

 Play for Scala: Covers Play 2

 Peter Hilton, Erik Bakker, and Francisco Canedo

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 261
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2014 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	[image:]

 	
 Manning Publications Co.
20 Baldwin Road
Shelter Island, NY 11964

 	
 Development editor: Jeff Bleiel
Copyeditor: Benjamin Berg
Proofreaders: Andy Carroll, Toma Mulligan
Typesetter: Gordan Salinovic
Cover designer: Marija Tudor

 ISBN 9781617290794

 Printed in the United States of America

 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

 Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Introduction to Play 2

 Chapter 2. Your first Play application

 2. Core functionality

 Chapter 3. Deconstructing Play application architecture

 Chapter 4. Defining the application’s HTTP interface

 Chapter 5. Storing data—the persistence layer

 Chapter 6. Building a user interface with view templates

 Chapter 7. Validating and processing input with the forms API

 3. Advanced concepts

 Chapter 8. Building a single-page JavaScript application with JSON

 Chapter 9. Play and more

 Chapter 10. Web services, iteratees, and WebSockets

 Index

 List of Figures

 List of Tables

 List of Listings

 Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Foreword

 Preface

 Acknowledgments

 About this Book

 About the Cover Illustration

 1. Getting started

 Chapter 1. Introduction to Play 2

 1.1. What Play is

 1.1.1. Key features

 1.1.2. Java and Scala

 1.1.3. Play isn’t Java EE

 1.2. High-productivity web development

 1.2.1. Working with HTTP

 1.2.2. Simplicity, productivity, and usability

 1.3. Why Scala needs Play

 1.4. Type-safe web development—why Play needs Scala

 1.5. Hello Play!

 1.5.1. Getting Play and setting up the Play environment

 1.5.2. Creating and running an empty application

 1.5.3. Play application structure

 1.5.4. Accessing the running application

 1.5.5. Add a controller class

 1.5.6. Add a compilation error

 1.5.7. Use an HTTP request parameter

 1.5.8. Add an HTML page template

 1.6. The console

 1.7. Summary

 Chapter 2. Your first Play application

 2.1. The product list page

 2.1.1. Getting started

 2.1.2. Stylesheets

 2.1.3. Language localization configuration

 2.1.4. Adding the model

 2.1.5. Product list page

 2.1.6. Layout template

 2.1.7. Controller action method

 2.1.8. Adding a routes configuration

 2.1.9. Replacing the welcome page with a redirect

 2.1.10. Checking the language localizations

 2.2. Details page

 2.2.1. Model finder method

 2.2.2. Details page template

 2.2.3. Additional message localizations

 2.2.4. Adding a parameter to a controller action

 2.2.5. Adding a parameter to a route

 2.2.6. Generating a bar code image

 2.3. Adding a new product

 2.3.1. Additional message localizations

 2.3.2. Form object

 2.3.3. Form template

 2.3.4. Saving the new product

 2.3.5. Validating the user input

 2.3.6. Adding the routes for saving products

 2.4. Summary

 2. Core functionality

 Chapter 3. Deconstructing Play application architecture

 3.1. Drawing the architectural big picture

 3.1.1. The Play server

 3.1.2. HTTP

 3.1.3. MVC

 3.1.4. REST

 3.2. Application configuration—enabling features and changing defaults

 3.2.1. Creating the default configuration

 3.2.2. Configuration file format

 3.2.3. Configuration file overrides

 3.2.4. Configuration API—programmatic access

 3.2.5. Custom application configuration

 3.3. The model—adding data structures and business logic

 3.3.1. Database-centric design

 3.3.2. Model class design

 3.3.3. Defining case classes

 3.3.4. Persistence API integration

 3.3.5. Using Slick for database access

 3.4. Controllers—handling HTTP requests and responses

 3.4.1. URL-centric design

 3.4.2. Routing HTTP requests to controller action methods

 3.4.3. Binding HTTP data to Scala objects

 3.4.4. Generating different types of HTTP response

 3.5. View templates—formatting output

 3.5.1. UI-centric design

 3.5.2. HTML-first templates

 3.5.3. Type-safe Scala templates

 3.5.4. Rendering templates—Scala template functions

 3.6. Static and compiled assets

 3.6.1. Serving assets

 3.6.2. Compiling assets

 3.7. Jobs—starting processes

 3.7.1. Asynchronous jobs

 3.7.2. Scheduled jobs

 3.7.3. Asynchronous results and suspended requests

 3.8. Modules—structuring your application

 3.8.1. Third-party modules

 3.8.2. Extracting custom modules

 3.8.3. Module-first application architecture

