directly to control-of-flow statements by chapter 3, and one that would really focus on a best-fit sequence of teaching to make learning PowerShell as easy as possible. I wanted to make, and keep, a promise: give me an hour a day for a month, and I’ll make you functionally useful in PowerShell.

 Month of Lunches, as a book series, had a bit of a rough road. Book publishers operate on razor-thin margins, and launching a new series consumes a lot of resources. A different publisher originally decided to give the series a shot but backed out at the last minute. Manning—in what I hope has been a fantastic decision for them—stepped up and said, “Let’s do it.” We developed a new cover art concept that was a radical departure from the company’s norm, showing how willing they were to think creatively about this new series.

 Learn Windows PowerShell in a Month of Lunches was a solid hit, becoming one of the best-selling PowerShell books in the world. It’s been translated into a number of different languages, and for many people it was their first exposure to PowerShell. I’ve heard from thousands of people how the book helped them break into the world of PowerShell. For many, it was their first PowerShell learning experience. For most, it wasn’t their last, but I’m proud that so many people trusted Jeff and me to get them started.

 When Microsoft finally made PowerShell open source (!!!!) and cross-platform (!!!!!!!), we knew it would be time for a new Month of Lunches book—one that addressed PowerShell instead of just Windows PowerShell.

 But by that point, Jeff and I were a little burned out on writing. My own career was moving in a different direction—I’d accepted a VP role at my company, and I knew I’d be hard pressed to keep up with PowerShell’s rapidly changing and expanding world. My final book, Shell of an Idea: The Untold History of PowerShell, was in many ways a love letter to the community and product team that had been supporters and friends for more than a decade. It told the stories of how PowerShell only barely managed to come to life, and I knew as I wrote it that I wouldn’t have the time to write any more about PowerShell’s future.

 That’s why I’m so glad that the authors of this volume stepped in. The PowerShell community in general is full of incredibly generous people, always willing to answer a question and help you out. “Stepping away,” for me, also meant stepping away from PowerShell.org, the website I cofounded, and the nonprofit that backed it. It meant stepping away from PowerShell + DevOps Global Summit, a conference I first financed on my American Express card. But the PowerShell community stepped up as they almost always do: new people agreed to keep the organization not only going, but also growing. James Petty, one of this book’s coauthors, is one of those folks, and I’m forever grateful to him and his team for keeping the community spirit alive.

 This book largely builds on the narrative that I created for the first Month of Lunches title and that Jeff Hicks and I refined through three editions—along with Learn PowerShell Scripting in a Month of Lunches, a book that’s as relevant today as it was when we first wrote it. But this book breaks out of the Windows operating system and treats PowerShell as a true global citizen: you’ll find examples applicable whether you’re running PowerShell on Windows, Linux, or macOS—a huge undertaking for these authors, given the stark differences between those operating systems.

 I remain incredibly grateful to the PowerShell community. They’ve made me feel welcomed, appreciated, and valuable—something I hope everyone can experience at some point. It’s a community I encourage you to explore, via PowerShell.org or the many other volunteer-driven websites, GitHub repos, Twitter accounts, and other outlets. You’ll be glad you did.

 Finally, I want you to know that your investment of time in PowerShell will create impressive returns. PowerShell is almost unique among software in that it didn’t seek to reinvent anything. Instead, it simply wanted to take all the chaotic, crazy, powerful stuff that was already in the world and make it more consistent and easier to use. PowerShell respects Linux, for example, by not trying to impose a Microsoft worldview on that operating system. Instead, PowerShell simply makes everything Linux already is just a little easier to operate.

 I hope your PowerShell journey, whether it’s just beginning or you’re well into it, will prove as fruitful and satisfying as mine has been. I hope you’ll show the authors of this book your support, because they’ve labored mightily to bring this into your hands. And I hope you’ll take your newfound knowledge and find ways to share it with others who are just beginning their journey. Regardless of what’s already been said or written about PowerShell, your take on it will prove to be the one that helps someone have the “aha!” moment that launches their own PowerShell success.

 —Don Jones

preface

 Never in a million years would I have thought that one day I would be asked to help write any tech book, much less the fourth edition of Learn PowerShell in a Month of Lunches—the very book that started me on my journey many years ago.

 When I heard that Travis Plunk and Tyler Leonhardt had signed on with Manning to write the fourth edition of the successful book, I thought, Who better to write the next edition than two of the people on the PowerShell team? To preserve the winning style of Don Jones and Jeffery Hicks from the earlier versions, Tyler and Travis would work from their original chapters. Because PowerShell was now available on Linux and macOS, however, this book would focus on those two operating systems and showcase the open source/cross-platform abilities of PowerShell 7. And the book would be called Learn PowerShell in a Month of Lunches rather than Learn Windows PowerShell in a Month of Lunches, which was the title of the first, second, and third editions of the classic book. Excited to see the expanded and updated version, I purchased the MEAP and was reading the chapters as they were released.

 Fast-forward a year. PowerShell 7 was released. Also, readers and early reviewers of the book made it clear that Windows is still the OS where most admins spend their time, so they wanted the fourth edition to include Windows as well as Linux and macOS. So I was brought on board to finish up the book and update it to cover the latest version of PowerShell and the Windows OS. I took what Tyler and Travis had started and kept the project going, making sure that all three operating systems were represented. The book did end up being a little Windows heavy, but that’s to be expected, as, again, PowerShell still has more functionality on Windows. I came from the corporate environment, using PowerShell daily to support Windows servers.

 It has been an amazing journey for me to come full circle, from reading the first book to helping write this edition. Whether you are just getting started with PowerShell or are a seasoned admin looking for the latest tips and tricks, I hope you enjoy this book.

 —James Petty

acknowledgments

 I offer a huge thank-you to my wife, Kacie, for supporting me during this project. I also thank Don Gannon-Jones for his support, mentorship, and encouragement to join this project. This has been an amazing journey for me to come full circle from reading Don’s first Month of Lunches book on PowerShell to helping write this edition.

 I would also like to thank the staff at Manning: Deirdre Hiam, my project editor; Carrie Andrews, my copyeditor; Katie Tennant, my proofreader; and Shawn Bolan, my technical proofer.

