

 [image:]

 Essential TypeScript 5

 Third Edition

 Adam Freeman

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2023 by Adam Freeman. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Ian Hough

 	
 Technical editor:

 	
 Fabio Ferracchiati

 	
 Production editor:

 	
 Aleksandar Dragosavljević

 	
 Copy editor:

 	
 Katie Petito

 	
 Typesetter:

 	
 Bojan Stojanović

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781633437319

 dedication

 Dedicated to my lovely wife, Jacqui Griffyth.

 (And also to Peanut.)

 contents

 Front matter

 preface

 about this book

 about the author

 about the cover illustration

 1 Understanding TypeScript

 1.1 Should you use TypeScript?

 Understanding the TypeScript developer productivity features

 Understanding the JavaScript version features

 1.2 What do you need to know?

 1.3 How do you set up your development environment?

 1.4 What Is the structure of this book?

 1.5 Are there lots of examples?

 1.6 Where can you get the example code?

 1.7 What if you have problems following the examples?

 What if you find an error in the book?

 1.8 How do you contact the author?

 1.9 What if you really enjoyed this book?

 1.10 What if this book has made you angry?

 Summary

 Part 1.

 2 Your first TypeScript application

 2.1 Getting ready for this book

 Step 1: Install Node.js

 Step 2: Install Git

 Step 3: Install TypeScript

 Step 4: Install a programmer`'s editor

 2.2 Creating the project

 Initializing the project

 Creating the compiler configuration file

 Adding a TypeScript code file

 Compiling and executing the code

 Defining the data model

 Adding features to the collection class

 2.3 Using a third-party package

 Preparing for the third-party package

 Installing and using the third-party package

 Adding type declarations for the JavaScript package

 2.4 Adding commands

 Filtering items

 Adding tasks

 Marking tasks complete

 2.5 Persistently storing data

 Summary

 3 JavaScript primer, part 1

 3.1 Preparing for this chapter

 3.2 Getting confused by JavaScript

 3.3 Understanding JavaScript types

 Working with primitive data types

 Understanding type coercion

 Working with functions

 3.4 Working with arrays

 Using the spread operator on arrays

 Destructuring arrays

 3.5 Working with objects

 Adding, changing, and deleting object properties

 Using the spread and rest operators on objects

 Defining getters and setters

 Defining methods

 3.6 Understanding the this keyword

 Understanding the this keyword in stand-alone functions

 Understanding this in methods

 Changing the behavior of the this keyword

 Understanding this in arrow functions

 Returning to the original problem

 Summary

 4 JavaScript primer, part 2

 4.1 Preparing for this chapter

 4.2 Understanding JavaScript object inheritance

 Inspecting and modifying an object’s prototype

 Creating custom prototypes

 Using constructor functions

 Chaining constructor functions

 Checking prototype types

 Defining static properties and methods

 Using JavaScript classes

 4.3 Using iterators and generators

 Using a generator

 Defining iterable objects

 4.4 Using JavaScript collections

 Storing data by key using an object

 Storing data by key using a map

 Using symbols for map keys

 Storing data by index

 4.5 Using modules

 Declaring the module type

 Creating a JavaScript module

 Using a JavaScript module

 Exporting named features from a module

 Defining multiple named features in a module

 Summary

 5 Using the TypeScript compiler

 5.1 Preparing for this chapter

 5.2 Understanding the project structure

 5.3 Using the Node Package Manager

 5.4 Understanding the compiler configuration file

 5.5 Compiling TypeScript code

 Understanding compiler errors

 Using watch mode and executing the compiled code

 5.6 Using the version targeting feature

 5.7 Setting the library files for compilation

 5.8 Selecting a module format

 Specifying a module format

 5.9 Useful compiler configuration settings

 Summary

 6 Testing and debugging TypeScript

 6.1 Preparing for this chapter

 6.2 Debugging TypeScript code

 Preparing for debugging

 Using Visual Studio Code for debugging

 Using the integrated Node.js debugger

 Using the remote Node.js debugging feature

 6.3 Using the TypeScript linter

 Disabling linting rules

 6.4 Unit testing TypeScript

 Configuring the test framework

 Creating unit tests

 Starting the test framework

 Summary

 Part 2.

 7 Understanding static types

 7.1 Preparing for this chapter

 7.2 Understanding static types

 Creating a static type with a type annotation

 Using implicitly defined static types

 .3 Using the any type

 7.3 Using type unions

 7.4 Using Type Assertions

 Asserting to an unexpected type

 7.5 Using a type guard

 Understanding the never type

 7.6 Using the unknown type

 7.7 Using nullable types

 Restricting nullable assignments

 Removing null from a union with an assertion

 Removing null from a union with a type guard

 Using the definite assignment assertion

 Summary

 8 Using functions

 8.1 Preparing for this chapter

 8.2 Defining functions

 Redefining functions

 Understanding function parameters

 Understanding function results

 Overloading function types

 Understanding assert functions

 Summary

 9 Using arrays, tuples, and enums

 9.1 Preparing for this chapter

 9.2 Working with arrays

 Using inferred typing for arrays

 Avoiding problems with inferred array types

 Avoiding problems with empty arrays

 9.3 Working with tuples

 Processing tuples

 Using tuple types

 Using tuples with optional elements

 Defining tuples with rest elements

 9.4 Using enums

 Understanding how enums work

 Using string enums

 Understanding the limitations of enums

 9.5 Using literal value types

 Using literal value types in functions

 Mixing value types in a literal value type

 Using overrides with literal value types

 Using template literal string types

 9.6 Using type aliases

 Summary

 10 Working with objects

 10.1 Preparing for this chapter

 10.2 Working with objects

 Using object shape type annotations

 Understanding how shape types fit

 Using type aliases for shape types

 Using shape type unions

 Understanding union property types

 Using type guards for objects

 10.3 Using type intersections

 Using intersections for data correlation

 Understanding intersection merging

 Summary

 11 Working with classes and interfaces

 11.1 Preparing for this chapter

 11.2 Using constructor functions

 11.3 Using classes

 Using the access control keywords

 Using JavaScript private fields

 Defining read-only properties

 Simplifying class constructors

 Defining Accessors

 Using auto-accessors

 Using class inheritance

 Using an abstract class

 11.4 Using interfaces

 Implementing multiple interfaces

 Extending interfaces

 Defining optional interface properties and methods

 Defining an abstract interface implementation

 Type guarding an interface

 11.5 Dynamically creating properties

 Enabling index value checking

 Summary

 12 Using generic types

 12.1 Preparing for this chapter

 12.2 Understanding the problem solved by generic types

 Adding support for another type

 12.3 Creating generic classes

 Understanding generic type arguments

 Using different type arguments

 Constraining generic type values

 Defining multiple type parameters

 Allowing the compiler to infer type arguments

 Extending generic classes

 Type guarding generic types

 Defining a static method on a generic class

 12.4 Defining generic interfaces

 Extending generic interfaces

 Implementing a generic interface

 Summary

 13 Advanced generic types

 13.1 Preparing for this chapter

 13.2 Using generic collections

 13.3 Using generic iterators

 Combining an iterable and an iterator

 Creating an iterable class

 13.4 Using index types

 Using the index type query

 Explicitly providing generic type parameters for index types

 Using the indexed access operator

 Using an index type for the collection<t> class

 13.5 Using type mapping

 Changing mapping names and types

 Using a generic type parameter with a mapped type

 Changing property optionality and mutability

 Using the basic built-in mappings

 Combining transformations in a single mapping

 Creating types with a type mapping

 13.6 Using conditional types

 Nesting conditional types

 Using conditional types in generic classes

 Using conditional types with type unions

 Using conditional types in type mappings

 Identifying properties of a specific type

 Inferring additional types in conditions

 Summary

 14 Using decorators

 14.1 Preparing for this chapter

 14.2 Understanding decorators

 Using decorator context data

 Using specific types in a decorator

 14.3 Using the other decorator types

 Creating a class decorator

 Creating a field decorator

 Creating an accessor decorator

 Creating an auto-accessor decorator

 14.4 Passing an additional argument to a decorator

 14.5 Applying multiple decorators

 14.6 Using an initializer

 14.7 Accumulating state data

 Summary

 15 Working with JavaScript

 15.1 Preparing for this chapter

 Adding TypeScript code to the example project

 15.2 Working with JavaScript

 Including JavaScript in the compilation process

 Type-checking JavaScript code

 15.3 Describing types used in JavaScript code

 Using comments to describe types

 Using type declaration files

 Describing third-party JavaScript code

 Using Definitely Typed declaration files

 Using packages that include type declarations

 15.4 Generating declaration files

 Summary

 Part 3.