 3.8.4. Deciding whether to write a custom module

 3.8.5. Module architecture

 3.9. Summary

 Chapter 4. Defining the application’s HTTP interface

 4.1. Designing your application’s URL scheme

 4.1.1. Implementation-specific URLs

 4.1.2. Stable URLs

 4.1.3. Java Servlet API—limited URL configuration

 4.1.4. Benefits of good URL design

 4.2. Controllers—the interface between HTTP and Scala

 4.2.1. Controller classes and action methods

 4.2.2. HTTP and the controller layer’s Scala API

 4.2.3. Action composition

 4.3. Routing HTTP requests to controller actions

 4.3.1. Router configuration

 4.3.2. Matching URL path parameters that contain forward slashes

 4.3.3. Constraining URL path parameters with regular expressions

 4.4. Binding HTTP data to Scala objects

 4.5. Generating HTTP calls for actions with reverse routing

 4.5.1. Hardcoded URLs

 4.5.2. Reverse routing

 4.6. Generating a response

 4.6.1. Debugging HTTP responses

 4.6.2. Response body

 4.6.3. HTTP status codes

 4.6.4. Response headers

 4.6.5. Serving static content

 4.7. Summary

 Chapter 5. Storing data—the persistence layer

 5.1. Talking to a database

 5.1.1. What are Anorm and Squeryl?

 5.1.2. Saving model objects in a database

 5.1.3. Configuring your database

 5.2. Creating the schema

 5.3. Using Anorm

 5.3.1. Defining your model

 5.3.2. Using Anorm’s stream API

 5.3.3. Pattern matching results

 5.3.4. Parsing results

 5.3.5. Inserting, updating, and deleting data

 5.4. Using Squeryl

 5.4.1. Plugging Squeryl in

 5.4.2. Defining your model

 5.4.3. Extracting data—queries

 5.4.4. Saving records

 5.4.5. Handling transactions

 5.4.6. Entity relations

 5.5. Caching data

 5.6. Summary

 Chapter 6. Building a user interface with view templates

 6.1. The why of a template engine

 6.2. Type safety of a template engine

 6.2.1. A not type-safe template engine

 6.2.2. A type-safe template engine

 6.2.3. Comparing type-safe and not type-safe templates

 6.3. Template basics and common structures

 6.3.1. @, the special character

 6.3.2. Expressions

 6.3.3. Displaying collections

 6.3.4. Security and escaping

 6.3.5. Using plain Scala

 6.4. Structuring pages: template composition

 6.4.1. Includes

 6.4.2. Layouts

 6.4.3. Tags

 6.5. Reducing repetition with implicit parameters

 6.6. Using LESS and CoffeeScript: the asset pipeline

 6.6.1. LESS

 6.6.2. CoffeeScript

 6.6.3. The asset pipeline

 6.7. Internationalization

 6.7.1. Configuration and message files

 6.7.2. Using messages in your application

 6.8. Summary

 Chapter 7. Validating and processing input with the forms API

 7.1. Forms—the concept

 7.1.1. Play 1.x forms reviewed

 7.1.2. The Play 2 approach to forms

 7.2. Forms basics

 7.2.1. Mappings

 7.2.2. Creating a form

 7.2.3. Processing data with a form

 7.2.4. Object mappings

 7.2.5. Mapping HTTP request data

 7.3. Creating and processing HTML forms

 7.3.1. Writing HTML forms manually

 7.3.2. Generating HTML forms

 7.3.3. Input helpers

 7.3.4. Customizing generated HTML

 7.4. Validation and advanced mappings

 7.4.1. Basic validation

 7.4.2. Custom validation

 7.4.3. Validating multiple fields

 7.4.4. Optional mappings

 7.4.5. Repeated mappings

 7.4.6. Nested mappings

 7.4.7. Custom mappings

 7.4.8. Dealing with file uploads

 7.5. Summary

 3. Advanced concepts

 Chapter 8. Building a single-page JavaScript application with JSON

 8.1. Creating the single-page Play application

 8.1.1. Getting started

 8.1.2. Adding stylesheets

 8.1.3. Adding a simple model

 8.1.4. Page template

 8.1.5. Client-side script

 8.2. Serving data to a JavaScript client

 8.2.1. Constructing JSON data value objects

 8.2.2. Converting model objects to JSON objects

 8.3. Sending JSON data to the server

 8.3.1. Editing and sending client data

 8.3.2. Consuming JSON

 8.3.3. Consuming JSON in more detail

 8.3.4. Reusable consumers

 8.3.5. Combining JSON formatters and consumers

 8.4. Validating JSON

 8.4.1. Mapping the JSON structure to a model

 8.4.2. Handling “empty” values

 8.4.3. Adding validation rules and validating input

 8.4.4. Returning JSON validation errors

 8.4.5. Alternative JSON libraries

 8.5. Authenticating JSON web service requests

 8.5.1. Adding authentication to action methods

 8.5.2. Using basic authentication

 8.5.3. Other authentication methods

 8.6. Summary

 Chapter 9. Play and more

 9.1. Modules

 9.1.1. Using modules

 9.1.2. Creating modules

 9.2. Plugins

 9.3. Deploying to production

