

 [image: Title page]

 Advance Praise for Flex Mobile In Action

 A must-read for anyone thinking of doing mobile apps. It’s simple enough for the novice and deep enough for the pros.

 — Ken Brueck, Director of User Experience, Protoven

 Flex Mobile is cross-platform development at its best.

 — Andrew Grothe, Developer, zedIT Solutions

 An excellent introduction to the powerful ability of Flex and AIR to target multiple mobile platforms.

 — Kirsten Schwark, Senior Software Developer, iDashboards

 Great cutting-edge techniques for mobile apps developers!

 — Bill LaPrise, Owner/Developer, c3works

 A very detailed and complete look at cross-platform mobile development with Flex. Lots of great examples explaining the whats, hows, and whys of mobile Flex development.

 — Brian Genisio, Senior Software Consultant, SRT Solutions

 Very handy code snippets, both for novice and day-to-day development.

 — Fabien Nicollet, GIS Software Engineer, Business Geografic

 It gets you building multi-platform real-world mobile apps in no time while acquainting you with best coding practices and techniques.

 — Alexandre Madurell, R&D Analyst Programmer, KIT digital

 Get mobile applications running quickly with Flex on AIR. Very good for learning, with extremely reusable examples.

 — Doug Warren, Software Architect, Java Web Services

 Flex Mobile In Action

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 261

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2012 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 Manning Publications Co.

 20 Baldwin Road

 PO Box 261

 Shelter Island, NY 11964

 	
 Development editor:

 Technical proofreader:

 Copyeditor:

 Proofreaders:

 Cover designer:

 	
 Cynthia Kane

 Kevin Korngut

 Linda Recktenwald

 Melody Dolab,

 Nermina Miller

 Marija Tudor

 ISBN 9781617290619

 Released as eBook only, May 2012

 Brief Table of Contents

 Advance Praise for Flex Mobile in Action

 Brief Table of Contents

 Preface

 Acknowledgements

 About This Book

 About The Cover Illustration

 Part 1. Getting Started

 1 Getting to know Flex Mobile

 Part 2. Mobile development with Flex

 2 Get going with Flex Mobile

 3 Persisting data

 4 Using your devices native capabilities

 5 Handling multiresolution devices

 Part 3. Advanced mobile development

 6 MVC with mobile applications

 7 Architecting multiscreen applications

 8 Extending your mobile application

 9 Effective unit testing

 10The almighty application descriptor

 11Building your application with Flash Builder

 12Automated builds using Ant

 Preface

 It has been almost two years now since Adobe started releasing super-secret early betas of their mobile AIR runtimes and Flex framework. During that time, only a select few were kicking the tires and seeing what was possible while waiting for more phones to successfully run Android 2.2 and the iPhone packager to be completed.

 Fast forward a few months, and it’s October. Seconds after Adobe pushes up the first versions of AIR for Android, I’m pushing up the first early version of my well-received Queue Manager application—the first AIR for Android application on the Android Market. Within a few months, planning on multiple projects for various projects is at full speed and many clients are adopting AIR and Flex for their mobile enterprise applications.

 If we fast-forwarded a few more months, we’d see Queue Manager being used by more than 20,000 unique users daily and having over 500,000 downloads. Between personal and professional projects, I’ve created around a dozen mobile applications that use Flex and AIR, and I was fortunate enough to be asked by Manning if I would write a book about my experiences building Flex applications for the mobile environment. Originally, the request was to make a book showing how to use Flex to make Android applications, but, as Flex developers, we know that we can do better and that cross-platform development is the name of the game.

 I’m proud to put into one book a collection of resources, examples, and explanations that will help new Flex developers transition from desktop- and browser-based applications to the mobile world, and assist any developers that want to make visually stunning applications that execute consistently across multiple platforms with a singular and elegant code base.

 Acknowledgements

 Over the last few years, there have been many people that inspired me, leading me to this point of actually releasing a book—something I said I would never do. First and foremost, this book is created for the Flex community, a group of friends and colleagues that work together cohesively to help each other through the daily struggles of development.

 Beyond the community, I would like to thank Cynthia Kane for managing the creation of this book, along with Troy Mott, Bert Bates, and the rest of the Manning team. Within Manning, I would also like to give special thanks to Linda Recktenwald, Melody Dolab, and Mary Piergies for making my techno babble readable.

 Next, I’d like to give a special thank you to Kevin Korngut for going through all my code and making sure that I didn’t leave any late-night programming errors in the code.

 I would like to thank the following reviewers who read the manuscript at various stages during its development; their feedback made this a better book: Jason Fincanon, Antonio Holguin, Brian Genisio, Ken Brueck, Andrew Grothe, Alexandre Madurell, William LaPrise, Fabien Nicollet, Doug Warren, and Kirsten Schwark.

 Finally, I want to say a special thank you to my family for their lifelong support and to my wonderful girlfriend—my continuous source of inspiration.

 About this book

 This book is about building Flex applications using the Adobe AIR runtime for multiple mobile devices. More than just focusing on the coding conventions, this book focuses on how to build a fully featured mobile application as well as all on the various aspects of mobile application development.

 Going beyond development and new Flex mobile features, this book integrates often-requested and extremely useful application development features such as unit testing, user tracking, MVC, Robotlegs, and ANT deployment. Utilizing every tool in your tool belt will give you the ability to create fully featured enterprise applications using Flexs and AIRs new mobile features.

 Some developers may feel that these other features exist outside of the requirements for a Flex mobile development book. To these developers I would say that I've included most of the typical needs for Flex mobile application developers - whether the problem is Flex specific or not.

 Roadmap

 	Chapter 1 starts with a general introduction to Flex mobile, mobile development, and a simple Hello World example.

 	Chapter 2 hits the ground running by kicking off the Rotten Tomatoes Application, setting up some views, and running the application on your desktop and mobile device.

 	Chapter 3 builds upon chapter 2 by introducing data persistence to your application using Local Shared Objects, SQLite, and the new PersistenceManager.

 	Chapter 4 diverges from the main application, creating a new application and, specifically, showing how to use various device capabilities with Flex.

 	Chapter 5 returns to the Rotten Tomatoes application and updates your application to work on a variety of devices, no matter the resolution or screen size of the device.

 	Chapter 6 takes the Rotten Tomatoes application and gives it an industrialstrength overhaul by introducing Robotlegs, an MVC micro-architecture.

 	Chapter 7 breaks up your Rotten Tomatoes application, enabling it to run device-specific features while reusing the maximum amount of code.

 	Chapter 8 expands the Rotten Tomatoes application by introducing Native Extensions, user tracking, and revenue-generating ads integration.

 	Chapter 9 goes beyond the Rotten Tomatoes application and builds in unit testing.

 	Chapter 10 diverges from the Rotten Tomatoes application by focusing on the Application Descriptor and all of the features enabled with this single file.

 	Chapter 11 shows how to use Flash Builder to create release-quality builds of the application.