 To all the reviewers: Aldo Solis Zenteno, Birnou Sebarte, Brad Hysmith, Bruce Bergman, Foster Haines, Giuliano Latini, James Matlock, Jan Vinterberg, Jane Noesgaard Larsen, Jean-Sebastien Gervais, Kamesh Ganesan, Marcel van den Brink, Max Almonte, Michel Klomp, Oliver Korten, Paul Love, Peter Brown, Ranjit Sahai, Ray Booysen, Richard Michaels, Roman Levchenko, Shawn Bolan, Simon Seyag, Stefan Turalski, Stephen Goodman, Thein Than Htun, and Vincent Delcoigne, thank you. Your suggestions helped to make this a better book.

about this book

 We are glad you have decided to join us in a month-long journey! A month seems like a long time, but it will be worth it, we promise.

Who should read this book

 This book is for a wide range of audiences; however, the primary audience is those who are just getting started with PowerShell. Job functions may include help desk or server administrators.

 Most of the preliminary information you will need is covered in chapter 1, but here are a few things we should mention up front. First, we strongly suggest that you follow along with the examples in the book. For the optimal experience, we suggest you run everything on a virtual machine. We have done our best to make sure the examples are cross-platform, but as you will see, there are a few chapters that are Windows specific.

 Second, be prepared to read this book from start to finish, covering each chapter in order. Again, this is something we’ll explain in more detail in chapter 1, but the idea is that each chapter introduces a few new things that you will need in subsequent chapters. You really shouldn’t try to push through the whole book—stick with the one-chapter-per-day approach. The human brain can only absorb so much information at once, and by taking on PowerShell in small chunks, you’ll actually learn it a lot faster and more thoroughly.

About the code

 This book contains a lot of code snippets. Most of them are short, so you should be able to type them easily. In fact, we recommend that you do type them, because doing so will help reinforce an essential PowerShell skill: accurate typing! Longer code snippets are given in listings and are available for download from the book’s web page on the publisher’s website at www.manning.com/books/learn-powershell-in-a-month-of-lunches.

 That said, you should be aware of a few conventions. Code always appears in a special font, just as in this example:

 Get-CimInstance –class Win32_OperatingSystem
➥ –computerName SRV-01

 That example also illustrates the line-continuation character used in this book. It indicates that those two lines should be typed as a single line in PowerShell. In other words, don’t press Enter or Return after Win32_OperatingSystem—keep right on typing. PowerShell allows for long lines, but the pages of this book can hold only so much.

 Sometimes code is also in bold to highlight code that has changed from previous steps in the chapter, such as when a new feature adds to an existing line of code. And sometimes you’ll also see that code font within the text itself, such as when we write Get-Command. That just lets you know that you’re looking at a command, parameter, or other element that you would type within the shell.

 Fourth, you’ll see an element that we’ll bring up again in several chapters: the backtick character (`). Here’s an example:

 Invoke-Command –scriptblock { Get-ChildItem } `
 -computerName SRV-01,localhost,DC02

 The character at the end of the first line isn’t a stray bit of ink—it’s a real character that you would type. On a US keyboard, the backtick (or grave accent) is usually near the upper left, under the Esc key, on the same key as the tilde character (~). When you see the backtick in a code listing, type it exactly as is. Furthermore, when it appears at the end of a line—as in the preceding example—make sure that it’s the last character on that line. If you allow any spaces or tabs to appear after it, the backtick won’t work correctly, and neither will the code example.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/learn-powershell-in-a-month-of-lunches. The complete code for the examples in the book is available for download from the Manning website at www.manning.com/books/learn-powershell-in-a-month-of-lunches, and from GitHub at https://github.com/psjamesp/Learn-PowerShell-in-a-Month-of-Lunches-4th-Edition.

liveBook discussion forum

 Purchase of Learn PowerShell in a Month of Lunches, Fourth Edition, includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the authors and other users. To access the forum, go to https://livebook.manning.com/book/learn-powershell-in-a-month-of-lunches/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between readers and between readers and authors can take place. It is not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We encourage you to ask them some challenging questions lest their interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the authors

 James Petty is the president and CEO of the DevOps Collective, which runs PowerShell.org, and is also a Microsoft Cloud and Datacenter MVP. He organizes the PowerShell + DevOps Global Summit held each April and the DevOps + Automation Summit held in the fall, and he has helped facilitate multiple PowerShell Saturdays around the United States. A contributing author to The PowerShell Conference Book, volume 1, he is also cofounder of the Chattanooga PowerShell user group and the cochair for PowerShell on the River, a two-day PowerShell conference hosted in Chattanooga, Tennessee.

 Travis Plunk has been a software engineer on various PowerShell teams since 2013 and at Microsoft since 1999. He was involved in open sourcing PowerShell and moved the core PowerShell engine over shortly after PowerShell was made open source.

 Tyler Leonhard has been a software engineer on the PowerShell team for about 2 years and at Microsoft for almost 3. He is a core maintainer of the PowerShell extension for VS Code and is also active on social media (Twitter, Twitch streams, LinkedIn) as a member of the PowerShell team.

 Jeffery Hicks is an IT veteran with 30+ years of experience, much of it spent as an IT infrastructure consultant specializing in Microsoft server technologies, emphasizing automation and efficiency. He is a multiyear recipient of the Microsoft MVP Award. He works today as an independent author, teacher, and consultant. Jeff has taught about PowerShell and the benefits of automation to IT Pros worldwide. He has authored and coauthored several books, writes for numerous online sites and print publications, is a Pluralsight author, and is a frequent speaker at technology conferences and user groups. You can keep up with Jeff on Twitter (http://twitter.com/JeffHicks). You'll find his online work at https://jdhitsolutions.com/blog and https://jeffhicks.substack.com.

1 Before you begin

 PowerShell just turned 15 years old (on November 14, 2021). It’s hard to believe it’s been around this long, but there is still a large number of IT folks who haven’t used it yet. We get it—there is only so much time in the day, and you are already familiar with doing things the way you always have. Or maybe your cybersecurity officer will not let you turn on PowerShell because it can only be used by the bad guys. Either way, we are glad you could join us on our adventure. We have been using PowerShell for a long time. In fact, two of us, James and Tyler, actually learned PowerShell from earlier editions of this very book.