 9.3.1. Production mode

 9.3.2. Working with multiple configurations

 9.3.3. Creating native packages for a package manager

 9.3.4. Setting up a front-end proxy

 9.3.5. Using SSL

 9.3.6. Deploying to a cloud provider

 9.3.7. Deploying to an application server

 9.4. Summary

 Chapter 10. Web services, iteratees, and WebSockets

 10.1. Accessing web services

 10.1.1. Basic requests

 10.1.2. Handling responses asynchronously

 10.1.3. Using the cache

 10.1.4. Other request methods and headers

 10.1.5. Authentication mechanisms

 10.2. Dealing with streams using the iteratee library

 10.2.1. Processing large web services responses with an iteratee

 10.2.2. Creating other iteratees and feeding them data

 10.2.3. Iteratees and immutability

 10.3. WebSockets: Bidirectional communication with the browser

 10.3.1. A real-time status page using WebSockets

 10.3.2. A simple chat application

 10.4. Using body parsers to deal with HTTP request bodies

 10.4.1. Structure of a body parser

 10.4.2. Using built-in body parsers

 10.4.3. Composing body parsers

 10.4.4. Building a new body parser

 10.5. Another way to look at iteratees

 10.6. Summary

 Index

 List of Figures

 List of Tables

 List of Listings

Foreword

 Change comes in waves. You’re reading this book because you want to be part of the next wave of change in software development. Big data, mobile, JavaScript-based web apps, RESTful services, functional programming, and the real-time web are propelling us into a new era. Every new era is accompanied by a new set of tools, which keen developers wield to build amazing things. Play Framework and Scala are the tools you’ll use to ride the approaching wave and build the next amazing thing.

 When surfing a new wave, it’s best to go along with experts in the surf break. They can tell you when and where to go, what places to avoid, and how to have a smooth ride. Peter Hilton, Erik Bakker, and Francisco Canedo are your experts in the Play and Scala break. They all have extensive experience building amazing things with these tools. Before most of us even saw the wave, they were riding it and building the tools the rest of us need. Play for Scala is your guide to this new surf break.

 Whether you’re just getting started with Play or building a real-time app with iteratees, this book will guide you well. The authors have done a great job of providing the right level of detail. They haven’t obviated the need to do some self-exploration, Google searches, and check Stack Overflow. Yet their code examples are complete and well explained. It’s hard to write a book that fits the needs of novices and experts, but somehow Hilton, Bakker, and Canedo pulled it off. Play for Scala has exactly the right verbosity level.

 Now comes the fun part. The wave is approaching, so grab your tools, paddle out with your expert guides, and surf your way into the next era of software development!

 JAMES WARD

 DEVELOPER ADVOCATE AT TYPESAFE

 WWW.JAMESWARD.COM

Preface

 We were early adopters of Play and saw it gain popularity among a wide variety of Play developers. Now it’s time for Play to go mainstream.

Play 1.0

 When I first tried the Play 1.0 release in 2010, I was struck by how simple it was. Having tried many different web frameworks, it was a refreshing change to find one that used what I already knew about HTTP and HTML (the web) instead of being based on non-web technology. In fact, the developer experience was so good, it felt like cheating.

 I was also impressed by how finished Play seemed: this was no early experimental release. Many open-source projects adopt the “release early, release often” philosophy, which means a first public release is a version 0.1 that’s more of a prototype, vision statement, and call for participation. Play, on the other hand, started at version 1.0 and had clearly already been used to build real applications. Zenexity used Play on customer projects for some time before releasing version 1.0, and it wasn’t just Java developers using Play; web developers had been using it too. You could tell.

 The idea that Play would be for web developers, not just Java developers, turned out to be the most important of goals because of the consequences for the framework’s design. After years of struggling with frameworks that make it hard to make nice HTTP interfaces—even at the simplest level of building web applications whose URLs weren’t ugly—here was a framework that actually helped. Suddenly we were running with the wind.

