

 [image:]

 Spring Security in Action

 LaurenŢiu SpilcĂ

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2020 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Marina Michaels

 	
 Technical development editor:

 	
 Nick Watts

 	
 Review editor:

 	
 Mihaela Batinić

 	
 Production editor:

 	
 Deirdre S. Hiam

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Katie Tennant

 	
 Technical proofreader:

 	
 Jean-François Morin

 	
 Typesetter and cover designer

 	
 Marija Tudor

 ISBN: 9781617297731

contents

 foreword

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 1 Security today

 1.1 Spring Security: The what and the why

 1.2 What is software security?

 1.3 Why is security important?

 1.4 Common security vulnerabilities in web applications

 Vulnerabilities in authentication and authorization

 What is session fixation?

 What is cross-site scripting (XSS)?

 What is cross-site request forgery (CSRF)

 Understanding injection vulnerabilities in web applications

 Dealing with the exposure of sensitive data

 What is the lack of method access control?

 Using dependencies with known vulnerabilities

 1.5 Security applied in various architectures

 Designing a one-piece web application

 Designing security for a backend/frontend separation

 Understanding the OAuth 2 flow

 Using API keys, cryptographic signatures, and IP validation to secure requests

 1.6 What will you learn in this book?

 2 Hello Spring Security

 2.1 Starting with the first project

 2.2 Which are the default configurations?

 2.3 Overriding default configurations

 Overriding the UserDetailsService component

 Overriding the endpoint authorization configuration

 Setting the configuration in different ways

 Overriding the AuthenticationProvider implementation

 Using multiple configuration classes in your project

 3 Managing users

 3.1 Implementing authentication in Spring Security

 3.2 Describing the user

 Demystifying the definition of the UserDetails contract

 Detailing on the GrantedAuthority contract

 Writing a minimal implementation of UserDetails

 Using a builder to create instances of the UserDetails type

 Combining multiple responsibilities related to the user

 3.3 Instructing Spring Security on how to manage users

 Understanding the UserDetailsService contract

 Implementing the UserDetailsService contract

 Implementing the UserDetailsManager contract

 4 Dealing with passwords

 4.1 Understanding the PasswordEncoder contract

 The definition of the PasswordEncoder contract

 Implementing the PasswordEncoder contract

 Choosing from the provided implementations of PasswordEncoder

 Multiple encoding strategies with DelegatingPasswordEncoder

 4.2 More about the Spring Security Crypto module

 Using key generators

 Using encryptors for encryption and decryption operations

 5 Implementing authentication

 5.1 Understanding the AuthenticationProvider

 Representing the request during authentication

 Implementing custom authentication logic

 Applying custom authentication logic

 5.2 Using the SecurityContext

 Using a holding strategy for the security context

 Using a holding strategy for asynchronous calls

 Using a holding strategy for standalone applications

 Forwarding the security context with DelegatingSecurityContextRunnable

 Forwarding the security context with DelegatingSecurityContext-ExecutorService

 5.3 Understanding HTTP Basic and form-based login authentications

 Using and configuring HTTP Basic

 Implementing authentication with form-based login

 6 Hands-on: A small secured web application

 6.1 Project requirements and setup

 6.2 Implementing user management

 6.3 Implementing custom authentication logic

 6.4 Implementing the main page

 6.5 Running and testing the application

 7 Configuring authorization: Restricting access

 7.1 Restricting access based on authorities and roles

 Restricting access for all endpoints based on user authorities

 Restricting access for all endpoints based on user roles

 Restricting access to all endpoints

 8 Configuring authorization: Applying restrictions

 8.1 Using matcher methods to select endpoints

 8.2 Selecting requests for authorization using MVC matchers

 8.3 Selecting requests for authorization using Ant matchers

 8.4 Selecting requests for authorization using regex matchers

 9 Implementing filters

 9.1 Implementing filters in the Spring Security architecture

 9.2 Adding a filter before an existing one in the chain

 9.3 Adding a filter after an existing one in the chain

 9.4 Adding a filter at the location of another in the chain

 9.5 Filter implementations provided by Spring Security

 10 Applying CSRF protection and CORS

 10.1 Applying cross-site request forgery (CSRF) protection in applications

 How CSRF protection works in Spring Security

 Using CSRF protection in practical scenarios

 Customizing CSRF protection

 10.2 Using cross-origin resource sharing

 How does CORS work?

 Applying CORS policies with the @CrossOrigin annotation

 Applying CORS using a CorsConfigurer

 11 Hands-on: A separation of responsibilities

 11.1 The scenario and requirements of the example

 11.2 Implementing and using tokens

 What is a token?

 What is a JSON Web Token?

 11.3 Implementing the authentication server

 11.4 Implementing the business logic server

 Implementing the Authentication objects

 Implementing the proxy to the authentication server

 Implementing the AuthenticationProvider interface

 Implementing the filters

 Writing the security configurations 280Testing the whole system

 12 How does OAuth 2 work?

 12.1 The OAuth 2 framework

 12.2 The components of the OAuth 2 authentication architecture

 12.3 Implementation choices with OAuth 2

 Implementing the authorization code grant type

 Implementing the password grant type

 Implementing the client credentials grant type

 Using refresh tokens to obtain new access tokens

 12.4 The sins of OAuth 2

 12.5 Implementing a simple single sign-on application

 Managing the authorization server

 Starting the implementation

 Implementing ClientRegistration

 Implementing ClientRegistrationRepository

 The pure magic of Spring Boot configuration

 Obtaining details about an authenticated user

 Testing the application

 13 OAuth 2: Implementing the authorization server

 13.1 Writing your own authorization server implementation

 13.2 Defining user management

 13.3 Registering clients with the authorization server

 13.4 Using the password grant type

 13.5 Using the authorization code grant type

 13.6 Using the client credentials grant type

 13.7 Using the refresh token grant type

 14 OAuth 2: Implementing the resource server

 14.1 Implementing a resource server

 14.2 Checking the token remotely

 14.3 Implementing blackboarding with a JdbcTokenStore

 14.4 A short comparison of approaches

 15 OAuth 2: Using JWT and cryptographic signatures

 15.1 Using tokens signed with symmetric keys with JWT

 Using JWTs

 Implementing an authorization server to issue JWTs

 Implementing a resource server that uses JWT

 15.2 Using tokens signed with asymmetric keys with JWT

 Generating the key pair

 Implementing an authorization server that uses private keys

 Implementing a resource server that uses public keys

 Using an endpoint to expose the public key

 15.3 Adding custom details to the JWT

 Configuring the authorization server to add custom details to tokens

 Configuring the resource server to read the custom details of a JWT

 16 Global method security: Pre- and postauthorizations

 16.1 Enabling global method security

 Understanding call authorization

 Enabling global method security in your project

 16.2 Applying preauthorization for authorities and roles

 16.3 Applying postauthorization

 16.4 Implementing permissions for methods

 17 Global method security: Pre- and postfiltering

 17.1 Applying prefiltering for method authorization

 17.2 Applying postfiltering for method authorization

 17.3 Using filtering in Spring Data repositories

 18 Hands-on: An OAuth 2 application

 18.1 The application scenario

 18.2 Configuring Keycloak as an authorization server

 Registering a client for our system

 Specifying client scopes

 Adding users and obtaining access tokens 444Defining the user roles

 18.3 Implementing the resource server

 18.4 Testing the application

 Proving an authenticated user can only add a record for themself

 Proving that a user can only retrieve their own records

 Proving that only admins can delete records

 19 Spring Security for reactive apps

 19.1 What are reactive apps?

 19.2 User management in reactive apps

 19.3 Configuring authorization rules in reactive apps

 Applying authorization at the endpoint layer in reactive apps

 Using method security in reactive apps

 19.4 Reactive apps and OAuth 2

 20 Spring Security testing

 20.1 Using mock users for tests

 20.2 Testing with users from a UserDetailsService

 20.3 Using custom Authentication objects for testing

 20.4 Testing method security

 20.5 Testing authentication

 20.6 Testing CSRF configurations

 20.7 Testing CORS configurations

 20.8 Testing reactive Spring Security implementations

 appendix A. Creating a Spring Boot project

 index

 front matter

foreword

 Security used to be one of those system features that most people felt they could safely ignore. Unless you were working for the CIA, the military, perhaps law enforcement, or of course Google, you needed it, but it wasn’t top of your list of concerns. After all, most of the people who used your system probably came from your organization. And in any case, why would someone want to attack your system rather than a more interesting one?