 	Chapter 12 rounds out the book by showing how to use ANT to automate the build process of all the application's parts.

 Who should read this book?

 This book is about building mobile applications using the Flex framework. As such, this book targets two types of developers.

 The first are current Flex developers interested in taking their knowledge to the next level and onto the mobile landscape. Whether you've used Flex to develop small widgets or built entire applications, there's much to learn about the new mobile paradigms and best practices when building multi-screen applications. For current Flex developers, I'll discuss the new components optimized for mobile development, architecture strategies for multi-screen applications, and how to create applications that look and run great across multiple devices and multiple screen sizes.

 The second type of developers that this book is intended for comes from other languages and wants to create mobile applications. Rather than deciding to learn Objective-C, Android Development, C++, C# or any of the other languages that create installable mobile application, we can just use Adobe AIR coupled with Flex and build applications that work on iOS, Android, BlackBerry, the web, and even the desktop with a singular codebase. These developers are busy, hard-working, and ready to maximize their output. If you're coming to Flex for the first time, you'll quickly see how to create MVC-based applications with Flex, use Flex to build mobile applications, and release your mobile applications to each of the major markets.

 Code conventions and downloads

 As this is a programming book, you can expect it to include many code samples, configuration files, and other required listings to help you understand how to create Flexbased mobile applications. Source code in listings or in body text is in a fixed width font to separate it from ordinary text. In addition to code listings, ActionScript class and method names, parameters, properties, along with HTML and XML elements will also be presented using fixed width font. ActionScript method names within text will not include the full method signature - the name and list of required parameters.

 Well-formatted code utilizes plenty of whitespace, improving readability, but a book has limited space on a page, so I've had to condense the code listed in this eBook. The full, nicely formatted, code can be found online in my GitHub account at https://github.com/jonbcampos/Flex-Mobile-In-Action or on the publisher's website at www.manning.com/FlexMobileinAction.

 Under each code listing I include the path to find the specific file being discussed in the listing. This is meant to make finding full code segments as simple as possible. In some rare cases not all of the code is shown in the book - mainly due to repetitive code. Complete applications, including these missing segments, can be found in my GitHub account. You can also download the source code in a zip file from the publisher's website at www.manning.com/FlexMobileinAction.

 Also in the code listings, you will find code annotations that point out certain code segments and explain what each individual line of code accomplishes. Flex is an open source project, released under the Apache Software License and distributed with the Adobe Flash Builder IDE and many others. You can also download Flex, in source or binary form, from the Flex home page at http://incubator .apache.org/flex/.

 Author Online

 The purchase of Flex Mobile in Action includes free access to a private web forum run by Manning Publications, where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum and subscribe to it, go to http://manning.com/FlexMobileinAction. This page provides information on how to get on the forum once you are registered, what kind of help is available, and the rules of conduct on the forum.

 About the author

 Jonathan Campos is a principal architect for Miller and Associates as well as a committer on the Apache Flex project. Within the community Jonathan is a user group manager in Dallas, Texas. You can see Jonathan's blog at http://unitedmindset.com/ jonbcampos and on twitter at http://twitter.com/jonbcampos.

 About the cover illustration

 The figure on the cover of Flex Mobile in Action is captioned "Flag Bearer of the Guard in Dubrovnik, Croatia." The illustration is taken from a reproduction of an album of traditional Croatian costumes from the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval center of the town: the ruins of Emperor Diocletian's retirement palace from around AD 304. The book includes finely colored illustrations of figures from different regions of Croatia, accompanied by descriptions of the costumes and of everyday life.

 Dubrovnik is an ancient city and sea port located on the Adriatic coast of Croatia. A prime tourist destination today, the city was originally called Ragusa and founded in the 7th century AD as a refuge for coastal residents fleeing advancing barbarians. In the Middle Ages, Ragusa flourished and was the only city on the eastern Adriatic to rival Venice in maritime power and trade. The figure on the cover is holding the flag of Ragusa with a picture of St. Blaise on it. An early Christian martyr, St. Blaise is the patron saint of Dubrovnik to this day.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by region, so rich at the time, has faded away. It's now hard to tell apart the inhabitants of different continents, let alone of different hamlets or towns separated by only a few miles. Perhaps we have traded cultural diversity for a more varied personal life - certainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by illustrations from old books and collections like this one.

 Part 1. Getting started

 Application development is in a transition period no matter what applications you’re used to creating. Applications are becoming apps, and the steps required to prepare applications for the desktop and the web are continuing to grow to include many mobile platforms.

 In this part of the book we’ll focus on some concepts and pain points when creating mobile applications, including the issue of multiple operating systems and technologies. We’ll also look at a quick Hello World example so that you can see how easy it is to create an application for various platforms using Flex.

 1 Getting to know Flex Mobile

 This chapter covers

 	Defining multidevice and multiscreen

 	The great debate: native versus cross-platform development

 	Mobile components

 	Hello World example

 You, a mild-mannered programmer, work tirelessly on your computer to create desktop and web applications for your own personal gain and that of your clients. Suddenly you get a call on your phone from a new client asking for a mobile application! You spring into action and take the case only to realize later that mobile development is very different from the application development you’ve done in the past. Enter Flex Mobile.

 With the latest release of Flex, Flex 4.6—the successor to Flex 4.5 (codenamed Flex Hero), you can easily make applications that run on the web, desktop, or a wide range of mobile phones and tablets with the same codebase and familiar development techniques between each platform. This means you don’t have to learn a new language or relearn how a button works each time you need to deploy to a new device. Instead, you can use the knowledge you have, extend it, and deploy to each new platform.

 What makes Flex so wonderful for application development? Built into the Flex framework is a myriad of components created with the sole purpose of creating amazing applications. With many tested, extendable components, you can create applications easily without having to re-create the wheel each time.

 In this chapter we’ll discuss the latest changes in mobile application development, as well as how to decide between going native and using a cross-platform solution. Once you see the benefits of the Flash platform for multiscreen development, we’ll look at what Flex Mobile is, work through a basic Hello World example, and finally introduce the running example that will be used throughout the entirety of the book.

 1.1 Learning key terms

 Before jumping right into Flex Mobile it’s important to understand some key terms surrounding mobile and discuss the debate between native and cross-platform development.

 Native development[image: indexterm]

 When we talk about going native, we’re referring to the use of the device’s native software development kit (SDK), and therefore programming language, to create applications. For iOS development you’ve probably heard that native development means learning the Objective-C language, whereas Android includes its own framework built around the Java language.

 Cross-platform development[image: indexterm]

 When we talk about going cross-platform, we’re talking about using one of the development platforms, such as Flex (ActionScript) or HTML (and JavaScript), to create applications that work similarly, if not the same, across all devices.

 Multidevice[image: indexterm]

 Thanks in part to the changing mobile landscape, two new terms are thrown around surprisingly often: multidevice development and multiscreen development. Although some circles may argue the unique differences of these terms, on the whole these terms are synonymous.