 16 Creating a stand-alone web app, part 1

 16.1 Preparing for this chapter

 16.2 Creating the toolchain

 16.3 Adding a bundler

 16.4 Adding a development web server

 16.5 Creating the data model

 Creating the data source

 16.6 Rendering HTML content using the DOM API

 Adding support for Bootstrap CSS styles

 16.7 Using JSX to create HTML content

 Understanding the JSX workflow

 Configuring the compiler and the loader

 Creating the factory function

 Using the JSX class

 Importing the factory function in the JSX class

 16.8 Adding features to the application

 Displaying a filtered list of products

 Displaying content and handling updates

 Summary

 17 Creating a stand-alone web app, part 2

 17.1 Preparing for this chapter

 17.2 Adding a web service

 Incorporating the data source into the application

 17.3 Completing the application

 Adding a header class

 Adding an order details class

 Adding a confirmation class

 Completing the application

 17.4 Deploying the application

 Adding the production HTTP server package

 Creating the persistent data file

 Creating the server

 Using relative URLs for data requests

 Building the application

 Testing the production build

 17.5 Containerizing the application

 Installing Docker

 Preparing the application

 Creating the Docker container

 Running the application

 Summary

 18 Creating an Angular app, part 1

 18.1 Preparing for this chapter

 Configuring the web service

 Configuring the Bootstrap CSS package

 Starting the example application

 18.2 Understanding TypeScript in Angular development

 Understanding the TypeScript compiler configuration

 18.3 Creating the data model

 Creating the Data Source

 2 Creating the data source implementation class

 Configuring the data source

 18.4 Displaying a filtered list of products

 Displaying the category buttons

 Creating the header display

 Combining the components

 18.5 Configuring the application

 Summary

 19 Creating an Angular app, part 2

 19.1 Preparing for this chapter

 19.2 Completing the example application features

 Adding the summary component

 Creating the routing configuration

 19.3 Deploying the application

 Adding the production HTTP server package

 Creating the persistent data file

 Creating the server

 Using relative URLs for data requests

 Building the application

 Testing the production build

 19.4 Containerizing the application

 Preparing the application

 Creating the Docker container

 Running the application

 Summary

 20 Creating a React app

 20.1 Preparing for this chapter

 Configuring the web service

 Installing the Bootstrap CSS package

 Starting the example application

 20.2 Understanding TypeScript in React development

 20.3 Defining the entity types

 20.4 Displaying a filtered list of products

 Using a functional component and hooks

 Displaying a list of categories and the header

 Composing and testing the components

 20.5 Creating the data store

 Implementing the HTTP API clients

 Summary

 21 Creating a React app, part 2

 21.1 Preparing for this chapter

 21.2 Configuring URL routing

 21.3 Completing the example application features

 Adding the confirmation component

 Consuming the orders web

 Completing the application

 21.4 Deploying the application

 Adding the production HTTP server package

 Creating the persistent data file

 Creating the server

 Using relative URLs for data requests

 Building the application

 Testing the production build

 21.5 Containerizing the application

 Preparing the application

 Creating the Docker container

 Running the application

 Summary

 index

 front matter

 preface

 This is the 50th book I have written and the third edition of Essential TypeScript. TypeScript was new when I wrote the first edition, and my editor was reluctant to commission the book. I am glad I persisted because digging deep into a technology in its early days provides an excellent foundation for seeing it mature. Over the years, Microsoft has shaped TypeScript into a powerful and robust language that has been widely adopted and which makes JavaScript easer to use for countless developers. Originally associated with Angular, TypeScript is now supported by every major development framework and its approach to enhancing JavaScript has become the gold standard.

 But TypeScript isn’t a conventional stand-alone programming language: it is a set of enhancements that are applied to JavaScript. JavaScript is an elegant and expressive language, but it behaves like few other languages, and its unusual approach to data types causes endless confusion. TypeScript doesn’t change the JavaScript type system, it just helps prevent unexpected results, and effective TypeScript development requires a good understanding of JavaScript. This book contains a primer that explains the most confusing JavaScript features so that you have the knowledge you will need to use and appreciate TypeScript.

 I hope you find TypeScript as useful as I do, and that this book provides you with everything you need to use TypeScript to create reliable and predictable JavaScript applications. And, of course, I hope to greet you again in the preface of a future edition of Essential TypeScript.

 about this book

 Essential TypeScript 5, Third Edition was written to help you build applications using the latest version of TypeScript. It begins with setting up the development environment and creating a simple TypeScript application, followed by a primer for important JavaScript features, before diving into the detail of how TypeScript build on and transforms JavaScript. The final part of the book demonstrates three web applications created with TypeScript: a stand-alone application, an Angular application, and a React application.

 Who should read this book

 This book is for experienced developers who are new to TypeScript, or who have embarked on web application development only to find JavaScript confusing and unpredictable.

 How this book is organized: a roadmap

 The book has three parts. The first part covers setting up the development environment, creating a simple web application, and using the development tools.

 The second part of the book focuses on the TypeScript features you will use every day, including basic type annotations, typed functions, arrays, objects and classes. This part of the book also describes the TypeScript support for generic types, which allow type-safe code to be written without needing to know exactly which types will be used at runtime, and decorators, which are a new feature in TypeScript 5.

 The third part of this book shows TypeScript in context and creates a web application in three different ways: entirely stand-alone, using the Angular framework, and using the React framework. These chapters demonstrate how the features described in part 2 of this book are used together.

 About the code

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, the source code is formatted in a fixed-width font to separate it from ordinary text. Code is also in bold to highlight statements that have changed from previous listings.

 The source code for every chapter in this book is available at https://github.com/manningbooks/essential-typescript-5.

 liveBook discussion forum

 Purchase of Essential TypeScript 5, Third Edition includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/essential-typescript-5-third-edition/discussion.

 You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

 about the author

 [image:]

 Adam Freeman is an experienced IT professional who started his career as a programmer. He has held senior positions in a range of companies, most recently serving as Chief Technology Officer and Chief Operating Officer of a global bank. He has written 50 programming books, focusing mostly on web application development. Now retired, he spends his time writing and trying to make furniture.

 About the technical editor

 Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies. He works for TIM (www.telecomitalia.it). He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and international magazines and coauthored more than ten books on a variety of computer topics.

 about the cover illustration

 The figure on the cover of Essential TypeScript 5, Third Edition, titled “Arabe,” or “Arab,” is taken from a book by Louis Curmer published in 1841. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

 1 Understanding TypeScript

 This chapter covers

 	Understanding the TypeScript developer features

 	Deciding when to use TypeScript in a project

 	Recognizing the limitations of TypeScript

 	Understanding the contents of this book

 	Reporting errors in this book

 	Contacting the author

 TypeScript is a superset of the JavaScript language that focuses on producing safe and predictable code that can be executed by any JavaScript runtime. Its headline feature is static typing, which makes working with JavaScript more predictable for programmers familiar with languages such as C# and Java. In this book, I explain what TypeScript does and describe the different features it provides.

 1.1 Should you use TypeScript?

 TypeScript isn’t the solution to every problem, and it is important to know when you should use TypeScript and when it will simply get in the way. In the sections that follow, I describe the high-level features that TypeScript provides and the situations in which they can be helpful.

 1.1.1 Understanding the TypeScript developer productivity features

 TypeScript’s headline features are focused on developer productivity, especially through the use of static types, which help make the JavaScript type system easier to work with. Other productivity features, such as access control keywords and a concise class constructor syntax, help prevent common coding errors.

 The TypeScript productivity features are applied to JavaScript code. The TypeScript package includes a compiler that processes TypeScript files and produces pure JavaScript that can be executed by a JavaScript runtime, such as Node.js or a browser, as shown in figure 1.1.

 [image:]

 Figure 1.1 The TypeScript transformation to JavaScript code

 The combination of JavaScript and TypeScript features retains much of the flexible and dynamic nature of JavaScript while constraining the use of data types so they are familiar and more predictable for most developers. It also means that projects that use TypeScript can still make use of the wide range of third-party JavaScript packages that are available, including support for using TypeScript in complete frameworks for app development, such as those described in part 3.

 TypeScript features can be applied selectively, which means you can use only those features useful for a specific project. If you are new to TypeScript and JavaScript, you are likely to start by using all of the TypeScript features. As you become more experienced and your depth of knowledge increases, you will find yourself using TypeScript with more focus and applying its features just to the parts of your code that are especially complex or that you expect to cause problems.

 Some TypeScript features are implemented entirely by the compiler and leave no trace in the JavaScript code that is executed when the application runs. Other features are implemented by building on standard JavaScript and performing additional checks during compilation. This means you often have to understand how a feature works and how it is implemented to get the best results, which can make TypeScript features seem inconsistent and arcane.

 More broadly, TypeScript enhances JavaScript, but the result is still JavaScript, and development in a TypeScript project is largely a process of writing JavaScript code. Some developers adopt TypeScript because they want to write web applications without learning how JavaScript works. They see that TypeScript is produced by Microsoft and assume that TypeScript is C# or Java for web development, which is an assumption that leads to confusion and frustration.

 Effective TypeScript requires a good knowledge of JavaScript and the reasons it behaves as it does. Chapters 3 and 4 describe the JavaScript features you need to understand to get the best out of TypeScript and provide a solid foundation for understanding why TypeScript is such a powerful tool.

 If you are willing to understand the JavaScript type system, then you will find TypeScript a pleasure to use. But if you are not willing to invest the time to become competent in JavaScript, then you should not use TypeScript. Adding TypeScript to a project when you don’t have any JavaScript knowledge makes development more difficult because you will have two sets of language features to wrangle, neither of which will behave exactly as you expect.

 1.1.2 Understanding the JavaScript version features

 JavaScript has had a turbulent history but has recently become the focus of a concerted standardization and modernization effort, introducing new features that make JavaScript easier to use. The problem is that there are still lots of JavaScript runtimes that don’t support these modern features, especially older browsers, which constrains JavaScript development to the small set of language features that are universally supported. JavaScript can be a challenging language to master, and this is made worse when the features intended to make development easier cannot be used.

 The TypeScript compiler can transform JavaScript code written using modern features into code that conforms to older versions of the JavaScript language. This allows recent JavaScript features to be used with TypeScript during development while allowing older JavaScript runtimes to execute the code that the project produces.

 The TypeScript compiler does a good job of dealing with most language features, but some features can’t be translated effectively for older runtimes. If the earliest versions of JavaScript are your target, you will find that not all modern JavaScript features can be used during development because the TypeScript compiler doesn’t have the means to represent them in legacy JavaScript.

 That said, the need to generate legacy JavaScript code isn’t important in all projects because the TypeScript compiler is just one part of an extended toolchain. The TypeScript compiler is responsible for applying the TypeScript features, but the result is modern JavaScript code that is further processed by other tools. This approach is commonly used in web application development, and you will see examples in part 3.

 1.2 What do you need to know?

 If you decide that TypeScript is the right choice for your project, then you should be familiar with the basics of JavaScript development. I provide a primer for the JavaScript features that are useful to understand TypeScript in chapters 3 and 4, but this isn’t a complete JavaScript tutorial. In part 3 of this book, I demonstrate how TypeScript can be used with popular web application development frameworks, and knowledge of HTML and CSS is required for these examples.

 1.3 How do you set up your development environment?

 The development tools needed for TypeScript development are set up in chapter 2, where you will create your first TypeScript application. Some later chapters require additional packages, but full instructions are provided.

 1.4 What Is the structure of this book?

 This book is split into three parts, each of which covers a set of related topics.

 Part 1, “Getting Started with TypeScript”: Part 1 of this book provides the information you need to get started with TypeScript development. It includes a quick dive into building a TypeScript application, and a primer chapter on important features provided by JavaScript. Chapters 5 and 6 introduce the TypeScript development tools.

 Part 2, “Understanding TypeScript”: Part 2 of this book covers the TypeScript features for developer productivity, including static types. TypeScript provides a lot of different type features, which I describe in-depth and demonstrate with examples.

