

 inside front cover

 [image:]

 Principles of data-oriented programming

 [image:]

 Data-Oriented Programming

 Reduce software complexity

 Yehonathan Sharvit

 Forewords by Michael T. Nygard and Ryan Singer

 To comment go to liveBook

 [image:]

 Manning

 Shelter Island

 For more information on this and other Manning titles go to

 www.manning.com

 Copyright

 For online information and ordering of these and other Manning books, please visit www.manning.com. The publisher offers discounts on these books when ordered in quantity.

 For more information, please contact

 Special Sales Department

 Manning Publications Co.

 20 Baldwin Road

 PO Box 761

 Shelter Island, NY 11964

 Email: orders@manning.com

 ©2022 by Manning Publications Co. All rights reserved.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 ♾ Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine.

 	
 [image:]

 	
 Manning Publications Co.

 20 Baldwin Road Technical

 PO Box 761

 Shelter Island, NY 11964

 	
 Development editor:

 	
 Elesha Hyde

 	
 Technical development editor:

 	
 Marius Butuc

 	
 Review editor:

 	
 Aleksandar Dragosavljević

 	
 Production editor:

 	
 Andy Marinkovich

 	
 Copy editor:

 	
 Frances Buran

 	
 Proofreader:

 	
 Keri Hales

 	
 Technical proofreader:

 	
 Karsten Strøbaek

 	
 Typesetter:

 	
 Dennis Dalinnik

 	
 Cover designer:

 	
 Marija Tudor

 ISBN: 9781617298578

 dedication

 To Karine, who supports my dysfunctionalities on a daily basis.

Brief contents

 Part 1. Flexibility

 1 Complexity of object-oriented programming

 2 Separation between code and data

 3 Basic data manipulation

 4 State management

 5 Basic concurrency control

 6 Unit tests

 Part 2. Scalability

 7 Basic data validation

 8 Advanced concurrency control

 9 Persistent data structures

 10 Database operations

 11 Web services

 Part 3. Maintainability

 12 Advanced data validation

 13 Polymorphism

 14 Advanced data manipulation

 15 Debugging

 Appendix A. Principles of data-oriented programming

 Appendix B. Generic data access in statically-typed languages

 Appendix C. Data-oriented programming: A link in the chain of programming paradigms