 When we talk about multidevice or multiscreen application development, we’re ultimately discussing creating a single application that works on multiple devices or multiple screens. Depending on your interpretation of the word, you may believe that the code is 100% the same between each device or that the applications need to share a common codebase.

 For some developers, when we talk about multidevice, we’re discussing the various mobile platforms, and when we talk about multiscreen, we’re also bringing in web, desktop, and television screens, to name a few. For the purposes of this book, we’ll treat the terms as the same and focus specifically on creating an application that works across multiple platforms.

 Native development[image: indexterm]

 When we talk about going native, we’re referring to the use of the device’s native software development kit (SDK), and therefore programming language, to create applications. For iOS development you’ve probably heard that native development means learning the Objective-C language, whereas Android includes its own framework built around the Java language.

 Cross-platform development[image: indexterm]

 When we talk about going cross-platform, we’re talking about using one of the development platforms, such as Flex (ActionScript) or HTML (and JavaScript), to create applications that work similarly, if not the same, across all devices.

 Multidevice[image: indexterm]

 Thanks in part to the changing mobile landscape, two new terms are thrown around surprisingly often: multidevice development and multiscreen development. Although some circles may argue the unique differences of these terms, on the whole these terms are synonymous.

 When we talk about multidevice or multiscreen application development, we’re ultimately discussing creating a single application that works on multiple devices or multiple screens. Depending on your interpretation of the word, you may believe that the code is 100% the same between each device or that the applications need to share a common codebase.

 For some developers, when we talk about multidevice, we’re discussing the various mobile platforms, and when we talk about multiscreen, we’re also bringing in web, desktop, and television screens, to name a few. For the purposes of this book, we’ll treat the terms as the same and focus specifically on creating an application that works across multiple platforms.

 1.2 Deciding between native and cross-platform

 Within various development circles there’s a big debate: go native or go cross-platform. Although the final answer is always unique to the team and developers, there are some major points to take into consideration before making a final decision. I do want to point out that either way you can create some great applications.

 For native development, some reasons to use native code are the execution speed, ease of access to core or custom features, and final package size. But the downside to going with native code is the limited reuse of code, longer development cycles for projects requiring multiple platforms, and more languages that your teams must be proficient in to successfully execute an application.

 With cross-platform development, some reasons to use a cross-platform language are the development speed, consistency of applications across devices, time and cost savings, and finally only having to master or use a single language. As with any decision, there are some downsides. For cross-platform development, this usually means that it’s harder to access core platform features, the final package size is usually larger to support multiple platforms, and the code’s execution time is typically slower because there’s a level of abstraction between the device and the code (see figure 1.1).

 [image: figure]

 Figure 1.1 Cross-platform versus native development

 It’s the points of time and cost savings that I want to focus on. As a consultant, all of my clients want to create an amazing application while minimizing cost and maximizing their return on investment. Therefore, many of my clients start the application development process by focusing on a singular device platform that they want to target, usually Android or iOS. If you’re creating an application for a singular device, you have the option to either use native development techniques or cross-platform development techniques.

 At some point, though, my clients always eventually ask the question, “Can my application developed for platform X also work on platform Y?” Immediately, I tell them that the only answer is to use cross-platform development without needlessly ballooning the development cost and the amount of time necessary to fully support multiple platforms.

 Because you’re reading this book, I assume you’re interested in cross-platform development, specifically Flex Mobile.

 1.3 What’s Flex Mobile[image: indexterm]?

 With the decision to use a cross-platform framework for your mobile applications behind you, we’ll look at Flex Mobile specifically.

 Some time back, before Flex 4.5+, Flex was already the best user interface framework on the market for browser and desktop applications. Mobile devices were starting to take off, and Adobe was planning to create a second lightweight framework influenced by Flex for mobile devices, codenamed Slider. During the development and exploration of this lightweight framework, the Flex SDK team found the best possible solution, combining the lessons learned from the lightweight framework and optimizing the full Flex framework.

 The Flash platform teams released Flex 4.5, providing the Flex framework we know and love with the mobile optimizations of a mobile specific framework, along with some industrial-strength upgrades to Flash Builder. Including components specifically for mobile, Flex 4.5 took existing mobile components appropriate for the mobile user experience and provided mobile skins that were size appropriate for touch input and multi-DPI layouts. The codename for this merged mobile-capable framework was Hero.

 Powered by thousands of active developers and contributors, the Flex framework is always improving and expanding. At the time of this writing, Flex version 4.6 is just being released, adding additional mobile components to the Flex framework. Figure 1.2 shows just some of the Flex components skinned for mobile use. In addition to the selected list of mobile components shown, many other components are available but are harder to visualize.

 [image: figure]

 Figure 1.2 Small sample of Flex visual components skinned for mobile interaction

 This simple description of Flex Mobile opens the door to many more questions. What language am I coding in? What runs our code? Next, I’ll answer these questions.

 1.3.1 What language am I coding in?

 When developing a Flex application you’ll hear people use phrases like the MXML code, the ActionScript code, or even the Flex code. Even poor, helpless recruiters will send out job requests insisting the developers have three years of MXML development.

 So what’s right?

 Flex is an XML-based markup protocol created by Adobe for the Flex framework to make the layout of visual components easier to read. As its popularity grew, other ActionScript frameworks used the concept of MXML markup to use a tag-based markup to describe their ActionScript objects.

 It doesn’t look like ActionScript to me.

 MXML is purely an XML representation of the ActionScript objects. All of the rules of XML still apply, such as namespaces and markup formatting. When compiling your application the compilers within the Flex framework take your MXML tags and convert them to ActionScript classes. After this translation is complete, the compiler creates the file to be run on your runtime.

 Now that you have a better understanding of the language, we need to discuss what executes your code.

 Can I see the generated code?

 It’s a little too advanced to go into right now, but if you want to be able to see the generated code created, you can always add –keep-generated-actionscript=true to your compiler settings. See the following URL for the application compiler options:

 http://livedocs.adobe.com/flex/3/html/help.html?content=compilers_14.html

 1.3.2 What runs our code?

 A term you’ve probably heard before is runtime environment, also sometimes referred to as just runtime. A runtime environment is a collection of code, settings, and programs that execute the code you write. When developing with Flex there are two runtimes to be aware of: the Flash Player runtime and the Adobe Integrated Runtime (AIR).

 Flash Player runtime[image: indexterm]

 The Flash Player runtime is the program that runs to execute a compiled application within an internet browser. Flash Player is available for every major internet browser and provides a consistent runtime and code executing experience. As wonderful as Flash Player can be, for this book we won’t be concerned with Flash Player. The applications you’ll create all run on the AIR runtime.

 AIR[image: indexterm]

 AIR was created to provide a consistent runtime for installed applications running outside the browser. Gaining access to system resources previously not available from the browser, these applications can be installed on mobile devices, TVs, and desktops. All the applications you’ll create in this book will run on the AIR runtime for testing and deployment. The growing list of mobile devices that support Adobe AIR include Android, iOS, and QNX (BlackBerry) devices. Although it may not be obvious, when I list Android devices, I’m also including the Nook, Kindle Fire, and various other Android tablets and phones.

