

 [image: cover]

The Tao of Microservices

 Richard Rodger

 [image:]

Copyright

 For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact

 Special Sales Department
 Manning Publications Co.
 20 Baldwin Road
 PO Box 761
 Shelter Island, NY 11964
 Email: orders@manning.com

 ©2018 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
 mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
 those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been
 printed in initial caps or all caps.

 [image:] Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed
 on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources
 of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental
 chlorine.

 	[image:]
 	Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Acquisitions editor: Mike Stephens
Developmental editor: Christina Taylor
Review editor: Aleksandar Dragosavljevic
Senior technical development editor: Francesco Bianchi
Technical development editor: Andrew Siemer
Technical proofreader: Karsten Strobaek
Project editor: David Novak
Copyeditor: Tiffany Taylor
Proofreader: Katie Tennant
Typesetter: Gordan Salinovic
Cover designer: Leslie Haimes

 ISBN 9781617293146

 Printed in the United States of America

 1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Dedication

 To Lochlann, Ruadhán, Lola, Saorla, and Orla

Brief Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Building microservices

 Chapter 1. Brave new world

 Chapter 2. Services

 Chapter 3. Messages

 Chapter 4. Data

 Chapter 5. Deployment

 2. Running microservices

 Chapter 6. Measurement

 Chapter 7. Migration

 Chapter 8. People

 Chapter 9. Case study: Nodezoo.com

 Core message patterns: one message/two services

 Core message patterns: one message/two services (continued)