 Appendix D. Lodash reference

contents

 Front matter

 forewords

 preface

 acknowledgments

 about this book

 about the author

 about the cover illustration

 dramatis personae

 Part 1. Flexibility

 1 Complexity of object-oriented programming

 1.1 OOP design: Classic or classical?

 The design phase

 UML 101

 Explaining each piece of the class diagram

 The implementation phase

 1.2 Sources of complexity

 Many relations between classes

 Unpredictable code behavior

 Not trivial data serialization

 Complex class hierarchies

 2 Separation between code and data

 2.1 The two parts of a DOP system

 2.2 Data entities

 2.3 Code modules

 2.4 DOP systems are easy to understand

 2.5 DOP systems are flexible

 3 Basic data manipulation

 3.1 Designing a data model

 3.2 Representing records as maps

 3.3 Manipulating data with generic functions

 3.4 Calculating search results

 3.5 Handling records of different types

 4 State management

 4.1 Multiple versions of the system data

 4.2 Structural sharing

 4.3 Implementing structural sharing

 4.4 Data safety

 4.5 The commit phase of a mutation

 4.6 Ensuring system state integrity

 4.7 Restoring previous states

 5 Basic concurrency control

 5.1 Optimistic concurrency control

 5.2 Reconciliation between concurrent mutations

 5.3 Reducing collections

 5.4 Structural difference

 5.5 Implementing the reconciliation algorithm

 6 Unit tests

 6.1 The simplicity of data-oriented test cases

 6.2 Unit tests for data manipulation code

 The tree of function calls

 Unit tests for functions down the tree

 Unit tests for nodes in the tree

 6.3 Unit tests for queries

 6.4 Unit tests for mutations

 Part 2. Scalability

 7 Basic data validation

 7.1 Data validation in DOP

 7.2 JSON Schema in a nutshell

 7.3 Schema flexibility and strictness

 7.4 Schema composition

 7.5 Details about data validation failures

 8 Advanced concurrency control

 8.1 The complexity of locks

 8.2 Thread-safe counter with atoms

 8.3 Thread-safe cache with atoms

 8.4 State management with atoms

 9 Persistent data structures

 9.1 The need for persistent data structures

 9.2 The efficiency of persistent data structures

 9.3 Persistent data structures libraries

 Persistent data structures in Java

 Persistent data structures in JavaScript

 9.4 Persistent data structures in action

 Writing queries with persistent data structures

 Writing mutations with persistent data structures

 Serialization and deserialization

 Structural diff

 10 Database operations

 10.1 Fetching data from the database

 10.2 Storing data in the database

 10.3 Simple data manipulation

 10.4 Advanced data manipulation

 11 Web services

 11.1 Another feature request

 11.2 Building the insides like the outsides

 11.3 Representing a client request as a map

 11.4 Representing a server response as a map

 11.5 Passing information forward

 11.6 Search result enrichment in action

 Part 3. Maintainability

 12 Advanced data validation

 12.1 Function arguments validation

 12.2 Return value validation

 12.3 Advanced data validation

 12.4 Automatic generation of data model diagrams

 12.5 Automatic generation of schema-based unit tests

 12.6 A new gift

 13 Polymorphism

 13.1 The essence of polymorphism

 13.2 Multimethods with single dispatch

 13.3 Multimethods with multiple dispatch

 13.4 Multimethods with dynamic dispatch

 13.5 Integrating multimethods in a production system

 14 Advanced data manipulation

 14.1 Updating a value in a map with eloquence

 14.2 Manipulating nested data

 14.3 Using the best tool for the job

 14.4 Unwinding at ease

 15 Debugging

 15.1 Determinism in programming

 15.2 Reproducibility with numbers and strings

 15.3 Reproducibility with any data

 15.4 Unit tests

 15.5 Dealing with external data sources

 Appendix A. Principles of data-oriented programming

 Appendix B. Generic data access in statically-typed languages

 Appendix C. Data-oriented programming: A link in the chain of programming paradigms

 Appendix D. Lodash reference

 index

 front matter

forewords

 Every programming principle, every design method, every architecture style, and even most language features are about organizing complexity while allowing adaptation. Two characteristics—immutable data and turning parts of the program into data inside the program itself—drew me to Clojure in 2009 and more recently to Yehonathan Sharvit’s Data-Oriented Programming.

 In 2005, I worked on one of my favorite projects with some of my favorite people. It was a Java project, but we did two things that were not common practice in the Java world at that time. First, we made our core data values immutable. It wasn’t easy but it worked extraordinarily well. We hand-rolled clone and deepClone methods in many classes. The payoff was huge. Just as one example, suppose you need template documents for users to instantiate. When you can make copies of entire object trees, the objects themselves don’t need to “know” whether they are template data or instance data. That decision is up to whatever object holds the reference. Another big benefit came from comparison: when values are immutable, equality of identity indicates equality of value. This can make for very fast equality checks.

 Our second technique was to take advantage of generic data—though not to the extent Yehonathan will show you in this book. Where one layer had a hierarchy of classes, its adjoining layer would represent those as instances of a more general class. What would be a member variable in one layer would be described by a field in a map in another layer. I am certain this style was influenced by the several small talkers on our team. It also paid off immediately, as we were able to compose and recompose objects in different configurations.

 Data-oriented programming, as you will see, promises to reduce accidental complexity, and raise the level of abstraction you work at. You will start to see repeated behavior in your programs as artificial, a result of carving generic functions into classes, which act like little namespaces that operate only on a subset of your program’s values (their instances). We can “fold together” almost all of those values into maps and lists. We can turn member names (data available only with difficulty via reflective APIs) into map keys. As we do that, code simply melts away. This is the first level of enlightenment.

 At this point, you might object that the compiler uses those member names at compile time for correctness checking. Indeed it does. But have faith, for Yehonathan will guide you to the next level of enlightenment: that those compile-time checks are a small subset of possible correctness checks on values. We can make the correctness checks themselves into data, too! We can make schemas into values inside our programs. What’s more, we can enforce criteria that researchers on the forefront of type systems are still trying to figure out. This is the second level of enlightenment.

 Data-oriented programming especially shines when working with web APIs. There is no type of system on the wire, so attempting to map a request payload directly into a domain class guarantees a brittle, complex implementation. If we let data be data, we get simpler code and far fewer dependencies on hundred-megabyte framework libraries.