 At first, we figured that this was a small framework for small applications, which was nice because it meant that we wouldn’t have to use PHP any more for easy problems. What actually happened was that each Play application was bigger or more complex than the last, and was another chance to get away with not using Java EE. We didn’t just get away with using Play; by the time Play 1.2 was released in 2011, we started to get away from having to use Java EE, and JSF in particular, which had become the new JSP for me (only more complex).

 At this point, it only seemed fair to help more Java web developers start using Play. And then there was Scala.

Play for Scala

 For us, Play 2 came at a time when we were discarding more than just writing web applications with JSP or JSF. We were also starting to use Scala instead of Java. The Play early adopters and the Scala early adopters then found each other, and we realized that the combination is even more compelling.

 When we started talking to people about moving on from Java EE, we discovered that people can get upset when you suggest that the technology that they’ve devoted a significant portion of their career to mastering is an architectural dead end, and that it’s time for something new. Moving on is hard, but inevitable if you don’t want to be the next COBOL programmer. You know you’re a junior developer when none of the things on your CV have become legacy yet.

 In our business, it’s important to be ready for something new. As with many kinds of beliefs, you’re going to be happier if your technology choices are strong opinions, loosely held. The arrival of Play 2 was clearly not just a new version; it was a challenge to take what we’d been doing to something more mainstream.

 At Lunatech, technology adoption follows a kind of progression, starting from a single enthusiast and initial experiments, moving on to low-risk use by a few people, and finally to full adoption on development projects for external customers. At each stage, most technologies are discarded; Play and Scala survived this natural selection in the technology space and are now used by most of us on nearly all of our new projects.

 Having made this kind of change before, we understand that switching to Play or switching to Scala can be a big step, especially if you do both at the same time. We were open to the idea that something more than a few blog posts and some documentation was needed, and we came to the surprising conclusion that the world needed another computer book.

Learning from Play

 A rewarding aspect of Play is that while you learn it, you can also learn from it. First, Play teaches the value of a good developer experience, largely by making various other frameworks look bad. Then Play teaches you how to do web development right, and also about the future of web applications.

 Play’s design teaches us the value and elegance of embracing web architecture as it was intended to be used. It does this by offering an HTTP-centric API for writing stateless web applications with a stateless web tier and REST-style APIs. This is the heart of what we cover in this book and the key to Play’s approach.

 Getting beyond the failed vision that more layers and more complexity would somehow be simpler, and discarding the accumulated detritus of the Java Enterprise Edition dystopia will be the least of your worries in the long term. Play’s API also teaches us that in the future you may need to master a new kind of real-time web development: reactive web programming.

 But to start with, the challenge is to learn how to build the same kind of web applications that we’ve been building for years in a better way that’s more aligned with how the web works. The difference is that this time it’s going to be more fun, and this book is going to show you how. This time around, work is play.

Acknowledgments

 First of all, we would like to thank the Play community who’ve helped turn Play into what it is today. Without the hard work from the committers, people writing documentation, asking and answering questions on the forums, writing modules, and all the application developers using Play, there wouldn’t have been any point in writing this book.

 Second, we’d like to thank all the people at Manning who helped us write this book. Michael Stephens who approached us to write this book. Bert Bates who taught us how to write. Karen Miller who was our editor for most of the process. Furthermore, we’d like to thank the production team who did a lot of hard work (including weekends) to get this book to press, and everyone else at Manning. Without you, this book wouldn’t have been possible.

 We’d like to thank, especially, James Ward for writing a thoughtful foreword, Jorge Aliss who was particularly helpful when we were writing about SecureSocial, the external reviewers—Adam Browning, Andy Hicks, Doug Kirk, Henning Hoefer, Ivo Jerkovic, Jeton Bacaj, Keith Weinberg, Magnus Smith, Nikolaj Lindberg, Pascal Voitot, Philippe Charrière, Stephen Harrison, Steve Chaloner, Tobias Kaatz, Vladimir Kuptcov and William E. Wheeler—and technical proofreader, Thomas Lockney, who devoted their own time to review our book and make it better, as well as the MEAP subscribers who took the time to let us know about issues on the forum.

 Last, but certainly not least, we would like to thank you, the person reading this book. We wrote this book for you, to help you get the most out of Play. The fact that you’re reading this means that we didn’t do it for nothing, and we hope this book helps you to build great and wonderful software. If you do, thank you for that too.