 There was a huge shift in the industry around 2009 when a new concept was realized about PowerShell. It isn’t a scripting language, nor is it a programming language, so the way we teach PowerShell needed to change as well. PowerShell is actually a command-line shell where you run command-line utilities. Like all good shells, it has scripting capabilities, but you don’t have to use them, and you certainly don’t have to start with them.

 The previous editions of this book were the result of that culture shift, and we keep that same mindset here today. It’s the best that we’ve yet devised to teach PowerShell to someone who might not have a scripting background (although it certainly doesn’t hurt if you do). But before we jump into the instruction, let’s set the stage for you.

1.1 Why you can no longer afford to ignore PowerShell

 Batch. KiXtart. VBScript. Let’s face it, PowerShell isn’t exactly Microsoft’s (or anyone else’s) first effort at providing automation capabilities to Windows administrators. We think it’s valuable to understand why you should care about PowerShell—when you do, the time you commit to learning PowerShell will pay off. Let’s start by considering what life was like before PowerShell came along and look at some of the advantages of using this shell.

1.1.1 Life without PowerShell

 Windows administrators have always been happy to click around in the graphical user interface (GUI) to accomplish their chores. After all, the GUI is largely the whole point of Windows—the operating system isn’t called Text, after all. GUIs are great because they enable you to discover what you can do. Do you remember the first time you opened Active Directory Users and Computers? Maybe you hovered over icons and read tooltips, pulled down menus, and right-clicked things, all to see what was available. GUIs make learning a tool easier. Unfortunately, GUIs have zero return on that investment. If it takes you 5 minutes to create a new user in Active Directory (and assuming you’re filling in a lot of the fields, that’s a reasonable estimate), you’ll never get any faster than that. One hundred users will take 500 minutes—there’s no way, short of learning to type and click faster, to make the process go any quicker.

 Microsoft has tried to deal with that problem a bit haphazardly, and VBScript was probably its most successful attempt. It might have taken you an hour to write a VBScript that could import new users from a CSV file, but after you’d invested that hour, creating users in the future would take only a few seconds. The problem with VBScript is that Microsoft didn’t make a wholehearted effort in supporting it. Microsoft had to remember to make things VBScript accessible, and when developers forgot (or didn’t have time), you were stuck. Want to change the IP address of a network adapter by using VBScript? Okay, you can. Want to check its link speed? You can’t, because nobody remembered to hook that up in a way that VBScript could get to. Sorry. Jeffrey Snover, the architect of Windows PowerShell, calls this the last mile. You can do a lot with VBScript (and other, similar technologies), but it tends to let you down at some point, never getting you through that last mile to the finish line.

 Windows PowerShell is an express attempt on Microsoft’s part to do a better job and to get you through the last mile. And it’s been a successful attempt so far. Dozens of product groups within Microsoft have adopted PowerShell, an extensive ecosystem of third parties depends on it, and a global community of experts and enthusiasts are pushing the PowerShell envelope every day.

1.1.2 Life with PowerShell

 Microsoft’s goal for Windows PowerShell is to build 100% of a product’s administrative functionality in PowerShell. Microsoft continues to build GUI consoles, but those consoles are executing PowerShell commands behind the scenes. This approach forces the company to make sure that every possible thing you can do with the product is accessible through PowerShell. If you need to automate a repetitive task or create a process that the GUI doesn’t enable well, you can drop into PowerShell and take full control for yourself.

 Several Microsoft products have already adopted this approach over the years, including Exchange, SharePoint, System Center products, Microsoft 365, Azure, and let’s not forget Windows Admin Center. Non-Microsoft products, including Amazon Web Services (AWS) and VMware, have taken a keen interest in PowerShell as well.

 Windows Server 2012, which was where PowerShell v3 was introduced, and higher are almost completely managed from PowerShell—or by a GUI sitting atop PowerShell. That’s why you can’t afford to ignore PowerShell: Over the last few years, PowerShell has become the basis for more and more administration. It’s already become the foundation for numerous higher-level technologies, including Desired State Configuration (DSC) and much more. PowerShell is everywhere!

 Ask yourself this question: If I were in charge of a team of IT administrators (and perhaps you are), who would I want in my senior, higher-paying positions? Administrators who need several minutes to click their way through a GUI each time they need to perform a task, or ones who can perform tasks in a few seconds after automating them? We already know the answer from almost every other part of the IT world. Ask a Cisco administrator, or an AS/400 operator, or a UNIX administrator. The answer is, “I’d rather have the person who can run things more efficiently from the command line.” Going forward, the Windows world will start to split into two groups: administrators who can use PowerShell and those who can’t. Our favorite quote from Don Gannon-Jones at Microsoft’s TechEd 2010 conference is, “Your choice is Learn PowerShell, or Would you like fries with that?” We are glad you decided to make the plunge and learn PowerShell with us!

1.2 Windows, Linux, and macOS, oh my

 In mid-2016, Microsoft made the unprecedented decision to open source PowerShell Version 6 (then known as PowerShell Core). At the same time, it released versions of PowerShell—without the Windows attached—for macOS and numerous Linux builds. Amazing! Now the same object-centric shell is available on many operating systems and can be evolved and improved by a worldwide community. So for this edition of the book, we have done our best to demonstrate the multiplatform use of PowerShell and included examples for macOS and Linux environments as well. We still feel that PowerShell’s biggest audience will be Windows users, but we also want to make sure you understand how it works on other operating systems.

 We have done our best to make everything in this book cross-platform compatible. However, as of the writing of this book, there are just over 200 commands available for Linux and macOS, so not everything we wanted to show you will work. With that in mind, we want to call out chapters 19 and 20 in particular, as they are 100% Windows focused.