 So, whatever happened to the OOP virtues of encapsulation, inheritance, and polymorphism? It turns out we can decomplect these and get each of them à la carte. (In my opinion, inheritance of implementations is the least important of these, even though it is often the first one taught. I now prefer inheritance of interfaces via protocols and shared function signatures.) Data-oriented programming offers polymorphism of the “traditional” kind: dispatch to one of many functions based on the type of the first argument (in an OO language, this is a disguise for the method’s first argument. It just happens it goes before the “.”). However, as with schema checking, DOP allows more dynamism. Imagine dispatching based on the types of the first two arguments. Or based on whether the argument has a “birthday” field with today’s date in it! This is the third level of enlightenment.

 And as for encapsulation, we must still apply it to the organizing logic of our program. We encapsulate subsystems, not values. This encapsulation embodies the decision-hiding of David Parnas. Inside a subsystem, we can stop walling off our data into the disjointed namespaces that classes impose. In the words of Alan Perlis, “It is better to have one hundred functions operate on one data structure than ten functions on ten data structures.”

 In our unending battle with entropy, we can use data-oriented programming to both reduce the volume of code to keep up and raise the level of abstraction to make our program’s logic and meaning precise and evident. Enjoy the journey and pause at each new plateau to enjoy the view and say to yourself, “It’s just data!”

 —Michael T. Nygard

 author of Release It!: Design and Deploy Production-Ready Software

 This book hit me at just the right time. I had been building web apps for nearly 20 years in an object-oriented framework. I never considered myself an expert programmer, but I knew my tools well enough to look at a typical business problem, sketch out a data model, and build an MVC-style app to get the job done.

 Projects were thrilling at the start. I loved the feeling of plugging pieces together and seeing the app come to life. But once I got it working, I ran into problems. I couldn’t change one part without keeping all the other models in mind. I knew I should write tests, but I had to set up so much state to test things that it didn’t feel worth it—I didn’t want to write more code that would be hard to change. Even running bits of code in the console was tedious because I had to create database state to call the method. I thought I was probably doing it wrong, but the solutions I knew about, such as sophisticated testing frameworks, seemed to add to the complexity instead of making things easier.

 Then one day, I saw a talk on YouTube by Rich Hickey, the creator of Clojure. He was explaining functional programming and contrasting it with OO, which he derisively called “place-oriented programming.” I wasn’t sure if he was right, but I heard a hidden message that intrigued me: “It’s not you, it’s your language.” I watched all the videos I could find and started to think Clojure might be the answer.

 Years went by. I kept watching Clojure videos and trying to apply functional principles when I could. But whenever it was time to start on a new project, I fell back on my familiar framework. Changing to another language with a totally different ecosystem of libraries was too big of a leap.

 Then, just as I was about to start work on a new product, I found this book. The words “Data-Oriented” in the title rang a bell. I heard programmers in those Clojure videos use the words before, but I hadn’t really understood what they meant. Something about how it’s easier to build systems that manipulate data literals (like maps and arrays) instead of custom objects. The languages I knew had good support for data literals, so I thought I might learn something to hold me over until that magical day when I might switch to Clojure.

 My first a-ha moment came right in the introduction. In the first few pages, Yehonathan explains that, though he’s written Clojure for 10 years, the book isn’t language-specific, and the examples will be in JavaScript. Wait!—I thought. Could it really be that I don’t have to change languages to deeply improve the way I write programs?

 I was so excited by this prospect that I devoured the book in one sitting. My eyes opened to something that had been right in front of me all along. Of course my code was hard to test! Because of the ORM I used, all my functionality was written in objects that assumed a bunch of database state! When I saw it spelled out with examples in the book, I couldn’t unsee it. I didn’t need a new language, I just needed to approach programming differently!

 The designers I consider great all point to the same thing: good design is about pulling things apart. It’s not just about getting the code to work, no matter how ugly. It’s about untangling the parts from each other so you can change one thing without breaking everything else.

 This book pulls apart code and data, with surprising and exciting results. For me, it also went further. It pulled apart a way of programming from a specific language. I might never make that switch to Clojure, and I don’t feel like I have to anymore. Data-Oriented Programming helped me see new possibilities in the languages I know and the multitude of new frameworks appearing every day.