 Part 3, “Creating Applications with TypeScript”: TypeScript isn’t used on its own, so part 3 of this book shows you how to use TypeScript to create web applications using the most popular web application frameworks. These chapters explain the TypeScript features that are useful for each framework and demonstrate how to achieve tasks commonly required during web application development. To provide the foundation for understanding what these frameworks do, I also show you how to create a stand-alone web application that doesn’t rely on a web application framework.

 1.5 Are there lots of examples?

 There are loads of examples. The best way to learn TypeScript is by example, and I have packed as many of them into this book as I can. To maximize the number of examples in this book, I have adopted a simple convention to avoid listing the same code or content repeatedly. When I create a file, I will show its full contents, just as I have in listing 1.1. I include the name of the file and its folder in the listing’s header, and I show the changes that I have made in bold.

 Listing 1.1 Asserting an Unknown Value in the index.ts File in the src Folder

 function calculateTax(amount: number, format: boolean): string | number {
 const calcAmount = amount * 1.2;
 return format ? '$${calcAmount.toFixed(2)}' : calcAmount;
}

let taxValue = calculateTax(100, false);

switch (typeof taxValue) {
 case "number":
 console.log('Number Value: ${taxValue.toFixed(2)}');
 break;
 case "string":
 console.log('String Value: ${taxValue.charAt(0)}');
 break;
 default:
 let value: never = taxValue;
 console.log('Unexpected type for value: ${value}');
}

let newResult: unknown = calculateTax(200, false);
let myNumber: number = newResult as number;
console.log('Number value: ${myNumber.toFixed(2)}');

 This is a listing from chapter 7, which shows the contents of a file called index.ts that can be found in the src folder. Don’t worry about the content of the listing or the purpose of the file; just be aware that this type of listing contains the complete contents of a file and that the changes you need to make to follow the example are shown in bold.

 Some code files become long, and the feature I am describing requires only a small change. Rather than list the complete file, I use an ellipsis (three periods in series) to indicate a partial listing, which shows just a portion of the file, as shown in listing 1.2.

 Listing 1.2 Configuring Tools in the package.json File in the reactapp Folder

 ...
"scripts": {
 "json": "json-server data.js -p 4600",
 "serve": "react-scripts start",
 "start": "npm-run-all -p serve json",
 "build": "react-scripts build",
 "test": "react-scripts test",
 "eject": "react-scripts eject"
},
...

 This is a listing from part 3, and it shows a set of changes applied to one part of a larger file. When you see a partial listing, you will know that the rest of the file does not have to change and that only the sections marked in bold are different.

 In some cases, changes are required in different parts of a file, which makes it difficult to show as a partial listing. In this situation, I omit part of the file’s contents, as shown in listing 1.3.

 Listing 1.3 Applying a Decorator in the abstractDataSource.ts File in the src Folder

 import { Product, Order } from "./entities";
import { minimumValue } from "../decorators";

export type ProductProp = keyof Product;

export abstract class AbstractDataSource {
 private _products: Product[];
 private _categories: Set<string>;
 public order: Order;
 public loading: Promise<void>;

 constructor() {
 this._products = [];
 this._categories = new Set<string>();
 this.order = new Order();
 this.loading = this.getData();
 }

 @minimumValue("price", 30)
 async getProducts(sortProp: ProductProp = "id",
 category? : string): Promise<Product[]> {
 await this.loading;
 return this.selectProducts(this._products, sortProp, category);
 }

 // ...other methods omitted for brevity...
}

 In this listing, the changes are still marked in bold, and the parts of the file that are omitted from the listing are not affected by this example.

 1.6 Where can you get the example code?

 You can download the example projects for all the chapters in this book from https://github.com/manningbooks/essential-typescript-5. The download is available without charge and contains everything that you need to follow the examples without having to type in all of the code.

 1.7 What if you have problems following the examples?

 The first thing to do is to go back to the start of the chapter and begin over. Most problems are caused by skipping a step or not fully applying the changes shown in a listing. Pay close attention to the emphasis in code listings, which highlights the changes that are required.

 Next, check the errata/corrections list, which is included in the book’s GitHub repository. Technical books are complex, and mistakes are inevitable, despite my best efforts and those of my editors. Check the errata list for the list of known errors and instructions to resolve them.

 If you still have problems, then download the project for the chapter you are reading from the book’s GitHub repository, https://github.com/manningbooks/essential-typescript-5, and compare it to your project. I created the code for the GitHub repository by working through each chapter, so you should have the same files with the same contents in your project.

 If you still can’t get the examples working, then you can contact me at adam@adam-freeman.com for help. Please make it clear in your email which book you are reading, and which chapter/example is causing the problem. A page number or code listing is always helpful. Please remember that I get a lot of emails and that I may not respond immediately.

 1.7.1 What if you find an error in the book?

 You can report errors to me by email at adam@adam-freeman.com, although I ask that you first check the errata/corrections list for this book, which you can find in the book’s GitHub repository at https://github.com/manningbooks/essential-typescript-5, in case it has already been reported.

 I add errors that are likely to confuse readers, especially problems with example code, to the errata/corrections file on the GitHub repository, with a grateful acknowledgment to the first reader who reported it. I also publish a list of less serious issues, which usually means errors in the text surrounding examples, and which are unlikely to cause confusion.

 Errata bounty

 Manning has agreed to give a free ebook to readers who are the first to report errors that make it onto the GitHub errata list for this book. Readers can select any Manning ebook, not just my books.

 This is an entirely discretionary and experimental program. Discretionary means that only I decide which errors are listed in the errata and which reader is the first to make a report. Experimental means Manning may decide not to give away any more books at any time for any reason. There are no appeals, and this is not a promise or a contract or any kind of formal offer or competition. Or, put another way, this is a nice and informal way to say thank you and to encourage readers to report mistakes that I have missed when writing this book.

 1.8 How do you contact the author?

 You can email me at adam@adam-freeman.com. It has been a few years since I started publishing an email address in my books. I wasn’t entirely sure that it was a good idea, but I am glad that I did it. I have received emails from around the world, from readers working or studying in every industry, and—for the most part, anyway—the emails are positive, polite, and a pleasure to receive.

 I try to reply promptly, but I get many emails, and sometimes I get a backlog, especially when I have my head down trying to finish writing a book. I always try to help readers who are stuck with an example in the book, although I ask that you follow the steps described earlier in this chapter before contacting me.

 While I welcome reader emails, there are some common questions for which the answers will always be “no.” I am afraid that I won’t write the code for your new startup, help you with your college assignment, get involved in your development team’s design dispute, or teach you how to program.

 1.9 What if you really enjoyed this book?

 Please email me at adam@adam-freeman.com and let me know. It is always a delight to hear from a happy reader, and I appreciate the time it takes to send those emails. Writing these books can be difficult, and those emails provide essential motivation to persist at an activity that can sometimes feel impossible.

1.10 What if this book has made you angry?

 You can still email me at adam@adam-freeman.com, and I will still try to help you. Bear in mind that I can help only if you explain what the problem is and what you would like me to do about it. You should understand that sometimes the only outcome is to accept I am not the writer for you and that we will have closure only when you return this book and select another. I’ll give careful thought to whatever has upset you, but after 25 years of writing books, I have come to accept that not everyone enjoys reading the books I like to write.

 Summary

 In this chapter, I explained when TypeScript is a good choice for projects. I also outlined the content and structure of this book, explained where to get the source code, and talked about how to contact me if you have problems with the examples in this book.

 	
 TypeScript is a superset of JavaScript and requires an understanding of JavaScript for effective use.

 	
 TypeScript is not a subset of C#, despite a similar code style.

 	
 TypeScript’s main feature is adding static types to JavaScript.

 	
 The TypeScript compiler can target specific JavaScript versions, which allows recent language features to be used in applications that run on older runtimes.

 In the next chapter, I give you a primer for the JavaScript type system, which provides the underpinnings for the features of TypeScript.

 Part 1.

 2 Your first TypeScript application

 This chapter covers

 	Preparing the tools required for TypeScript development

 	Creating and configuring a TypeScript project

 	Using the TypeScript compiler to generate pure JavaScript code

 	Executing pure JavaScript code using the Node.js runtime

 	Preparing a TypeScript project for use with ECMAScript modules

 	Installing and using a third-party JavaScript package

 	Using type declarations for a third-party JavaScript package

 The best way to get started with TypeScript is to dive in. In this chapter, I take you through a simple development process to create an application that keeps track of to-do items. Later chapters show how TypeScript features work in detail, but a simple example will be enough to demonstrate how the basic TypeScript features work. Don’t worry if you don’t understand everything in this chapter. The idea is just to get an overall sense of how TypeScript works and how it fits into an application.

 2.1 Getting ready for this book

 Four packages are required to get ready for this book. Perform each installation described in the following sections and run the test provided for each of them to ensure that the packages work as they should.

 2.1.1 Step 1: Install Node.js

 First, download and install Node.js, also known as Node, from https://nodejs.org/dist/v18.14.0. This URL provides the installers for all supported platforms for the 18.14.0 release, which is the version that I use in this book. During the installation, ensure that Node Package Manager (NPM) is selected for installation. Once the installation is complete, open a new command prompt and run the commands shown in listing 2.1 to check that Node and NPM are working.

 Listing 2.1 Checking Node and NPM

 node --version
npm --version

 The output from the first command should be v18.14.0, indicating that Node is working and the correct version has been installed. The output from the second command should be 8.1.4, which indicates that NPM is working, but the specific version isn’t important.

 2.1.2 Step 2: Install Git

 The second task is to download and install the Git version management tool from https://git-scm.com/downloads. Git isn’t required directly for TypeScript development, but some of the most commonly used packages depend on it. Once you have completed the installation, use a command prompt to run the command shown in listing 2.2 to check that Git is working. You may have to manually configure the executable paths.

 Listing 2.2 Checking Git

 git --version

 At the time of writing, the latest version of Git for Windows and Linux is 2.39.1.

 2.1.3 Step 3: Install TypeScript

 The third step is to install the TypeScript package. Use a command prompt to run the command shown in listing 2.3.

 Listing 2.3 Installing the TypeScript package

 npm install --global typescript@5.0.2

 Once the package has been installed, run the command shown in listing 2.4 to ensure that the compiler was installed correctly.