 How times have changed! As the list of damaging, expensive, and simply embarrassing security failures grows; as more and more personal data gets released after data breaches; and as more and more companies suffer ransomware attacks, it has become obvious that security is now everyone’s problem.

 I have spent a number of years trying to bridge the historical gap between the communities of software development and software security, so I was overjoyed to find that my colleague Laurenţiu Spilcă was planning to write a book on Spring Security. The reason I was so pleased is that, as my colleague at Endava, I know that Laurenţiu is a highly competent software engineer, a great engineering leader, and a Spring Security expert. But more than that, he can really communicate complex topics effectively, as his educational work in the Java community and beyond plainly illustrates.

 In this book, Laurenţiu summarizes some of the key foundations of software security, particularly as it applies to Java web applications, and then shows you how to use Spring Security to meet many of the security threats that your application is likely to meet.

 You are in good hands. Laurenţiu’s approach is practical, but he always ensures that you understand the concepts as well as the syntax, so once you’ve read this book, you’ll know how to confidently and correctly apply the information in it to your applications. Using Spring Security won’t address every security concern in your application, but following the advice in this book will improve the security of your application immensely.

 In summary, this book is timely, practical, and well written. I certainly plan to have a copy on my bookshelf. I suggest that all Java developers who care about the security of their applications do the same.

 Eoin Woods

 Chief Technical Officer, Endava

preface

 I’ve worked as a software developer and trainer for software development since 2008. I can say that even if I like both these roles, I’m partial towards being a trainer/teacher. For me, sharing knowledge and helping others to upskill has always been a priority. But I strongly believe, in this domain, you can’t be just one or the other. Any software developer to some degree has to take on the role of a trainer or mentor, and you can’t be a trainer in software development without first having a solid understanding of how to apply what you teach in real-world scenarios.

 With experience, I came to understand the importance of non-functional software requirements like security, maintainability, performance, and so on. I could even say I’ve spent more time learning non-functional aspects than I have invested in learning new technologies and frameworks. In practice, it’s generally much easier to spot and solve functional problems than non-functional ones. That’s probably why I encounter many developers who fear to deal with messy code, memory-related issues, multi-threaded design problems, and, of course, security vulnerabilities.

 Certainly, security is one of the most crucial non-functional software features. And Spring Security is one of the most widely used frameworks for baking security into applications today. That’s because the Springframework--the Spring ecosystem--is recognized as a leader in the technologies used to develop enterprise applications within the Java and JVM universes.

 But what concerns me especially is the difficulty someone faces in learning to use Spring Security properly to protect applications against common vulnerabilities. Somehow, someone could find all the details about Spring Security on the web. But it takes a lot of time and experience to put them together in the right order so that you expend a minimum of effort using the framework. Moreover, incomplete knowledge could lead someone to implement solutions that are hard to maintain and develop, and that might even expose security vulnerabilities. Too many times, I’ve been consulted by teams working on applications in which I’ve discovered Spring Security being improperly used. And, in many cases, the main reason was the lack of understanding of how to use Spring Security.

 Because of this, I decided to write a book that helps any developer with Spring understand how to use Spring Security correctly. This book should be a resource to help someone with no knowledge of Spring Security understand it gradually. And what I hope, in the end, is that this book brings significant value to the reader with the time they’ll save in learning Spring Security and all the possible security vulnerabilities they’ll avoid introducing into their apps.

acknowledgments

 This book wouldn’t be possible without the many smart, professional, and friendly people who helped me throughout its development process. First, I want to say a big thanks to my fiancée, Daniela, who was always there for me and helped with valuable opinions, continuously supporting and encouraging me. I’d also like to express my gratitude and send special thanks to Adrian Buturugă and Eoin Woods for their valuable advice: they helped me from the very first table of contents and proposal. A special thanks goes to Eoin for taking the time to write the forward for the book.

 I want to thank the entire Manning team for their huge help in making this a valuable resource. I especially want to call out Marina Michaels, Nick Watts, and Jean-François Morin for being incredibly supportive and professional. Their advice brought great value to this book. Thanks go also to Deirdre Hiam, the project editor; Frances Buran, the copyeditor; Katie Tennant, the proofreader, and Mihaela Batinić, the review editor. Thanks so much everyone. You’re awesome and real professionals!

 I want to thank my friend Ioana Göz for the drawings she created for the book. She did a great job turning my thoughts into the cartoons you’ll discover here and there throughout the book. And I want to thank everyone who reviewed the manuscript and provided useful feedback that helped me improve the content of this book. I’d like to call out the reviewers from Manning, as well friends of mine who advised me: Diana Maftei, Adrian Buturugă, Raluca Diaconu, Paul Oros, Ovidiu Tudor, Roxana Stoica, Georgiana Dudanu, Marius Scarlat, Roxana Sandu, Laurenţiu Vasile, Costin Badea, Andreea Tudose, and Maria Chiţu.

 Last, but not least, I want to thank all the colleagues and friends from Endava who encouraged me throughout this period. Your thoughts and care mean very much to me.

about this book

Who should read this book?

 This book is for developers using the Spring framework to build enterprise applications. Every developer should take into consideration the security aspects of their applications from the earliest stages of the development process. This book teaches you how to use Spring Security to configure application-level security. In my opinion, knowing how to use Spring Security and apply the security configurations in applications properly is mandatory for any developer. It’s simply something so important that you shouldn’t take on the responsibility of implementing an app without knowing these aspects.

 I have designed this book as a resource for a developer starting with no background in Spring Security. The reader should already know how to work with some of the Spring framework fundamental aspects such as these:

 Using the Spring context

 Implementing REST endpoints

 Using data sources

 In chapter 19, we discuss applying security configurations for reactive apps. For this chapter, I also consider that you understand reactive applications and how to develop them with Spring a prerequisite. Throughout the book, I recommend resources you can use as refreshers or to learn topics you need to know in order to gain a proper understanding of what we’re discussing.

 The examples I wrote for this book are in Java. I expect that if you’re a developer using the Spring framework, you also understand Java. While it’s true that at work, you could use some other language, like Kotlin, it’s still likely that you also understand Java well. For this reason, I chose to use Java for writing the examples for the book. If you feel more comfortable, any of these examples could be easily rewritten in Kotlin as well.

How this book is organized: A roadmap

 This book is divided into two parts that cover 20 chapters. Part 1 of this book contains the first two chapters, in which we discuss security in general, and I teach you how to create a simple project that uses Spring Security:

 In chapter 1, we discuss the importance of security in software applications and how you should think about security and vulnerabilities, which you’ll learn to avoid introducing into your apps by using Spring Security. This chapter prepares you for the rest of the book, where we use Spring Security in applied examples.

 In chapter 2, you learn to create a simple Spring Boot project using Spring Security. We also discuss the Spring Security authentication and authorization architecture and its components on a high level. We start with straightforward examples and then, steadily throughout this book, you learn to apply detailed customizations for these components.

 Part 2 of this book consists of eighteen chapters that progressively drive you throughout all the implementation details you need to understand to use Spring Security in your applications:

 In chapter 3, you learn to use the Spring Security components that are related to user management. You learn how to describe a user with the interfaces provided by Spring Security and how to implement the functionality that enables your application to load and manage user details.

 In chapter 4, you learn how to manage user’s passwords with Spring Security. We discuss encryption, hashing, and the Spring Security components related to password validation. As you might expect, passwords are sensitive details and play an essential role in most security implementations. Knowing to manage passwords is a valuable skill that we dissect in detail in this chapter.

 In chapter 5, you learn how to customize the authentication logic of your application using Spring Security components. After learning in chapter 2 that Spring Boot provides you with a default implementation for authentication logic, in this chapter, you discover further that for specific requirements in real-world scenarios, you need to define custom authentication logic.