 —Ryan Singer

 author of Shape Up: Stop Running in Circles and Ship Work that Matters

preface

 I have been a software engineer since 2000. For me, there is clearly a “before” and an “after” 2012. Why 2012? Because 2012 is the year I discovered Clojure. Before Clojure, programming was my job. After Clojure, programming has been my passion.

 A few years ago, I wondered what features of Clojure made this programming language such a great source of pleasure for me. I shared my questions with other members of the Clojure community who have the same passion for it that I do. Together, we discovered that what was so special about Clojure was not features, but principles.

 When we set out to distill the core principles of Clojure, we realized that they were, in fact, applicable to other programming languages. It was then that the idea for this book began to emerge. I wanted to share what I like so much about Clojure with the global community of developers. For that, I would need a means of clearly expressing ideas that are mostly unfamiliar to developers who do not know Clojure.

 I’ve always loved inventing stories, but would my invented dialogues be taken seriously by programmers? Certainly, Plato had invented stories with his “Socratic Dialogues” to transmit the teachings of his teacher. Likewise, Rabbi Judah Halevi had invented the story of the king of the Khazars to explain the foundations of Judaism. But these two works are in the realm of thought, not practice!

 I then remembered a management book I had read a few years ago, called The Goal (North River Press, 2014). In this book, Eliyahu Goldratt invents the story of a plant manager who manages to save his factory thanks to the principles coming from the theory of constraints. Plato, Judah Halevi, and Eliyahu Goldratt legitimized my crazy desire to write a story to share ideas.

acknowledgments

 First and foremost, I want to thank my beloved, Karine. You believed in me since the beginning of this project. You always manage to see the light, even when it hides behind several layers of darkness. To my wonderful children, Odaya, Orel, Advah, Nehoray, and Yair, who were the first audience for the stories I invented when I was a young daddy. You are the most beautiful story I ever wrote!

 There are numerous other folks to whom I want to also extend my thanks, including Joel Klein, for all the fascinating and enriching discussions on the art and the soul; to Meir Armon for helping me clarify what content should not be included in the book; to Rich Hickey for inventing Clojure, such a beautiful language, which embraced data-oriented programming before it even had a name; to Christophe Grand, whose precious advice helped me to distill the first three principles of data-oriented programming; to Mark Champine, for reviewing the manuscript so carefully and providing many valuable suggestions; to Eric Normand, for your encouragement and, in particular, your advice on the application of data-oriented programming in Java; to Bert Bates, for teaching me the secrets of writing a good book; and to Ben Button, for reviewing the chapters that deal with JSON Schema.

 My thanks to all the folks at Manning Publications, especially Mike Stephens, for agreeing to continue working with me despite the failure of my first book; Elesha Hyde, for your availability and your attention to the smallest details; Marius Butuc, for your enthusiastic positive feedback from reading the first chapter; Linda Kotlyarsky, for formulating the chapter descriptions in such a fun way; and to Frances Buran for improving the clarity of the text and the flow of the story.

 To all the reviewers, Alex Gout, Allen Ding, Andreas Schabus, Andrew Jennings, Andy Kirsch, Anne Epstein, Berthold Frank, Christian Kreutzer-Beck, Christopher Kardell, Dane Balia, Dr. Davide Cadamuro, Elias Ilmari Liinamaa, Ezra Simeloff, George Thomas, Giri S., Giuliano Araujo Bertoti, Gregor Rayman, J. M. Borovina Josko, Jerome Meyer, Jesús A. Juárez Guerrero, John D. Lewis, Jon Guenther, Kelum Prabath Senanayake, Kelvin Johnson, Kent R. Spillner, Kim Gabrielsen, Konstantin Eremin, Marcus Geselle, Mark Elston, Matthew Proctor, Maurizio Tomasi, Michael Aydinbas, Milorad Imbra, Özay Duman, Raffaella Ventaglio, Ramanan Nararajan, Rambabu Posa, Saurabh Singh, Seth MacPherson, Shiloh Morris, Victor Durán, Vincent Theron, William E. Wheeler, Yogesh Shetty, and Yvan Phelizot, your suggestions helped make this a better book.

 Finally, I’d like to mention my cousin Nissim, whom a band of barbarians did not allow to flourish.

about this book

 Data-Oriented Programming was written to help developers reduce the complexity of the systems they build. The ideas in this book are mostly applicable to systems that manipulate information—systems like frontend applications, backend web servers, or web services.