About this Book

 You’re probably reading this book because you want to build a web app. This book is about one way of doing that.

 There are so many different web applications that the question, “How should I do X?” can often only be answered with, “It depends.” So instead of trying to give some general advice that won’t be good for many cases anyway, we’ll introduce Play’s components, their relations, and their strengths and weaknesses. Armed with this knowledge, and the knowledge of your project that only you have, you can decide when to use a tool from Play or when to use something else.

 In this book we use a fictitious company managing paperclip logistics as a vehicle for example code. This isn’t one running example that gets bigger with each chapter, culminating in a complete application at the end of the book. Rather, we wanted to save you from the cognitive load of having to “get into” the business domain of many different examples, so we chose this as a common business domain. The examples and the chapters themselves are mostly standalone, to aid readers who don’t read the book in one go or who want to skip chapters. We understand that some readers would value building one application that uses concepts from multiple chapters while reading the book, and we encourage those readers to pick a more interesting problem than that of paperclip logistics, and to try to adapt what they learn from this book to solving that problem instead.

 The web entails many more technologies than any book could possibly encompass. We focus on Play and the boundaries between Play and other technologies, but not more. We expect that the reader has a basic understanding of the web in general and HTTP and HTML in particular.

 This isn’t a book about learning Scala, although we understand that Scala is likely new to many readers as well. We recommend picking up this book after an introduction to Scala, or in parallel with an introduction to Scala. Though we stay clear of the hard parts of Scala, some of the language constructs will likely be hard to grasp for readers who are entirely unfamiliar with Scala.

 This book isn’t the one book about Play that covers everything. Partly, this is because Play is a new framework and is evolving rapidly. Best practices are often not worked out yet by the Play community. There’s also a more mundane reason: page count. The subject of testing, for example, didn’t fit within the page limit for the book, and rather than doing a very condensed chapter about testing, we chose to leave it out.

 If you’re curious, the short version is that Play is highly testable. This is partly due to its stateless API and functional style, which make the components easier to test. In addition, there are built-in testing helpers that let you mock the Play runtime and check the results of executing controller actions and rendering templates without using HTTP, plus FluentLenium integration for user-interface level tests.

 Rather than trying to cover everything, this book tries to lay a foundation, and we hope that many more books about Play will be written. There’s much to explore within Play and on the boundaries between Play and the Scala language.

Roadmap

 Chapter 1 introduces the Play framework, its origins, and its key features. We look at how to get started with Play, and glance over the components of every Play application.

 Chapter 2 shows in more detail the components of a Play application and how they relate to each other. We build a full application with all the layers of a Play application, with multiple pages, and with validation of user input.

 Chapter 3 starts with a dive into the architecture of Play. We show why Play works so well with the web, and how control flows through your application. We look at how the models, views, and controllers of an application fit together and how an application can be modularized.

 Chapter 4 focuses on controllers. Controllers form the boundary between HTTP and Play. We see how to configure a Play application’s URLs, and how to deal with URL and query string parameters in a type-safe way. We use Play forms to validate and retrieve user input from HTML forms, and we learn how to return an HTTP response to the client.

 Chapter 5 shows how a persistence layer fits into a Play application. Anorm is a data access layer for SQL databases that’s bundled with Play and works with plain SQL. As a possible alternative, we also introduce Squeryl, which is a data access layer that uses a Scala domain-specific language to query a database.

 Chapter 6 shows how Play’s template engine works. It discusses the syntax and how the template engine works together with Scala. We see how we can make reusable building blocks with templates and how to compose these reusable blocks to construct larger templates.

 Chapter 7 goes into more detail on the subject of Play forms. Forms are a powerful way to validate user data, and to map data from incoming HTTP requests to objects in Scala code. They also work in the other direction: they can present Scala objects to a user in an HTML form. We also learn how to create forms for complex objects.

 Chapter 8 introduces Play’s JSON API in the context of a sample application with a JavaScript front end that uses the Play application as a web service. Play’s JSON API assists with converting JSON to Scala objects and generating JSON from Scala objects.

 Chapter 9 focuses on Play in a bigger context. We see how we can use existing Play modules and how to create our own modules and plugins. We glance over the various ways to deploy an application and how to deal with multiple configurations effectively.

 Chapter 10 starts with a description of Play’s web service API and how you can leverage it to consume the APIs of other web applications. The second part of this chapter introduces more advanced concepts of Play, such as iteratees, a Play library that helps you work with streams of data and WebSockets.