 In chapter 6, the first hands-on exercise, we create a small, secured web application. We put together everything you learned in chapters 2 through 5, and you find out how to assemble these pieces into a fully working app. This app is a more complex one, and it teaches you is how to assemble in a working app the customized components you learned to develop while reading the previous chapters.

 In chapter 7, we start the discussion about authorization configuration, and you learn how to configure authorization constraints. As part of almost any application, we need to make sure that actions can be executed only by authorized calls. After learning in chapters 2 through 6 how to manage authentication, it’s time you configure whether the authenticated user has the privilege of executing certain actions. You learn in this chapter how to deny or permit access for requests.

 In chapter 8, we continue our discussion on authorization, and you learn how to apply authorization constraints for specific HTTP requests. In the previous chapter, we only refer to how to permit or deny requests depending on the circumstances. In this chapter, you learn to apply different authorization configurations for specific requests depending on the path or the HTTP method.

 In chapter 9, we discuss customizing the filter chain. You learn that the filter chain represents a chain of responsibility that intercepts the HTTP request to apply authentication and authorization configurations.

 In chapter 10, we discuss how cross-site request forgery protection works, and you learn how to customize it with Spring Security. Then, we discuss cross-origin resource sharing, and you learn how to configure more relaxed CORS policies and when you should do this.

 In chapter 11, our second hands-on exercise, we work on an application that implements customized authentication and authorization. You apply what you learned already in this book, but you also learn what tokens are and their purpose in authorization.

 In chapter 12, we begin our journey into a more complex topic, OAuth 2. This topic is the subject of chapters 12 through 15. In this chapter, you learn what OAuth 2 is, and we discuss the flows in which a client can obtain an access token to call endpoints exposed by a backend application.

 In chapter 13, you learn how to use Spring Security to build a custom OAuth 2 authorization server.

 In chapter 14, you learn how to use Spring Security to build a resource server in your OAuth 2 system, as well as ways in which the resource server validates the tokens issued by the authorization server.

 In chapter 15, we conclude the OAuth 2 topic with how systems use JSON Web Tokens for authorization.

 In chapter 16, we discuss applying authorization configurations at the method level.

 In chapter 17, we continue the discussion from chapter 16, and you learn how to apply authorization configurations to filter values that represent inputs and outputs of methods.

 In chapter 18, our third hands-on exercise, we apply with an example what you learned in chapters 12 through 17. Moreover, you learn how to use the third-party tool Keycloak as an authorization server in your OAuth 2 system.

 In chapter 19, you learn how to apply security configurations for reactive applications developed with the Spring framework.

 In chapter 20, we wrap up our journey. You learn how to write integration tests for your security configurations.

 I designed the book to be easy for you to read in order from the first to the last chapter. In most cases, to understand the discussion of a specific chapter, you need to understand the topic previously discussed. For example, it doesn’t make sense to read chapter 3, where we discuss customization of user management components, if you haven’t had an overview of the Spring Security main architecture, which we discuss in chapter 2. You’d find it more difficult reading about password management before understanding first how user details are retrieved. Reading chapters 1 through 10 in the given order brings you the best benefit, especially if you have no or minimal experience with Spring Security. The following figure presents the path to take when reading this book.

 [image:]

 Figure FM.1 The complete path for this book, Spring Security in Action. If you are a beginner with Spring Security, the best thing to do is to read all the chapters in order.

 If you already have some knowledge of how Spring Security components work but are only interested in implementing OAuth 2 systems with Spring Security, you could go directly to chapter 12 and start your OAuth 2 journey to chapter 15. But, remember that the fundamentals discussed in chapters 1 through 11 are really important. Often, I find people with a bare understanding of the basics who try to understand a more complex aspect. Don’t fall into this trap. For example, I recently interacted with people who wanted to use JWTs without knowing how the basic Spring Security architecture works. This approach generally doesn’t work and leads to frustration. If you aren’t familiar yet with the basics and want to learn about OAuth2 applications, start with the beginning of the book, and don’t go directly to chapter 15.

 [image:]

 Figure FM.2 If you’re already comfortable with the basics and you’re interested only in a specific subject (for example, OAuth 2), you can skip to the first chapter that describes the topic of your interest.

 You can also decide to read chapters 16 and 17 directly after chapter 11 if you’re not interested in OAuth 2. In that case, you can skip the OAuth 2 part completely. The OAuth 2 chapters are intended to be read in order, starting with chapter 12 and up through chapter 15. And it also makes sense to read the last hands-on chapter of the book, which is chapter 18, after you read both the OAuth 2 parts and chapters 16 and 17.

 You may decide whether to read chapter 19 or not, which is related to securing reactive apps. This chapter is only relevant to reactive apps, so you can skip it if it’s not pertinent to your interests.

 In the last chapter, chapter 20, you learn how to define your integration tests for security configurations. We use examples that were explained throughout the book, and you need to understand the concepts we discussed in all the previous chapters. However, I separated chapter 20 into multiple sections. Each section is directly related to the main concepts discussed in the book. So, if you need to learn how to write integration tests, but you don’t care about reactive apps, you can still easily read chapter 20 and skip over the section referring to reactive apps.

About the code

 The book provides over 70 projects, which we work on starting with chapter 2 and up through chapter 19. When working on a specific example, I mention the name of the project that implements the example. My recommendation is that you try to write your own example from scratch together with the explanations in the book, and then only use the provided project to compare your solution with my solution. This approach helps you better understand the security configurations you’re learning.

 Each of the projects is built with Maven, which makes it easy to be imported into any IDE. I used IntelliJ IDEA to write the projects, but you can run them in Eclipse, STS, NetBeans, or any other tool of your choice. The appendix also helps you as a refresher on how to create a Spring Boot project.

 This book contains many examples of source code both in numbered listings and in line with normal text. In both cases, source code is formatted in a fixed-width font, like this to separate it from ordinary text. At times, the original source code has been reformatted; I added line breaks and reworked indentation to accommodate the available page space in the book. In rare cases, even this was not enough, and listings include line-continuation markers (➥). Code annotations accompany many of the listings, highlighting important concepts.

The liveBook discussion forum

 Purchasing Spring Security in Action includes free access to a private web forum run by Manning Publications where you can make comments about the book, ask technical questions, and receive help from the author and from other users. To access the forum, go to http://mng.bz/6Awp. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking him some challenging questions lest his interest stray! The forum and the archives of previous discussions are accessible from the publisher’s website as long as the book is in print.

Other online resources

 Additional resources include the Spring Security Reference at http://mng.bz/7Gz7 and the Spring Security Fundamentals playlist on the author’s YouTube account at http://mng.bz/mN4W.

about the author

 Laurenţiu Spilcă is a dedicated leader and trainer at Endava, where he heads the development of a project for the financial market of European Nordic countries. He has over nine years of experience. Previously, he was a software developer building one of the biggest enterprise resource planning solutions with worldwide installations.

 Laurenţiu believes it’s important to not only deliver high-quality software but also to share knowledge and help others to upskill. That drives him to design and teach courses related to Java technologies and to deliver presentations and workshops throughout the United States and Europe. His speaking engagements include those for Voxxed Days, TechFlow, Bucharest Technology Week, JavaSkop, Oracle Code Explore, O’Reilly Software Architecture, and Oracle Code One.

about the cover illustration

 The figure on the cover of Spring Security in Action is captioned “Homme de Murcie,” or Murcie man. The illustration is taken from a collection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757-1810), titled Costumes de Différents Pays, published in France in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and regions were just 200 years ago. Isolated from each other, people spoke different dialects and languages. In the streets or in the countryside, it was easy to identify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants of different continents, let alone different towns, regions, or countries. Perhaps we have traded cultural diversity for a more varied personal life--certainly for a more varied and fast-paced technological life.

 At a time when it is hard to tell one computer book from another, Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional life of two centuries ago, brought back to life by Grasset de Saint-Sauveur’s pictures.

Part 1. First Steps

 Security is one of the essential nonfunctional qualities of a software system. One of the most crucial aspects you learn in this book is that you should consider security from the beginning stages of application development. In chapter 1, we start by discussing the place of security in the development process of an application. Then, in chapter 2, I introduce you to the basic components of Spring Security’s backbone architecture by implementing a few straightforward projects.