Who should read this book?

 Data-Oriented Programming is for frontend, backend, and full stack developers with a couple of years of experience in a high-level programming language like Java, C#, C++, Ruby, or Python. For object-oriented programming developers, some ideas presented in this book might take them out of their comfort zone and require them to unlearn some of the programming paradigms they feel so much at ease with. For functional programming developers, this book will be a little easier to digest but should deliver some nice surprises as well.

How this book is organized: A road map

 This book tells a story that illustrates the value of data-oriented programming (DOP) and how to apply its principles in real-life production systems. My suggestion is to follow the story and read the chapters in order. However, if some chapters trigger your curiosity more than the others, be aware that the material in part 1 and in chapter 7 are required to understand part 2 and part 3.

 Throughout the book, we use Lodash (https://lodash.com/) to illustrate how to manipulate data with generic functions. In case you are reading a code snippet that uses a Lodash function that you are unfamiliar with, you can refer to appendix D to understand the behavior of the function.

 Part 1, Flexibility, contains six chapters and shines a spotlight on the challenges of traditional object-oriented programming (OOP) and puts data-oriented programming (DOP) center stage, revealing how to build flexible systems by using DOP’s basic principles. The chapters line up this way:

 	
 In chapter 1, Complexity of object-oriented programming, we look at the complexity of OOP. Then, our DOP saga begins! Listen in on a conversation between Theo, a senior developer, and his up-and-coming colleague, Dave. Feel empathy for Theo struggling with OOP complexity and discover an excellent reason for trying a different programming paradigm.

 	
 Chapter 2, Separation between code and data, finds our friend Theo searching for a solution that will reduce complexity and increase the flexibility of systems. His job is on the line. Enter Joe, an experienced developer who has an answer for him—DOP. Discover how DOP Principle #1 helps to reduce complexity of information systems.

 	
 Chapter 3, Basic data manipulation, explores how we can liberate our data from its encapsulation in class rigidity and manipulate it freely with generic functions by applying DOP Principle #2. Vive la révolution!

 	
 Chapter 4, State management, explores state management with a multiversion approach that lets us go back in time by restoring the system to a previous state because, in DOP, state is nothing more than data. Time travel is real—in DOP!

 	
 Chapter 5, Basic concurrency control, helps us to get high throughput of reads and writes in a concurrent system by applying an optimistic concurrency control strategy. No rose-colored glasses required!

 	
 Chapter 6, Unit tests, offers a cup of joe . . . with Joe! Our friend Joe proves that unit testing data-oriented code is so easy you can tackle it in a coffee shop. Grab a cuppa and learn why it’s so straightforward—even for mutations!—as you write a DOP unit test hands-on with Joe. It’s cool beans!

 Part 2, Scalability, illustrates how to build a DOP system at scale with a focus on data validation, multi-threaded environments, large data collections, and database access and web services. Need to supersize your system? No problem!

 	
 Chapter 7, Basic data validation, teaches us how to ensure that data going in and out of our systems is valid, just in case . . . because, as Joe says, you are not forced to validate data in DOP, but you can when you need to. To validate or not to validate, that is the question!

 	
 Chapter 8, Advanced concurrency control, discusses how, after our friend Joe breaks down the implementation details of the atom mechanism, we’ll learn to manage the whole system state in a thread-safe way without using any locks. You won’t know complexity from atom—up and atom!

 	
 Chapter 9, Persistent data structures, moves to a more academic setting where our friend Joe unveils the internal details of a safer and more scalable way to preserve data immutability as well as how to implement it efficiently, no matter the data size. Class is now in session!

 	
 Chapter 10, Database operations, teaches us how to represent, access, and manipulate data from the database in a way that offers added flexibility, and—you guessed it!—less complexity.

 	
 Chapter 11, Web services, lets us discover the simplicity of communicating with web services. We’ll learn what Joe means when he says, “We should build the insides of our systems like we build the outsides.”

 Part 3, Maintainability, levels up to the DOP techniques of advanced data validation, polymorphism, eloquent code, and debugging techniques, which are vital when you’re working in a team. Welcome to the team!