 Listing 2.4 Testing the TypeScript compiler

 tsc --version

 The TypeScript compiler is called tsc, and the output from the command in listing 2.4 should be Version 5.0.2.

 2.1.4 Step 4: Install a programmer’s editor

 The final step is to install a programmer’s editor that supports TypeScript. Most popular editors can be used for TypeScript development, but if you don’t have a preferred editor, then download and install Visual Studio Code from https://code.visualstudio.com. Visual Studio Code is an open-source, cross-platform code editor that is free to use and is the editor I used while writing the examples for this book.

 If you are using Visual Studio Code, run the command code to start the editor or use the program icon created during installation, and you will see the welcome screen shown in figure 2.1. (You may need to add Visual Studio Code to your command prompt path before using the code command.)

 [image:]

 Figure 2.1 The Visual Studio Code welcome screen

 Tip Some editors will let you specify a different version of TypeScript than the one contained in the project, which can cause errors to be displayed in the code editor even when the command-line tools show successful compilation. If you are using Visual Studio Code, for example, you will see the version of TypeScript that is used displayed at the bottom right of the editor window when you edit a TypeScript file. Click the version that is shown, click Select TypeScript Version, and select the version you require.

 2.2 Creating the project

 Now that the development tools are installed, it is time to start working with TypeScript, which I am going to do by building a simple to-do list application. The most common use for TypeScript is web application development, which I demonstrate for the popular frameworks in part 3 of this book. But for this chapter, I build a command-line application that will keep the focus on TypeScript and avoid the complexity of a web application framework.

 The application will display a list of tasks, allow new tasks to be created, and allow existing tasks to be marked as complete. There will also be a filter to include already completed tasks in the list. Once the core features are in place, I will add support for storing data persistently so that changes are not lost when the application is terminated.

 2.2.1 Initializing the project

 To prepare a project folder for this chapter, open a command prompt, navigate to a convenient location, and create a folder named todo. Run the commands shown in listing 2.5 to navigate into the folder and initialize it for development.

 Listing 2.5 Initializing the project folder

 cd todo
npm init --yes

 The npm init command creates a package.json file, which is used to keep track of the packages required by the project and also to configure the development tools.

 2.2.2 Creating the compiler configuration file

 The TypeScript package installed in listing 2.3 includes a compiler, named tsc, which compiles TypeScript code to produce pure JavaScript. To define the configuration for the TypeScript compiler, create a file called tsconfig.json in the todo folder with the content shown in listing 2-6.

 Listing 2.6 The contents of the tsconfig.json file in the todo folder

 {
 "compilerOptions": {
 "target": "ES2022",
 "outDir": "./dist",
 "rootDir": "./src",
 "module": "CommonJS"
 }
}

 I describe the TypeScript compiler in chapter 5, but these settings tell the compiler that I want to use the latest version of JavaScript, that the project’s TypeScript files will be found in the src folder, that the output it produces should be placed in the dist folder, and that the CommonJS setting should be used when loading code from separate files.

 2.2.3 Adding a TypeScript code file

 TypeScript code files have the ts file extension. To add the first code file to the project, create the todo/src folder and add to it a file called index.ts with the code shown in listing 2.7. This file follows the popular convention of calling the main file for an application index, followed by the ts file extension to indicate the file contains JavaScript code.

 Listing 2.7 The contents of the index.ts file in the src folder

 console.clear();
console.log("Adam's Todo List");

 The file contains regular JavaScript statements that use the console object to clear the command-line window and write out a simple message, which is just enough functionality to make sure that everything is working before starting on the application features.

 2.2.4 Compiling and executing the code

 TypeScript files must be compiled to produce pure JavaScript code that can be executed by browsers or the Node.js runtime installed at the start of this chapter. Use the command line to run the compiler in the todo folder using the command in listing 2.8.

 Listing 2.8 Running the TypeScript compiler

 tsc

 The compiler reads the configuration settings in the tsconfig.json file and locates the TypeScript files in the src folder. The compiler creates the dist folder and uses it to write out the JavaScript code. If you examine the dist folder, you will see that it contains an index.js file, where the js file extension indicates the file contains JavaScript code. If you examine the contents of the index.js file, you will see that it contains the following statements:

 console.clear();
console.log("Adam's Todo List");

 The TypeScript file and the JavaScript file contain the same statements because I have not yet used any TypeScript features. As the application starts to take shape, the contents of the TypeScript file will start to diverge from the JavaScript files that the compiler produces.

 Caution Do not make changes to the files in the dist folder because they will be overwritten the next time the compiler runs. In TypeScript development, changes are made to files with the ts extension, which are compiled into JavaScript files with the js extension.

 To execute the compiled code, use the command prompt to run the command shown in listing 2.9 in the todo folder.

 Listing 2.9 Executing the compiled code

 node dist/index.js

 The node command starts the Node.js JavaScript runtime, and the argument specifies the file whose contents should be executed. If the development tools have been installed successfully, the command-prompt window should be cleared and display the following output:

 Adam's Todo List

 2.2.5 Defining the data model

 The example application will manage a list of to-do items. The user will be able to see the list, add new items, mark items as complete, and filter the items. In this section, I start using TypeScript to define the data model that describes the application’s data and the operations that can be performed on it. To start, add a file called todoItem.ts to the src folder with the code shown in listing 2.10.

 Listing 2.10 The contents of the todoItem.ts file in the src folder

 export class TodoItem {
 public id: number;
 public task: string;
 public complete: boolean = false;

 public constructor(id: number, task: string,
 complete: boolean = false) {
 this.id = id;
 this.task = task;
 this.complete = complete;
 }

 public printDetails() : void {
 console.log('${this.id}\t${this.task} ${this.complete
 ? "\t(complete)": ""}');
 }
}

 Classes are templates that describe a data type. I describe classes in more detail in chapter 4, but the code in listing 2.10 will look familiar to any programmer with knowledge of languages such as C# or Java, even if not all of the details are obvious.

 The class in listing 2.10 is named TodoItem, and it defines id, task, and complete properties and a printDetails method that writes a summary of the to-do item to the console. TypeScript is built on JavaScript, and the code in listing 2.10 is a mix of standard JavaScript features with enhancements that are specific to TypeScript. JavaScript supports classes with constructors, properties, and methods, for example, but features such as access control keywords (such as the public keyword) are provided by TypeScript. The headline TypeScript feature is static typing, which allows the type of each property and parameter in the TodoItem class to be specified, like this:

 ...
public id: number;
...

 This is an example of a type annotation, and it tells the TypeScript compiler that the id property can only be assigned values of the number type. As I explain in chapter 3, JavaScript has a fluid approach to types, and the biggest benefit that TypeScript provides is making data types more consistent with other programming languages while still allowing access to the normal JavaScript approach when needed.

 Tip Don’t worry if you are not familiar with the way that JavaScript handles data types. chapters 3 and 4 provide details about the JavaScript features you need to understand to be effective with TypeScript.

 I wrote the class in listing 2.10 to emphasize the similarity between TypeScript and languages such as C# and Java, but this isn’t the way that TypeScript classes are usually defined. listing 2.11 revises the TodoItem class to use TypeScript features that allow classes to be defined concisely.

 Listing 2.11 Using more concise code in the todoItem.ts file in the src folder

 export class TodoItem {

 constructor(public id: number,
 public task: string,
 public complete: boolean = false) {
 // no statements required
 }

 printDetails() : void {
 console.log('${this.id}\t${this.task} ${this.complete
 ? "\t(complete)": ""}');
 }
}

 Support for static data types is only part of the broader TypeScript objective of safer and more predictable JavaScript code. The concise syntax used for the constructor in listing 2.11 allows the TodoItem class to receive parameters and use them to create instance properties in a single step, avoiding the error-prone process of defining a property and explicitly assigning it the value received by a parameter.

 The change to the printDetails method removes the public access control keyword, which isn’t needed because TypeScript assumes that all methods and properties are public unless another access level is used. (The public keyword is still used in the constructor because that’s how the TypeScript compiler recognizes that the concise constructor syntax is being used, as explained in chapter 11.)

 Creating the todo item collection class

 The next step is to create a class that will collect together the to-do items so they can be managed more easily. Add a file named todoCollection.ts to the src folder with the code shown in listing 2.12.

 Listing 2.12 The contents of the todoCollection.ts file in the src folder

 import { TodoItem } from "./todoItem";

export class TodoCollection {
 private nextId: number = 1;

 constructor(public userName: string,
 public todoItems: TodoItem[] = []) {
 // no statements required
 }

 addTodo(task: string): number {
 while (this.getTodoById(this.nextId)) {
 this.nextId++;
 }
 this.todoItems.push(new TodoItem(this.nextId, task));
 return this.nextId;
 }

 getTodoById(id: number) : TodoItem {
 return this.todoItems.find(item => item.id === id);
 }

 markComplete(id: number, complete: boolean) {
 const todoItem = this.getTodoById(id);
 if (todoItem) {
 todoItem.complete = complete;
 }
 }
}

 Checking the basic data model features

 Before going any further, I am going to make sure the initial features of the TodoCollection class work as expected. I explain how to perform unit testing for TypeScript projects in chapter 6, but for this chapter, it will be enough to create some TodoItem objects and store them in a TodoCollection object. listing 2.13 replaces the code in the index.ts file, removing the placeholder statements added at the start of the chapter.

 Listing 2.13 Testing the data model in the index.ts file in the src folder

 import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection = new TodoCollection("Adam", todos);

console.clear();
console.log('${collection.userName}'s Todo List');

let newId = collection.addTodo("Go for run");
let todoItem = collection.getTodoById(newId);

todoItem.printDetails();

 All the statements shown in listing 2.13 use pure JavaScript features. The import statements are used to declare dependencies on the TodoItem and TodoCollection classes, and they are part of the JavaScript modules feature, which allows code to be defined in multiple files (described in chapter 4). Defining an array and using the new keyword to instantiate classes are also standard features, along with the calls to the console object.

 Note The code in listing 2.13 uses features that are recent additions to the JavaScript language. As I explain in chapter 5, the TypeScript compiler makes it easy to use modern JavaScript features, such as the let keyword, even when they are not supported by the JavaScript runtime that will execute the code, such as older browsers. The JavaScript features that are essential to understand for effective TypeScript development are described in chapters 3 and 4.