1.3 Is this book for you?

 This book doesn’t try to be all things to all people. Microsoft’s PowerShell team loosely defines three audiences who use PowerShell:

 	
 Administrators (regardless of OS) who primarily run commands and consume tools written by others

 	
 Administrators (regardless of OS) who combine commands and tools into more-complex processes, and perhaps package those as tools that less-experienced administrators can use

 	
 Administrators (regardless of OS) and developers who create reusable tools and applications

 This book is designed primarily for the first audience. We think it’s valuable for anyone, even a developer, to understand how PowerShell is used to run commands. After all, if you’re going to create your own tools and commands, you should know the patterns that PowerShell uses, as they allow you to make tools and commands that work as well as they can within PowerShell.

 If you’re interested in creating scripts to automate complex processes, such as new user provisioning, then you’ll see how to do that by the end of this book. You’ll even see how to get started on creating your own commands that other administrators can use. But this book won’t probe the depths of everything that PowerShell can possibly do. Our goal is to get you using PowerShell and being effective with it in a production environment.

 We’ll also show you a couple of ways to use PowerShell to connect to external management technologies; remoting and interacting with Common Information Model (CIM) classes and regular expressions are two examples that come quickly to mind. For the most part, we’re going to introduce only those technologies and focus on how PowerShell connects to them. Those topics deserve their own books (and have them), so we concentrate solely on the PowerShell side of things. We’ll provide suggestions for further exploration if you’d like to pursue those technologies on your own. In short, this book isn’t meant to be the last thing you use to learn about PowerShell, but instead is designed to be a great first step.

1.4 How to use this book

 The idea behind this book is that you’ll read one chapter each day. You don’t have to read it during lunch, but each chapter should take you only about 40 minutes to read, giving you an extra 20 minutes to gobble down the rest of your sandwich and practice what the chapter showed you.

1.4.1 The chapters

 Of the chapters in this book, chapters 2 through 26 contain the main content, giving you 25 days’ worth of lunches to look forward to. You can expect to complete the main content of the book in about a month. Try to stick with that schedule as much as possible, and don’t feel the need to read extra chapters in a given day. It’s more important that you spend some time practicing what each chapter shows you, because using PowerShell will help cement what you’ve learned. Not every chapter requires a full hour, so sometimes you’ll be able to spend additional time practicing (and eating lunch) before you have to get back to work. We find that a lot of people learn more quickly when they stick with just one chapter a day, because it gives your brain time to mull over the new ideas and gives you time to practice them on your own. Don’t rush it, and you may find yourself moving more quickly than you thought possible. Chapter 27 provides ideas for where to go next on your PowerShell journey. Finally, we include the appendix, “PowerShell cheat sheet,” which is a compilation of all the “gotchas” we mention throughout the body of the book; use this as a reference when you want to find something but you can’t remember where to look.

1.4.2 Hands-on labs

 Most of the main content chapters include a short lab for you to complete. You’ll be given instructions, and perhaps a hint or two. The answers for these labs appear at the end of each chapter. But try your best to complete each lab without looking at the answers.

1.4.3 Supplementary materials

 We have one video made with this book in mind: Tyler’s “How to navigate the help system in PowerShell”; it’s in Manning’s free content center (http://mng.bz/enYP).

 We also suggest PowerShell.org, run by James, and its YouTube channel, YouTube.com/powershellorg, which contains a ton of video content. You’ll find recorded sessions from the PowerShell + DevOps Global Summit events, online community webinars, and a lot more. All free!

1.4.4 Further exploration

 A few chapters in this book only skim the surface of some cool technologies, and we end those chapters with suggestions for exploring those technologies on your own. We point out additional resources, including free stuff that you can use to expand your skill set as the need arises.

1.4.5 Above and beyond

 As we learned PowerShell, we often wanted to go off on a tangent and explore why something worked the way it did. We didn’t learn many extra practical skills that way, but we did gain a deeper understanding of what PowerShell is and how it works. We’ve included some of that tangential information throughout the book in sections labeled “Above and beyond.” None of those will take you more than a couple of minutes or so to read, but if you’re the type of person who likes to know why something works the way it does, they can provide some fun additional facts. If you feel those sections might distract you from the practical stuff, ignore them on your first read-through. You can always come back and explore them later, after you’ve mastered the chapter’s main material.

1.5 Setting up your lab environment

 You’re going to be doing a lot of practicing in PowerShell throughout this book, and you’ll want to have a lab environment to work in. Please don’t practice in your company’s production environment.

 All you’ll need to run most of the examples in this book—and to complete all of the labs—is a copy of Windows that has PowerShell 7.1 or later installed. We suggest Windows 10 or later, or Windows Server 2016 or later, both of which come with PowerShell v5.1. If you’re going to play with PowerShell, you’ll have to invest in a version of Windows that has it. For most of the labs, we included additional instructions for your Linux environment.

 NOTE You have to download and install PowerShell 7 separately, as it runs side by side with Windows PowerShell 5.1, which comes preinstalled. However, most of these labs will run in Windows PowerShell. Instructions on how to install PowerShell 7 can be found at http://mng.bz/p2R2.

 We will also be using Visual Studio Code (VS Code) with the latest stable release of the PowerShell extension, which can be installed from the marketplace. If you’re using a non-Windows build of PowerShell, you’ll have fewer options to worry about. Just get the right build for your version of macOS or Linux (or whatever) from http://github.com/PowerShell/PowerShell, and you should be good to go. Keep in mind, however, that a lot of the functionality we’ll be using in our examples is unique to Windows. For example, you can’t get a list of services on Linux, because Linux doesn’t have services (it has daemons, which are similar), but we will do our best to use examples that are cross-platform (such as Get-Process).

 Tip You should be able to accomplish everything in this book with a single computer running PowerShell, although some stuff gets more interesting if you have two or three computers, all in the same domain, to play with.

1.6 Installing PowerShell

 If you don’t have PowerShell 7 installed right now, it’s okay. We’ll go over how to do that in the next chapter. If you want to check the latest available version of PowerShell or download it, go to https://docs.microsoft.com/en-us/powershell. This official PowerShell home page has links to the latest releases and how to install them.

 Tip You should check your version of PowerShell: open the PowerShell console, type $PSVersionTable, and press Enter.