 	
 Chapter 12, Advanced data validation, allows us to discover the shape of things to come. Here, you’ll learn how to validate data when it flows inside the system, allowing you to ease development by defining the expected shape of function arguments and return values.

 	
 Chapter 13, Polymorphism, takes us along with Theo and Dave for a class in the countryside—a fitting place to play with animals and learn about polymorphism without objects via multimethods.

 	
 Chapter 14, Advanced data manipulation, lets us see how Dave and Theo apply Joe’s sage advice to turn tedious code into eloquent code as they create their own data manipulation tools. “Put the cart before the horse.”—another gem from Joe!

 	
 Chapter 15, Debugging, takes Dave and Theo to the museum for one last “hurrah” as they create an innovative solution for reproducing and fixing bugs.

 This book also has four appendices:

 	
 Appendix A, Principles of data-oriented programming, summarizes each of the four DOP principles that are covered in detail in part 1 and illustrates how each principle can be applied to both FP and OOP languages. It also describes the benefits of each principle and the costs of adherence to each.

 	
 Appendix B, Generic data access in statically-typed languages, presents various ways to provide generic data access in statically-typed programming languages like Java and C#.

 	
 Appendix C, Data-oriented programming: A link in the chain of programming paradigms, explores the ideas and trends that have inspired DOP. We look at the discoveries that make it applicable in production systems at scale.

 	
 Appendix D, Lodash reference, summarizes the Lodash functions that we use throughout the book to illustrate how to manipulate data with generic functions without mutating it.

About the code

 Most of the code snippets in this book are in JavaScript. We chose JavaScript for two reasons:

 	
 JavaScript supports both functional programming and object-oriented programming styles.

 	
 The syntax of JavaScript is easy to read in the sense that, even if you are not familiar with JavaScript, you can read a piece of JavaScript code at a high level as though it were pseudocode.

 To make it easy for readers from any programming language to read the code snippets, we have limited ourselves to basic JavaScript syntax and have avoided the use of advanced language features like arrow functions and async notation. Where there was a conceptual challenge in applying an idea to a statically-typed language, we have added code snippets in Java.

 Code appears throughout the text and as separate code snippets in a fixed-width font like this. In many cases, the original source code has been reformatted. We’ve added line breaks and reworked indentation to accommodate the available page space in the book. Code annotations also accompany some of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this book at https://livebook.manning.com/book/data-oriented-programming, or from the book’s Github link here: https://github.com/viebel/data-oriented-programming.

liveBook discussion forum

 Purchase of Data-Oriented Programming includes free access to liveBook, Manning’s online reading platform. Using liveBook’s exclusive discussion features, you can attach comments to the book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself, ask and answer technical questions, and receive help from the author and other users. To access the forum, go to https://livebook.manning.com/book/data-oriented-programming/discussion. You can also learn more about Manning’s forums and the rules of conduct at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful dialogue between individual readers and between readers and the author can take place. It is not a commitment to any specific amount of participation on the part of the author, whose contribution to the forum remains voluntary (and unpaid). We suggest you try asking the author some challenging questions lest his interest stray! The forum and the archives of previous discussions will be accessible from the publisher’s website as long as the book is in print.

about the author

 [image:]

 Yehonathan Sharvit has over 20 years of experience as a software engineer, programming with C++, Java, Ruby, JavaScript, Clojure, and ClojureScript, both in the backend and the frontend. At the time of writing this book, he works as a software architect at Cycognito, building software infrastructures for high-scale data pipelines. He shares his passion about programming on his blog (https://blog.klipse.tech/) and at tech conferences. You can follow him on Twitter (https://twitter.com/viebel).

about the cover illustration

 The figure on the cover of Data-Oriented Programming is “Fille de l’Isle Santorin,” or “Girl from the island of Santorini,” taken from a collection by Jacques Grasset de Saint-Sauveur, published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or station in life was just by their dress. Manning celebrates the inventiveness and initiative of the computer business with book covers based on the rich diversity of regional culture centuries ago, brought back to life by pictures from collections such as this one.

dramatis personae

 THEO, senior developer

 NANCY, entrepreneur

 MONICA, manager, Theo’s boss

 DAVE, junior developer, Theo’s colleague

 JOE, independent programmer

 KAY, therapist, Joe’s wife

 JANE, Theo’s wife

 NERIAH, Joe’s son

 AURELIA, Joe’s daughter

 The story takes place in San Francisco.