 Within this book you’ll utilize mobile components and many others as you develop a handful of applications, learning the finer points of mobile using the Flex framework. The best way to understand Flex and the power behind it is to jump in headfirst.

 1.4 Hello World

 In chapter 2 we’ll get into application development, but before we do you’ll create a quick Hello World example to set expectations for the development environment and show how easily you can display some text with the Flex framework. Hello World examples are always helpful mini-applications that show how quickly you can go from nothing to being able to display the words Hello World to a user. This is the first Flex Mobile application that you’ll create.

 1.4.1 Prerequisites

 For this book you don’t have to be a Flex expert; you only need to have an interest in making great mobile applications that can run across multiple platforms. But there are some basic expectations we’ll use throughout this book.

 Your IDE

 Although many of the examples within this book use Flash Builder for the integrated development environment (IDE), you don’t have to. An IDE is the application you use to code. The I in IDE states that the coding application isn’t created for just one language but for many different languages all within the same environment. If you’re used to developing with FDT, TextMate, IntelliJ, or any other of the Flex- and Flash-capable IDEs, feel free to use it. It’s outside of the scope of this book to set up or customize these IDEs, but full code examples will be shown throughout this book that are 100% IDE agnostic.

 Flex version[image: indexterm]

 The only real requirement of this book is that you’re developing with at least Flex version 4.6. Although many of the examples and topics within this book will work with Flex 4.5, a few code examples in the latter half of the book cover some of the newer capabilities of Flex that require Flex 4.6. All versions of Flex beyond 4.6 will work with the examples shown in this book.

 Mobile devices[image: indexterm]

 If you’re one of the lucky developers to own multiple mobile devices, then you can enjoy using each one of your devices throughout this book. If you’re missing a QNX (BlackBerry), iOS, and/or Android device, don’t worry; Flash Builder—or your favorite IDE—can provide a simulator to run your code. Not all device capabilities are supported within the device simulators, but you can still develop using these programs. Obviously, as you get closer to a final release, you’ll want to test your application on each device you intend to release on.

 1.4.2 Creating a new application

 In chapter 2 we’ll go step by step through the application-creation process, looking at every option and selection—including how to run an application within the simulator. For this part we’ll quickly run through how to create a mobile application using Flash Builder.

 Using Flash Builder, the first step is to create a new Flex Mobile project (see figure 1.3).

 [image: figure]

 Figure 1.3 New Flex Mobile project

 After you select New > Flex Mobile Project, Flash Builder will lead you through the steps to start up your new project (see figure 1.4). The first step is always to name the project and determine where you want the project to be saved.

 [image: figure]

 Figure 1.4 Project Location dialog box

 After naming your new Flex Mobile project HelloWorld, click Next to configure your application (see figure 1.5).

 [image: figure]

 Figure 1.5 Mobile Settings dialog box

 You can skip most of the project settings (we’ll revisit these settings in chapter 2), and select the option to create a blank application template. With this one setting, you can click Finish and Flash Builder will create your application template:

 <?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationDPI="160">
 <fx:Declarations>
 <!-- Place non-visual elements
(e.g., services, value objects) here -->
 </fx:Declarations>
</s:Application>

 Your last change is to add in the Hello World text by including a Label component, which displays text onscreen:

 <?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationDPI="160">
 <fx:Declarations>
 <!-- Place non-visual elements
(e.g., services, value objects) here -->
 </fx:Declarations>
 <s:Label text="Hello World"/>[image: cueball]
</s:Application>

 	[image: cueball]

 	
 “Hello World” label

 That’s it. You’ve completed your Hello World application. As simple as this application is, you can already see how quickly you can go from no code to an application that you could run on multiple platforms. Obviously, you aren’t going to release this application for other people to download, but this example shows you just how comfortable this process would be. In chapter 2 you’ll expand on your Flex knowledge and customize your application.

 1.5 Introducing a running example

 Working with a public API can give your applications the important data necessary to populate an application. An API, is a defined process detailing how to interact with data available from another software system. For the purposes of learning mobile application development, it’s important to be able to make service calls, show lists of data and details, as well as integrate device specific capabilities into your application to utilize the abilities provided to you by the device.

 The main application created within this book is a Rotten Tomatoes application displaying movie data provided by the Rotten Tomatoes API. The Rotten Tomatoes API will provide you the ability to quickly get access to a huge library of movie data, and you’ll be able to extend the mobile experience by adding new mobile-specific capabilities to the application. In this section I’ll explain what a public API is, show how to integrate with an API, explain what data Rotten Tomatoes will provide to you, and finally lay out a roadmap for the mobile application.

 1.5.1 The roadmap for our example

 For this book you’ll create an application using the Rotten Tomatoes API, with help from the RottenTomatoesAS3.swc, which will run on phones and tablets on the Android, QNX, and iOS platforms.

 Starting simple, the application will pull and display data from the Rotten Tomatoes API. As the application matures, you’ll update it to run across screens of various DPI and then give the application an enterprise-strength overhaul utilizing the popular Robotlegs MVC (Model-View-Controller) framework.

 You’ll round out the application by giving it access to some extra native capabilities with native extensions giving you the ability to make money using integrated ads.

 Finally, the application will include a full unit test suite and a series of build scripts to quickly create release-quality files to upload to the various app markets.

 There are plenty of stops along the way and additional features to be had; this is just a mile-high roadmap of where you’re going.

 1.5.2 Public APIs and Rotten Tomatoes

 While trying to reach a larger audience, many companies open their data to other applications, including yours, using a specified protocol called an application programming interface. Using protocols like XML and JSON, your application can quickly integrate with these other applications and their data, expanding the features available within your application.

 For your application you’ll be utilizing the Rotten Tomatoes API provided by Flixster.

 To fully utilize the Rotten Tomatoes API, you’ll need to sign up for an API key with Flixster. Signing up for an API key is free and takes only a few minutes.

 Welcome to the Rotten Tomatoes API

 The API gives access to Rotten Tomatoes’ wealth of movie information, allowing anyone to build applications and widgets enriched with Rotten Tomatoes data.

 Using the API, users can, for example:

 	Search for movies and retrieve detailed movie information, such as cast, directors, and movie posters

 	Access the Rotten Tomatoes Score (aggregation of critic's scores) and the Audience Score

 	Get the current box office movies, new releases, and upcoming movies

 From: http://developer.rottentomatoes.com/

 Sign up for an API key[image: indexterm]

 To sign up for an API Key go to http://developer.rottentomatoes.com/

 From this page you must first register for an account and then register your application for an API key. Once Flixster accepts your application, you’ll have your API key (see figure 1.6).