 Before you go any further, take a few minutes to customize PowerShell. If you’re using the text-based console host, we strongly recommend that you change the default console font to the Lucida fixed-width font. The default font makes it difficult to distinguish some of the special punctuation characters that PowerShell uses. Follow these steps to customize the font:

 	
 Click the control box (that’s the PowerShell icon in the upper left of the console window) and select Properties from the menu.

 	
 In the dialog box that appears, browse through the various tabs to change the font, window colors, window size and position, and so forth.

 Tip Make sure that both the window size and screen buffer have the same width values.

 Your changes will apply to the default console, meaning they’ll stick around when you open new windows. Of course, all of this applies only to Windows: On non-Windows operating systems, you’ll usually install PowerShell, open your operating system’s command line (e.g., a Bash shell), and run powershell. Your console window will determine your colors, screen layout, and so on, so adjust to suit your preferences.

1.7 Contacting us

 We’re passionate about helping folks like you learn Windows PowerShell, and we try to provide as many resources as we can. We also appreciate your feedback, because that helps us come up with ideas for new resources that we can add to the site and ways to improve future editions of this book. On Twitter, you can reach Travis at @TravisPlunk, Tyler at @TylerLeonhardt, and James at @PsJamesP. We also hang out in the forums of https://forums.powershell.org if you have PowerShell questions. Another wonderful place for more resources is https://powershell.org, which includes free e-books, in-person conferences, free webinars, and tons more. James helps run the organization, and we can’t recommend it highly enough as a place to continue your PowerShell education after you’ve finished this book.

1.8 Being immediately effective with PowerShell

 Immediately effective is a phrase we’ve made our primary goal for this entire book. As much as possible, each chapter focuses on something that you could use in a real production environment, right away. That means we sometimes gloss over some details in the beginning, but when necessary we promise to circle back and cover those details at the right time. In many cases, we had to choose between hitting you with 20 pages of theory first, or diving right in and accomplishing something without explaining all the nuances, caveats, and details. When those choices came along, we almost always chose to dive right in, with the goal of making you immediately effective. But all of those important details and nuances are still explained later in the book.

 Okay, that’s enough background. It’s time to start being immediately effective. Your first lunch lesson awaits.

2 Meet PowerShell

 This chapter is all about getting you situated and helping you to decide which PowerShell interface you’ll use (yes, you have a choice). If you’ve used PowerShell before, this material might seem redundant, so feel free to skim this chapter—you might still find some tidbits here and there that’ll help you down the line.

 Also, this chapter applies exclusively to PowerShell on Windows, macOS, and Ubuntu 18.04. Other Linux distributions have a similar setup, but they will not be covered in this chapter. For those other installation instructions, you can get them right from PowerShell’s GitHub page at https://github.com/PowerShell/PowerShell#.

 Useful terms

 We should define a few terms that we will use quite a bit in this chapter.

 PowerShell—Refers to the 7.x version that you have installed.

 Shell —A shell is basically an application that can accept text-based commands and is commonly used to interact with your computer or other machines via a script or interactive experience like a terminal. Examples of shells include Bash, fish, or PowerShell.

 Terminal—A terminal is an application that can run a shell application within it so that a user can interact with the shell in a visual way. Terminals are shell agnostic, so you can run any shell in any terminal you’d like.

 Windows PowerShell—Refers to PowerShell 5.1 that comes preinstalled on your Windows 10 device.

2.1 PowerShell on Windows

 PowerShell has come preinstalled on Windows PCs since Windows 7 (and Server 2008). It is important to note that the process name for PowerShell 7 has changed on Windows. It is no longer powershell.exe but pwsh.exe. PowerShell 7 is a side-by-side installation, meaning that Windows PowerShell (5.1) is still installed by default (hence why the process name had to change).

 Let’s install PowerShell 7 first. There are multiple ways to install this (e.g., from the Microsoft Store, winget, Chocolatey), so you can choose any method you like, but for this book we are going with the straightforward approach, which is to download the MSI from the PowerShell GitHub repo: PowerShell/PowerShell. Make sure you download the stable release, as this is the latest GA (general availability) release from the PowerShell team (figure 2.1).

 [image:]

 Figure 2.1 This shows the different installs available for PowerShell, with the MSI pointed out for Windows installation.

 Walk through the MSI wizard, accept the defaults, and then you are done. There are several ways to launch PowerShell (figure 2.2). After it is installed, you can search for it in the task bar. This is also a great time to point out that the icons have changed a little bit as well.

 [image:]

 Figure 2.2 Start menu on Windows 10 showing the side-by-side installation for PowerShell 7 and PowerShell 5.1

 If you click the PowerShell 7 icon (we suggest you make it a task bar icon as well), this will launch the PowerShell console. If you are familiar with Windows PowerShell, you will see a noticeable difference in the way it looks. That is because the background color is black and not blue. For the purposes of this book, we have changed our console colors so that they are easier to read.

 The PowerShell console application is your only option when you’re running PowerShell on a server that doesn’t have a GUI shell installed:

 	
 The console application is tiny. It loads fast and doesn’t use much memory.

 	
 It doesn’t require any more .NET Framework stuff than PowerShell itself needs.

 	
 You can set the colors to green text on a black background and pretend you’re working on a 1970s-era mainframe.

 If you decide to use the console application, we have a few suggestions for configuring it. You can make all of these configurations by clicking the window’s upper-left-corner control box and selecting Properties. The resulting dialog box is shown in figure 2.3. This looks slightly different in Windows 10, as it’s gained some new options, but the gist is the same.

 [image:]

 Figure 2.3 Configuring the console application’s properties

 On the Options tab, you can increase the size of the Command History Buffer Size. This buffer enables the console to remember which commands you’ve typed and lets you recall them by using the up and down arrows on your keyboard.

 On the Font tab, pick something a bit larger than the default 12-point font. Please. We don’t care if you have 20/10 vision; jack up the font size a bit. PowerShell needs you to be able to quickly distinguish between a lot of similar-looking characters—such as ' (an apostrophe or a single quote) and ` (a backtick or a grave accent)—and a tiny font doesn’t help.

 On the Layout tab, set both width sizes to the same number and make sure the resulting window fits on your screen. Failing to do this can result in a horizontal scrollbar at the bottom of the window, which can lead to some PowerShell output appearing wrapped off the right side of the window, where you’ll never see it. We’ve had students spend half an hour running commands, thinking they were producing no output at all, when in fact the output was scrolled off to the right. Annoying.