Part 1. Flexibility

 It’s Monday morning. Theodore is sitting with Nancy on the terrace of La Vita è Bella, an Italian coffee shop near the San Francisco Zoo. Nancy is an entrepreneur looking for a development agency for her startup company, Klafim. Theo works for Albatross, a software development agency that seeks to regain the trust of startups.

 Nancy and her business partner have raised seed money for Klafim, a social network for books. Klafim’s unique value proposition is to combine the online world with the physical world by allowing users to borrow books from local libraries and then to meet online to discuss the books. Most parts of the product rely on the integration of already existing online services. The only piece that requires software development is what Nancy calls a Global Library Management System. Their discussion is momentarily interrupted by the waiter who brings Theo his tight espresso and Nancy her Americano with milk on the side.

 THEO In your mind, what’s a Global Library Management System?

 NANCY It’s a software system that handles the basic housekeeping functions of a library, mainly around the book catalog and the library members.

 THEO Could you be a little bit more specific?

 NANCY Sure. For the moment, we need a quick prototype. If the market response to Klafim is positive, we will move forward with a big project.

 THEO What features do you need for the prototype phase?

 Nancy grabs the napkin under her coffee mug and writes down a couple of bulleted points on the napkin.

 The requirements for the Klafim prototype

 	
 Two kinds of library users are members and librarians.

 	
 Users log in to the system via email and password.

 	
 Members can borrow books.

 	
 Members and librarians can search books by title or by author.

 	
 Librarians can block and unblock members (e.g., when they are late in returning a book).

 	
 Librarians can list the books currently lent to a member.

 	
 There could be several copies of a book.

 	
 The book belongs to a physical library.

 THEO Well, that’s pretty clear.

 NANCY How much time would it take for your company to deliver the prototype?

 THEO I think we should be able to deliver within a month. Let’s say Wednesday the 30th.

 NANCY That’s too long. We need it in two weeks!

 THEO That’s tough! Can you cut a feature or two?

 NANCY Unfortunately, we cannot cut any feature, but if you like, you can make the search very basic.

 (Theo really doesn’t want to lose this contract, so he’s willing to work hard and sleep later.)

 THEO I think it should be doable by Wednesday the 16th.

 NANCY Perfect!

1 Complexity of object-oriented programming

 A capricious entrepreneur

 This chapter covers

 	
The tendency of OOP to increase system complexity

 	
What makes OOP systems hard to understand

 	
The cost of mixing code and data together into objects

 In this chapter, we’ll explore why object-oriented programming (OOP) systems tend to be complex. This complexity is not related to the syntax or the semantics of a specific OOP language. It is something that is inherent to OOP’s fundamental insight—programs should be composed from objects, which consist of some state, together with methods for accessing and manipulating that state.

 Over the years, OOP ecosystems have alleviated this complexity by adding new features to the language (e.g., anonymous classes and anonymous functions) and by developing frameworks that hide some of this complexity, providing a simpler interface for developers (e.g., Spring and Jackson in Java). Internally, the frameworks rely on the advanced features of the language such as reflection and custom annotations.

 This chapter is not meant to be read as a critical analysis of OOP. Its purpose is to raise your awareness of the tendency towards OOP’s increased complexity as a programming paradigm. Hopefully, it will motivate you to discover a different programming paradigm, where system complexity tends to be reduced. This paradigm is known as data-oriented programming (DOP).

1.1 OOP design: Classic or classical?

 ►Note Theo, Nancy, and their new project were introduced in the opener for part 1. Take a moment to read the opener if you missed it.

 Theo gets back to the office with Nancy’s napkin in his pocket and a lot of anxiety in his heart because he knows he has committed to a tough deadline. But he had no choice! Last week, Monica, his boss, told him quite clearly that he had to close the deal with Nancy no matter what.

 Albatross, where Theo works, is a software consulting company with customers all over the world. It originally had lots of customers among startups. Over the last year, however, many projects were badly managed, and the Startup department lost the trust of its customers. That’s why management moved Theo from the Enterprise department to the Startup department as a Senior Tech lead. His job is to close deals and to deliver on time.