 The TypeScript compiler tries to help developers without getting in the way. During compilation, the compiler looks at the data types that are used and the type information I applied in the TodoItem and TodoCollection classes and can infer the data types used in listing 2.13. The result is code that doesn’t contain any explicit static type information but that the compiler can check for type safety anyway. To see how this works, listing 2.14 adds a statement to the index.ts file.

 Listing 2.14 Adding a statement in the index.ts file in the src folder

 import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection = new TodoCollection("Adam", todos);

console.clear();
console.log('${collection.userName}'s Todo List');

let newId = collection.addTodo("Go for run");
let todoItem = collection.getTodoById(newId);
todoItem.printDetails();
collection.addTodo(todoItem);

 The new statement calls the TodoCollection.addTodo method using a TodoItem object as the argument. The compiler looks at the definition of the addTodo method in the todoItem.ts file and can see that the method expects to receive a different type of data.

 ...
addTodo(task: string): number {
 while (this.getTodoById(this.nextId)) {
 this.nextId++;
 }
 this.todoItems.push(new TodoItem(this.nextId, task));
 return this.nextId;
}
...

 The type information for the addTodo method tells the TypeScript compiler that the task parameter must be a string and that the result will be a number. (The string and number types are built-in JavaScript features and are described in chapter 3.) Run the command shown in listing 2.15 in the todo folder to compile the code.

 Listing 2.15 Running the compiler

 tsc

 The TypeScript compiler processes the code in the project, detects that the parameter value used to call the addTodo method isn’t the correct data type, and produces the following error:

 src/index.ts:16:20 - error TS2345: Argument of type 'TodoItem' is not
 assignable to parameter of type 'string'.
16 collection.addTodo(todoItem);
                      ~~~~~~~~
Found 1 error in src/index.ts:16


  TypeScript does a good job of figuring out what is going on and identifying problems, allowing you to add as much or as little type information as you like in a project. In this book, I tend to add type information to make the listings easier to follow, since many of the examples in this book are related to how the TypeScript compiler handles data types. Listing 2.16 adds types to the code in the index.ts file and disables the statement that causes the compiler error. 


  Listing 2.16 Adding type information in the index.ts file in the src folder

  import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

console.clear();
console.log('${collection.userName}'s Todo List');

let newId: number = collection.addTodo("Go for run");
let todoItem: TodoItem = collection.getTodoById(newId);
todoItem.printDetails();
//collection.addTodo(todoItem);


  The type information added to the statements in listing 2.16 doesn’t change the way the code works, but it does make the data types being used explicit, which can make the purpose of the code easier to understand and doesn’t require the compiler to infer the data types being used. Run the commands shown in listing 2.17 in the todo folder to compile and execute the code.


  Lis ting 2.17 Compiling and executing

  tsc
node dist/index.js


  When the code is executed, the following output will be produced:

  Adam's Todo List
5       Go for run


  2.2.6 Adding features to the collection class


  The next step is to add new capabilities to the TodoCollection class. First, I am going to change the way that TodoItem objects are stored so that a JavaScript Map is used, as shown in listing 2.18.


  Listing 2.18 Using a map in the todoCollection.ts file in the src folder

  import { TodoItem } from "./todoItem";

export class TodoCollection {
    private nextId: number = 1;
    private itemMap = new Map<number, TodoItem>();
    
    constructor(public userName: string, todoItems: TodoItem[] = []) {
        todoItems.forEach(item => this.itemMap.set(item.id, item));
    }
 
    addTodo(task: string): number {
        while (this.getTodoById(this.nextId)) {
            this.nextId++;
        }        
        this.itemMap.set(this.nextId, new TodoItem(this.nextId, task));
        return this.nextId;
    }
 
    getTodoById(id: number) : TodoItem {
        return this.itemMap.get(id);
    }
 
    markComplete(id: number, complete: boolean) {
        const todoItem = this.getTodoById(id);
        if (todoItem) {
            todoItem.complete = complete;
        }
    }
}


  TypeScript supports generic types, which are placeholders for types that are resolved when an object is created. The JavaScript Map, for example, is a general-purpose collection that stores key/value pairs. Because JavaScript has such a dynamic type system, a Map can be used to store any mix of data types using any mix of keys. To restrict the types that can be used with the Map in listing 2.18, I provided generic type arguments that tell the TypeScript compiler which types are allowed for the keys and values. 

  ...
private itemMap = new Map<number, TodoItem>();
...


  The generic type arguments are enclosed in angle brackets (the < and > characters), and the Map in listing 2.18 is given generic type arguments that tell the compiler that the Map will store TodoItem objects using number values as keys. The compiler will produce an error if a statement attempts to store a different data type in the Map or use a key that isn’t a number value. Generic types are an important TypeScript feature and are described in detail in chapter 12.


  Providing access to to-do items


  The TodoCollection class defines a getTodoById method, but the application will need to display a list of items, optionally filtered to exclude completed tasks. Listing 2.19 adds a method that provides access to the TodoItem objects that the TodoCollection is managing.


  Listing 2.19 Providing access to items in the todoCollection.ts file in the src folder

  import { TodoItem } from "./todoItem";

export class TodoCollection {
    private nextId: number = 1;
    private itemMap = new Map<number, TodoItem>();
    
    constructor(public userName: string, todoItems: TodoItem[] = []) {
        todoItems.forEach(item => this.itemMap.set(item.id, item));
    }
 
    addTodo(task: string): number {
        while (this.getTodoById(this.nextId)) {
            this.nextId++;
        }        
        this.itemMap.set(this.nextId, new TodoItem(this.nextId, task));
        return this.nextId;
    }
 
    getTodoById(id: number) : TodoItem {
        return this.itemMap.get(id);
    }
 
    getTodoItems(includeComplete: boolean): TodoItem[] {
        return [...this.itemMap.values()]
            .filter(item => includeComplete || !item.complete);
    }
 
    markComplete(id: number, complete: boolean) {
        const todoItem = this.getTodoById(id);
        if (todoItem) {
            todoItem.complete = complete;
        }
    }    
}


  The getTodoItems method gets the objects from the Map using its values method and uses them to create an array using the JavaScript spread operator, which is three periods. The objects are processed using the filter method to select the objects that are required, using the includeComplete parameter to decide which objects are needed.


  The TypeScript compiler uses the information it has been given to follow the types through each step. The generic type arguments used to create the Map tell the compiler that it contains TodoItem objects, so the compiler knows that the values method will return TodoItem objects and that this will also be the type of the objects in the array. Following this through, the compiler knows that the function passed to the filter method will be processing TodoItem objects and knows that each object will define a complete property. If I try to read a property or method not defined by the TodoItem class, the TypeScript compiler will report an error. Similarly, the compiler will report an error if the result of the return statement doesn’t match the result type declared by the method.


  In listing 2.20, I have updated the code in the index.ts file to use the new TodoCollection class feature and display a simple list of to-do items to the user.


  Listing 2.20 Getting the collection items in the index.ts file in the src folder

  import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

console.clear();
console.log('${collection.userName}'s Todo List');

//let newId: number = collection.addTodo("Go for run");
//let todoItem: TodoItem = collection.getTodoById(newId);
//todoItem.printDetails();
//collection.addTodo(todoItem);
collection.getTodoItems(true).forEach(item => item.printDetails());


  The new statement calls the getTodoItems method defined in listing 2.19 and uses the standard JavaScript forEach method to write a description of each TodoItem object using the console object.


  Run the commands shown in listing 2.21 in the todo folder to compile and execute the code.


  Listing 2.21 Compiling and executing

  tsc
node dist/index.js


  When the code is executed, the following output will be produced:

  Adam's Todo List
1       Buy Flowers
2       Get Shoes
3       Collect Tickets
4       Call Joe        (complete)


  Removing completed tasks


  As tasks are added and then marked complete, the number of items in the collection will grow and eventually become difficult for the user to manage. Listing 2.22 adds a method that removes the completed items from the collection.


  Listing 2.22 Removing completed items from the todoCollection.ts file in the src folder

  import { TodoItem } from "./todoItem";

export class TodoCollection {
    private nextId: number = 1;
    private itemMap = new Map<number, TodoItem>();
    
    constructor(public userName: string, todoItems: TodoItem[] = []) {
        todoItems.forEach(item => this.itemMap.set(item.id, item));
    }
 
    addTodo(task: string): number {
        while (this.getTodoById(this.nextId)) {
            this.nextId++;
        }        
        this.itemMap.set(this.nextId, new TodoItem(this.nextId, task));
        return this.nextId;
    }
 
    getTodoById(id: number) : TodoItem {
        return this.itemMap.get(id);
    }
 
    getTodoItems(includeComplete: boolean): TodoItem[] {
        return [...this.itemMap.values()]
            .filter(item => includeComplete || !item.complete);
    }
 
    markComplete(id: number, complete: boolean) {
        const todoItem = this.getTodoById(id);
        if (todoItem) {
            todoItem.complete = complete;
        }
    }
 
    removeComplete() {
        this.itemMap.forEach(item => {
            if (item.complete) {
                this.itemMap.delete(item.id);
            }
        })
    }
}


  The removeComplete method uses the Map.forEach method to inspect each TodoItem stored in the Map and calls the delete method for those whose complete property is true. Listing 2.23 updates the code in the index.ts file to invoke the new method.


  Listing 2.23 Testing item removal in the index.ts file in the src folder

  import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

console.clear();
console.log('${collection.userName}'s Todo List');

//let newId: number = collection.addTodo("Go for run");
//let todoItem: TodoItem = collection.getTodoById(newId);
//todoItem.printDetails();
//collection.addTodo(todoItem);
collection.removeComplete();
collection.getTodoItems(true).forEach(item => item.printDetails());


  Run the commands shown in listing 2.24 in the todo folder to compile and execute the code.


  Listing 2.24 Compiling and executing

  tsc
node dist/index.js


  When the code is executed, the following output will be produced, showing that the completed task has been removed from the collection:

  Adam's Todo List
1       Buy Flowers
2       Get Shoes
3       Collect Tickets


  Providing item counts


  The final feature I need for the TodoCollection class is to provide counts of the total number of TodoItem objects, the number that are complete, and the number still outstanding.