 Finally, on the Colors tab, don’t go nuts. Keep things high contrast and easy to read. And if you really want to, you can set the colors to match your Windows PowerShell terminal.

 One point to keep in mind: this console application isn’t PowerShell; it’s merely the means by which you interact with PowerShell.

 NOTE We will not be using Windows PowerShell or the ISE for any part of our journey together. The ISE does not support PowerShell 7. We will instead be using Visual Studio Code, which is covered a little later in the chapter.

2.2 PowerShell on macOS

 If you’re using a Mac, this section is for you. We’ll talk about how to install and run PowerShell specifically on macOS. This book assumes that you know how to open Terminal—macOS’s default Terminal application. You can use a different terminal on macOS if you have it, but we’ll stick with the default one for this book. Okay, let’s install PowerShell!

2.2.1 Installation on macOS

 Today, PowerShell does not come included with macOS. Maybe one day that will happen, but until then, we have to install it ourselves. Thankfully, it’s easy to install and there are many ways to do it. We’ll cover the easiest way to install PowerShell for macOS, which is via Homebrew—the preferred package manager for macOS. Homebrew provides the ability to install PowerShell via a terminal without a single click of our mouse.

 Note Homebrew also doesn’t come with macOS, so if you don’t have it already, you can head over to Homebrew’s website (https://brew.sh) for instructions on how to install it. Go ahead and get it. We’ll wait for you to get back!

 Once you have Homebrew installed and ready to go, you can install PowerShell. All you need is an instance of Terminal, so go ahead and open that on your Mac. Leveraging Homebrew, you will install PowerShell in one command:

 brew cask install powershell

 Type that command into Terminal and press ENTER. You will then see Homebrew install PowerShell (figure 2.4).

 [image:]

 Figure 2.4 Homebrew installing PowerShell

 You’re all set! Let’s run it. What do we run? Great question. To run PowerShell, all you do is run the command pwsh, which will start PowerShell in your terminal. You should see the following output:

 ~ pwsh
PowerShell 7.1.3
Copyright (c) Microsoft Corporation. All rights reserved.

https://aka.ms/pscore6-docs
Type 'help' to get help.

PS /Users/steve>

 We now have PowerShell running in the Terminal app on macOS! Well done. This is one of the main ways to interact with PowerShell on macOS. We’ll go over the other main way in a bit, but first we need to address those of you who are using Linux as your operating system.

2.3 PowerShell on Linux (Ubuntu 18.04)

 This is the part where we tell you that PowerShell is so awesome that it’s able to run on an incredibly long list of Linux distributions. This is also the part where we tell you that if we went through the installation of every one of those distributions, our publisher would wonder why the book turned into one million pages. We’re going to run through how to install PowerShell on Ubuntu 18.04, since it was the latest LTS version at the time of writing. If you’re using a machine that runs something else, fear not! All the documentation on how to install PowerShell on all the different supported Linux distributions can be found in the PowerShell docs article on specifically this topic: http://mng.bz/YgnK.

 All right, now on to the installation. We should also mention . . . this book assumes that you know how to open the Terminal application on Ubuntu 18.04. You can use any terminal for these steps, but we’ll stick to the default one.

2.3.1 Installation on Ubuntu 18.04

 Ubuntu 18.04 ships with Canonical’s own package manager, called snap. This gives us a single command installation of PowerShell. First, go ahead and open up an instance of Terminal and type the following command:

 snap install powershell –-classic

 Once you do that, press ENTER to run it. You may be asked to put in your password, and if so, go ahead and put that in. This is because snap needs to be run as root to install PowerShell. The output you see should look like this:

 PowerShell 7.1.3 from Microsoft PowerShell✓ installed

 Note We are adding --classic to the command because PowerShell is considered a “classic snap package.” Classic snaps remove the restrictions on snap packages, allowing PowerShell to fully interact with the operating system.

 You’re all set! Let’s run it. What do we run? Great question. To run PowerShell, all you have to do is run the command pwsh, which will start PowerShell in your terminal. You should see the following output:

 ~ pwsh
PowerShell 7.1.3
Copyright (c) Microsoft Corporation. All rights reserved.

https://aka.ms/pscore6-docs
Type 'help' to get help.

PS /Users/tyleonha>

 We now have PowerShell running in Terminal on Ubuntu 18.04! Well done. This is one of the main ways to interact with PowerShell on Ubuntu 18.04. Now that we’ve got it working in the terminal, let’s get the other PowerShell interface working.

2.4 Visual Studio Code and the PowerShell extension

 Wait! Don’t run away yet. We know it sounds like we’re asking you to get that application that all your C# developer friends use, but it’s just not true! Let us explain.

 Microsoft offers two products with very similar names that are completely different (the saying “There are two hard problems in tech: cache invalidation, naming things, and off-by-1 errors” is true). The first product is one you might have heard of: Visual Studio. It’s a full-featured integrated development environment (IDE). It’s typically used by C# and F# developers. Visual Studio Code, on the other hand, is a completely different application. It’s a lightweight text editor that has some resemblance to other text editors like Sublime Text or Notepad++, except that it has some added features to enhance the experience.

 One of the added features is extensibility. People can author extensions for Visual Studio Code and put them on the Visual Studio Code’s marketplace for other folks to consume. The PowerShell team offers an extension for PowerShell on the marketplace, and with it comes a whole bunch of nice features that will help you along your journey of learning PowerShell. Visual Studio Code with the PowerShell extension is the recommended editing experience for PowerShell, and just like PowerShell itself, they’re open source and work cross-platform. You can find the source code at these locations:

 	
 Visual Studio Code—https://github.com/Microsoft/vscode

 	
 PowerShell extension—https://github.com/PowerShell/vscode-powershell

 This is also a great opportunity for us to say that if you do have any issues with those products, open an issue on their respective GitHub pages. That’s the best way to give feedback and report problems. All right, let’s get into the installation steps.

 NOTE Visual Studio Code and the PowerShell extension will be more valuable in later chapters when you learn to write scripts. You’ll get there. We promise.