 Index

 List of Figures

 List of Tables

 List of Listings

Table of Contents

 Copyright

 Brief Table of Contents

 Table of Contents

 Preface

 Acknowledgments

 About this Book

 About the Author

 About the Cover Illustration

 1. Building microservices

 Chapter 1. Brave new world

 1.1. The technical debt crisis

 1.2. Case study: A microblogging startup

 1.2.1. Iteration 0: Posting entries

 1.2.2. Iteration 1: A search index

 1.2.3. Iteration 2: Simple composition

 1.2.4. Iteration 3: Timelines

 1.2.5. Iteration 4: Scaling

 1.3. How the monolith betrays the promise of components

 1.4. The microservice idea

 1.4.1. The core technical principles

 1.5. Practical implications

 1.5.1. Specification

 1.5.2. Deployment

 1.5.3. Security

 1.5.4. People

 1.6. What you get for your money

 1.7. Summary

 Chapter 2. Services

 2.1. Defining microservices

 2.2. Case study: The digital edition of a newspaper

 2.2.1. The business goals

 2.2.2. The informal requirements

 2.2.3. A functional breakdown

 2.3. Microservice architectures

 2.3.1. The mini web servers architecture

 2.4. Diagrams for microservices

 2.5. The microservice dependency tree

 2.5.1. The asynchronous message architecture

 2.6. Monolithic projects vs. microservice projects

 2.6.1. How microservices change project management

 2.6.2. Uniformity makes estimation easier

 2.6.3. Disposable code makes for friendlier teams

 2.6.4. Homogeneous components allow for heterogeneous configuration

 2.6.5. There are different types of code

 2.7. The unit of software

 2.8. Requirements to messages to services

 2.9. Microservice architecture diagrams

 2.9.1. Diagramming message flows

 2.10. Microservices are software components

 2.10.1. Encapsulated

 2.10.2. Reusable

 2.10.3. Well-defined interfaces

 2.10.4. Composable

 2.10.5. Microservices in practice as components

 2.11. The internal structure of a microservice

 2.12. Summary

 Chapter 3. Messages

 3.1. Messages are first-class citizens

 3.1.1. Synchronous and asynchronous

 3.1.2. When to go synchronous

 3.1.3. When to go asynchronous

 3.1.4. Thinking distributed from day one

 3.1.5. Tactics to limit failure

 3.2. Case study: Sales tax rules

 3.2.1. The wider context

 3.3. Pattern matching

 3.3.1. Sales tax: starting simple

 3.3.2. Sales tax: handling categories

 3.3.3. Sales tax: going global

 3.3.4. Business requirements change, by definition

 3.3.5. Pattern matching lowers the cost of refactoring

 3.4. Transport independence

 3.4.1. A useful fiction: the omnipotent observer

 3.5. Message patterns

 3.5.1. Core patterns: one message/two services

 3.5.2. Core patterns: two messages/two services

 3.5.3. Core patterns: one message/n services

 3.5.4. Core patterns: m messages/n services

 3.5.5. m/n: chain

 3.5.6. m/n: Tree

 3.5.7. Scaling messages

 3.6. When messages go bad

 3.6.1. The common failure scenarios, and what to do about them

 3.6.2. Failures dominating the request/response interaction

 3.6.3. Failures dominating the sidewinder interaction

 3.6.4. Failures dominating the winner-take-all interaction

 3.6.5. Failures dominating the fire-and-forget interaction

 3.7. Summary

 Chapter 4. Data

 4.1. Data doesn’t mean what you think it means

 4.1.1. Data is heterogeneous, not homogeneous

 4.1.2. Data can be private

 4.1.3. Data can be local

 4.1.4. Data can be disposable

 4.1.5. Data doesn’t have to be accurate

 4.2. Data strategies for microservices

 4.2.1. Using messages to expose data

 4.2.2. Using composition to manipulate data

 4.2.3. Using the system configuration to control data

 4.2.4. Using weaker constraints to distribute data

 4.3. Rethinking traditional data patterns

 4.3.1. Primary keys

 4.3.2. Foreign keys

 4.3.3. Transactions

 4.3.4. Transactions aren’t as good as you think they are

 4.3.5. Schemas draw down technical debt

 4.4. A practical decision guide for microservice data

 4.4.1. Greenfield

 4.4.2. Legacy

 4.5. Summary

 Chapter 5. Deployment

 5.1. Things fall apart

 5.2. Learning from history

 5.2.1. Three Mile Island

 5.2.2. A model for failure in software systems

 5.2.3. Redundancy doesn’t do what you think it does

 5.2.4. Change is scary

 5.3. The centre cannot hold

 5.3.1. The cost of perfect software

 5.4. Anarchy works

 5.5. Microservices and redundancy

 5.6. Continuous delivery

 5.6.1. Pipeline

 5.6.2. Process

 5.6.3. Protection

 5.7. Running a microservice system

 5.7.1. Immutability

 5.7.2. Automation

 5.7.3. Resilience

 5.7.4. Validation

 5.7.5. Discovery

 5.7.6. Configuration

 5.7.7. Security

 5.7.8. Staging

 5.7.9. Development

 5.8. Summary

 2. Running microservices

 Chapter 6. Measurement

 6.1. The limits of traditional monitoring

 6.1.1. Classical configurations

 6.1.2. The problem with averages

 6.1.3. Using percentiles

 6.1.4. Microservice configurations

 6.1.5. The power of scatterplots

 6.1.6. Building a dashboard

 6.2. Measurements for microservices

 6.2.1. The business layer

 6.2.2. The message layer

 6.2.3. The service layer

 6.3. The power of invariants

 6.3.1. Finding invariants from the business logic

 6.3.2. Finding invariants from the system architecture

 6.3.3. Visualizing invariants

 6.3.4. System discovery

 6.3.5. Synthetic validation

 6.4. Summary

 Chapter 7. Migration

 7.1. A classic e-commerce example

 7.1.1. The legacy architecture

 7.1.2. The software delivery process

 7.2. Changing the goal posts

 7.2.1. The practical application of politics

 7.3. Starting the journey

 7.4. The strangler tactic

 7.4.1. Partial proxying

 7.4.2. What to do when you can’t migrate

 7.4.3. The greenfield tactic

 7.4.4. The macroservice tactic

 7.5. The strategy of refinement

 7.6. Moving from the general to the specific

 7.6.1. Adding features to the product page

 7.6.2. Adding features to the shopping cart

 7.6.3. Handling cross-cutting concerns

 7.7. Summary

 Chapter 8. People

 8.1. Dealing with institutional politics

 8.1.1. Accepting hard constraints

 8.1.2. Finding sponsors

 8.1.3. Building alliances

 8.1.4. Value-focused delivery

 8.1.5. Acceptable error rates

 8.1.6. Dropping features

 8.1.7. Stop abstracting

 8.1.8. Deprogramming

 8.1.9. External validation

 8.1.10. Team solidarity

 8.1.11. Respect the organization

 8.2. The politics of microservices

 8.2.1. Who owns what?

 8.2.2. Who’s on call?

 8.2.3. Who decides what to code?

 8.3. Summary

 Chapter 9. Case study: Nodezoo.com

 9.1. Design

 9.1.1. What are the business requirements?

 9.1.2. What are the messages?

 9.1.3. What are the services?

 9.2. Deliver

 9.2.1. Iteration 1: Local development

 9.2.2. Iteration 2: Testing, staging, and risk measurement

 9.2.3. Iteration 3: The path to production

 9.2.4. Iteration 4: Enhancing and adapting

 9.2.5. Iteration 5: Monitoring and debugging

 9.2.6. Iteration 6: Scaling and performance

 9.3. Brave new world

 Core message patterns: one message/two services

 1/2: Request/Response

 1/2: Sidewinder

 Core message patterns: one message/two services (continued)

 1/2: Winner-take-all

 1/2: Fire-and-forget

 Index

 List of Figures

 List of Tables

 List of Listings

Preface

 When I visit a city, if I have time, I like to wander around by myself, exploring, without looking at a map. It’s a privilege
 to work in an industry where I get to experience this feeling—the impulse to discover, to chart new territory, is irresistible.

 Exploration isn’t limited to physical spaces. It’s also a privilege to work as a software developer and explore mental spaces.
 Isn’t it fascinating that we can define simple rules that create immense spaces for us to explore? Often, we end up in trouble—we’re
 lost. But at other times, we discover a trail of conceptual breadcrumbs and use them to construct a map. It’s ridiculous how
 much fun this is!

 When we find and explore something interesting, like microservices, we should draw a map so others can follow and explore
 further. This book is the map of my journey over the last six years—all the mistakes, revisions, theories, and victories of
 building microservice systems for production. It isn’t a chronological journal. Instead, I’ve organized my discoveries and
 distilled them into rules of thumb that others can use. Building a map is hard work, and there are probably better ways to
 do it, but I’ve found the conceptual structures in this book useful in my own work, and I hope you will, too.

 But concepts are useless without practice. You can’t understand how to build software in a new way, without building software
 in a new way. This book uses case studies to help you gain intuitive knowledge quickly. There’s such as thing as knowledge
 that you have but don’t “know.” The neural network of your brain is better at learning by example than by study; and the craft
 of software development, like all crafts, is best learned this way. The discrete knowledge in this book—the abstract concepts,
 the classifications and definitions—is a pale shadow of the skills you’ll eventually master. Taking inspiration from Taoist
 philosophy, this book can only show you the way: you must walk it yourself to truly learn. And although the map isn’t the
 territory, having it is definitely better than being lost.

 Microservices are hyped, but they aren’t hype. I see them as a natural evolution of the quest for software components that
 actually work. Good empirical, psychological, and mathematical arguments can be made to support the view that microservices
 are a better way to build large software systems with large teams. Many people are exploring the idea of microservices, which
 is wonderful. This area will take many years to map fully. We should do so enthusiastically while remembering that this is
 just another small step on the road to better software. The topic shouldn’t be dismissed because there are pitfalls or insufficient
 tools, or because the fundamental ideas are old. Nor should we be afraid to call out the failures of older approaches. I don’t
 hold back in my criticism of the monolithic architecture, though I’ll never build a monolith again. But I also don’t think
 microservices are free of failings. They certainly have them, and those issues bring real trade-offs and downsides that you
 must consider carefully. I’ve also highlighted these in the text.

 Enjoy this book, and enjoy building microservices. They’ve renewed my faith in our collective ability to get things done and
 to make a better work/life balance possible. Delivering software shouldn’t be about weekend heroics; the process should be
 calm and deliberate, yet fast and effective, and finished at 6 p.m. on Friday.

Acknowledgments

 This is my second book. After the first, I promised myself that I’d never write another. It was too difficult—especially for
 pretty much everybody around me. Somehow, I find myself with another completed manuscript, and this time the process has been
 a little easier. I’m deeply grateful to everyone who helped make this book possible—I owe them all a debt I can’t repay. Any
 remaining faults are entirely my own.

 First, I thank the team at Manning. Christina Taylor, my editor, was a joy to work with, and patient with my glacial writing
 speed. Christina, thanks for keeping the faith! Thank you also Erin Twohey, Michael Stephens, Marjan Bace, Jeff Bleiel, Rebecca
 Rinehart, Aleksandar Dragosavljevic, Maureen Spencer, Lynn Beighley, Ana Romac, Candace Gillhoolley, Janet Vail, Tiffany Taylor,
 Katie Tennant, and everyone else at Manning. It’s a pleasure to work with such a professional team.

 I’m also grateful to my reviewers: Alexander Myltsev, Anto Aravinth, Brian Cole, Bruno Figueiredo, Cindy Turpin, Doug Sparling,
 Humberto A. Sanchez, Jared Duncan, Joshua White, Lukasz Sowa, Manash Chakraborty, Marcin Grzejszczak, Norbert Kuchenmeister,
 Peter Perlepes, Quintin Smith, Scott M. Gardner, Sujith S. Pillai, Unnikrishnan Kumar, and Victor Tatai. This book is much
 better thanks to their feedback and comments. They forced me to tighten things up, called me out on intellectual laziness,
 and made sure I didn’t forget anything important. And they encouraged me and gave me the energy to finish!

 Orla, my wonderful wife, life partner, and best friend: you made this book possible. Your sacrifice and hard work gave me
 the time to write. As a fellow writer, you were able to commiserate on the awfulness that is writing and get me through to
 the end. I only hope I can help you as much.

 Lochlann, Ruadhán, Lola, and Saorla, you’re the best fun and the best distraction. I know you missed me when I was writing.
 Thank you for your unconditional love and support.

 To my sister Lauren (and Jack): you believe in me even when I don’t—thank you. To my parents, Hamish and Noreen, and to Orla’s
 parents, Noel and Kay: you made this book possible, along with so much else for us. We wouldn’t survive without you. To all
 of my family, and especially to my aunt Carol, who taught me to code; my Aunt Betty, who cared for me as her own; my Grandfather
 Lex, who inspired me with his own writing; and my Grandmother Rose, with her iron will to survive: thank you for your kindness
 and many acts of support and encouragement over the years.