 The purpose of this part is to get you started with Spring Security, especially if you are just beginning to learn this framework. However, even if you already know some aspects of application-level security and the underlying architecture of Spring Security, I recommend you read this part as a refresher.

1 Security today

 This chapter covers

 	
 What Spring Security is and what you can solve by using it

 	
 What security is for a software application

 	
 Why software security is essential and why you should care

 	
 Common vulnerabilities that you’ll encounter at the application level

 Today, more and more developers are becoming aware of security. It’s not, unfortunately, a common practice to take responsibility for security from the beginning of the development of a software application. This attitude should change, and everyone involved in developing a software system must learn to consider security from the start!

 Generally, as developers, we begin by learning that the purpose of an application is to solve business issues. This purpose refers to something where data could be processed somehow, persisted, and eventually displayed to the user in a specific way as specified by some requirements. This overview of software development, which is somehow imposed from the early stages of learning these techniques, has the unfortunate disadvantage of hiding practices that are also part of the process. While the application works correctly from the user’s perspective and, in the end, it does what the user expects in terms of functionality, there are lots of aspects hidden in the final result.

 Nonfunctional software qualities such as performance, scalability, availability, and, of course, security, as well as others, can have an impact over time, from short to long term. If not taken into consideration early on, these qualities can dramatically affect the profitability of the application owners. Moreover, the neglect of these considerations can also trigger failures in other systems as well (for example, by the unwilling participation in a distributed denial of service (DDoS) attack). The hidden aspects of nonfunctional requirements (the fact that it’s much more challenging to see if something’s missing or incomplete) makes these, however, more dangerous.

 [image:]

 Figure 1.1 A user mainly thinks about functional requirements. Sometimes, you might see them aware of performance, which is nonfunctional, but unfortunately, it’s quite unusual that a user cares about security. Nonfunctional requirements tend to be more transparent than functional ones.

 There are multiple nonfunctional aspects to consider when working on a software system. In practice, all of these are important and need to be treated responsibly in the process of software development. In this book, we focus on one of these: security. You’ll learn how to protect your application, step by step, using Spring Security.

 But before starting, I’d like to make you aware of the following: depending on how much experience you have, you might find this chapter cumbersome. Don’t worry too much if you don’t understand absolutely all the aspects for now. In this chapter, I want to show you the big picture of security-related concepts. Throughout the book, we work on practical examples, and where appropriate, I’ll refer back to the description I give in this chapter. Where applicable, I’ll also provide you with more details. Here and there, you’ll find references to other materials (books, articles, documentation) on specific subjects that are useful for further reading.

1.1 Spring Security: The what and the why

 In this section, we discuss the relationship between Spring Security and Spring. It is important, first of all, to understand the link between the two before starting to use those. If we go to the official website, https://spring.io/projects/spring-security, we see Spring Security described as a powerful and highly customizable framework for authentication and access control. I would simply say it is a framework that enormously simplifies applying (or “baking”) security for Spring applications.

 Spring Security is the primary choice for implementing application-level security in Spring applications. Generally, its purpose is to offer you a highly customizable way of implementing authentication, authorization, and protection against common attacks. Spring Security is an open source software released under the Apache 2.0 license. You can access its source code on GitHub at https://github.com/spring-projects/ spring-security/. I highly recommend that you contribute to the project as well.

 Note You can use Spring Security for both standard web servlets and reactive applications. To use it, you need at least Java 8, although the examples in this book use Java 11, which is the latest long-term supported version.

 I can guess that if you opened this book, you work on Spring applications, and you are interested in securing those. Spring Security is most likely the best choice for you. It’s the de facto solution for implementing application-level security for Spring applications. Spring Security, however, doesn’t automatically secure your application. It’s not some kind of magic panacea that guarantees a vulnerability-free app. Developers need to understand how to configure and customize Spring Security around the needs of their applications. How to do this depends on many factors, from the functional requirements to the architecture.

 Technically, applying security with Spring Security in Spring applications is simple. You’ve already implemented Spring applications, so you know that the framework’s philosophy starts with the management of the Spring context. You define beans in the Spring context to allow the framework to manage these based on the configurations you specify. And you use only annotations to make these configurations and leave behind the old-fashioned XML configuration style!

 You use annotations to tell Spring what to do: expose endpoints, wrap methods in transactions, intercept methods in aspects, and so on. The same is true with Spring Security configurations, which is where Spring Security comes into play. What you want is to use annotations, beans, and in general, a Spring-fashioned configuration style comfortably when defining your application-level security. In a Spring application, the behavior that you need to protect is defined by methods.

 To think about application-level security, you can consider your home and the way you allow access to it. Do you place the key under the entrance rug? Do you even have a key for your front door? The same concept applies to applications, and Spring Security helps you develop this functionality. It’s a puzzle that offers plenty of choices for building the exact image that describes your system. You can choose to leave your house completely unsecured, or you can decide not to allow everyone to enter your home.

 The way you configure security can be straightforward like hiding your key under the rug, or it can be more complicated like choosing a variety of alarm systems, video cameras, and locks. In your applications, you have the same options, but as in real life, the more complexity you add, the more expensive it gets. In an application, this cost refers to the way security affects maintainability and performance.

 But how do you use Spring Security with Spring applications? Generally, at the application level, one of the most encountered use cases is when you’re deciding whether someone is allowed to perform an action or use some piece of data. Based on configurations, you write Spring Security components that intercept the requests and that ensure whoever makes the requests has permission to access protected resources. The developer configures components to do precisely what’s desired. If you mount an alarm system, it’s you who should make sure it’s also set up for the windows as well as for the doors. If you forget to set it up for the windows, it’s not the fault of the alarm system that it doesn’t trigger when someone forces a window.

 Other responsibilities of Spring Security components relate to data storage as well as data transit between different parts of the systems. By intercepting calls to these different parts, the components can act on the data. For example, when data is stored, these components can apply encryption or hashing algorithms. The data encodings keep the data accessible only to privileged entities. In a Spring application, the developer has to add and configure a component to do this part of the job wherever it’s needed. Spring Security provides us with a contract through which we know what the framework requires to be implemented, and we write the implementation according to the design of the application. We can say the same thing about transiting data.

 In real-world implementations, you’ll find cases in which two communicating components don’t trust each other. How can the first know that the second one sent a specific message and it wasn’t someone else? Imagine you have a phone call with somebody to whom you have to give private information. How do you make sure that on the other end is indeed a valid individual with the right to get that data, and not somebody else? For your application, this situation applies as well. Spring Security provides components that allow you to solve these issues in several ways, but you have to know which part to configure and then set it up in your system. This way, Spring Security intercepts messages and makes sure to validate communication before the application uses any kind of data sent or received.

 Like any framework, one of the primary purposes of Spring is to allow you to write less code to implement the desired functionality. And this is also what Spring Security does. It completes Spring as a framework by helping you write less code to perform one of the most critical aspects of an application--security. Spring Security provides predefined functionality to help you avoid writing boilerplate code or repeatedly writing the same logic from app to app. But it also allows you to configure any of its components, thus providing great flexibility. To briefly recap this discussion:

 	
 You use Spring Security to bake application-level security into your applications in the “Spring” way. By this, I mean, you use annotations, beans, the Spring Expression Language (SpEL), and so on.

 	
 Spring Security is a framework that lets you build application-level security. However, it is up to you, the developer, to understand and use Spring Security properly. Spring Security, by itself, does not secure an application or sensitive data at rest or in flight.

 	
 This book provides you with the information you need to effectively use Spring Security.

 Alternatives to Spring Security

 This book is about Spring Security, but as with any solution, I always prefer to have a broad overview. Never forget to learn the alternatives that you have for any option. One of the things I’ve learned over time is that there’s no general right or wrong. “Everything is relative” also applies here!

 You won’t find a lot of alternatives to Spring Security when it comes to securing a Spring application. One alternative you could consider is Apache Shiro (https://shiro.apache.org). It offers flexibility in configuration and is easy to integrate with Spring and Spring Boot applications. Apache Shiro sometimes makes a good alternative to the Spring Security approach.