 What about the PowerShell ISE?

 If you already know a thing or two about PowerShell and are familiar with the PowerShell ISE, you might be wondering why it’s not being mentioned. The PowerShell ISE does not work with PowerShell and is in support mode only, meaning that it will only receive security-related updates. The team’s focus has moved to Visual Studio Code with the PowerShell extension.

2.4.1 Installing Visual Studio Code and the PowerShell extension

 If you’ve gotten this far, you’ve already installed PowerShell on your operating system. To install Visual Studio Code, you can use the same steps. For Windows, macOS, or Linux, go to https://code.visualstudio.com/Download and download and run the installer (figure 2.5).

 	
 To add the PowerShell extension, launch VS Code and go to the marketplace.

 	
 Search for PowerShell and click Install.

 [image:]

 Figure 2.5 This shows the logo for the extensions and the Install button for the PowerShell 7 extension in VS Code.

 For those of you who prefer the command line, you can also install VS Code and the PowerShell Extension via the terminal:

 	
 macOS: Open Terminal and run brew cask install vscode.

 	
 Ubuntu 18.04: Open Terminal and run snap install code --classic.

 You’re getting the hang of this! If you’ve done this correctly, running the code command in the terminal should open an instance of Visual Studio Code. If it doesn’t work, close all of your terminal windows, open a new one, and try running the code command again. Once that’s installed, you need to install the PowerShell extension. Since we like typing in the world of PowerShell, let’s install the extension in a single command. You can install extensions by using the code command like so:

 code --install-extension ms-vscode.powershell

 Which gives you the following output:

 ~ code --install-extension ms-vscode.powershell
Installing extensions...
Installing extension 'ms-vscode.powershell' v2019.9.0..
Extension 'ms-vscode.powershell' v2019.9.0 was successfully installed.

 Let’s look at the checklist:

 PowerShell installed ✔
Visual Studio Code installed ✔
PowerShell extension installed ✔

 We’re ready to see what this all has to offer. If you haven’t already, go ahead and open Visual Studio Code by running the code command in your terminal.

2.4.2 Getting familiar with Visual Studio Code

 From here on, the experiences will be the same regardless of what OS you are running. Here we have Visual Studio Code. It might look daunting at first, but with a little bit of practice, you’ll be able to harness its power to help you write some awesome PowerShell scripts. With Visual Studio Code open, we should get it ready to work with PowerShell. Start by clicking on the little PowerShell stencil icon on the left side next to the other crazy-looking icons. It’s highlighted in figure 2.6.

 [image:]

 Figure 2.6 Visual Studio Code startup screen

 After clicking on the PowerShell icon, a couple of things pop up. Let’s go over what we see (figure 2.7):

 	
 Command Explorer (A)—A list of commands that are available for you to run. When you hover over one, it gives you a few different actions. You can hide this by clicking on the PowerShell icon again.

 	
 Script editor pane (B)—We won’t be using this until the end of the book, but this is where your scripts will appear in different tabs.

 	
 Integrated Console (C)—This is where the magic happens. This is PowerShell. You can run commands here just like you did in the PowerShell running in the Terminal application.

 [image:]

 Figure 2.7 Visual Studio Code with the PowerShell extension breakdown

 In the top right of the Integrated Console, we see a few different actions. Let’s start from the right side. First we see an “x” icon. This will hide the Integrated Console and the whole terminal pane. If you ever want to bring it back, press Ctrl+`. After that you have the caret (^) icon. This will hide the script pane and maximize the terminal pane. Then we have trash can icon. This kills terminals. Repeat after us: “I PROMISE TO NEVER EVER EVER KILL THE POWERSHELL INTEGRATED CONSOLE.” The Integrated Console is the heart of the PowerShell extension and all its features, and if you kill it, then the extension will stop working—so, please, don’t trash the Integrated Console.

 PowerShell Integrated Console vs. a normal terminal?

 As we touched on before, the PowerShell Integrated Console is the heart of the PowerShell extension. Where do you think the commands in the Command Explorer came from? Yep, that’s right—the Integrated Console. There is a plethora of features to explore in the extension that depend on the Integrated Console, but just know that there’s only one of them. Any other terminal that is spawned, even if it’s running PowerShell, is not “integrated.” Remember: Don’t delete the Integrated Console.

 Next we have the split terminal button and the plus sign button. These buttons spawn additional terminals that can be seen in the drop-down next to them. It’s important to note that Visual Studio Code picks Bash as default for these terminals since Bash is installed by default. You can easily configure this in your settings, but we can come back to that later. In the meantime, if you open a Bash terminal in Visual Studio Code, you can type pwsh just as you did in the Terminal application, and you get PowerShell.

 The Visual Studio Code experience with PowerShell is heavily catered toward writing PowerShell scripts and modules, while the PowerShell in a Terminal application is an experience more for running through a few quick commands or long-running tasks. They both serve their purpose, and we’ll see more of them throughout the book.

2.4.3 Customizing Visual Studio Code and the PowerShell extension

 Like we said earlier, extensibility is a big deal to Visual Studio Code. As such, it’s very easy to customize Visual Studio Code and the PowerShell extension to your liking. We’ll go through a few things you can do—some useful, others just for fun!

 First, let’s start with Visual Studio Code’s Settings page. We’ll be able to configure just about anything we want. Go to File > Preferences > Settings to open the Settings page (figure 2.8). From here you can search for anything you’d like in the search box, or just scroll through everything. There’s a lot to configure! If you’re curious what settings the PowerShell extension provides, all you have to do is search for powershell, and you’ll see them all.

 [image:]

 Figure 2.8 Visual Studio Code’s Settings page. We’ve outlined where to see the JSON version of the settings.

 You might notice that we outlined a button in this screenshot. If you click on this, you’ll get a JavaScript Object Notation (JSON) representation of the settings that you have set. If you’re not already familiar with JSON, don’t worry. You can use the regular setting window to do just about everything the JSON view can do.

 Table 2.1 shows a list of commonly used settings that you can paste right into the search box and configure to your liking.