 Alaister and Conor, you tell it to me straight, and you’ve known me too long to take anything I say seriously. Thank you.

 This book, and all the things I’ve been able to learn, wouldn’t be possible without the wonderful people who work at nearForm.
 I had great fun working with you through thick and thin. You were more than patient with my mistakes as a founder, and you
 taught me more than you can imagine. To my cofounders, Cian, Peter, Paul: it was a privilege to work with you. We built something
 great together, and I know nearForm is in good hands.

 To my new team at voxgig—we get to build a startup using microservices from day one. It’s going to be awesome! Thank you all
 for your confidence in me as a founder.

 Thank you, Fred and Godfrey, for my first real programming job. It’s still the best job I ever had. Thank you, Ralph and Thomas,
 for giving a crazy Irish kid a chance.

 To Emer and Flash at BoxWorks: I only finished this book because of the beautiful, inspiring workspace you’ve created. Finally,
 some peace to think!

 My journey to microservices began when I heard Fred George speak at a meetup. The topic blew my mind and changed the way I
 built software. Thank you, George—you’re an inspiration. Never stop coding!

 Finally, thank you, everybody in the community. To all the developers who’ve used Seneca and helped me build it: I’m deeply
 humbled by your support and feel utterly unworthy of your confidence. To the microservice and Node.js communities: your friendliness
 and openness are deep, valuable virtues. And we’re only getting started!

About this Book

 This book teaches you how to build microservice systems. If you’re in a startup, you can focus on part 1, which covers engineering the microservice architecture. If you’re in a bigger company (or once your startup grows), you’ll
 also need part 2, which covers organization of microservice projects.

 If you’re excited by the idea of microservices—if they make sense to you, but you’re unclear about the details—this book is
 for you. If your organization is moving to microservices or performing a serious evaluation, but you want to learn from the
 experience of others to avoid mistakes and accelerate your execution, this book is for you. If you’re a skeptic and need to
 understand the opposition so you can tear them down—well, this book is also for you! Microservices can help you deliver software
 faster, but they come with trade-offs. I hope you find this book most useful when it makes these trade-offs clear, so you
 can make the best decisions for your situation.

 If you decide to use microservices, how do you design and build them? How do you decide which services go where? How many
 should you have? How should they communicate? This book takes the position, learned from experience on real enterprise projects,
 that the best place to start is with the messages between services. Using a messages-first perspective—using messages as a
 design language—you can develop a structured approach to engineering microservice systems. The value of this book lies in
 teaching you the skills to do that.

 What will that skill set give you? The ability to deliver software that makes a real difference to your business, and the
 ability to deliver it more quickly, with less stress, fewer late nights, and a lower risk of failure. There’s a real effect
 here—I’ve built a consulting business on the back of it—that’s more than the usual hype cycle new technologies experience.
 This is a step forward, and we’re only just figuring out how to regain our balance. By introducing microservices to your organization,
 you’ll be part of that story.

Who should read this book

 This book is written for senior developers, software architects, and technical project and product managers. If you’re a junior
 developer, you’ll still find much of the material helpful in years to come, but you may need to do some background reading
 to fully appreciate the arguments; start with Frederick P. Brook’s The Mythical Man-Month (Addison-Wesley, 1975).

 This book is also for anybody who cares about building software more efficiently and more humanely. As an industry, we’re
 far too quick to use brute force and long hours as our first problem-solving tactic. This drives a lot of people out of the
 industry, which nobody wants. Let’s try to work a little smarter and go home a little earlier.

Roadmap

 This book teaches you the art and craft of designing microservice systems. In addition to mathematics and engineering, it
 also requires the application of a great degree of professional judgment and experience. There are no obvious right answers.

 The content of the chapters, the concepts they introduce, and the case studies that demonstrate the ideas build on each other,
 so you should read the chapters in sequence. Many skills can be developed properly only by repeated exposure to examples and
 by refining general principles into practical knowledge of exceptions and trade-offs. You don’t need to grasp every single
 detail; that would be inefficient, in any case, because you need to put the ideas to work on real systems in the real world
 to really develop understanding.

 Some of the chapters contain reference sections that are essentially reference material—chapters 5 and 6, in particular. You should feel free to skim these sections on a first pass.

 Part 1 of the book focuses on the engineering principles that make microservices work. These principles are applicable to any language
 platform and any hosting environment. Part 1 also introduces a diagramming convention for visualizing microservice architectures that’s used throughout the book and that
 you should also find useful for whiteboarding:

 	
Chapter 1 introduces microservices using a Twitter clone case study and asks whether technical debt can be avoided with the right choice
 of component model.

 	
Chapter 2 explores this question: “Given these badly specified business requirements, what services shall we build?” The advantages
 of microservices over monoliths are examined in detail.

 	
Chapter 3 shifts the discussion to the most important element of the microservice architecture: messages. The chapter advocates for
 a messages-first approach to system design.

 	
Chapter 4 shows you how microservices can work with persistent data, why not all data is the same, and why microservices reduce the
 technical debt that creeps into database schemas.

 	
Chapter 5 addresses the biggest problem with microservices: how to manage and control the risk of failure when you have so many moving
 parts in production.

 Part 2 focuses on the less-tangible factors you’ll have to deal with when building microservices. You don’t write commercial software
 in a vacuum: what you write has a commercial purpose, and you do so with other developers. When there are more than two humans
 in a room, you have politics, and you need to negotiate, persuade, and lead to make things happen. Unfortunately for you,
 as the agent of change bringing microservices to the table, this game won’t be easy. This part of the book helps you deal
 with this aspect of delivering microservices professionally:

 	
Chapter 6 teaches ways of measuring microservice systems, and messages in particular, in order to get a true gauge of the health of
 your system.

 	
Chapter 7 guides you iteration by iteration through the process of moving from a hard-to-change legacy monolith to a vibrant set of
 microservices that can easily adapt to new feature requirements.

 	
Chapter 8 is an honest, direct discussion of the corporate politics that will stand in your way and the tactics you can use to overcome
 your biggest roadblock.

 	
Chapter 9 shows you the code. A full system is built from the ground up, using all the principles introduced in earlier chapters.

About the code

 This book is more about thinking than coding, but two of the cases studies are fully developed in code. I use Node.js as the
 platform: that’s what I use commercially, and the language is JavaScript, which is widely understood, so you should be able
 to follow along even if your day-to-day language is something else. The nice thing about micro-services is that they dramatically
 reduce the occurrence of Node.js annoyances such as callback hell, because each microservice is small and simple.

 The source code for the example systems is available at www.manning.com/books/the-tao-of-microservices, http://ramanujan.io, and http://nodezoo.com. The source code is also available as a http://github.com repository, linked from those sites. Everything is open source and under the commercially friendly MIT license, so feel free
 to use it in your own projects and work.

 The code examples in the text of this book are abridged to save space. Comments, error handling, and functionality that isn’t
 relevant to the discussion have been removed. But you can review the full source on GitHub, and it’s worth doing so to understand
 the extra work needed to get your microservices closer to production.