 If you’ve already worked with Spring Security, you’ll find using Apache Shiro easy and comfortable to learn. It offers its own annotations and design for web applications based on HTTP filters, which greatly simplify working with web applications. Also, you can secure more than just web applications with Shiro, from smaller command-line and mobile applications to large-scale enterprise applications. And even if simple, it’s powerful enough to use for a wide range of things from authentication and authorization to cryptography and session management.

 However, Apache Shiro could be too “light” for the needs of your application. Spring Security is not just a hammer, but an entire set of tools. It offers a larger scale of possibilities and is designed specifically for Spring applications. Moreover, it benefits from a larger community of active developers, and it is continuously enhanced.

1.2 What is software security?

 Software systems today manage large amounts of data, of which a significant part can be considered sensitive, especially given the current General Data Protection Regulations (GDPR) requirements. Any information that you, as a user, consider private is sensitive for your software application. Sensitive data can include harmless information like a phone number, email address, or identification number; although, we generally think more about data that is riskier to lose, like your credit card details. The application should ensure that there’s no chance for that information to be accessed, changed, or intercepted. No parties other than the users to whom this data is intended should be able to interact in any way with it. Broadly expressed, this is the meaning of security.

 NOTE GDPR created a lot of buzz globally after its introduction in 2018. It generally represents a set of European laws that refer to data protection and gives people more control over their private data. GDPR applies to the owners of systems having users in Europe. The owners of such applications risk significant penalties if they don’t respect the regulations imposed.

 We apply security in layers, with each layer requiring a different approach. Compare these layers to a protected castle (figure 1.2). A hacker needs to bypass several obstacles to obtain the resources managed by the app. The better you secure each layer, the lower the chance an individual with bad intentions manages to access data or perform unauthorized operations.

 [image:]

 Figure 1.2 The Dark Wizard (a hacker) has to bypass multiple obstacles (security layers) to steal the Magic Sword (user resources) from the Princess (your application).

 Security is a complex subject. In the case of a software system, security doesn’t apply only at the application level. For example, for networking, there are issues to be taken into consideration and specific practices to be used, while for storage, it’s another discussion altogether. Similarly, there’s a different philosophy in terms of deployment, and so on. Spring Security is a framework that belongs to application-level security. In this section, you’ll get a general picture of this security level and its implications.

 Application-level security (figure 1.3) refers to everything that an application should do to protect the environment it executes in, as well as the data it processes and stores. Mind that this isn’t only about the data affected and used by the application. An application might contain vulnerabilities that allow a malicious individual to affect the entire system!

 [image:]

 Figure 1.3 We apply security in layers, and each layer depends on those below it. In this book, we discuss Spring Security, which is a framework used to implement application-level security at the top-most level.

 To be more explicit, let’s discuss using some practical cases. We’ll consider a situation in which we deploy a system as in figure 1.4. This situation is common for a system designed using a microservices architecture, especially if you deploy it in multiple availability zones in the cloud.

 [image:]

 Figure 1.4 If a malicious user manages to get access to the virtual machine (VM) and there’s no applied application-level security, a hacker can gain control of the other applications in the system. If communication is done between two different availability zones (AZ), a malicious individual will find it easier to intercept the messages. This vulnerability allows them to steal data or to impersonate users.

 With such microservice architectures, we can encounter various vulnerabilities, so you should exercise caution. As mentioned earlier, security is a cross-cutting concern that we design on multiple layers. It’s a best practice when addressing the security concerns of one of the layers to assume as much as possible that the above layer doesn’t exist. Think about the analogy with the castle in figure 1.2. If you manage the “layer” with 30 soldiers, you want to prepare them to be as strong as possible. And you do this even knowing that before reaching them, one would need to cross the fiery bridge.

 With this in mind, let’s consider that an individual driven by bad intentions would be able to log in to the virtual machine (VM) that’s hosting the first application. Let’s also assume that the second application doesn’t validate the requests sent by the first application. The attacker can then exploit this vulnerability and control the second application by impersonating the first one.

 Also, consider that we deploy the two services to two different locations. Then the attacker doesn’t need to log in to one of the VMs as they can directly act in the middle of communications between the two applications.

 NOTE An availability zone (AZ in figure 1.4) in terms of cloud deployment is a separate data center. This data center is situated far enough geographically (and has other dependencies) from other data centers of the same region that, if one availability zone fails, the probability that others are failing too is minimal. In terms of security, an important aspect is that traffic between two different data centers generally goes across a public network.

 Monolithic and microservices

 The discussion on monolithic and microservices architectural styles is a whole different tome. I refer to these in multiple places in this book, so you should at least be aware of the terminology. For an excellent discussion of the two architectural styles, I recommend that you read Chris Richardson’s Microservices Patterns (Manning, 2018).

 By monolithic architecture, we refer to an application in which we implement all the responsibilities in the same executable artifact. Consider this as one application that fulfills all use cases. The responsibilities can sometimes be implemented within different modules to make the application more comfortable to maintain. But you can’t separate the logic of one from the logic of others at runtime. Generally, monolithic architectures offer less flexibility for scaling and deployment management.

 With a microservices system, we implement the responsibilities within different executable artifacts. You can see the system as being formed of multiple applications that execute at the same time and communicate between themselves when needed via the network. While this offers more flexibility for scaling, it introduces other difficulties. We can enumerate here latencies, security concerns, network reliability, distributed persistence, and deployment management.

 I referred earlier to authentication and authorization. And, indeed, these are often present in most applications. Through authentication, an application identifies a user (a person or another application). The purpose of identifying these is to be able to decide afterward what they should be allowed to do--that’s authorization. I provide quite a lot of details on authentication and authorization, starting with chapter 3 and continuing throughout the book.

 In an application, you often find the need to implement authorization in different scenarios. Consider another situation: most applications have restrictions regarding the user for obtaining access certain functionality. Achieving this implies first the need to identify who creates an access to request for a specific feature--that’s authentication. As well, we need to know their privileges to allow the user to use that part of the system. As the system becomes more complex, you’ll find different situations that require a specific implementation related to authentication and authorization.

 For example, what if you’d like to authorize a particular component of the system against a subset of data or operations on behalf of the user? Let’s say the printer needs access to read the user’s documents. Should you simply share the credentials of the user with the printer? But that allows the printer more rights than needed! And it also exposes the credentials of the user. Is there a proper way to do this without impersonating the user? These are essential questions, and the kind of questions you encounter when developing applications: questions that we not only want to answer, but for which you’ll see applications with Spring Security in this book.

 Depending on the chosen architecture for the system, you’ll find authentication and authorization at the level of the entire system, as well as for any of the components. And as you’ll see further along in this book, with Spring Security, you’ll sometimes prefer to use authorization even for different tiers of the same component. In chapter 16, we’ll discuss more on global method security, which refers to this aspect. The design gets even more complicated when you have a predefined set of roles and authorities.

 I would also like to bring to your attention data storage. Data at rest adds to the responsibility of the application. Your app shouldn’t store all its data in a readable format. The application sometimes needs to keep the data either encrypted with a private key or hashed. Secrets like credentials and private keys can also be considered data at rest. These should be carefully stored, usually in a secrets vault.

 NOTE We classify data as “at rest” or “in transition.” In this context, data at rest refers to data in computer storage or, in other words, persisted data. Data in transition applies to all the data that’s exchanged from one point to another. Different security measures should, therefore, be enforced, depending on the type of data.

 Finally, an executing application must manage its internal memory as well. It may sound strange, but data stored in the heap of the application can also present vulnerabilities. Sometimes the class design allows the app to store sensitive data like credentials or private keys for a long time. In such cases, someone who has the privilege to make a heap dump could find these details and then use them maliciously.

 With a short description of these cases, I hope I’ve managed to provide you with an overview of what we mean by application security, as well as the complexity of this subject. Software security is a tangled subject. One who is willing to become an expert in this field would need to understand (as well as to apply) and then test solutions for all the layers that collaborate within a system. In this book, however, we’ll focus only on presenting all the details of what you specifically need to understand in terms of Spring Security. You’ll find out where this framework applies and where it doesn’t, how it helps, and why you should use it. Of course, we’ll do this with practical examples that you should be able to adapt to your own unique use cases.