 [image: figure]

 Figure 1.6 Register and sign up for an API key

 You won’t have to start from scratch, though. We’ll be using the RottenTomatoesAS3 API to quickly integrate the Rotten Tomatoes data without having to make complicated service calls and JSON-to-ActionScript translations.

 1.5.3 The RottenTomatoesAS3[image: indexterm] API

 Available from GitHub, the RottenTomatoesAS3 API provides an extremely easy way to pull data from Rotten Tomatoes. The full source is available for viewing and forking at

 https://github.com/jonbcampos/RottenTomatoesAS3

 In chapter 2 we’ll discuss what an SWC is and how to use it to consume code. If you already know or just want to pull a required resource, use the following link to quickly get the compiled SWC:

 https://github.com/downloads/jonbcampos/RottenTomatoesAS3/RottenTomatoesAS3.swc

 To see a live example of the RottenTomatoesAS3 API in action, please check out Tour de Flex (http://www.adobe.com/devnet/flex/tourdeflex.html). Tour de Flex is a wonderful application containing examples of many different available APIs, components, and code samples (see figure 1.7).

 [image: figure]

 Figure 1.7 Tour De Flex application with the Rotten Tomatoes API selected

 Now that you understand how to get your hands on the data from the Rotten Tomatoes API and where to get the ActionScript code to make your life easier, we can move on and look at what you’ll be creating throughout this book.

 What’s an SWC?

 Later we’ll look more closely into what an SWC is, how to create one, and the features it provides, but for now just know that an SWC is a file that contains some code and other assets packaged to be easily shared between projects.

 1.6 Summary

 We have a long way to go, and the journey is just starting. In this chapter we looked at some key terms in the growing mobile debate: native development versus cross-platform development. From there we looked at how Flex, originally developed as a component library to build rich internet and desktop applications, grew to include many new components created to support mobile development on a variety of platforms. Then we briefly looked at how to start up a new Flex Mobile project with Flash Builder and introduced where you’re going throughout the rest of the book. The most important takeaway from this chapter should be a high-level understanding of the Rotten Tomatoes API and getting your own API key from Flixster. With these steps complete, you just need to pull the RottenTomatoesAS3 SWC file and move on to chapter 2, where you’ll get into some real development.

 Key takeaways:

 	Understand the terms multiscreen, multidevice, and cross-platform

 	Quickly make a Hello World example

 	Learn about the Rotten Tomatoes API and your Rotten Tomatoes application

 Part 2. Mobile development with Flex

 Whether you’re a seasoned Flex developer or you’re coming to the Flex platform for the first time, this section will ramp you up to being a full-fledged mobile developer.

 As Flex transitions from the desktop and browser to mobile platforms, we’re teaching the old dog some new tricks. In this part we’ll focus on these new tricks so that you understand just how many capabilities are built right into Flex, enabling you to make enterprise-level applications for multiple mobile devices.

 In chapter 2 we focus on the new ViewNavigator component and all of the features provided to us by this new component and view paradigm. I’ll show you how to run and debug your application on your desktop along with your mobile devices.

 In chapter 3 we’ll switch from focusing on the look and feel of your application to the specific data within your application. In chapter 3 we’ll discuss how to hold out data even after your users leave the application.

 In chapter 4 we’ll shift gears from the data and focus on tying into native capabilities built into your devices. Using features provided by Adobe AIR, you’ll deeply integrate with devices in a way that wasn’t available to you before.

 Finally, we’ll end this part in chapter 5 by looking at how to make your application work on a variety of devices no matter what the dimensions or resolution of the screen. This monumental task will be made easy with the power built into the Flex framework.

 2 Get going with Flex Mobile

 This chapter covers

 	Starting a Mobile Flex project

 	Creating views

 	Using the ViewNavigator

 	Running your application

 	Creating new device configurations

 	Pulling data from Rotten Tomatoes AS3 API

 	Customizing the ActionBar

 It’s time to dive headfirst into Flex Mobile development. Armed with knowledge of ActionScript, MXML, and Flex, you’ll start making your application. In this book you’ll be creating an application using the Rotten Tomatoes API. For those who don’t know what Rotten Tomatoes is, it’s a wonderful website that provides movie details and reviews available in a variety of browsing or search options.

 Using the data provided by the Rotten Tomatoes API, you’ll use the List/Details user experience paradigm. Even if you haven’t heard of the List/Details term, I can promise you that you already know it; many mobile applications are designed using this pattern.

 The idea is that you have a list of items, and after selecting a particular item in the list, you are then given details on the selected item. Figure 2.1 diagrams the List/Details user experience paradigm.

 [image: figure]

 Figure 2.1 List/Details user experience

 By starting the application as outlined in this chapter, you’ll have the groundwork for a much larger application that can run on a variety of devices. This application example, spread over many chapters, will show you how to navigate a mobile application, persist data effectively, and react to a variety of screen sizes. In this chapter you’ll create the beginnings of the application, learn to navigate through the ViewNavigator, pull data from Rotten Tomatoes, and add in the basic views for the application.

 Rotten Tomatoes API

 To see a sample of the data you’ll be using, feel free to visit the Rotten Tomatoes site at http://www.rottentomatoes.com/. To pull data from the Rotten Tomatoes API, you’ll need to have an API key. Make sure to sign up for a developer’s account to get an API key to the Rotten Tomatoes API at http://developer.rottentomatoes.com/.

 If you skipped chapter 1, full instructions on how to get a developer account are there.

 2.1 Starting up your application

 When creating a Flex application the starting point is always a specific Flex class called Application. For mobile development Adobe added a few more application-type classes to fit the mobile paradigm.

 The first is ViewNavigatorApplication. This Application subclass is similar to ViewNavigatorApplication, except instead of supporting just one ViewNavigator and its single stack of views, TabbedViewNavigatorApplication supports multiple ViewNavigators, allowing the user to access the various ViewNavigators by selecting from their respective tabs on screen. As I showed in the previous chapter, you can create this Application subclass totally in code, or you can use the Flash Builder IDE to help guide you through the setup process. In this section you’ll create your application using Flash Builder.

 2.1.1 Creating a TabbedViewNavigatorApplication

 Using Flash Builder you can create a new Flex Mobile project and select Tabbed Application to create the TabbedViewNavigatorApplication subclass.

 Start this process by selecting File > New > Flex Mobile Project, as shown in figure 2.2. You can see how by going through File > New or right-clicking in the Package Explorer you can create a new Flex Mobile Project. Once you create a new Flex Mobile project, the Flash Builder IDE will guide you through the setup process.

 [image: figure]

 Figure 2.2 Start a new Flex Mobile project.

 As Flash Builder leads you through the steps necessary to create a new Flex Mobile application and creates the initial files, you need to set the name of your application and the location to save it to (see figure 2.3).

 [image: figure]

 Figure 2.3 Naming your application

 After entering the name of your application—use RottenTomatoesApplication—and deciding where to save it, click Next and select Tabbed Application in the Application Template section, as shown in figure 2.4.