 Some simple conventions are used in the text. The names of microservices and messages are shown in italics, for example: article-page. The property patterns used to route messages are shown in fixed-width font: store:save,kind:entry. Fixed-width font is also used for code inlined in the text: if (err) return.

Other online resources

 The microservice community is large and diverse, and there are microservice frameworks and implementations for most language
 platforms. My own writings about microservices can be found on my blog, http://richardrodger.com, where I talk about microservices in general and in the context of building a startup. I use (and am the maintainer of) the
 Seneca Node.js microservices framework: http://senecajs.org.

 For an overview of the major microservice patterns and links to many other great resources, you can’t do much better than
 Chris Richardson’s http://microservices.iosite. Subscribe to https://microserviceweekly.com to keep up to date with all the latest news. For the seminal article on the subject, Martin Fowler is a must-read: https://martinfowler.com/microservices. Finally, watch all of Fred George’s videos: http://mng.bz/0Ttf.

About the Author

 Richard Rodger started coding on the Sinclair ZX Spectrum in 1986 and hasn’t stopped since. He’s a difficult employee and,
 left with no other options, has been forced to cofound software companies; the most recent is voxgig, a social network for
 the conference industry, where he’s absolutely using microservices to pay the mortgage. He also cofounded nearForm, one of
 the first (and best!) Node.js and microservice consultancies. Before that, he was CTO of FeedHenry, a SaaS platform for mobile
 apps, since acquired by Red Hat.

 Richard studied mathematics and philosophy at Trinity College Dublin, Ireland, and computer science at the Waterford Institute
 of Technology, Ireland. He’s a terrible mathematician and a worse philosopher, and he can’t code in C++; hence, the obsession
 with JavaScript.

 Richard is the author of Mobile Application Development in the Cloud (Wiley, 2011), which, obviously, you should also read. He’s the maintainer of the Seneca microservice framework, which you
 should definitely use. He speaks at the occasional technology conference and blogs at http://richardrodger.com.

About the Cover Illustration

 The image on the cover of The Tao of Microservices is a reproduction of a seventeenth-century woodblock print depicting Emperor Reigen of Japan, whose reign spanned 23 years,
 from 1663 through 1687. He was the 112th emperor of Japan, according to the traditional order of succession of the Chrysanthemum
 Throne. The role of the emperor of Japan has historically alternated between a largely ceremonial one and that of an actual
 imperial ruler. Since the establishment of the first shogunate in 1192, the Emperors of Japan have rarely taken on the role
 of supreme battlefield commander, unlike many Western monarchs. Japanese emperors have nearly always been controlled by external
 political forces, to varying degrees. In fact, between 1192 and 1867, the shoguns or military dictators were the de facto
 rulers of Japan, although they were appointed by the emperor. After the Meiji Restoration in 1867, the emperor once again
 became the embodiment of all sovereign power in the realm, as enshrined in the Meiji Constitution of 1889. The emperor’s current
 status as a figurehead dates from the 1947 Constitution.

 At a time when it’s hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the
 computer business with book covers based on the rich diversity of historical figures and costumes of the past, brought back
 to life with illustrations such as this one.

Part 1. Building microservices

 Microservices aren’t a silver bullet that can solve all of your software development problems overnight. But microservices
 are a better way to design and engineer software, and that does help. Better engineering comes from the painful lessons of
 hard experience and careful analytical thinking about the problem space, and it takes inspiration from other sciences. This
 part of the book lays out the fine details needed to engineer microservices for the best chance of success and grounds those
 details in a practical conceptual framework that can guide your decision making:

 	
Chapter 1 starts with a concrete case study—a Twitter clone—and introduces you to microservices directly and immediately. With this
 background, you’ll begin to see how microservices can reduce technical debt and understand the consequences of choosing the
 microservice architecture.

 	
Chapter 2 introduces a new case study—an online newspaper—and shows you how to decide what services to build and how services can communicate
 with each other. We’ll examine the differences between microservices and monoliths.

 	
Chapter 3 advocates for a messages-first approach. By representing your business requirements as messages, you can derive the services
 you need to build. This chapter carefully examines how messages work and the essential properties and behavior they should
 have.

 	
Chapter 4 challenges the dogmas of enterprise data and shows how micro-services make it possible to store and handle different kinds
 of data in naturally appropriate ways. Data operations are represented as messages between microservices, and this opens up
 many new strategies for system design.

 	
Chapter 5 helps you come to grips with the hardest part of the microservice architecture: running many microservices in production.
 We’ll take a risk--management approach, driven by business goals rather than technical perfectionism. This chapter covers
 the many deployment patterns that microservices make practical.

 When you finish this part of the book, you’ll be prepared to design and build a microservice system on your own. Although
 you’ll be able to build a minimum viable product, you won’t yet be ready to use microservices to help scale your system, work
 better with other people, or change your organization. Those are all topics for part 2.

Chapter 1. Brave new world

 Software development is an art. It isn’t predictable enough to be engineering. It isn’t rigorous enough to be science. We’re
 artists—and that’s not a good thing. We find it hard to work in teams, we find it hard to deliver on deadlines, and we find it hard to focus on
 practical results. Anyone can claim to be a software developer; opening a text editor is no more difficult than picking up
 a paint brush. A small number of painters are 10 times better than others. A small number of coders also are 10 times better
 than others. But most of us are working on bad instincts.

 Unlike art, software has to work. It has business problems to solve, users to serve, and content to deliver. We have a thousand
 opinions among ourselves about how to do things correctly, yet many software projects are delivered late and over budget.
 Much software, especially that produced by large companies, offers users a terrible experience. We have a self-important belief
 in our work, as artists, that isn’t connected to the reality of our systematic failure. We need to admit we have a problem,
 understand the nature of that problem, and use science and engineering to solve the problem.

1.1. The technical debt crisis

 The problem is that we can’t write software fast enough. We can’t write software that meets business needs and that is sufficiently
 accurate and reliable, within the time constraints set by the markets in which our companies operate. When requirements change
 in the middle of a project, it damages our architecture so badly that we spiral into a death march of hacks and kludges to
 force our data structures, concepts, and entity relationships into compliance. We try to refactor or rewrite, and that delays
 things even further.

 You might be tempted to blame the business itself for this state of affairs. Requirements are always underspecified, and they
 keep changing. Deadlines are imposed without regard to the complexity of the problem. Bad management wastes time and eats
 up development schedules. It’s easy to become cynical and blame these issues on the stupidity of others.

 Such cynicism is self-defeating and naïve. The world of business is harsh, and markets are unforgiving. Our nontechnical colleagues
 have complex challenges of their own. It’s time to grow up and accept that we have a problem: we can’t write software fast
 enough.

 But why?

 Be careful. If there were a silver bullet, we’d already be using it. Take methodologies: we fight over them because there
 are no clear winners. Some methodologies certainly are better than others, in the same way that a sword is a better weapon
 than a dagger, but neither is of much use in the gun fight that is enterprise software development. Or take a best practice
 like unit testing, which feels like it’s valuable. Just because something feels good doesn’t mean it is good. Intuitions can be misleading. We have a natural tendency toward superstition, forcing development practices into Procrustean
 beds.[1] Few of our best practices have any measure of scientific validation.