1.3 Why is security important?

 The best way to start thinking about why security is important is from your point of view as a user. Like anyone else, you use applications, and these have access to your data. These can change your data, use it, or expose it. Think about all the apps you use, from your email to your online banking service accounts. How would you evaluate the sensitivity of the data that is managed by all these systems? How about the actions that you can perform using these systems? Similarly to data, some actions are more important than others. You don’t care very much about some of those, while others are more significant. Maybe for you, it’s not that important if someone would somehow manage to read some of your emails. But I bet you’d care if someone else could empty your bank accounts.

 Once you’ve thought about security from your point of view, try to see a more objective picture. The same data or actions might have another degree of sensitivity to other people. Some might care a lot more than you if their email is accessed and someone could read their messages. Your application should make sure to protect everything to the desired degree of access. Any leak that allows the use of data and functionalities, as well as the application, to affect other systems is considered a vulnerability, and you need to solve it.

 Not respecting security comes with a price that I’m sure you aren’t willing to pay. In general, it’s about money. But the cost can differ, and there are multiple ways through which you can lose profitability. It isn’t only about losing money from a bank account or using a service without paying for it. These things indeed imply cost. The image of a brand or a company is also valuable, and losing a good image can be expensive--sometimes even more costly than the expenses directly resulting from the exploitation of a vulnerability in the system! The trust that users have in your application is one of its most valuable assets, and it can make the difference between success or failure.

 Here are a few fictitious examples. Think about how you would see these as a user. How can these affect the organization responsible for the software?

 	
 A back-office application should manage the internal data of an organization but, somehow, some information leaks out.

 	
 Users of a ride-sharing application observe that money is debited from their accounts on behalf of trips that aren’t theirs.

 	
 After an update, users of a mobile banking application are presented with transactions that belong to other users.

 In the first situation, the organization using the software, as well as its employees, can be affected. In some instances, the company could be liable and could lose a significant amount of money. In this situation, users don’t have the choice to change the application, but the organization can decide to change the provider of their software.

 In the second case, users will probably choose to change the service provider. The image of the company developing the application would be dramatically affected. The cost lost in terms of money in this case is much less than the cost in terms of image. Even if payments are returned to the affected users, the application will still lose some customers. This affects profitability and can even lead to bankruptcy. And in the third case, the bank could see dramatic consequences in terms of trust, as well as legal repercussions.

 In most of these scenarios, investing in security is safer than what happens if someone exploits a vulnerability in your system. For all of the examples, only a small weakness could cause each outcome. For the first example, it could be a broken authentication or a cross-site request forgery (CSRF). For the second and third examples, it could be a lack of method access control. And for all of these examples, it could be a combination of vulnerabilities.

 Of course, from here we can go even further and discuss the security in defense-related systems. If you consider money important, add human lives to the cost! Can you even imagine what could be the result if a health care system was affected? What about systems that control nuclear power? You can reduce any risk by investing early in the security of your application and by allocating enough time for security professionals to develop and test your security mechanisms.

 Note The lessons learned from those who failed before you are that the cost of an attack is usually higher than the investment cost of avoiding the vulnerability.

 In the rest of this book, you’ll see examples of ways to apply Spring Security to avoid situations like the ones presented. I guess there will never be enough word written about how important security is. When you have to make a compromise on the security of your system, try to estimate your risks correctly.

1.4 Common security vulnerabilities in web applications

 Before we discuss how to apply security in your applications, you should first know what you’re protecting the application from. To do something malicious, an attacker identifies and exploits the vulnerabilities of your application. We often describe vulnerability as a weakness that could allow the execution of actions that are unwanted, usually done with malicious intentions.

 An excellent start to understanding vulnerabilities is being aware of the Open Web Application Security Project, also known as OWASP (https://www.owasp.org). At OWASP, you’ll find descriptions of the most common vulnerabilities that you should avoid in your applications. Let’s take a few minutes and discuss these theoretically before diving into the next chapters, where you’ll start to apply concepts from Spring Security. Among the common vulnerabilities that you should be aware of, you’ll find these:

 	
 Broken authentication

 	
 Session fixation

 	
 Cross-site scripting (XSS)

 	
 Cross-site request forgery (CSRF)

 	
 Injections

 	
 Sensitive data exposure

 	
 Lack of method access control

 	
 Using dependencies with known vulnerabilities

 These items are related to application-level security, and most of these are also directly related to using Spring Security. We’ll discuss their relationship with Spring Security and how to protect your application from these in detail in this book, but first, an overview.

1.4.1 Vulnerabilities in authentication and authorization

 In this book, we’ll discuss authentication and authorization in depth, and you’ll learn several ways in which you can implement them with Spring Security. Authentication represents the process in which an application identifies someone trying to use it. When someone or something uses the app, we want to find their identity so that further access is granted or not. In real-world apps, you’ll also find cases in which access is anonymous, but in most cases, one can use data or do specific actions only when identified. Once we have the identity of the user, we can process the authorization.

 Authorization is the process of establishing if an authenticated caller has the privileges to use specific functionality and data. For example, in a mobile banking application, most of the authenticated users can transfer money but only from their account.

 We can say that we have a broken authorization if a an individual with bad intentions somehow gains access to functionality or data that doesn’t belong to them. Frameworks like Spring Security help in making this vulnerability less possible, but if not used correctly, there’s still a chance that this might happen. For example, you could use Spring Security to define access to specific endpoints for an authenticated individual with a particular role. If there’s no restriction at the data level, someone might find a way to use data that belongs to another user.

 Take a look at figure 1.5. An authenticated user can access the /products/{name} endpoint. From the browser, a web app calls this endpoint to retrieve and display the user’s products from a database. But what happens if the app doesn’t validate to whom the products belong when returning these? Some user could find a way to get the details of another user. This situation is just one of the examples that should be taken into consideration from the beginning of application design so that you can avoid this.

 [image:]

 Figure 1.5 A user that is logged in can see their products. If the application server only checks if the user is logged in, then the user can call the same endpoint to retrieve the products of some other user. In this way, John is able to see data that belongs to Bill. The issue that causes this problem is that the application doesn’t authenticate the user for data retrieval as well.

 Throughout the book, we’ll refer to vulnerabilities. We’ll discuss vulnerabilities starting with the basic configuration of authentication and authorization in chapter 3. Then, we’ll discuss how vulnerabilities relate to the integration of Spring Security and Spring Data and how to design an application to avoid those, with OAuth 2.

1.4.2 What is session fixation?

 Session fixation vulnerability is a more specific, high-severity weakness of a web application. If present, it permits an attacker to impersonate a valid user by reusing a previously generated session ID. This vulnerability can happen if, during the authentication process, the web application does not assign a unique session ID. This can potentially lead to the reuse of existing session IDs. Exploiting this vulnerability consists of obtaining a valid session ID and making the intended victim’s browser use it.

 Depending on how you implement your web application, there are various ways an individual can use this vulnerability. For example, if the application provides the session ID in the URL, then the victim could be tricked into clicking on a malicious link. If the application uses a hidden attribute, the attacker can fool the victim into using a foreign form and then post the action to the server. If the application stores the value of the session in a cookie, then the attacker can inject a script and force the victim’s browser to execute it.

1.4.3 What is cross-site scripting (XSS)?

 Cross-site scripting, also referred to as XSS, allows the injection of client-side scripts into web services exposed by the server, thereby permitting other users to run these. Before being used or even stored, you should properly “sanitize” the request to avoid undesired executions of foreign scripts. The potential impact can relate to account impersonation (combined with session fixation) or to participation in distributed attacks like DDoS.

 Let’s take an example. A user posts a message or a comment in a web application. After posting the message, the site displays it so that everybody visiting the page can see it. Hundreds might visit this page daily, depending on how popular the site is. For the sake of our example, we’ll consider it a known site, and a significant number of individuals visit its pages. What if this user posts a script that, when found on a web page, the browser executes (figures 1.6 and 1.7)?