 In this section it’s easy to create tabs for your application. You can see in figure 2.4 that I created three tabs named Tab 1, Tab 2, and Tab 3. These values are completely arbitrary at this point because you’ll be making changes later to these values directly in your code. As with every option you select at this point, everything can be adjusted in code later on; all of your selections create a bit of code to make your life easier.

 [image: figure]

 Figure 2.4 Select Tabbed Application.

 Once you’ve made your tabs, click Finish and complete the setup dialog box. The resulting code, or code that you can enter manually to create the exact same effect as using the IDE, is shown in the following listing.

 Listing 2.1 Main application—RottenTomatoesApplication.mxml

 <?xml version="1.0" encoding="utf-8"?>
<s:TabbedViewNavigatorApplication[image: cueball]
 xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 applicationDPI=”160”>
<s:ViewNavigator label="Tab 1" width="100%" height="100%"
 firstView="views.Tab1View"/> [image: cueball]
<s:ViewNavigator label="Tab 2" width="100%" height="100%"
 firstView="views.Tab2View"/> [image: cueball]
<s:ViewNavigator label="Tab 3" width="100%" height="100%"
 firstView="views.Tab3View"/> [image: cueball]
<fx:Declarations>
<!-- Place non-visual elements
(e.g., services, value objects) here -->
</fx:Declarations>
</s:TabbedViewNavigatorApplication>

 	[image: cueball]

 	
 Main application tag

 	[image: cueball]

 	
 Tab 1 ViewNavigator

 	[image: cueball]

 	
 Tab 2 ViewNavigator

 	[image: cueball]

 	
 Tab 3 ViewNavigator

 /src/RottenTomatoesApplication.mxml

 Notice that the TabbedViewNavigator holds an array of ViewNavigators, one per tab that you intend to create, and each ViewNavigator contains its own first view. The label property on the ViewNavigator controls the button labels on the main TabNavigator (see figure 2.5). Finally, the three initial views are created to hold the user interaction components, each set with the firstView property.

 2.1.2 The views

 Flash Builder generates individual views for each tab you created. From figure 2.4 you know that you created an application with three tabs. The following code shows those three views, one code segment per tab. The three resulting views—Tab1View, Tab2View, and Tab3View—are so similar that it almost feels wasteful to give the code for each, but just so that all the code is documented, I’ll show the code for each view:

 <?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 title="Tab 1"> [image: cueball]
 <fx:Declarations>
 <!-- Place non-visual elements
(e.g., services, value objects) here -->
 </fx:Declarations>
</s:View>

 	[image: cueball]

 	
 View’s title

 <?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 title="Tab 2">[image: cueball]
 <fx:Declarations>
 <!-- Place non-visual elements
(e.g., services, value objects) here -->
 </fx:Declarations>
</s:View>

 	[image: cueball]

 	
 View’s title

 <?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 title="Tab 3">[image: cueball]
 <fx:Declarations>
 <!-- Place non-visual elements
(e.g., services, value objects) here -->
 </fx:Declarations>
</s:View>

 	[image: cueball]

 	
 View’s title

 Each of the view classes is unique, and any further changes that you make to them will only add to their uniqueness, but currently the only thing that’s different between each view is the title. The title property on the View component is used as the title of the ActionBar component. In figure 2.5 you can see the running application including the ActionBar, the TabBar, and the View component.

 Right now if you were to run the application, with your three views, the resulting application would look like figure 2.5.

 [image: figure]

 Figure 2.5 Current running application

 You’ve now created a working application that you’ll continue to expand on. As I stated earlier, currently the application only allows you to navigate through the three different tabs, but soon you’ll be adding much more complex functionality. Next, we’ll look at all the different ways to run the application in the desktop simulator and on the devices you currently own.

 2.2 Running your application

 Before going too far it’s important to know how to run and debug your application so that you can test the application in development. With the ability to run your application you can see the state of your programming in action. You can also pause the application and view variable specifics at runtime, ensuring your application’s values are as expected.

 You can run, debug, and deploy your application using the command line or other IDEs other than Flash Builder, but when I show examples of how to use an IDE to run your application, we’ll be looking at examples from Flash Builder because it’s currently the most widely used IDE. In this section we’ll walk through the steps necessary to run your application on the desktop simulator for quick testing and then move on to running the application on either your Android, QNX (BlackBerry), or iOS device—or all three.

 2.2.1 Desktop run/debug configurations

 Now that you have an application—simple or not—you’ll want to run it to ensure that your application looks and acts the way you intend. The easiest way to test your application is to use the mobile simulator provided by the ADL tool. To be clear, even if you don’t have a mobile device, you can run and test your application effectively, although when you release your application I’d highly recommend testing it on as many devices as possible.

 Although running the simulator is fast and easy, and it allows you to quickly customize the size of the device you’re simulating, there are some downsides to using it. The main issue is that within the simulator you don’t get any of the device’s native features while testing, such as gestures, multitouch, cameras, and so on (a partial list of not-included features is shown in table 2.1). Any additional APIs that you create using native extensions (see chapter 8) are most likely not available.

 Table 2.1mAvailable and unavailable device capabilities from ADL

 	
 Feature

 	
 Availability

 	
 Camera

 	
 No

 	
 Camera roll

 	
 No

 	
 Accelerometer

 	
 No

 	
 Geolocation

 	
 No

 	
 Home, Search, Menu, and Back keys

 	
 Yes

 	
 StageWebView

 	
 Yes

 	
 Microphone

 	
 No

 	
 Multitouch

 	
 No, unless you have a monitor that supports multitouch input

 	
 Gestures

 	
 No, unless you have a trackpad that supports gestures

 	
 Screen orientation changes

 	
 Yes

 	
 Email

 	
 Yes

 	
 Text messages

 	
 No

 	
 Phone calls

 	
 No

 	
 SQLite databases

 	
 Yes

 	
 Caching (via local shared object)

 	
 Yes

 One big benefit of testing on the device is that you can see how long things take to render and compute. Simulating is deceptive, because it runs an application on a machine more powerful than the actual device and with connection speeds faster than what your users will receive over the air. When testing on the device you may see visual slowdowns and services taking a long time to return. Performance gains and losses aren’t exposed in the simulator because of the power of the hardware.

 To simulate the orientation changes and hardware buttons of the Android device in the ADL tool, a few shortcut keys are provided within ADL to simulate these device actions (see table 2.2).

 Table 2.2mADL shortcut keys

 	
 Hardware feature

 	
 Details

 	
 Windows

 	
 Macintosh

 	
 Back button

 	
 Simulates hitting the Back button

 	
 Ctrl-B

 	
 Command-B

 	
 Search button

 	
 Simulates hitting the Search button

 	
 Ctrl-S

 	
 Command-S

 	
 Menu button

 	
 Simulates hitting the Menu button

 	
 Ctrl-M

 	
 Command-M

 	
 Rotate left

 	
 Simulates rotating the device left (counterclockwise)

 	
 Ctrl-L

 	
 Command-L

 	
 Rotate right

 	
 Simulates rotating the device right (clockwise)

 	
 Ctrl-R

 	
 Command-R

 	
 Close button

 	
 Closes the app

 	
 Ctrl-W

 	
 Command-W

 Two paths are available to get started when you need to run or debug an application. Both lead to the Run Configurations, where you’ll customize how your application is simulated.