Code conventions and downloads

 All source code in the book is in a fixed-width font like this, which sets it off from the surrounding text. This book contains many code listings to explain concepts and show particular Play APIs. The listings don’t always result in a full application; other code that’s outside the scope of the chapter is also needed. In many listings, the code is annotated to point out the key concepts.

 The code in this book is for Play versions 2.1.x, which is the most recent version of Play at the time of printing. If you are using a different version of Play, some of the code details might be different.

 For your convenience, we’ve put up complete example applications for all chapters on GitHub: https://github.com/playforscala/sample-applications. These applications are available for multiple versions of Play, organized in a branch named to the Play version. The source code is also available for download from the publisher’s website at www.manning.com/PlayforScala.

 The code in these applications isn’t identical to the listings in this book; often things from multiple listings are merged in the complete application. Some additional HTML markup, which would obfuscate the main point of a listing in the book, is used in some places for aesthetic reasons.

Author Online

 Purchase of Play for Scala includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the authors and from other users. To access the forum and subscribe to it, point your web browser to www.manning.com/PlayforScala. This page provides information on how to get on the forum once you’re registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialog between individual readers and between readers and the authors can take place. It’s not a commitment to any specific amount of participation on the part of the authors, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

About the authors

 PETER HILTON is a senior solution architect and operations director at Lunatech Research in Rotterdam, the Netherlands. Peter has focused on web application design and development since 1998, working mostly on Java web frameworks and web-based collaboration. In recent years, Peter has also applied agile software development processes and practices to technical project management. Since 2010, Peter has been a committer on the Play framework open source project and has presented Play at various European developer conferences. Together with colleagues at Lunatech, Peter is currently using Play to build web applications and web services for enterprise customers in the Netherlands and France. He’s on Twitter as @PeterHilton.

 ERIK BAKKER has been building web applications since 2002 and is currently also employed by Lunatech Research. He put his first Scala application in production in early 2010 and has worked with Play 2 since its inception. Erik is a Play module contributor and has presented and blogged about the Play framework and Scala. You can find him on Twitter as @eamelink.

 FRANCISCO JOSÉ CANEDO DOMINGUEZ joined Lunatech Research as a software developer in 2005. He started his professional career in 1997 and has comfortably worked with languages as diverse as C, C++, Java, XSLT, JavaScript, HTML, and Bash. He’s been exploring the power of Scala since 2010. Having had first-hand experience with several different web frameworks, Francisco finds Play’s approach to be a breath of fresh air. He is @fcanedo on Twitter.

About the Cover Illustration

 The figure on the cover of Play for Scala is captioned a “Woman from Šibenik, Dalmatia, Croatia.” The illustration is taken from the reproduction, published in 2006, of a 19th-century collection of costumes and ethnographic descriptions entitled Dalmatia by Professor Frane Carrara (1812–1854), an archaeologist and historian, and the first director of the Museum of Antiquity in Split, Croatia. The illustrations were obtained from a helpful librarian at the Ethnographic Museum (formerly the Museum of Antiquity), itself situated in the Roman core of the medieval center of Split: the ruins of Emperor Diocletian’s retirement palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 Šibenik is a historic town in Croatia, located in central Dalmatia, where the river Krka flows into the Adriatic Sea. The woman on the cover is wearing an embroidered apron over a dark blue skirt, and a white linen shirt and bright red vest, topped by a black woolen jacket. A colorful headscarf completes her outfit. The rich and colorful embroidery on her costume is typical for this region of Croatia.

 Dress codes have changed since the 19th century, and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns or regions. Perhaps we have traded cultural diversity for a more varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from collections such as this one.

 Part 1. Getting started

 Part 1 tells you what Play is and what a basic application looks like.

 Chapter 1 introduces Play, its origins, and its key features. We show a simple example to make it concrete and the basics of the components of every Play application.

 Chapter 2 gives more details about a Play application’s components by building a basic but complete Play application. We show how to make a full application with all the common layers of a Play application, including multiple pages and input validation. This application will serve as a basis for other samples in the book.

 Chapter 1. Introduction to Play 2

 This chapter covers

 	Defining the Play framework

 	Explaining high-productivity web frameworks

 	Why Play supports both Java and Scala

 	Why Scala needs the Play framework

 	Creating a minimal Play application

 Play isn’t a Java web framework. Java’s involved, but that isn’t the whole story. Although the first version of Play was written in the Java language, it ignored the conventions of the Java platform, providing a fresh alternative to excessive enterprise architectures. Play wasn’t based on Java Enterprise Edition APIs and it wasn’t made for Java developers. Play was made for web developers.