 1

Procrustes was a son of the Greek god Poseidon. He took great pleasure in fitting his house guests into an iron bed. To make
 the guest fit, he would either amputate their feet or stretch them on a rack. A Procrustean bed is a behavior that doesn’t serve its intended purpose; it only perpetuates a superstition. Insistence on high levels of unit-test
 coverage is the prime example in our industry. The coverage target and the effort to achieve it are seldom adjusted to match
 the value generated by the code in production.

 The problem is that we don’t know how to pay down technical debt. No matter how beautifully we crystallize our initial designs,
 they fracture against the changing nature of reality. We try to make our software perfect: perfectly correct and able to perfectly
 meet requirements. We have all sorts of perfection-seeking behavior, from coding standards, to type systems, to strict languages,
 to hard integration boundaries, to canonical data models. And yet we still end up with a legacy mess to support.

 We’re not stupid. We know that we have to cope with change. We use flexible data structures, with scope for growth (in the
 right places, if we’re lucky). We have this thing called refactoring, which is the technical term for getting caught making bad guesses. At least we have a professional-sounding term for the
 time we waste rewriting code so that we can start moving forward again.

 We have components, which are the machine guns of software architecture: force multipliers that let you build big things out of small things.
 You only have to solve each problem once. At heart, object-oriented languages are trying to be component systems, and so are
 web services.[2] So was structured programming (a fancy name for dropping the GOTO statement). We have all these technical best practices, and we’re still too slow. Components, in particular, should make
 us faster. Why don’t they?

 2

We even have fancy component systems that were designed from the ground up, like OSGi and CORBA. They haven’t delivered composability.
 The Node.js module system is a relatively strong approach and makes good use of semantic versioning, but it’s restricted to
 one platform and exposes all the nuts and bolts of the Java-Script language. UNIX pipes are about as good as it gets, if you’re
 looking for something that’s widely used.

 We haven’t been thinking about components in the right way for a long time in mainstream enterprise programming.[3] We can just about build library components to talk to databases, perform HTTP requests, and package up sorting algorithms.
 But these components are technical infrastructure. We’re not so good at writing reusable components that deliver business logic. Components like that would speed up development. We’ve focused on making our components so comprehensive in functionality
 that it’s difficult to compose them together; we have to write lots of glue code. By trying to cover too many cases, we make
 the simple ones too complex.

 3

This isn’t universally true. The functional language communities in particular treat composability as a first-class citizen.
 But consider that, whereas you can compose pretty much anything on the UNIX command line using pipes, functions aren’t generically
 composable without extra work to make their inputs and outputs play nicely together.

 	

 What is business logic?

 In this book, business logic is the part of the functionality that’s directly specific to the business goal at hand. User-profile management is business
 logic. A caching layer isn’t.

 Business logic is your representation of the processes of your business using the structures of your programming language.
 What is business logic in one system many not be in another. It can change within the same system over time. The term is suggestive,
 not prescriptive.

 	

 The thing that makes components work is composition: making big things out of small things. The component models that reduce your workload, such as UNIX pipes and functional
 programming, have this feature. You combine parts to create something new.

 Composition is powerful. It works because it only does one thing: adds components together. You don’t modify components; instead,
 you write new ones to handle special cases. You can code faster because you never have to modify old code. That’s the promise
 of components.

 Consider the state of the software nation. The problem is that we can’t code fast enough. We have this problem because we
 can’t cope with technical debt. We don’t work with an engineering mindset. We haven’t used scientific methods to validate
 our beliefs. As a solution, components should be working, but they aren’t. We need to go back to basics and create a component
 model that delivers practical composition. Microservices,[4] built the right way, can help do that.

 4

If you’re looking for a definition of the term microservice, you’re not going to find it in this book. We’re discussing an approach to software architecture that has its own benefits
 and trade-offs. Substance counts more than sound bites.

1.2. Case study: A microblogging startup

 We’ll use case studies throughout this book to illustrate practical applications of the microservice approach. We’ll use this
 first one to introduce some of the core principles of the architecture before we analyze them more deeply. The case studies
 will keep you connected to the practical side of the discussion and allow you to make a critical assessment of the ideas presented—would
 you build things the same way?

 In this case study, you’re building the minimum viable product (MVP)[5] for a new startup. The startup has come up with a crazy new idea called microblogging. Each blog entry can be only a few paragraphs long, with a maximum of 1,729 characters. This somewhat arbitrary limit was
 chosen by the founders as the most uninteresting number they could think of. The startup is called ramanujan.io.[6] It may seem strange to use a startup as a case study when our primary concern is enterprise software development. But isn’t
 the goal to be as nimble as a startup?

 5

The MVP is a product-development strategy developed by Eric Ries, a founder of the IMVU chat service (founded 2004): build
 only the minimum set of features that lets you validate your assumptions about a market, and then iterate on those features
 and assumptions until you find a product that fits the market.

 6

You can find the full source code and a workshop at www.manning.com/books/the-tao-of-microservices and http://ramanujan.io.

 We’ll follow the startup through a series of iterations as it gets the MVP up and running. It’s sometimes said that microservices
 create too much overhead at the start of a project. That misses the primary benefit of microservices—the ability to add functionality
 quickly!

 1.2.1. Iteration 0: Posting entries

 This is the first iteration. We’ll use iterations to follow the story of the startup.

 A microblogging system lets users post entries: short pieces of text. There’s a page where users can view their own entries. This set of activities seems like a good place
 to start.

 What activities happen in the system?

 	Posting an entry

 	Listing previous entries

 There are all sorts of other things, like having a user account and logging in, that we’ll ignore for the sake of keeping
 the case study focused. These activities are amenable to the same style of analysis.

 The activities can be represented by messages. No need to overthink the structure of these messages, because you can always
 change the mapping from message to microservice later. To post an entry, let’s have a message that tells you which user is
 posting the entry, and the text of the entry. You’ll also need to classify the message in some way so that you know what sort
 of message it is. The property-value pair post:entry does this job—a little namespacing is always a good idea. Let’s use JSON as the data format.

 Listing 1.1. Posting an entry

 {
 post: 'entry',
 user: 'alice',
 text: 'Curiouser and curiouser!'
}

 Any interested microservices can recognize this message by looking for the pattern post:entry in the message’s top-level properties. For now, you’ll assume that messages can make their way to the right microservice
 without worrying too much about how that happens. (Chapter 2 has much more to say about message routing.)

 You also need a message for listing entries. Standing back for a moment, you can assume that the system may include other
 kinds of data down the road. There are certainly common operations that you’ll perform on data entities, such as loading, saving, and listing. Let’s add a store property to the message to create a namespace for messages concerned with persistent data. In this case, you want to list
 things from the data store, so the property-value pair store:list seems natural. You’ll use kind:entry to identify the data entity as an entry, assuming you’ll have other kinds of data entities later.

 Listing 1.2. Listing entries for the user alice

 {
 store: 'list',
 kind: 'entry',
 user: 'alice'
}

 Time to put on your architecture hat. There’s a family of data-operation messages here, with a corresponding set of patterns:

 	
store:list,kind:entry—Lists entries, perhaps with a query constraint on the result list

 	
store:load,kind:entry—Loads a single entry, perhaps using an id property in the message

 	
store:save,kind:entry—Saves an entry, creating a new database row if necessary

 	
store:remove,kind:entry—Removes an entry from the database, using the id property to select it

 This is an initial outline of the possible data-operation message patterns. This set of properties feels workable, but is
 it correct? It doesn’t matter. You can always change the patterns later. Also, you don’t need to implement messages you aren’t
 using yet.