 The first method is found in the toolbar (see figure 2.6). This quick access to run/debug will immediately run/debug the last project run, or you can select the exact project through the dropdown. If you have no previously run options, you’ll need to choose Run Configurations to configure the run options for your application.

 [image: figure]

 Figure 2.6 Toolbar Run dropdown

 The second path is to right-click the application file that you want to run and navigate down to Run As/Debug As > Mobile Application (see figure 2.7).

 [image: figure]

 Figure 2.7 Run Configurations from Package Explorer

 Either way you go, you should now see the Create, Manage, and Run Configurations dialog box (see figure 2.8).

 [image: figure]

 Figure 2.8 Create, Manage, and Run Configurations dialog box

 From this dialog box, you can customize how the ADL tool will run your application on the desktop. Within this dialog box, you can name your run configuration for easy access in the future.

 Over time, you’ll probably find it helpful to create multiple run configurations for various device configurations and name each configuration uniquely, like “Mobile App Evo” and “Mobile App iPad” for Evo and iPad configurations, respectively. This will save you development time by not having to continuously change the run configuration.

 To adjust your run configurations, first select the project to run and the application file to launch. Then select which target platform you’ll be simulating from, where to launch the application, and finally which device to simulate. Once you’ve made all of your selections, click Run, and the ADL tool will run your application.

 By simulating your application on the desktop, you can click around and interact with your application as you could on your device. If you were debugging your application, any ActionScript breakpoints that you set would pause your application and provide details on variables and other data at that moment in the application.

 When you select devices in the device dropdown configuration list, a device that you want may be missing from the detail list. In the next section we’ll look at how to add devices to your device list for your simulator.

 ADL[image: indexterm]

 ADL stands for AIR Debug Launcher. This tool, provided by the Adobe Open Source Stack, is useful to run and debug AIR applications on your desktop. Packaged within Flash Builder and the Flex SDK, it’s launched each time you run an application on the desktop. One caveat is that you can have only one instance of the ADL tool running at a time. Just make sure to close the ADL tool each time you’ve finished testing.

 2.2.2 Adding a device configuration

 If the device that you want to simulate isn’t in the dropdown list, you have two options: either import the required device configuration or, if the configuration isn’t in the import list, add the custom configuration. Both of these options are available in the Device Configurations dialog box (see figure 2.9), which is accessible by clicking the Configure button next to the device selection dropdown.

 [image: figure]

 Figure 2.9 Device Configurations dialog box

 In the Device Configurations window you can view the available devices or import new device profiles that Adobe adds to Flash Builder. If the device you want to add isn’t in the import list, you can click the Add button to quickly add a new device by entering the screen resolution and DPI.

 Because you’re trying to reach as many devices as possible, you’ll want to also run on the Barnes and Noble Nook. The Nook is an Android-based device that isn’t included by default in the device list, so you need to add it to your device list. To add this device, you need to click Add in the Device Configurations dialog box.

 In the resultant dialog box (see figure 2.10), you’ll specify a few parameters and then you’ll be able to accurately simulate the Nook on your desktop.

 [image: figure]

 Figure 2.10 Adding a device configuration

 First, name the device Nook Color, and then set the platform to Google Android. Then enter the portrait width and height—these are the screen dimensions in portrait orientation. By default Flash Builder will adjust the usable screen size for a standard platform UI. What this means is that the actual size of your application is the total width and height minus the size of the status bar and any other platform UI. If the device has a nonstandard status bar, then you can make these adjustments by deselecting Estimate Usable Screen Size and adjusting the width and height as necessary. Finally, enter the pixels per inch for the Nook. With all of your settings configured, you can click OK and start simulating the Nook for development.

 With the ability to add any custom device, you have every possible device at your fingertips. Now select to run your applications based on your newly developed device, and continue testing for great results.

 2.2.3 Device run/debug configurations

 If you own an Android-, iOS-, or QNX (BlackBerry)-based device, you can also connect directly to the device and debug/run from the device with ease. Each device takes a slightly different set of steps to connect and deploy to the device based on the manufacturer’s requirements. The following three links outline the connection method for Android, iOS, and QNX (BlackBerry) devices, respectively:

 Android—http://www.adobe.com/devnet/air/articles/packaging-air-apps-android.html

 iOS—http://www.adobe.com/devnet/air/articles/packaging-air-apps-ios.html

 QNX (BlackBerry)—http://www.adobe.com/devnet/air/articles/packaging-air-apps-blackberry.html

 Once you’re connected, the process to test on the native devices is simple. One big benefit of testing on the device is that you can see how long it takes to run your application on the end user’s device.

 I know that felt like a lot of work, but the hard parts are over. From here on out you don’t need to keep setting up your project; you’re ready to start programming and building out the functionality of your application. In the next section you’ll create the first of the list/details views.

 Simulating is deceptive

 Rendering, computing, and pulling data on a machine more powerful and with faster connection speeds than what your users will receive over the air won’t expose where your application needs work. My recommendation is to test on the desktop first and then test mobile-specific features and performance on the device.

 2.3 Building your first application views

 Adding more tools to your belt, you’ll now become a master of the ViewNavigator with the ability to navigate through your application by adding and removing views. In this section you’ll start adding three important views to your application. These will stand as the bedrock of your larger application. You’ll create your main menu, move to a list of movies, and then see details based on a specific selected title.

 2.3.1 Navigating your application with the ViewNavigator

 Before adding and removing views, you need to understand how the ViewNavigator works. As we’ve discussed, the TabbedViewNavigatorApplication is a subclass of the Application class, which is required as the starting point for any Flex application and holds an array of ViewNavigator components. The ViewNavigator holds a stack of views and manages the addition and removal of views from the stage. When managing the stack of views, the ViewNavigator performs three functions: adding/removing views, cleaning up old views, and remembering the list of views in the stack. To illustrate the example we’ll work with a simple list of views, the same views you’ll use in your application. The three views include a main menu, a list of movies, and details on a selected movie title (see figure 2.11).

 [image: figure]

 Figure 2.11 Our three views

 At any given time when using the ViewNavigator, only a single view is active at a time. What happens to the other views? By default, the ViewNavigator destroys any views that aren’t currently in use. The benefit to destroying unused views is that the application no longer has to maintain the data for the view. But the problem with this approach is that the way that the view looks—any data that was input, any sliders moved, your position in a list—will be completely lost when you leave the view. If you navigate back to a view that was destroyed, you’ll have to set back anything you’ve changed so that for the user the view looks unchanged.