 Table 2.1 Recommended settings

 	
 Setting

 	
 Description

 	
 Tab Completion

 	
 The Tab Completion setting helps replicate the experience you get from PowerShell in the regular terminal. You’ll learn more about this concept later, but you might find this setting useful.

 	
 Terminal.Integrated.Shell.Windows

 Terminal.Integrated.Shell.OSX Terminal.Integrated.Shell.Linux

 	
 If you remember earlier in this chapter, when we press the “+” sign in the terminal part of Visual Studio Code, it opened Bash. This is because the default terminal on macOS and Linux is Bash. You can change this to PowerShell by changing this setting to pwsh.

 	
 Files.Default Language

 	
 When you open a new file in Visual Studio Code, it assumes that it is plain text. You can change this behavior by changing the Default Language setting. Changing this to powershell will ensure that new files will be PowerShell files and will give you all the PowerShell extension features.

 Another thing you can change about Visual Studio Code is the color theme. The default dark theme is nice, but you have a plethora of options out there if you’d like to go digging for the theme that fits you perfectly. It’s easy to change—all we have to do is open the Command Palette. To do this, press CMD+SHIFT+P on macOS or CTRL+SHIFT+P on Windows/Linux (alternatively, you can press F1 on either platform).

 [image:]

 Figure 2.9 Visual Studio Code’s Command Palette. Search for actions you want to take.

 The Command Palette (figure 2.9) is one of the most useful features of Visual Studio Code, as it allows you to search for actions that you can take. The action we want to take is “changing the color theme,” so let’s just search for theme in the Command Palette. You should see an option called Preferences: Color Theme—click that. This gives you a list of theme choices that you have available (figure 2.10). Use the arrow keys to go through the themes; you’ll notice the theme of Visual Studio Code gets updated automatically, so you can see what you’re getting into before you commit.

 [image:]

 Figure 2.10 Theme selection in Visual Studio Code

 Most in the list are default themes that come with Visual Studio Code; however, the PowerShell ISE theme comes with the PowerShell extension. You can search for more cool themes on the extension marketplace (we personally like the Horizon theme, but that’s just us!) by choosing the Install Additional Color Themes item in the list.

 Try it Now For the remainder of this book, we’ll assume you’re using Visual Studio Code with the PowerShell extension and not some other scripting editor when you need to write or examine a script. Go ahead and configure the settings and your color theme to your liking if you so choose. If you decide to use PowerShell in a Terminal application instead, you’ll be fine—most everything in the book will still work. We’ll let you know if something is console-only or editor-only.

2.5 It’s typing class all over again

 PowerShell is a command-line interface, and that means you’ll do a lot of typing. Typing leaves room for errors—typos. Fortunately, both PowerShell applications provide ways to help minimize typos.

 Try it Now The following examples are impossible to illustrate in a book, but they’re cool to see in action. Consider following along in your own copy of the shell.

 The console application supports tab completion in four areas:

 	
 Type Get-P and press Tab a few times. You’ll notice a list of possible completions. As you type more, this list will get smaller, and when PowerShell can guess that it must be a certain command, it will complete it for you.

 	
 Type Dir, then a space, then /, and then press Tab. PowerShell shows you the files and folders that you can drill into from this directory.

 	
 Type Get-Proc and press Tab. Then type a space and a hyphen (-). Start pressing Tab to see PowerShell’s possible completions for this parameter. You could also type part of a parameter name (e.g., -E), and press Tab twice to see matching parameters. Press Esc to clear the command line.

 	
 Type New-I and press Tab. Type a space, then -I, and press Tab again. Type another space and press Tab twice. PowerShell shows the legal values for that parameter. This works only for parameters that have a predefined set of allowable values (the set is called an enumeration). Again, press Esc to clear the command line; you don’t want to run that command yet.

 Visual Studio Code with the PowerShell extension offers the editor pane something like, and better than, tab completion: IntelliSense. This feature operates in all four of the same situations that we showed you for tab completion, except that you get a cool little pop-up menu, like the one shown in figure 2.11. Use your arrow keys to scroll up or down and find the item you want, press Tab or Enter to select it, and then keep typing.

 Caution It’s very, very, very, very, very important to be very, very, very, very accurate when you’re typing in PowerShell. In some cases, a single misplaced space, quotation mark, or even carriage return can make everything fail. If you’re getting errors, double- and triple-check what you’ve typed.

 [image:]

 Figure 2.11 IntelliSense works like tab completion in Visual Studio Code with the PowerShell extension. It also shows you information about the item you’re completing if it’s available.

2.6 What version is this?

 With PowerShell, there’s an easy way to check your version. Type $PSVersionTable and press Enter:

 PS /Users/steve> $PSVersionTable
Name Value
---- -----
PSVersion 7.1.3
PSEdition Core
GitCommitId 7.1.3
OS Linux 4.18.0-20-generic #21~18.04.1-Ubuntu...
Platform Unix
WSManStackVersion 3.0
SerializationVersion 1.1.0.1
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}
PSRemotingProtocolVersion 2.3

 You’ll immediately see the version number for every PowerShell-related piece of technology, including PowerShell itself. If this doesn’t work, or if it doesn’t indicate 7.0 or later for PSVersion, you’re not using the right version of PowerShell for this book. Refer to earlier sections in this chapter (2.2, 2.3, and 2.4, depending on your OS) for instructions on getting the most current version of PowerShell.

 Try it Now Don’t wait any longer to start using PowerShell. Start by checking your version number to ensure it’s at least 7.1. If it isn’t, don’t go any further until you’ve installed at least v7.1.

2.7 Lab

 Because this is the book’s first lab, we’ll take a moment to describe how these are supposed to work. For each lab, we give you a few tasks that you can try to complete on your own. Sometimes we provide a hint or two to get you going in the right direction. From there, you’re on your own.

 We absolutely guarantee that everything you need to know to complete every lab is either in that same chapter or covered in a previous chapter (and the previously covered information is the stuff for which we’re most likely to give you a hint). We’re not saying the answer is in plain sight; most often, a chapter teaches you how to discover something on your own, and you have to go through that discovery process to find the answer. It might seem frustrating, but forcing yourself to do it will absolutely make you more successful with PowerShell in the long run. We promise.