 Now that you have some initial messages, you can think about their interactions. Let’s assume you have a web server handling
 inbound HTTP requests on the external side and generating microservice messages on the internal side:

 	When the user posts a new entry, the web server sends a post:entry message, which triggers a store:save,kind:entry message.

 	When the user lists their previous entries, the web server sends a store:list, kind:entry message to get this list.

 Here’s another thing to think about: are these messages synchronous or asynchronous? In more-concrete terms, does the sender of the message expect to get a response (synchronous), or does the sender not care
 about a response (asynchronous)?

 	
post:entry is synchronous, because it’s nice for the user to get confirmation that their entry has been posted.

 	
store:save,kind:entry is also synchronous, because it has to provide confirmation of the save operation and probably returns the generated unique identifier of the new data record.

 	
store:list,kind:entry is necessarily synchronous, because its purpose is to return a result list.

 Are there any asynchronous messages in this simple first iteration? As a rule of thumb, microservice systems often benefit
 from announcement messages. That is, you should let the world know that something happened, and the world can decide if it
 cares. This suggests another kind of message:

 	
info:entry is asynchronous and announces that a new entry has been posted. No reply is expected. There may be a microservice out there that cares, or
 maybe nobody cares.

 These architectural musings lead you to tabulate for your two activities the message flows shown in table 1.1.

 Table 1.1. Business activities and their associated message flows

 	
 Activity

 	
 Message flow

 	Post entry
 	1 post:entry
 2 store:save,kind:entry
 3 info:entry

 	List entry
 	4 store:list,kind:entry

 You haven’t even thought about microservices yet. By thinking about messages first, you’ve avoided falling into the trap of working on the implementation before understanding what you need to build.

 At this point, you have enough to go on, and you can group messages into sensible divisions, suggesting the appropriate microservices
 to build in this iteration. Here are the microservices:

 	
front— The web server that handles HTTP requests. It sits behind a traditional load balancer.

 	
entry-store— Handles persistence of entry data.

 	
post— Handles the message flow for posting an entry.

 Each microservice sends and receives specific messages, which you can tabulate as shown in table 1.2. The diagram in figure 1.1 shows how this all fits together.

 Table 1.2. Messages that each microservice sends and receives

 	
 Microservice

 	
 Sends

 	
 Receives

 	front
 	post:entry
 store:list,kind:entry

 	

 	entry-store
 	
 	store:list,kind:entry
 store:save,kind:entry

 	post
 	store:save,kind:entry
 info:entry

 	post:entry

 Figure 1.1. Iteration 0: Messages and services that support posting and listing entries

 [image:]

 Here are the architectural decisions you’ve made:

 	There’s a traditional load balancer in front of everything.

 	The web server is also a microservice (front) and participates in the message flows. It doesn’t accept messages from external clients, only proxied HTTP requests from
 the load balancer.

 	
The front service should be considered the boundary of the system. It translates HTTP requests into internal messages.

 	The entry-store microservice exposes a data store, but only via messages. No other microservice can access the underlying database.

 	The post service orchestrates the message flow that implements posting an entry. First it performs the synchronous store:save,kind:entry; once it has a confirmed save, it emits an asynchronous info:entry.

 This little microblogging system allows users to post entries and see a list of their previous entries. For now, assume deployment
 is fully automated; chapter 5 covers deployment of microservices. It’s Friday, you’ve pushed code, and you can go home.

 1.2.2. Iteration 1: A search index

 In the last iteration, you used a method of system design that works very well for microservice architectures. First, you
 informally described the activities in the system. Then, you represented those activities as messages. Finally, you derived services from the messages. Messages, it turns out, are more important than services.

 The task in this iteration is to introduce a search index so that users can search through entries to find wonderful gems
 of microblogging wit and insight amid a sea of sentiment. Much like a database, the system will use a search engine running
 inside the network to provide the search functionality. This suggests a microservice to expose the search engine, similar
 to the way the entry database is exposed by the entry-store microservice.

 But we’re getting ahead of ourselves. First, what are the messages? Users can add entries to the search engine, and they can
 query the search engine. That’s enough for now. This gives you the following message patterns:

 	
search:insert—Inserts an entry

 	
search:query—Performs a query, returning a list of results

 The front microservice can issue search:query messages to get search results. That seems OK. The post microservice can orchestrate a search:insert message into its entry-posting workflow. That doesn’t seem OK. Didn’t you introduce an info:entry asynchronous message for exactly the purpose of acting on new entries? The search engine microservice—let’s call it index—should listen for info:entry and then insert the new entry into its search index. That keeps the post and index microservices decoupled (almost).

 Something still isn’t right. The problem is that the index microservice is concerned only with activities related to search—why should it know anything about posting microblogging
 entries? Why should index know that it has to listen for info:entry messages? How can you avoid this semantic coupling?

 The answer is translation. The business logic of the index microservice shouldn’t know about microblogging entries, but it’s fine if the runtime configuration of the index microservice does.

 The runtime configuration of index can listen for info:entry messages and translate them into search:insert messages locally. Loose coupling is preserved. The ability to perform this type of integration, without creating the tight coupling that accumulates technical debt, is the payoff you’re
 seeking from microservices. The business logic implementing a microservice can have multiple runtime configurations, meaning
 it can participate in the system in many ways, without requiring changes to the business-logic code.

 Table 1.3 shows the new list of services and their message allocations.

 Table 1.3. Messages that each microservice sends and receives

 	
 Microservice

 	
 Sends

 	
 Receives

 	front
 	post:entry
 store:list,kind:entry
 search:list

 	

 	entry-store
 	
 	store:list,kind:entry
 store:save,kind:entry

 	post
 	store:save,kind:entry
 info:entry

 	post:entry

 	index
 	
 	search:query
 search:insert
 info:entry

 Now, you’ll also apply the principle of additivity. To your live system, running in production, you’ll deploy the new index microservice. It starts listening for info:entry messages and adding entries to the search index. This has no effect on the rest of the system. You review your monitoring
 system and find that clients still experience good performance and nothing has broken. Your only action has been to add a
 new microservice, leaving the others running. There’s been no downtime, and the risk of breakage was low.

 You still need to support the search functionality, which requires making changes to an existing microservice. The front service needs to expose a search endpoint and display a search page. This is a riskier change. How do you roll back if you
 break something? In a traditional monolithic[7] architecture, teams often use a blue-green configuration, where two copies (blue and green) of the entire system are kept running at the same time. Only one is live; the other is
 used for deployments. Once validated, the systems are switched. If there’s a glitch, you can roll back by switching the systems
 again. This is a lot of overhead to set up and maintain.

 7

The term monolith stands for enterprise systems with large volumes of code that run as one process.

 Consider the microservice case, where you can use the property of additivity. You deploy a new version of the front microservice—one that can handle searches—by starting one or more instances of the new version of front alongside running instances of the old version of front. You now have multiple versions in production, but you haven’t broken anything, because the new version of front can handle entry posting and listing just as well as the old version. The load balancer splits traffic evenly between the
 new and old versions of front. You have the option to adjust this if you want to be extra careful and use the load balancer to send only a small amount
 of traffic to the new version of front. You get this capability without having to build it into the system; it’s part of the deployment configuration.