 Destruction policy

 You do have the option to stop a view from being destroyed by working with the destructionPolicy:

 <?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="Tab 1"
 destructionPolicy="never" > [image: cueball]
 <fx:Declarations>
 <!-- Place non-visual elements
(e.g., services, value objects) here -->
 </fx:Declarations>
</s:View>

 	[image: cueball]

 	
 A view isn’t destroyed

 If you have a view that takes a long time to create and would best be stored in memory, then you can turn off this destruction policy on a view-by-view basis. This prevents the view from being destroyed and preserves the entire view state. I recommend not leaning on this technique because you could quickly hurt the performance of your application by keeping too much in active memory. For your application, you won’t keep this code change.

 First view

 As stated when you set up your application, the view set to the firstView property in ViewNavigator is the first view shown when the ViewNavigator is created:

 <s:ViewNavigator label="Tab 1" width="100%" height="100%"
firstView="views.Tab1View"/>

 In this case you want the firstView to be the main menu so that on startup you see the main menu (see figure 2.12).

 [image: figure]

 Figure 2.12 First view

 The first thing to do is to navigate to the next view when a menu item is selected. To do this you push a view onto the view stack (see figure 2.13). The push function on the ViewNavigator includes four parameters:

 [image: figure]

 Figure 2.13 Pushing a view

 pushView(viewClass:Class, data:Object=null, context:Object=null,
transistion:ViewTransitionBase=null);

 The first and only required parameter is the class that needs to be created; please notice that this isn’t an instance of the view you desire to create, just the class. The reason that the method wants a class rather than an instance is so that the ViewNavigator controls when a view is created or destroyed.

 The second parameter is the generic data object. Any data that you set will automatically be passed to the newly created view and set on the view’s data property. This is a great way to pass data to the next view, giving the view information that may be used to construct the new view.

 The third parameter is another generic parameter called context. Although any form of data can be passed in the context and retrieved by using the generated view’s context property, the idea is to use this parameter to pass information to the generated view that will provide information about where the new view came from. For example, in your Rotten Tomatoes application, you may want to pass to the movie title details view information in the context that alerts the details that a specific title is in theaters or on DVD. With this bit of additional data, you can change the details view to reflect this information, making it easier to know where the generated view is coming from.

 The fourth and final parameter is the transition. The ViewTransitionBase is a special effect class that’s optimized to move a view onto a ViewNavigator.

 Pushing views onto your ViewNavigator is great, but at some point you have to navigate back down the stack and see where you were; this is referred to as popping views. We’re going to look at the three different ways to pop a view from the stack.

 popView

 Using the popView method (see figure 2.14) is the easiest and most basic way to remove your current view:

 [image: figure]

 Figure 2.14 Figure 2.14 popView

 popView(transition:ViewTransitionBase=null)

 As indicated by the name, popView pops the current view from the ViewNavigator and returns you to the last view in the stack. If you don’t specify a transition, then the default slide-to-the-left transition is used. The main thing to take away is that popView removed only one view from the stack, the current view.

 popToFirstView

 When popView isn’t good enough and you need to immediately move back to the firstView, it’s time to use popToFirstView (see figure 2.15).

 [image: figure]

 Figure 2.15 popToFirstView

 popToFirstView(transition:ViewTransitionBase=null)

 This ultra-helpful function pops off all the views in the stack and returns the user to the first view.

 popAll[image: indexterm]

 Finally, the last way to pop views is to remove all the views from the stack in one quick function (see figure 2.16):

 [image: figure]

 Figure 2.16 popAll

 popAll(transition:ViewTransitionBase=null)

 The popAll method removes all the views including the firstView. After calling this method you’ll need to push a new view onto the ViewNavigator or your application will have no content.

 With the ability to push and pop views to the ViewNavigator you now can take control of the navigation elements of your application.

 2.3.2 Providing context with the ActionBar

 You’ve already seen the ActionBar when you ran the application but probably didn’t realize its helpfulness. The ActionBar is a common mobile user interaction component that’s helpful for user input, navigation, and view context. Currently, you’re only using the ActionBar to provide view context by showing the title of the selected view (see figure 2.17).

 [image: figure]

 Figure 2.17 The ActionBar

 The ActionBar also includes a few different modes that dictate how the ActionBar is laid out in the view.

 Hide the ActionBar

 One option is to hide the ActionBar:

 <?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="Tab 1"
 actionBarVisible XE "actionBarVisible" ="false">[image: cueball]
 <fx:Declarations>
 <!-- Place non-visual elements
(e.g., services, value objects) here -->
 </fx:Declarations>
</s:View>

 	[image: cueball]

 	
 Remove ActionBar

 If you want to remove the ActionBar from a view, set the actionBarVisible property to false. By default this property is true.

 Overlay the ActionBar

 The next option is to overlay the ActionBar on the view’s contents:

 <?xml version="1.0" encoding="utf-8"?>
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark" title="Tab 1"
 overlayControls XE "overlayControls" ="true"> [image: cueball]
 <fx:Declarations>
 <!-- Place non-visual elements
(e.g., services, value objects) here -->
 </fx:Declarations>
</s:View>

 	[image: cueball]

 	
 overlayControls property

 If you want to have the ActionBar overlay or float over the view visual components, then you need to set the overlayControls property to true (see figure 2.18). By default this property is false

OEBPS/OEBPS/Images/indexPlaceholder.png

OEBPS/OEBPS/Images/Campos2image11.png

OEBPS/OEBPS/Images/Campos2image15.png

OEBPS/OEBPS/Images/Campos1image5.png

OEBPS/OEBPS/Images/Campos2image10.png

OEBPS/OEBPS/Images/Campos1image4.png

OEBPS/OEBPS/Images/2.png

OEBPS/OEBPS/Images/Campos1image1.png

OEBPS/OEBPS/Images/Campos1image6.png

OEBPS/cover.jpeg

OEBPS/OEBPS/Images/Campos2image4.png

OEBPS/OEBPS/Images/Campos2image9.png

OEBPS/OEBPS/Images/Campos2image1.png

OEBPS/OEBPS/Images/4.png

OEBPS/OEBPS/Images/Campos2image12.png

OEBPS/OEBPS/Images/Campos2image13.png

OEBPS/OEBPS/Images/Campos2image3.png

OEBPS/OEBPS/Images/Campos2image7.png

OEBPS/OEBPS/Images/1.png

OEBPS/OEBPS/Images/3.png

OEBPS/OEBPS/Images/Campos1image2.png

OEBPS/OEBPS/Images/Campos2image16.png

OEBPS/OEBPS/Images/Campos2image8.png

OEBPS/OEBPS/Images/Campos1image3.png

OEBPS/OEBPS/Images/Campos2image2.png

OEBPS/OEBPS/Images/Campos2image5.png

OEBPS/OEBPS/Images/Campos2image6.png

OEBPS/OEBPS/Images/cover.jpg

OEBPS/OEBPS/Images/Campos1image7.png

OEBPS/OEBPS/Images/Campos2image17.png

OEBPS/OEBPS/Images/Campos2image14.png