 [image:]

 Figure 1.6 A user posts a comment containing a script, on a web forum. The user defines the script such that it makes requests that try to post or get massive amounts of data from another application (App X), which represents the victim of the attack. If the web forum app allows cross-site scripting (XSS), all the users who display the page with the malicious comment receive it as it is.

 [image:]

 Figure 1.7 Users access a page that displays a malicious script. Their browsers execute the script and then try to post or get substantial amounts of data from App X.

1.4.4 What is cross-site request forgery (CSRF)?

 Cross-site request forgery (CSRF) vulnerabilities are also common in web applications. CSRF attacks assume that a URL that calls an action on a specific server can be extracted and reused from outside the application (figure 1.8). If the server trusts the execution without doing any check on the origin of the request, one could execute it from any other place. Through CSRF, an attacker can make a user execute undesired actions on a server by hiding the actions. Usually, with this vulnerability, the attacker targets actions that change data in the system.

 [image:]

 Figure 1.8 Steps of a cross-site request forgery (CSRF). After logging into their account, the user accesses a page that contains forgery code. The malicious code then executes actions on behalf of the unsuspecting user.

 One of the ways of mitigating this vulnerability is to use tokens to identify the request or use cross-origin resource sharing (CORS) limitations. In other words, validate the origin of the request. We’ll look closer at how Spring Security deals with CSRF and CORS vulnerabilities in chapter 10.

1.4.5 Understanding injection vulnerabilities in web applications

 Injection attacks on systems are widespread. In an injection attack, the attacker employing a vulnerability introduces specific data into the system. The purpose is to harm the system, to change data in an unwanted way, or to retrieve data that’s not meant to be accessed by the attacker.

 There are many types of injection attacks. Even the XSS that we mentioned in section 1.4.3 can be considered an injection vulnerability. In the end, injection attacks inject a client-side script with the means of harming the system somehow. Other examples could be SQL injection, XPath injection, OS command injection, LDAP injection, and the list continues.

 Injection types of vulnerabilities are important, and the results of exploiting these can be change, deletion, or access to data in the systems being compromised. For example, if your application is somehow vulnerable to LDAP injection, an attacker could benefit from bypassing the authentication and from there control essential parts of the system. The same can happen for XPath or OS command injections.

 One of the oldest and perhaps well-known types of injection vulnerability is SQL injection. If your application has an SQL injection vulnerability, an attacker can try to change or run different SQL queries to alter, delete, or extract data from your system. In the most advanced SQL injection attacks, an individual can run OS commands on the system, leading to a full system compromise.

1.4.6 Dealing with the exposure of sensitive data

 Even if, in terms of complexity, the disclosure of confidential data seems to be the easiest to understand and the least complex of the vulnerabilities, it remains one of the most common mistakes. Maybe this happens because the majority of tutorials and examples found online, as well as books illustrating different concepts, define the credentials directly in the configuration files for simplicity reasons. In the case of a hypothetical example that eventually focuses on something else, this makes sense.

 NOTE Most of the time, developers learn continuously from theoretical examples. Generally, examples are simplified to allow the reader to focus on a specific topic. But a downside of this simplification is that developers get used to wrong approaches. Developers might mistakenly think that everything they read is a good practice.

 How is this aspect related to Spring Security? Well, we’ll deal with credentials and private keys in the examples in this book. We might use secrets in configuration files, but we’ll place a note for these cases to remind you that you should store sensitive data in vaults. Naturally, for a developed system, the developers aren’t allowed to see the values for these sensitive keys in all of the environments. Usually, at least for production, only a small group of people should be allowed to access private data.

 By setting such values in the configuration files, such as the application.properties or application .yml files in a Spring Boot project, you make those private values accessible to anyone who can see the source code. Moreover, you might also find yourself storing all the history of these value changes in your version management system for source code.

 Also related to the exposure of sensitive data is the information in logs written by your application to the console or stored in databases such as Splunk or Elasticsearch. I often see logs that disclose sensitive data forgotten by the developers.

 NOTE Never log something that isn’t public information. By public, I mean that anyone can see or access the info. Things like private keys or certificates aren’t public and shouldn’t be logged together with your error, warning, or info messages.

 Next time you log something from your application, make sure what you log doesn’t look like one of these messages:

 [error] The signature of the request is not correct. The correct key to be used should have been X.

[warning] Login failed for username X and password Y. User with username X has password Z.

[info] A login was performed with success by user X with password Y.

 Be careful of what your server returns to the client, especially, but not limited to, cases where the application encounters exceptions. Often due to lack of time or experience, developers forget to implement all such cases. This way (and usually happening after a wrong request), the application returns too many details that expose the implementations.

 This application behavior is also a vulnerability through data exposure. If your app encounters a NullPointerException because the request is wrong (part of it is missing, for example), then the exception shouldn’t appear in the body of the response. At the same time, the HTTP status should be 400 rather than 500. HTTP status codes of type 4XX are designed to represent problems on the client side. A wrong request is, in the end, a client issue, so the application should represent it accordingly. HTTP status codes of type 5XX are designed to inform you that there is a problem on the server. Do you see something wrong in the response presented by the next snippet?

 {
 "status": 500,
 "error": "Internal Server Error",
 "message": "Connection not found for IP Address 10.2.5.8/8080",
 "path": "/product/add"
}

 The message of the exception seems to be disclosing an IP address. An attacker can use this address to understand the network configuration and, eventually, find a way to control the VMs in your infrastructure. Of course, with only this piece of data, one can’t do any harm. But collecting different disclosed pieces of information and putting these together could provide everything that’s needed to adversely affect a system. Having exception stacks in the response is not a good choice either, for example:

 at java.base/java.util.concurrent.ThreadPoolExecutor
➥ .runWorker(ThreadPoolExecutor.java:1128) ~[na:na]
at java.base/java.util.concurrent.ThreadPoolExecutor$Worker
➥ .run(ThreadPoolExecutor.java:628) ~[na:na]
at org.apache.tomcat.util.threads.TaskThread$WrappingRunnable
➥ .run(TaskThread.java:61) ~[tomcat-embed-core-9.0.26.jar:9.0.26]
at java.base/java.lang.Thread.run(Thread.java:830) ~[na:na]

 This approach also discloses the application’s internal structure. From the stack of an exception, you can see the naming notations as well as objects used for specific actions and the relationships among these. But even worse than that, logs sometimes can disclose versions of dependencies that your application uses. (Did you spot that Tomcat core version in the preceding exception stack?)

 We should avoid using vulnerable dependencies. However, if we find ourselves using a vulnerable dependency by mistake, at least we don’t want to point this mistake out. Even if the dependency isn’t known as a vulnerable one, this can be because nobody has found the vulnerability yet. Exposures as in the previous snippet can motivate an attacker to find vulnerabilities in that specific version because they now know that’s what your system uses. It’s inviting them to harm your system. And an attacker often uses even the smallest detail against a system, for example:

 Response A:
{
 "status": 401,
 "error": "Unauthorized",
 "message": "Username is not correct",
 "path": "/login "
}
Response B:
{
 "status": 401,
 "error": " Unauthorized",
 "message": "Password is not correct",
 "path": "/login "
}

 In this example, the responses A and B are different results of calling the same authentication endpoint. They don’t seem to expose any information related to the class design or system infrastructure, but these hide another problem. If the messages disclose context information, then these can as well hide vulnerabilities. The different messages based on different inputs provided to the endpoint can be used to understand the context of execution. In this case, these could be used to know when a username is correct but the password is wrong. And this can make the system more liable to a brute force attack. The response provided back to the client shouldn’t help in identifying a possible guess of a specific input. In this case, it should have provided in both situations the same message:

 {
 "status": 401,
 "error": " Unauthorized",
 "message": "Username or password is not correct",
 "path": "/login "
}

 This precaution looks small, but if not taken, in some contexts, exposing sensitive data can become an excellent tool to be used against your system.

1.4.7 What is the lack of method access control?

 Even at the application level, you don’t apply authorization to only one of the tiers. Sometimes, it’s a must to ensure that a particular use case can’t be called at all (for example, if the privileges of the currently authenticated user don’t allow it).