  I have focused on classes in earlier listings because this is the way that most programmers are used to creating data types. JavaScript objects can also be defined using literal syntax, for which TypeScript can check and enforce static types in the same way as for objects created from classes. When dealing with object literals, the TypeScript compiler focuses on the combination of property names and the types of their values, which is known as an object’s shape. A specific combination of names and types is known as a shape type. Listing 2.25 adds a method to the TodoCollection class that returns an object that describes the items in the collection. 


  Listing 2.25 Using a shape type in the todoCollection.ts file in the src folder

  import { TodoItem } from "./todoItem";

type ItemCounts = {
    total: number,
    incomplete: number
}

export class TodoCollection {
    private nextId: number = 1;
    private itemMap = new Map<number, TodoItem>();
    
    constructor(public userName: string, todoItems: TodoItem[] = []) {
        todoItems.forEach(item => this.itemMap.set(item.id, item));
    }
 
    addTodo(task: string): number {
        while (this.getTodoById(this.nextId)) {
            this.nextId++;
        }        
        this.itemMap.set(this.nextId, new TodoItem(this.nextId, task));
        return this.nextId;
    }
 
    getTodoById(id: number) : TodoItem {
        return this.itemMap.get(id);
    }
 
    getTodoItems(includeComplete: boolean): TodoItem[] {
        return [...this.itemMap.values()]
            .filter(item => includeComplete || !item.complete);
    }
 
    markComplete(id: number, complete: boolean) {
        const todoItem = this.getTodoById(id);
        if (todoItem) {
            todoItem.complete = complete;
        }
    }
    
    removeComplete() {
        this.itemMap.forEach(item => {
            if (item.complete) {
                this.itemMap.delete(item.id);
            }
        })
    }
 
    getItemCounts(): ItemCounts {
        return {
            total: this.itemMap.size,
            incomplete: this.getTodoItems(false).length
        };
    }
}


  The type keyword is used to create a type alias, which is a convenient way to assign a name to a shape type. The type alias in listing 2.25 describes objects that have two number properties, named total and incomplete. The type alias is used as the result of the getItemCounts method, which uses the JavaScript object literal syntax to create an object whose shape matches the type alias. Listing 2.26 updates the index.ts file so that the number of incomplete items is displayed to the user. 


  Listing 2.26 Displaying item counts in the index.ts file in the src folder

  import { TodoItem } from "./todoItem";
import { TodoCollection } from "./todoCollection";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

console.clear();
//console.log('${collection.userName}'s Todo List');
console.log('${collection.userName}'s Todo List ' 
    + '(${ collection.getItemCounts().incomplete } items to do)');  
 
//collection.removeComplete();
collection.getTodoItems(true).forEach(item => item.printDetails());


  Run the commands shown in listing 2.27 in the todo folder to compile and execute the code.


  Listing 2.27 Compiling and executing

  tsc
node dist/index.js


  When the code is executed, the following output will be produced:

  Adam's Todo List (3 items to do)
1       Buy Flowers
2       Get Shoes
3       Collect Tickets
4       Call Joe        (complete)


  2.3 Using a third-party package


  The basic features are in place, but there is room for improvement. One of the joys of writing JavaScript code is the ecosystem of packages that can be incorporated into projects. TypeScript allows any JavaScript package to be used but with the addition of static type support. I am going to use the excellent Inquirer.js package (https://github.com/SBoudrias/Inquirer.js) to deal with prompting the user for commands and processing responses.


  2.3.1 Preparing for the third-party package


  One of the drawbacks of writing JavaScript code is the number of competing standards for distributing and using packages. There was no standard package format when JavaScript was first released, and several competing standards arose. The JavaScript language specification now includes a common standard for modules, referred to as ECMAScript modules. Most JavaScript runtimes, including Node.js, are implementing support for ECMAScript modules, and most popular JavaScript packages are being updated so they are published in this format.


  TypeScript supports ECMAScript modules but requires some changes to the project to enable this feature. Listing 2.28 adds a configuration property to the package.json file that denotes that this project requires ECMAScript module support.


  Listing 2.28 Adding a configuration property in the package.json file in the todo folder

  {
  "name": "todo",
  "version": "1.0.0",
  "description": "",
  "main": "index.js",
  "scripts": {
    "test": "echo \"Error: no test specified\" && exit 1"
  },
  "keywords": [],
  "author": "",
  "license": "ISC",
  "type": "module"
}


  Listing 2.29 changes the TypeScript compiler configuration so that it looks for the type property in the package.json file to determine which type of modules are being used.


  Listing 2.29 Configuring the compiler in the tsconfig.json file in the todo folder

  {
    "compilerOptions": {
        "target": "ES2022",
        "outDir": "./dist",
        "rootDir": "./src",
        "module": "Node16"        
    }
}


  So far, I have been able to declare dependencies between code files without specifying a file extension, such as with this statement from the todoCollection.ts file:

  ...
import { TodoItem } from "./todoItem";
...


  I describe import statements in more detail in chapter 4, but what’s important for this chapter is that I specified the file name without an extension. But the way that Node.js has implemented ECMAScript modules requires the file extension to be included, as shown in listing 2.30.


  Listing 2.30 Adding a file extension in the todoCollection.ts file in the src folder

  import { TodoItem } from "./todoItem.js";

type ItemCounts = {
    total: number,
    incomplete: number
}
...


  The oddity here is that the import statement must specify the JavaScript file that will be generated from the TypeScript file. There are reasons for this, which I explain in later chapters, and the same change is required to the import statements in the index.ts file, as shown in listing 2.31.


  Listing 2.31 Adding file extensions in the index.ts file in the src folder

  import { TodoItem } from "./todoItem.js";
import { TodoCollection } from "./todoCollection.js";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];
...


  2.3.2 Installing and using the third-party package


  To add Inquirer.js to the project, run the command shown in listing 2.32 in the todo folder.


  Listing 2.32 Adding a package to the project

  npm install inquirer@9.1.4


  Packages are added to TypeScript projects just as they are for pure JavaScript projects, using the npm install command. To get started with the new package, I added the statements shown in listing 2.33 to the index.ts file.


  Listing 2.33 Using a new package in the index.ts file in the src folder

  import { TodoItem } from "./todoItem.js";
import { TodoCollection } from "./todoCollection.js";
import inquirer from "inquirer";

let todos: TodoItem[] = [
    new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
    new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);

function displayTodoList(): void {
    console.log('${collection.userName}'s Todo List ' 
        + '(${ collection.getItemCounts().incomplete } items to do)');
    collection.getTodoItems(true).forEach(item => item.printDetails());
}

enum Commands {
    Quit = "Quit"
}

function promptUser(): void {
    console.clear();
    displayTodoList();
    inquirer.prompt({ 
        type: "list", 
        name: "command",
        message: "Choose option",
        choices: Object.values(Commands)
    }).then(answers => {
        if (answers["command"] !== Commands.Quit) {
            promptUser();
        }
    })
}

promptUser();


  TypeScript doesn’t get in the way of using JavaScript code, and the changes in listing 2.33 make use of the Inquirer.js package to prompt the user and offer a choice of commands. There is only one command available currently, which is Quit, but I’ll add more useful features shortly.


  Tip I don’t describe the Inquirer.js API in detail in this book because it is not directly related to TypeScript. See https://github.com/SBoudrias/Inquirer.js for details if you want to use Inquirer.js in your own projects.


  The inquirer.prompt method is used to prompt the user for a response and is configured using a JavaScript object. The configuration options I have chosen present the user with a list that can be navigated using the arrow keys, and a selection can be made by pressing Return. When the user makes a selection, the function passed to the then method is invoked, and the selection is available through the answers.command property.


  Listing 2.33 shows how TypeScript code and the JavaScript code from the Inquirer.js package can be used seamlessly together. The enum keyword is a TypeScript feature that allows values to be given names, as described in chapter 9, and will allow me to define and refer to commands without needing to duplicate string values through the application. Values from the enum are used alongside the Inquirer.js features, like this:

  ...
if (answers["command"] !== Commands.Quit) {
...


  Run the commands shown in listing 2.34 in the todo folder to compile and execute the code.


  Listing 2.34 Compiling and executing

  tsc
node dist/index.js


  When the code is executed, the list of to-do items will be displayed, along with a prompt to select a command, as shown in figure 2.2, although there is only one command available, which is Quit.


  
    [image: ]


    Figure 2.2 Prompting the user for a command

  


  If you press the Return key, the Quit command will be selected, and the application will terminate.


  2.3.3 Adding type declarations for the JavaScript package


  TypeScript doesn’t prevent JavaScript code from being used, but it isn’t able to provide any assistance for its use. The compiler doesn’t have any insight into the data types that are being used by Inquirer.js and has to trust that I am using the right types of arguments to prompt the user and that I am processing the response objects safely. 


  There are two ways to provide TypeScript with the information that it requires for static typing. The first approach is to describe the types yourself. I cover the features that TypeScript provides for describing JavaScript code in chapter 14. Manually describing JavaScript code isn’t difficult, but it does take some time and requires good knowledge of the code you are describing.


  The second approach is to use type declarations provided by someone else. The Definitely Typed project is a repository of TypeScript type declarations for thousands of JavaScript packages, including the Inquirer.js package. To install the type declarations, run the command shown in listing 2.35 in the todo folder.


  Listing 2.35 Installing type definitions

  npm install --save-dev @types/inquirer@9.0.3


  Type declarations are installed using the npm install command, just like JavaScript packages. The save-dev argument is used for packages that are used in development but that are not part of the application. The package name is @types/ followed by the name of the package for which type descriptions are required. For the Inquirer.js package, the type declarations package is @types/inquirer because inquirer is the name used to install the JavaScript package.


  Note See https://github.com/DefinitelyTyped/DefinitelyTyped for the details of the Definitely Typed project and the packages for which type declarations are available.


  The TypeScript compiler detects type declarations automatically, and the package installed by the command in listing 2.35 allows the compiler to check the data types used by the Inquirer.js API. To demonstrate the effect of the type declarations, listing 2.36 uses a configuration property that isn’t supported by Inquirer.js.


  Listing 2.36 Adding a property in the index.ts file in the src folder

  ...
function promptUser(): void {
    console.clear();
    inquirer.prompt({ 
            type: "list", 
            name: "command",
            message: "Choose option",
            choices: Object.values(Commands),
            badProperty: true
    }).then(answers => {
        // no action required 
        if (answers["command"] !== Commands.Quit) {
            promptUser();
        }
    })
}
...