 Play wasn’t just written for web developers; it was written by web developers, who brought high-productivity web development from modern frameworks like Ruby on Rails and Django to the JVM. Play is for productive web developers.

 Play 2 is written in Scala, which means that not only do you get to write your web applications in Scala, but you also benefit from increased type safety throughout the development experience.

 Play isn’t only about Scala and type safety. An important aspect of Play is its usability and attention to detail, which results in a better developer experience (DX). When you add this to higher developer productivity and more elegant APIs and architectures, you get a new emergent property: Play is fun.

1.1. What Play is

 Play makes you more productive. Play is also a web framework whose HTTP interface is simple, convenient, flexible, and powerful. Most importantly, Play improves on the most popular non-Java web development languages and frameworks—PHP and Ruby on Rails—by introducing the advantages of the Java Virtual Machine (JVM).

 1.1.1. Key features

 A variety of features and qualities makes Play productive and fun to use:

 	Declarative application URL scheme configuration

 	Type-safe mapping from HTTP to an idiomatic Scala API

 	Type-safe template syntax

 	Architecture that embraces HTML5 client technologies

 	Live code changes when you reload the page in your web browser

 	Full-stack web framework features, including persistence, security, and internationalization

 We’ll get back to why Play makes you more productive, but first let’s look a little more closely at what it means for Play to be a full-stack framework, as shown in figure 1.1. A full-stack framework gives you everything you need to build a typical web application.

 Figure 1.1. Play framework stack

 [image:]

 Being “full-stack” isn’t only a question of functionality, which may already exist as a collection of open source libraries. After all, what’s the point of a framework if these libraries already exist and provide everything you need to build an application? The difference is that a full-stack framework also provides a documented pattern for using separate libraries together in a certain way. If you have this, as a developer, you know that you’ll be able to make the separate components work together. Without this, you never know whether you’re going to end up with two incompatible libraries, or a badly designed architecture.

 When it comes to building a web application, what this all means is that the common tasks are directly supported in a simple way, which saves you time.

 1.1.2. Java and Scala

 Play supports Java, and it’s the best way to build a Java web application. Java’s success as a programming language, particularly in enterprise software development, has enabled Play to quickly build a large user community. Even if you’re not planning to use Play with Java, you still get to benefit from the size of the wider Play community. Besides, a large segment of this community is now looking for an alternative to Java.

 But recent years have seen the introduction of numerous JVM languages that provide a modern alternative to Java, usually aiming to be more type-safe, resulting in more concise code, and supporting functional programming idioms, with the ultimate goal of allowing developers to be more expressive and productive when writing code. Scala is currently the most evolved of the new statically typed JVM languages, and it’s the second language that Play supports.

 	

 Play 2 for Java

 If you’re also interested in using Java to build web applications in Play, you should take a look at Play 2 for Java, which was written at the same time as this book. The differences between Scala and Java go beyond the syntax, and the Java book isn’t a copy of this book with the code samples in Java. Play 2 for Java is more focused on enterprise architecture integration than is this book, which introduces more new technology.

 	

 Having mentioned Java and the JVM, it also makes sense to explain how Play relates to the Java Enterprise Edition (Java EE) platform, partly because most of our web development experience is with Java EE. This isn’t particularly relevant if your web development background is with PHP, Rails, or Django, in which case you may prefer to skip the next section and continue reading with section 1.2.

 1.1.3. Play isn’t Java EE

 Before Play, Java web frameworks were based on the Java Servlet API, the part of the Java Enterprise Edition stack that provides the HTTP interface. Java EE and its architectural patterns seemed like a good idea, and brought some much-needed structure to enterprise software development. But this turned out to be a bad idea, because structure came at the cost of additional complexity and low developer satisfaction. Play is different, for several reasons.

 Java’s design and evolution is focused on the Java platform, which also seemed like a good idea to developers who were trying to consolidate various kinds of software development. From a Java perspective, the web is only another external system. The Servlet API, for example, adds an abstraction layer over the web’s own architecture that provides a more Java-like API. Unfortunately, this is a bad idea, because the web is more important than Java. When a web framework starts an architecture fight with the web, the framework loses. What we need instead is a web framework whose architecture embraces the web’s, and whose API embraces HTTP.

Lasagna architecture

 One consequence of the Servlet API’s problems is complexity, mostly in the form of too many layers. This is the complexity caused by the API’s own abstraction layers, compounded by the additional layer of a web framework that provides an API that’s rich enough to build a web application, as shown in figure 1.2.