 Again, you monitor, and after a little while, if all is well, you shut down the running instances of the old version of front. Your system has gained a new feature by means of you adding and removing services, not via global modification and restart.
 Yes, you did “modify” the front service, but you could treat the new version as an entirely new microservice and stage its introduction into the live system.
 This is very different from updating the entire system and hoping there are no unforeseen effects in production. The new system
 is shown in figure 1.2.

 Figure 1.2. Iteration 1: Adding messages and services that support searching entries

 [image:]

 Consider table 1.4, which lists the series of small, safe deployment steps that got you here from the iteration 0 system. Another successful
 week! It’s Friday, and you can go home.

 Table 1.4. A sequence of small deployment steps

 	
 Step

 	
 Microservice/Version

 	
 Action

 	0
 	index/1.0
 	Add

 	1
 	front/2.0
 	Add

 	2
 	front/1.0
 	Remove

 1.2.3. Iteration 2: Simple composition

 Microservices are supposed to be components, and a good component model enables composition of components. Let’s see how this
 works in a microservice context. The entry-store microservice loads data from an underlying database. This operation has a relatively high latency—it takes time to talk to
 the database. One way to improve perceived performance is to decrease latency, and one way to do that is to use a cache. When
 a request comes in to load a given entry, you check the cache first, before performing a database query.

 In a traditional system, you’d use an abstraction layer within the code base to hide the caching interactions. In particularly
 bad code bases, you may have to refactor first to even introduce an abstraction layer. As a practical matter, you have to
 make significant changes to the logic of the code and then deploy a new version of the entire system.

 In the little microservice architecture, you can take a different road: you can introduce an entry-cache microservice that captures all the messages that match the pattern store:*,kind:entry. This pattern matches all the data-storage messages for entries, such as store:list,kind:entry and store:load,kind:entry. The new microservice provides caching functionality: if entry data is cached, return the cached data; if not, send a message
 to the entry-store service to retrieve it. The new entry-cache microservice captures messages intended for the existing entry-store.

 There’s a practical question here: how does message capture work? There’s no single solution, because it depends on the underlying
 message transportation and routing.

 One way to do message capture is to introduce an extra property into the store:* messages—say, cache:true. You tag the message with a property that you’ll use for routing. Then, you deploy a new version (2.0) of the entry-store service that can also listen for this pattern. By “new version,” I mean only that the runtime message-routing configuration
 has changed. Then, you deploy the entry-cache service, which listens for store:* as well, but sends store:*,cache:true when it needs original data:

 	
entry-store— Listens for store:* and store:*,cache:true

 	
entry-cache— Listens for store:*, and sends store:*,cache:true

 The other services then load-balance store:* messages between these two services[8] and receive the same responses as before, with no knowledge that 50% of messages are now passing through a cache.

 8

Let’s assume this “just works” for now. The example code at www.manning.com/books/the-tao-of-microservices and http://ramanujan.io has all the details, of course.

 Finally, you deploy another new version (3.0) of entry-store that only listens for store:*,cache:true. Now, 100% of store:* messages pass through the cache:

 	
entry-store— Listens for store:*,cache:true only

 	
entry-cache— Listens for store:*, and sends store:*,cache:true

 You added new functionality to the system by adding a new microservice. You did not change the functionality of any existing service.

 Table 1.5 shows the deployment history.

 Table 1.5. Modifications to the behavior of entry-store over time

 	
 Step

 	
 Microservice/Version

 	
 Action

 	
 Message patterns

 	0
 	entry-store/2.0
 	Add
 	store:* and store:*,cache:true

 	1
 	entry-store/1.0
 	Remove
 	store:*

 	2
 	entry-cache/1.0
 	Add
 	store:*

 	3
 	entry-store/3.0
 	Add
 	store:*,cache:true

 	4
 	entry-store/2.0
 	Remove
 	store:* and store:*,cache:true

 You can see that the ability to perform deployments as a series of add and remove actions gives you fine-grained control over
 your microservice system. In production, this ability is an important way to manage risk, because you can validate the system
 after each add or remove action to make sure you haven’t broken anything. Figure 1.3 shows the updated system.

 Figure 1.3. Iteration 2: An entry store cache implemented by message capture

 [image:]

 The message-tagging approach assumes you have a transport system where each microservice can inspect every message to see
 whether the message is something it can handle. For a developer, this is a wonderfully useful fiction. But in practice, this
 isn’t something you want to do, because the volume of network traffic, and the work on each service, would be too high. Just
 because you can assume universal access to all messages as a microservice developer doesn’t mean you have to run your production
 system this way. In the message-routing layer, you can cheat, because you already know which messages which microservice cares
 about—you specified them!

 You’ve composed together the caching functionality of entry-cache and the data-storage functionality of entry-store. The rest of the world has no idea that the store:*, kind:entry messages are implemented by an interaction of two microservices. The important thing is that you were able to do this without
 exposing internal implementation details, and the microservices interact only via their public messages.

 This is powerful. You don’t have to stop at caching. You can add data validation, message-size throttling, auditing, permissions,
 and all sorts of other functionality. And you can deliver this functionality by composing microservices together at the component
 level. The ability to do fine-grained deployment is often cited as the primary benefit of microservices, but it isn’t. The
 primary benefit is composition under a practical component model.

 Another successful week.

 1.2.4. Iteration 3: Timelines

 The core feature of a microblogging framework is the ability to follow other users and read their entries. Let’s implement
 a Follow button on the search result list, so that if a user sees somebody interesting, they can follow that person. You’ll
 also need a home page for each user, where they can see a timeline of entries from all the other users they follow. What are
 the messages?

 	
follow:user—Follows somebody

 	
follow:list,kind:followers|following—Lists a user’s followers, or who they’re following

 	
timeline:insert—Inserts an entry into a user’s timeline

 	
timeline:list—Lists the entries in a user’s timeline

 This set of messages suggests two services: follow, which keeps track of the social graph (who is following who), and timeline, which maintains a list of entries for each user, based on who they follow.

 You aren’t going to extend the functionality of any existing services. To add new features, you’ll add new microservices.
 This avoids technical debt by moving complexity into the message-routing configuration and out of conditional code and intricate
 data structures.

 Using pattern matching to route messages can handle this complexity more effectively than programming language structures
 because it’s a homogeneous representation of the business activities you’re modelling. The representation consists only of pattern matching on messages and using these patterns to assign them to microservices. Nothing more than simple pattern
 matching is needed. You understand the system by organizing the message patterns into a hierarchy, which is much easier to
 comprehend than an object-relationship graph.

 At this point, you face an implementation question: should timelines be constructed in advance or on demand? To construct
 a timeline for a user on demand, you’d have to get the list of users that the user follows—the user’s “following” list. Then,
 for each user followed, you’d need to get a list of their entries and merge the entries into a single timeline. This list
 would be hard to cache, because the timeline changes continuously as users post new entries. This doesn’t feel right.

 On the other hand, if you listen for info:entry messages, you can construct each timeline in advance. When a user posts an entry, you can get the list of their followers;
 then, for each follower, you can insert the entry into the follower’s timeline. This may be more expensive, because you’ll
 need extra hardware to store duplicate data, but it feels much more workable and scalable.[9] Hardware is cheap.