  There is no configuration property named badProperty in the Inquirer.js API. Run the command shown in listing 2.37 in the todo folder to compile the code in the project.


  Listing 2.37 Running the compiler

  tsc


  The compiler uses the type information installed in listing 2.35 and reports the following error:

  src/index.ts:25:9 - error TS2769: No overload matches this call.
  Overload 1 of 2, '(questions: QuestionCollection<any>, initialAnswers?: 
    Partial<any>): Promise<any> & { ui: Prompt<any>; }', 
      gave the following error.
    Type '"list"' is not assignable to type '"number"'.
  Overload 2 of 2, '(questions: QuestionCollection<any>, initialAnswers?: 
    Partial<any>): Promise<any>', gave the following error.
    Type '"list"' is not assignable to type '"number"'.
25         type: "list",
           ~~~~
Found 1 error in src/index.ts:25

 The type declaration allows TypeScript to provide the same set of features throughout the application, even though the Inquirer.js package is pure JavaScript. However, as this example shows, there can be limitations to this feature, and the addition of a property that isn’t supported has produced an error about the value assigned to the type property. This happens because it can be difficult to describe the types that pure JavaScript expects, and sometimes the error messages can be more of a general indication that something is wrong.

 2.4 Adding commands

 The example application doesn’t do a great deal at the moment and requires additional commands. In the sections that follow, I add a series of new commands and provide the implementation for each of them.

 2.4.1 Filtering items

 The first command I will add allows the user to toggle the filter to include or exclude completed items, as shown in listing 2.38.

 Listing 2.38 Filtering items in the index.ts file in the src folder

 import { TodoItem } from "./todoItem.js";
import { TodoCollection } from "./todoCollection.js";
import inquirer from "inquirer";

let todos: TodoItem[] = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);
let showCompleted = true;

function displayTodoList(): void {
 console.log('${collection.userName}'s Todo List '
 + '(${ collection.getItemCounts().incomplete } items to do)');
 //collection.getTodoItems(true).forEach(item => item.printDetails());
 collection.getTodoItems(showCompleted)
 .forEach(item => item.printDetails());

}

enum Commands {
 Toggle = "Show/Hide Completed",

 Quit = "Quit"
}

function promptUser(): void {
 console.clear();
 displayTodoList();
 inquirer.prompt({
 type: "list",
 name: "command",
 message: "Choose option",
 choices: Object.values(Commands),
 //badProperty: true
 }).then(answers => {
 switch (answers["command"]) {
 case Commands.Toggle:
 showCompleted = !showCompleted;
 promptUser();
 break;
 }
 })
}

promptUser();

 The process for adding commands is to define a new value for the Commands enum and the statements that respond when the command is selected. In this case, the new value is Toggle, and when it is selected, the value of the showCompleted variable is changed so that the displayTodoList function includes or excludes completed items. Run the commands shown in listing 2.39 in the todo folder to compile and execute the code.

 Listing 2.39 Compiling and executing

 tsc
node dist/index.js

 Select the Show/Hide Completed option and press Return to toggle the completed tasks in the list, as shown in figure 2.3.

 [image:]

 Figure 2.3 Toggling completed items

 2.4.2 Adding tasks

 The example application isn’t much use unless the user can create new tasks. Listing 2.40 adds support for creating new TodoItem objects.

 Listing 2.40 Adding tasks in the index.ts file in the src folder

 import { TodoItem } from "./todoItem.js";
import { TodoCollection } from "./todoCollection.js";
import inquirer from "inquirer";

let todos: TodoItem[] = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);
let showCompleted = true;

function displayTodoList(): void {
 console.log('${collection.userName}'s Todo List '
 + '(${ collection.getItemCounts().incomplete } items to do)');
 collection.getTodoItems(showCompleted)
 .forEach(item => item.printDetails());
}

enum Commands {
 Add = "Add New Task",

 Toggle = "Show/Hide Completed",
 Quit = "Quit"
}

function promptAdd(): void {
 console.clear();
 inquirer.prompt({ type: "input", name: "add", message: "Enter task:"})
 .then(answers => {if (answers["add"] !== "") {
 collection.addTodo(answers["add"]);
 }
 promptUser();
 })
}

function promptUser(): void {
 console.clear();
 displayTodoList();
 inquirer.prompt({
 type: "list",
 name: "command",
 message: "Choose option",
 choices: Object.values(Commands),
 }).then(answers => {
 switch (answers["command"]) {
 case Commands.Toggle:
 showCompleted = !showCompleted;
 promptUser();
 break;
 case Commands.Add:
 promptAdd();
 break;
 }
 })
}

promptUser();

 The Inquirer.js package can present different types of questions to the user. When the user selects the Add command, the input question type is used to get the task from the user, which is used as the argument to the TodoCollection.addTodo method. Run the commands shown in listing 2.41 in the todo folder to compile and execute the code.

 Listing 2.41 Compiling and executing

 tsc
node dist/index.js

 Select the Add New Task option, enter some text, and press Return to create a new task, as shown in figure 2.4.

 [image:]

 Figure 2.4 Adding a new task

 2.4.3 Marking tasks complete

 Completing a task is a two-stage process that requires the user to select the item they want to complete. Listing 2.42 adds the commands and an additional prompt that will allow the user to mark tasks complete and remove the completed items.

 Listing 2.42 Completing items in the index.ts file in the src folder

 import { TodoItem } from "./todoItem.js";
import { TodoCollection } from "./todoCollection.js";
import inquirer from "inquirer";

let todos: TodoItem[] = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new TodoCollection("Adam", todos);
let showCompleted = true;

function displayTodoList(): void {
 console.log('${collection.userName}'s Todo List '
 + '(${ collection.getItemCounts().incomplete } items to do)');
 collection.getTodoItems(showCompleted)
 .forEach(item => item.printDetails());
}

enum Commands {
 Add = "Add New Task",
 Complete = "Complete Task",

 Toggle = "Show/Hide Completed",
 Purge = "Remove Completed Tasks",

 Quit = "Quit"
}

function promptAdd(): void {
 console.clear();
 inquirer.prompt({ type: "input", name: "add", message: "Enter task:"})
 .then(answers => {if (answers["add"] !== "") {
 collection.addTodo(answers["add"]);
 }
 promptUser();
 })
}

function promptComplete(): void {
 console.clear();
 inquirer.prompt({ type: "checkbox", name: "complete",
 message: "Mark Tasks Complete",
 choices: collection.getTodoItems(showCompleted).map(item =>
 ({name: item.task, value: item.id, checked: item.complete}))
 }).then(answers => {
 let completedTasks = answers["complete"] as number[];
 collection.getTodoItems(true).forEach(item =>
 collection.markComplete(item.id,
 completedTasks.find(id => id === item.id) != undefined));
 promptUser();
 })
}

function promptUser(): void {
 console.clear();
 displayTodoList();
 inquirer.prompt({
 type: "list",
 name: "command",
 message: "Choose option",
 choices: Object.values(Commands),
 }).then(answers => {
 switch (answers["command"]) {
 case Commands.Toggle:
 showCompleted = !showCompleted;
 promptUser();
 break;
 case Commands.Add:
 promptAdd();
 break;
 case Commands.Complete:
 if (collection.getItemCounts().incomplete > 0) {
 promptComplete();
 } else {
 promptUser();
 }
 break;
 case Commands.Purge:
 collection.removeComplete();
 promptUser();
 break;
 }
 })
}

promptUser();

 The changes add a new prompt to the application that presents the user with the list of tasks and allows their state to be changed. The showCompleted variable is used to determine whether completed items are shown, creating a link between the Toggle and Complete commands.

 The only new TypeScript feature of note is found in this statement:

 ...
let completedTasks = answers["complete"] as number[];
...

 Even with type definitions, there are times when TypeScript isn’t able to correctly assess the types that are being used. In this case, the Inquirer.js package allows any data type to be used in the prompts shown to the user, and the compiler isn’t able to determine that I have used only number values, which means that only number values can be received as answers. I used a type assertion to address this problem, which allows me to tell the compiler to use the type that I specify, even if it has identified a different data type (or no data type at all). When a type assertion is used, it overrides the compiler, which means that I am responsible for ensuring that the type I assert is correct. Run the commands shown in listing 2.43 in the todo folder to compile and execute the code.

 Listing 2.43 Compiling and executing

 tsc
node dist/index.js

 Select the Complete Task option, select one or more tasks to change using the spacebar, and then press Return. The state of the tasks you selected will be changed, which will be reflected in the revised list, as shown in figure 2.5.

 [image:]

 Figure 2.5 Completing items

 2.5 Persistently storing data

 To store the to-do items persistently, I am going to use another open-source package because there is no advantage in creating functionality when there are well-written and well-tested alternatives available. Run the commands shown in listing 2.44 in the todo folder to install the Lowdb package and the type definitions that describe its API to TypeScript.

 Listing 2.44 Adding a package

 npm install lowdb@5.1.0

 Lowdb is an excellent database package that stores data in a JSON file and that is used as the data storage component for the json-server package, which I use to create HTTP web services in part 3 of this book.

 Notice that I didn’t install any type declarations for this package. TypeScript has become so popular that many packages, including Lowdb, ship with type declarations as part of the JavaScript package.

 Tip I don’t describe the Lowdb API in detail in this book because it is not directly related to TypeScript. See https://github.com/typicode/lowdb for details if you want to use Lowdb in your projects.

 I am going to implement persistent storage by deriving from the TodoCollection class. In preparation, I changed the access control keyword used by the TodoCollection class so that subclasses can access the Map that contains the TodoItem objects, as shown in listing 2.45.

 Listing 2.45 Changing access control in the todoCollection.ts file in the src folder

 import { TodoItem } from "./todoItem.js";

type ItemCounts = {
 total: number,
 incomplete: number
}

export class TodoCollection {
 private nextId: number = 1;
 protected itemMap = new Map<number, TodoItem>();

 constructor(public userName: string, todoItems: TodoItem[] = []) {
 todoItems.forEach(item => this.itemMap.set(item.id, item));
 }

 // ...methods omitted for brevity...
}

 The protected keyword tells the TypeScript compiler that a property can be accessed only by a class or its subclasses. To create the subclass, I added a file called jsonTodoCollection.ts to the src folder with the code shown in listing 2.46.