 Say you have a web application with a straightforward design. The app has a controller exposing endpoints. The controller directly calls a service that implements some logic and that uses persisted data managed through a repository (figure 1.9). Imagine a situation where the authorization is done only at the endpoint level (assuming that you can access the method through a REST endpoint). A developer might be tempted to apply authorization rules only in the controller layer as presented in figure 1.9.

 [image:]

 Figure 1.9 A developer applies the authorization rules at the controller layer.But the repository does not know the user and does not restrict the retrieval of data. If a service asks for accounts that don’t belong to the currently authenticated user, the repository returns these.

 While the case presented in figure 1.9 works correctly, applying the authorization rules only at the controller layer can leave room for error. In this case, some future implementation could expose that use case without testing or without testing all the authorization requirements. In figure 1.10, you can see what can happen if a developer adds another functionality that depends on the same repository.

 These situations might appear, and you may need to treat these at any layer in your application, not just in the repository. We’ll discuss more things related to this subject in chapters 16 and 17. There, you’ll also learn how you can apply restrictions to each application tier when this is needed, as well as the cases when you should avoid doing this.

 [image:]

 Figure 1.10 The newly added TransactionController makes use of the AccountRepository in its dependency chain. The developer must reapply the authorization rules in this controller as well. But it would be much better if the repository itself made sure that data that doesn’t belong to the authenticated user is not exposed.

1.4.8 Using dependencies with known vulnerabilities

 Although not necessarily directly related to Spring Security, but still an essential aspect of the application-level security, the dependencies we use need attention. Sometimes it’s not the application you develop that has vulnerabilities, but the dependencies like libraries or frameworks that you use to build the functionality. Always be attentive to the dependencies you use and eliminate any version that’s known to contain a vulnerability.

 Fortunately, we have multiple possibilities for static analyses, quickly done by adding a plugin to your Maven or Gradle configuration. The majority of applications today are developed based on open source technologies. Even Spring Security is an open source framework. This development methodology is great, and it allows for fast evolution, but this can also make us more error prone.

 When developing any piece of software, we have to take all the needed measures to avoid the use of any dependency that has known vulnerabilities. If we discover that we’ve used such a dependency, then we not only have to correct this fast, we also have to investigate if the vulnerability was already exploited in our applications and then take the needed measures.

1.5 Security applied in various architectures

 In this section, we discuss applying security practices depending on the design of your system. It’s important to understand that different software architectures imply different possible leaks and vulnerabilities. In this first chapter, I want to make you aware of the philosophy to which I’ll refer to throughout the book.

 Architecture strongly influences choices in configuring Spring Security for your applications; so do functional and nonfunctional requirements. When you think of a tangible situation, to protect something, depending on what you want to protect, you use a metal door, bulletproof glass, or a barrier. You couldn’t just use a metal door in all the situations. If what you protect is an expensive painting in a museum, you still want people to be able to see it. You don’t, however, want them to be able to touch it, damage it, or even take it with them. In this case, functional requirements affect the solution we take for secure systems.

 It could be that you need to make a good compromise with other quality attributes like, for example, performance. It’s like using a heavy metal door instead of a lightweight barrier at the parking entrance. You could do that, and for sure, the metal door would be more secure, but it takes much more time to open and close it. The time and cost of opening and closing the heavy door aren’t worth it; of course, assuming that this isn’t some kind of special parking for expensive cars.

 Because the security approach is different depending on the solution we implement, the configuration in Spring Security is also different. In this section, we discuss some examples based on different architectural styles, that take into consideration various requirements that affect the approach to security. These aspects are linked to all the configurations that we’ll work on with Spring Security in the following chapters.

 In this section, I present some of the practical scenarios you might have to deal with and those we’ll work through in the rest of the book. For a more detailed discussion on techniques for securing apps in microservices systems, I recommend you also read Microservices Security in Action by Prabath Siriwardena and Nuwan Dias (Manning, 2019).

1.5.1 Designing a one-piece web application

 Let’s start with the case where you develop a component of a system that represents a web application. In this application, there’s no direct separation in development between the backend and the frontend. The way we usually see these kinds of applications is through the general servlet flow: the application receives an HTTP request and sends back an HTTP response to a client. Sometimes, we might have a server-side session for each client to store specific details over more HTTP requests. In the examples provided in the book, we use Spring MVC (figure 1.11).

 You’ll find a great discussion about developing web applications and REST services with Spring in chapters 2 and 6 of Craig Walls’s Spring In Action, 6th ed. (Manning, 2020):

 https://livebook.manning.com/book/spring-in-action-sixth-edition/chapter-2/

 https://livebook.manning.com/book/spring-in-action-sixth-edition/chapter-6/

 [image:]

 Figure 1.11 A minimal representation of the Spring MVC flow. The DispatcherServlet finds the mapping of the requested path to the controller method (1), executes the controller method (2), and obtains the rendered view (3). The HTTP response is then delivered back to the requester, whereby the browser interprets and displays the response.

 As long as you have a session, you need to take into consideration the session fixation vulnerability as well as the CSRF possibilities previously mentioned. You must also consider what you store in the HTTP session itself.

 Server-side sessions are quasi-persistent. They are stateful pieces of data, so their lifetime is longer. The longer these stay in memory, the more it’s statistically probable that they’ll be accessed. For example, a person having access to the heap dump could read the information in the app’s internal memory. And don’t think that the heap dump is challenging to obtain! Especially when developing your applications with Spring Boot, you might find that the Actuator is also part of your application. The Spring Boot Actuator is a great tool. Depending on how you configure it, it can return a heap dump with only an endpoint call. That is, you don’t necessarily need root access to the VM to get your dump.

 Going back to the vulnerabilities in terms of CSRF in this case, the easiest way to mitigate the vulnerability is to use anti-CSRF tokens. Fortunately, with Spring Security, this capability is available out of the box. CSRF protection as well as validation of the origin CORS is enabled by default. You’ll have to disable it if you don’t want it explicitly. For authentication and authorization, you could choose to use the implicit login form configuration from Spring Security. With this, you’ll benefit from only needing to override the look and feel of the login and log-out, and from the default integration with the authentication and authorization configuration. You also benefit from mitigation of the session fixation vulnerability.

 If you implement authentication and authorization, it also means that you should have some users with valid credentials. Depending on your choice, you could have your application managing the credentials for the users, or you could choose to benefit from another system to do this (for example, you might want to let the user log in with their Facebook, GitHub, or LinkedIn credentials). In any of these cases, Spring Security helps you with a relatively easy way of configuring user management. You can choose to store user information in a database, use a web service, or connect to another platform. The abstractions used in Spring Security’s architecture make it decoupled, which allows you to choose any implementation fit for your application.

1.5.2 Designing security for a backend/frontend separation

 Nowadays, we more often see in the development of web applications a choice in the segregation of the frontend and the backend (figure 1.12). In these web applications, developers use a framework like Angular, ReactJS, or Vue.js to develop the frontend. The frontend communicates with the backend through REST endpoints. We’ll implement examples to apply Spring Security for these architectures starting with chapter 11.

 We’ll typically avoid using server-side sessions; client-side sessions replace those. This kind of system design is similar to the one used in mobile applications. Applications that run on Android or iOS operating systems, which can be native or simple progressive web applications, call a backend through REST endpoints.

 [image:]

 Figure 1.12 The browser executes a frontend application. This application calls REST endpoints exposed by the backend to perform some operations requested by the user.

 In terms of security, there are some other aspects to be taken into consideration. First, CSRF and CORS configurations are usually more complicated. You might want to scale the system horizontally, but it’s not mandatory to have the frontend with the backend at the same origin. For mobile applications, we can’t even talk about an origin.

 The most straightforward but least desirable approach as a practical solution is to use HTTP Basic for endpoint authentication. While this approach is direct to understand and generally used with the first theoretical examples of authentication, it does have leaks that you want to avoid. For example, using HTTP Basic implies sending the credentials with each call. As you’ll see in chapter 2, credentials aren’t encrypted. The browser sends the username and the passwords as a Base64 encoding. This way, the credentials are left available on the network in the header of each endpoint call. Also, assuming that the credentials represent the user that’s logged in, you don’t want the user to type their credentials for every request. You also don’t want to have to store the credentials on client side. This practice is not advisable.