 9

Timeline insertion is how the real Twitter works, apparently. A little bird told me.

 Building the timelines in advance requires reacting to an info:entry message with an orchestration of the follow:list,kind:followers and timeline:insert messages. A good way to do orchestration is to put it into a microservice built for exactly that purpose. This keeps intelligence
 at the edges of the network, which is a good way to manage complexity. Instead of complex routing and workflow rules for everything,
 you understand the system in terms of the inbound and outbound message patterns for each service. In this case, let’s introduce
 a fanout service that handles timeline updates. This fanout service listens for info:entry messages and then updates the appropriate timelines. The updated system with the interactions of the new fanout, follow, and timeline services is shown in figure 1.4.

 Figure 1.4. Iteration 3: Adding social timelines

 [image:]

 Both the follow and timeline services store persistent data, the social graph, and the timelines, respectively. Where do they store this data? Is it in
 the same database that the entry-store microservice uses? In a traditional system, you end up putting most of your data in one big, central database, because that’s
 the path of least resistance at the code level. With microservices, you’re freed from this constraint. In the little micro-blogging
 system, there are four separate databases:

 	The entry store, which is probably a relational database

 	The search engine, which is definitely a specialist full-text search solution

 	The social graph, which might be best handled by a graph database

 	The user timelines, which can be handled by a key-value store

 None of these database decisions are absolute, and you could certainly implement the underlying databases using different
 approaches. The microservices aren’t affected by each other’s choice of data store, and this makes changes easier. Later in
 the project, if you find that you need to migrate to a different database, then the impact of that change will be minimized.

 At this point, you have a relatively complete microblogging service. Another good Friday for the team!

 1.2.5. Iteration 4: Scaling

 This is the last iteration before the big pitch for a series A venture capital round. You’re seeing so much traction that
 you’re definitely going to get funded. The trouble is, your system keeps falling over. Your microservices are scaling fine,
 because you can keep adding more instances, but the underlying databases can’t handle the data volumes. In particular, the timeline data is
 becoming too large for one database, and you need to split the data into multiple databases to keep growing.

 This problem can be solved with database sharding. Sharding works by assigning each item of data to a separate database, based on key values in the data. Here’s a simplistic
 example: to shard an address book into 26 databases, you could shard on the first letter of a person’s name. To shard data,
 you’d typically rely on the specific sharding capabilities of a database driver component, or the sharding feature of the
 underlying database. Neither of these approaches is appealing in a microservice context (although they will work), because
 you lose flexibility.

 You can use microservices to do the sharding by adding a shard property to the timeline:* messages. Run new instances of the timeline service, one group for each shard, that react only to messages containing the shard property. At this point, you have the old timeline service running against the old database, and a set of new sharding timeline services. The implementation of both types of timeline is the same; you’re just changing the deployment configuration and pointing some instances at new databases.

 Now, you migrate over to the sharding configuration by using microservice composition. Introduce a new version of the timeline microservice, which responds to the old timeline:* messages that don’t have a shard property. It then determines the shard based on the user, adds a shard property, and sends the messages onward to the sharded timeline microservices. This is the same structure as the relationship between entry-cache and entry-store.

 There are complications. You’ll be in a transitional state for a while, and during this period you’ll have to batch-transfer
 the old data from the original database into the new database shards. Your new timeline microservice will need logic to look for data in the old database if it can’t find it in the new shard. You’ll want to move
 carefully, leaving the old database active and still receiving data until you’re sure the sharding is working properly. You
 should probably test the whole thing against a subset of users first. This isn’t an easy transition, but microservices make
 it less risky. Far more of the work occurs as careful, small steps—simple configuration changes to message routing that can
 be easily rolled back. It’s a tough iteration, but not something that brings everything else to a halt and requires months
 of validation and testing.[10] The new sharding system is shown in figure 1.5.

 10

Sharding using microservices is by no means the “best” way. That depends on your own judgment as an architect for your own
 system. But it’s possible, using only message routing, and it’s a good example of the flexibility that microservices give
 you.

 Figure 1.5. Iteration 3: Scaling by sharding at the message level

 [image:]

 Now, let’s assume that everything goes according to plan, and you get funded and scale up to hundreds of millions of users.
 Although you’ve solved your technology problems, you still haven’t figured out how to monetize all those users. You take your
 leave as you roll out yet another advertising play—at least it’s quick to implement using microservices!

 Wouldn’t it be great if enterprise software development worked like this? The vast majority of software developers don’t have
 the freedom that startup software development brings, not because of organizational issues, but because they’re drowning in
 technical debt. That’s a hard truth to accept, because it requires honest reflection on our effectiveness as builders of software.

 The microservice architecture offers a solution to this problem based on sound engineering principles, not on the latest project
 management or technology platform fashions. Yes, there are trade-offs, and yes, it does require you to think in a new way.
 In particular, the criticism that complexity is being moved around, not reduced, must be addressed. It isn’t so. Message flows
 (being one kind of thing) are more understandable than the internals of a monolith (being many kinds of things). Microservices
 interact only by means of messages and are completely defined by these interactions. The internal programming structures of
 monoliths interact in all sorts of weird and wonderful ways, and offer only weak protection against interference with each
 other.

 A microservice system can be fully understood at an architectural level by doing the following:

 	Listing the messages. These define a language that maps back to business activities.

 	Listing the services and the messages they send and receive.

 On a practical level, yes, you do need to define and automate your deployment configuration. That is a best practice and not
 hard to do with modern tools. And you need to monitor your system—but at the level of messages and their expected flows. This
 is far more useful than monitoring the health of individual microservice instances.

 The case study is concluded. Let’s review some of the concepts that underlie the microservice approach.

1.3. How the monolith betrays the promise of components

 When I talk about monoliths in this book, I mean large, object-oriented systems[11] developed within, and used by, large organizations. These systems are long-lived, under constant modification to meet ongoing
 business requirements, and essential to the health of the business. They’re layered, with business logic in all the layers,
 from the frontend down to the database. They have wide and deep class hierarchies that no longer represent business reality
 accurately. Complex dependencies between classes and objects have arisen in response. Data structures not only suffer from
 legacy artifacts but must be twisted to meet new models of the world and are translated between representations with varying
 degrees of fidelity. New features must touch many parts of the system and inevitably cause regressions (new versions break
 previously working features).

 11

The essential characteristic of a monolith isn’t that a large body of code executes inside a single process. It’s that the
 monolith makes full use of its language platform to connect separate functional elements, thereby mortally wounding the composability
 of those elements as components. The object-oriented nature of these systems and the fact that they form the majority of enterprise
 software are mostly due to historical accident. There are other kinds of monoliths, but the object-oriented architecture has
 been such a pretender to the crown of software excellence, particularly in its broken promise to deliver reusable components,
 that it’s the primary target of this book’s ire.

OEBPS/01fig04_alt.jpg

OEBPS/01fig05_alt.jpg

OEBPS/01fig02_alt.jpg

OEBPS/01fig03_alt.jpg

OEBPS/common02.jpg

OEBPS/01fig01_alt.jpg

OEBPS/logo.jpg

OEBPS/common01.jpg

OEBPS/cover.jpg