 Listing 2.46 The contents of the jsonTodoCollection.ts file in the src folder

 import { TodoItem } from "./todoItem.js";
import { TodoCollection } from "./todoCollection.js";
import { LowSync } from "lowdb";
import { JSONFileSync } from "lowdb/node";

type schemaType = {
 tasks: { id: number; task: string; complete: boolean; }[]
};

export class JsonTodoCollection extends TodoCollection {
 private database: LowSync<schemaType>;

 constructor(public userName: string, todoItems: TodoItem[] = []) {
 super(userName, []);
 this.database = new LowSync(new JSONFileSync("Todos.json"));
 this.database.read();

 if (this.database.data == null) {
 this.database.data = { tasks : todoItems};
 this.database.write();
 todoItems.forEach(item => this.itemMap.set(item.id, item));
 } else {
 this.database.data.tasks.forEach(item =>
 this.itemMap.set(item.id,
 new TodoItem(item.id, item.task, item.complete)));
 }
 }

 addTodo(task: string): number {
 let result = super.addTodo(task);
 this.storeTasks();
 return result;
 }

 markComplete(id: number, complete: boolean): void {
 super.markComplete(id, complete);
 this.storeTasks();
 }

 removeComplete(): void {
 super.removeComplete();
 this.storeTasks();
 }

 private storeTasks() {
 this.database.data.tasks = [...this.itemMap.values()];
 this.database.write();
 }
}

 The type definition for Lowdb uses a schema to describe the structure of the data that will be stored, which is then applied using generic type arguments so that the TypeScript compiler can check the data types being used. For the example application, I need to store only one data type, which I describe using a type alias.

 ...
type schemaType = {
 tasks: { id: number; task: string; complete: boolean; }[]
};
...

 The schema type is used when the Lowdb database is created, and the compiler can check the way that data is used when it is read from the database as in this statement, for example:

 ...
this.database.data.tasks.forEach(item => this.itemMap.set(item.id,
 new TodoItem(item.id, item.task, item.complete)));
...

 The compiler knows that the tasks property presented by the data corresponds to the tasks property in the schema type and will return an array of objects with id, task, and complete properties.

 Listing 2.47 uses the JsonTodoCollection class in the index.ts file so that data will be stored persistently by the example application.

 Listing 2.47 Using the persistent collection in the index.ts file in the src folder

 import { TodoItem } from "./todoItem.js";
import { TodoCollection } from "./todoCollection.js";
import inquirer from "inquirer";
import { JsonTodoCollection } from "./jsonTodoCollection.js";

let todos: TodoItem[] = [
 new TodoItem(1, "Buy Flowers"), new TodoItem(2, "Get Shoes"),
 new TodoItem(3, "Collect Tickets"), new TodoItem(4, "Call Joe", true)];

let collection: TodoCollection = new JsonTodoCollection("Adam", todos);

let showCompleted = true;
...

 Run the commands shown in listing 2.48 in the todo folder to compile and execute the code for the final time in this chapter.

 Listing 2.48 Compiling and executing

 tsc
node dist/index.js

 When the application starts, a file called Todos.json will be created in the todo folder and used to store a JSON representation of the TodoItem objects, ensuring that changes are not lost when the application is terminated.

 Summary

 In this chapter, I created a simple example application to introduce you to TypeScript development and demonstrate some important TypeScript concepts. You saw that TypeScript provides features that supplement JavaScript, focus on type safety, and help avoid common patterns that trip up developers, especially those coming to JavaScript from languages such as C# or Java.

 You saw that TypeScript isn’t used in isolation and that a JavaScript runtime is required to execute the JavaScript code that the TypeScript compiler produces. The advantage of this approach is that projects written with TypeScript have full access to the broad spectrum of JavaScript packages that are available, many of which have type definitions available for easy use.

 	
 TypeScript development can be done with freely available tools.

 	
 TypeScript builds on the JavaScript language, with the main feature being static types.

 	
 The output from the TypeScript compiler is pure JavaScript, which can be executed by a suitable JavaScript runtime.

 	
 TypeScript applications can use standard JavaScript packages, although a basic understanding of JavaScript modules can be required to prepare a TypeScript project before installing a package.

 	
 Some JavaScript packages include type information for use with TypeScript.

 	
 Separate type declaration packages are available for popular packages that don’t include type declarations.

 The application I created in this chapter uses some of the most essential TypeScript features, but there are many more available, as you can tell from the size of this book. In the next chapter, I put TypeScript in context and describe the structure and content of this book.

3 JavaScript primer, part 1

 This chapter covers

 	Using the JavaScript types

 	Coercing JavaScript types

 	Defining and using JavaScript functions and arrays

 	Creating and implementing JavaScript objects

 	Understanding the this keyword

 Effective TypeScript development requires an understanding of how JavaScript deals with data types. This can be a disappointment to developers who adopt TypeScript because they found JavaScript confusing, but understanding JavaScript makes understanding TypeScript easier and provides valuable insights into what TypeScript offers and how its features work. In this chapter, I introduce the basic JavaScript type features, continuing with more advanced features in chapter 4.

 3.1 Preparing for this chapter

 To prepare for this chapter, create a folder called primer in a convenient location. Open a command prompt, navigate to the primer folder, and run the command shown in listing 3.1.

 Tip You can download the example project for this chapter—and for all the other chapters in this book—from https://github.com/manningbooks/essential-typescript-5.

 Listing 3.1 Preparing the project folder

 npm init --yes

 To install a package that will automatically execute the JavaScript file when its contents change, run the command shown in listing 3.2 in the primer folder.

 Listing 3.2 Installing a package

 npm install nodemon@2.0.20

 The package, called nodemon, will be downloaded and installed. Once the installation is complete, create a file called index.js in the primer folder with the contents shown in listing 3.3.

 Listing 3.3 The contents of the index.js file in the primer folder

 let hatPrice = 100;
console.log('Hat price: ${hatPrice}');

 Run the command shown in listing 3.4 to execute the contents of the JavaScript file and monitor it for changes.

 Listing 3.4 Starting the JavaScript file monitor

 npx nodemon index.js

 The nodemon package will execute the contents of the index.js file and produce the following output:

 [nodemon] 2.0.20
[nodemon] to restart at any time, enter 'rs'
[nodemon] watching path(s): *.*
[nodemon] watching extensions: js,mjs,json
[nodemon] starting 'node index.js'
Hat price: 100
[nodemon] clean exit - waiting for changes before restart

 I have highlighted the part of the output that comes from the index.js file. To ensure that changes are detected correctly, alter the contents of the index.js file as shown in listing 3.5.

 Listing 3.5 Making a change in the index.js file in the primer folder

 let hatPrice = 100;
console.log('Hat price: ${hatPrice}');
let bootsPrice = "100";
console.log('Boots price: ${bootsPrice}');

 When you save the changes, the nodemon package should detect that the index.js file has been modified and execute the code it contains. The code in listing 3.5 produces the following output, which is shown without the information provided by the nodemon package:

 Hat price: 100
Boots price: 100

 3.2 Getting confused by JavaScript

 JavaScript has many features that are similar to other programming languages, and developers tend to start with code that looks like the statements in listing 3.5. Even if you are new to JavaScript, the statements in listing 3.5 will be familiar.

 The building blocks for JavaScript code are statements, which are executed in the order they are defined. The let keyword is used to define variables (as opposed to the const keyword, which defines constant values) followed by a name. The value of a variable is set using the assignment operator (the equal sign) followed by a value.

 JavaScript provides some built-in objects to perform common tasks, such as writing strings to the command prompt with the console.log method. Strings can be defined as literal values, using single or double quotes, or as template strings, using backtick characters and inserting expressions into the template using the dollar sign and braces.

 But at some point, unexpected results appear. The cause of the confusion is the way that JavaScript deals with types. Listing 3.6 shows a typical problem.

 Listing 3.6 Adding statements in the index.ts file in the primer folder

 let hatPrice = 100;
console.log('Hat price: ${hatPrice}');
let bootsPrice = "100";
console.log('Boots price: ${bootsPrice}');

if (hatPrice == bootsPrice) {
 console.log("Prices are the same");
} else {
 console.log("Prices are different");
}

let totalPrice = hatPrice + bootsPrice;
console.log('Total Price: ${totalPrice}');

 The new statements compare the values of the hatPrice and bootsPrice variables and assign their total to a new variable named totalPrice. The console.log method is used to write messages to the command prompt and produces the following output when the code is executed:

 Hat price: 100
Boots price: 100
Prices are the same
Total Price: 100100

 Most developers will notice that the value for hatPrice has been expressed as a number, while the bootsPrice value is a string of characters, enclosed in double quotes. But in most languages, performing operations on different types would be an error. JavaScript is different; comparing a string and a number succeeds, but trying to total the values actually concatenates them. Understanding the results from listing 3.6—and the reasons behind them—reveals the details of how JavaScript approaches data types and why TypeScript can be so helpful.

 3.3 Understanding JavaScript types

 It can seem that JavaScript doesn’t have data types or that types are used inconsistently, but that’s not true. JavaScript just works differently than most popular programming languages, and it only seems to behave inconsistently until you know what to expect. The foundation for the JavaScript language is a set of built-in types, which are described in table 3.1.

 Table 3.1 The JavaScript built-in types

 	
 Name

 	
 Description

 	
 number

 	
 This type is used to represent numeric values. Unlike other programming languages, JavaScript doesn’t differentiate between integer and floating-point values, both of which can be represented using this type.

 	
 string

 	
 This type is used to represent text data.

 	
 boolean

 	
 This type can have true and false values.

 	
 symbol

 	
 This type is used to represent unique constant values, such as keys in collections.

 	
 null

 	
 This type can be assigned only the value null and is used to indicate a nonexistent or invalid reference.

 	
 undefined

 	
 This type is used when a variable has been defined but has not been assigned a value.

 	
 object

 	
 This type is used to represent compound values, formed from individual properties and values.

 The first six types in the table are the JavaScript primitive data types. The primitive types are always available, and every value in a JavaScript application either is a primitive type itself or is composed from primitive types. The sixth type is object and is used to represent objects.

 3.3.1 Working with primitive data types

OEBPS/OEBPS/Images/02-04.png

OEBPS/OEBPS/Images/02-02.png

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/02-01.png

OEBPS/OEBPS/Images/02-05.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/02-03.png

OEBPS/OEBPS/Images/01-01.png

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/Adam_Freeman.png