 Figure 1.2. Java EE “lasagna” architecture compared to Play’s simplified architecture

 [image:]

 The Servlet API was originally intended to be an end-user API for web developers, using Servlets (the name for controller Java classes), and JavaServer Pages (JSP) view templates. When new technologies eventually superseded JSP, they were layered on top, instead of being folded back into Java EE, either as updates to the Servlet API or as a new API. With this approach, the Servlet API becomes an additional layer that makes it harder to debug HTTP requests. This may keep the architects happy, but it comes at the cost of developer productivity.

The JSF non-solution

 This lack of focus on productive web development is apparent within the current state of Java EE web development, which is now based on JavaServer Faces (JSF). JSF focuses on components and server-side state, which also seemed like a good idea, and gave developers powerful tools for building web applications. But again, it turned out that the resulting complexity and the mismatch with HTTP itself made JSF hard to use productively.

 Java EE frameworks such as JBoss Seam did an excellent job at addressing early deficiencies in JSF, but only by adding yet another layer to the application architecture. Since then, Java EE 6 has improved the situation by addressing JSF’s worst shortcomings, but this is certainly too little, too late.

 Somewhere in the history of building web applications on the JVM, adding layers became part of the solution without being seen as a problem. Fortunately for JVM web developers, Play provides a redesigned web stack that doesn’t use the Servlet API and works better with HTTP and the web.

1.2. High-productivity web development

 Web frameworks for web developers are different. They embrace HTTP and provide APIs that use HTTP’s features instead of trying to hide HTTP, in the same way that web developers build expertise in the standard web technologies—HTTP, HTML, CSS, and JavaScript—instead of avoiding them.

 1.2.1. Working with HTTP

 Working with HTTP means letting the application developer make the web application aware of the different HTTP methods, such as GET, POST, PUT, and DELETE. This is different than putting an RPC-style layer on top of HTTP requests, using remote procedure call URLs like /updateProductDetails in order to tell the application whether you want to create, read, update, or delete data. With HTTP it’s more natural to use PUT / product to update a product and GET /product to fetch it.

 Embracing HTTP also means accepting that application URLs are part of the application’s public interface, and should therefore be up to the application developer to design instead of being fixed by the framework.

 This approach is for developers who not only work with the architecture of the World Wide Web, instead of against it, but may have even read it.[1]

 1 Architecture of the World Wide Web, Volume One, W3C, 2004 (www.w3.org/TR/webarch/).

 In the past, none of these web frameworks were written in Java, because the Java platform’s web technologies failed to emphasize simplicity, productivity, and usability. This is the world that started with Perl (not Lisp, as some might assume), was largely taken over by PHP, and in more recent years has seen the rise of Ruby on Rails.

 1.2.2. Simplicity, productivity, and usability

 In a web framework, simplicity comes from making it easy to do simple things in a few lines of code, without extensive configuration. A Hello World in PHP is a single line of code; the other extreme is JavaServer Faces, which requires numerous files of various kinds before you can even serve a blank page.

 Productivity starts with being able to make a code change, reload the web page in the browser, and see the result. This has always been the norm for many web developers, whereas Java web frameworks and application servers often have long build-redeploy cycles. Java hot-deployment solutions exist, but they aren’t standard and come at the cost of additional configuration. Although there’s more to productivity, this is what matters most.

 Usability is related to developer productivity, but also to developer happiness. You’re certainly more productive if it’s easier to get things done, no matter how smart you are, but a usable framework can be more than that—a joy to use. Fun, even.

1.3. Why Scala needs Play

 Scala needs its own high-productivity web framework. These days, mainstream software development is about building web applications, and a language that doesn’t have a web framework suitable for a mainstream developer audience remains confined to niche applications, whatever the language’s inherent advantages.

 Having a web framework means more than being aware of separate libraries that you could use together to build a web application; you need a framework that integrates them and shows you how to use them together. One of a web framework’s roles is to define a convincing application architecture that works for a range of possible applications. Without this architecture, you have a collection of libraries that might have a gap in the functionality they provide or some fundamental incompatibility, such as a stateful service that doesn’t play well with a stateless HTTP interface. What’s more, the framework decides where the integration points are, so you don’t have to work out how to integrate separate libraries yourself.

OEBPS/OEBPS/Images/01fig02_alt.jpg

OEBPS/OEBPS/Images/0iifig02.jpg

OEBPS/OEBPS/Images/01fig01_alt.jpg

OEBPS/OEBPS/Images/logo.jpg

OEBPS/OEBPS/Images/0iifig01.jpg

OEBPS/cover.jpeg