1.1.1 The design phase

 Before rushing to his laptop to code the system, Theo grabs a sheet of paper, much bigger than a napkin, and starts to draw a UML class diagram of the system that will implement the Klafim prototype. Theo is an object-oriented programmer. For him, there is no question—every business entity is represented by an object, and every object is made from a class.

 The requirements for the Klafim prototype

 	
 There are two kinds of users: library members and librarians.

 	
 Users log in to the system via email and password.

 	
 Members can borrow books.

 	
 Members and librarians can search books by title or by author.

 	
 Librarians can block and unblock members (e.g., when they are late in returning a book).

 	
 Librarians can list the books currently lent to a member.

 	
 There can be several copies of a book.

 	
 A book belongs to a physical library.

 Theo spends some time thinking about the organization of the system. He identifies the main classes for the Klafim Global Library Management System.

 The main classes of the library management system

 	
 Library—The central part of the system design.

 	
 Book—A book.

 	
 BookItem—A book can have multiple copies, and each copy is considered as a book item.

 	
 BookLending—When a book is lent, a book lending object is created.

 	
 Member—A member of the library.

 	
 Librarian—A librarian.

 	
 User—A base class for Librarian and Member.

 	
 Catalog—Contains a list of books.

 	
 Author—A book author.

 That was the easy part. Now comes the difficult part: the relations between the classes. After two hours or so, Theo comes up with a first draft of a design for the Global Library Management System. It looks like the diagram in figure 1.1.

 [image:]

 Figure 1.1 A class diagram for Klafim’s Global Library Management System

 ►Note The design presented here doesn’t pretend to be the smartest OOP design: experienced OOP developers would probably use a couple of design patterns to suggest a much better design. This design is meant to be naive and by no means covers all the features of the system. It serves two purposes:

 	
 For Theo, the developer, it is rich enough to start coding.

 	
 For me, the author of the book, it is rich enough to illustrate the complexity of a typical OOP system.

 Theo feels proud of himself and of the design diagram he just produced. He definitely deserves a cup of coffee!

 Near the coffee machine, Theo meets Dave, a junior software developer who joined Albatross a couple of weeks ago. Theo and Dave appreciate each other, as Dave’s curiosity leads him to ask challenging questions. Meetings near the coffee machine often turn into interesting discussions about programming.

 THEO Hey Dave! How’s it going?

 DAVE Today? Not great. I’m trying to fix a bug in my code! I can’t understand why the state of my objects always changes. I’ll figure it out though, I’m sure. How’s your day going?

 THEO I just finished the design of a system for a new customer.

 DAVE Cool! Would it be OK for me to see it? I’m trying to improve my design skills.

 THEO Sure! I have the diagram on my desk. We can take a look now if you like.

1.1.2 UML 101

 Latte in hand, Dave follows Theo to his desk. Theo proudly shows Dave his piece of art: the UML diagram for the Library Management System (figure 1.1). Dave seems really excited.

 DAVE Wow! Such a detailed class diagram.

 THEO Yeah. I’m pretty happy with it.

 DAVE The thing is that I can never remember the meaning of the different arrows.

 THEO There are four types of arrows in my class diagram: composition, association, inheritance, and usage.

 DAVE What’s the difference between composition and association?

 ► Note Don’t worry if you’re not familiar with OOP jargon. We’re going to leave it aside in the next chapter.

 THEO It’s all about whether the objects can live without each other. With composition, when one object dies, the other one dies too. While in an association relation, each object has an independent life.

 💡Tip In a composition relation, when one object dies, the other one also dies. While in an association relation, each object has an independent life cycle.

 In the class diagram, there are two kinds of composition symbolized by an arrow with a plain diamond at one edge and an optional star at the other edge. Figure 1.2 shows the relation between:

 	
 A Library that owns a Catalog—A one-to-one composition. If a Library object dies, then its Catalog object dies with it.

 	
 A Library that owns many Members—A one-to-many composition. If a Library object dies, then all its Member objects die with it.

 [image:]

 Figure 1.2 The two kinds of composition: one-to-one and one-to-many. In both cases, when an object dies, the composed object dies with it.

 💡Tip A composition relation is represented by a plain diamond at one edge and an optional star at the other edge.

 DAVE Do you have association relations in your diagram?

 THEO Take a look at the arrow between Book and Author. It has an empty diamond and a star at both edges, so it’s a many-to-many association relation.

 A book can be written by multiple authors, and an author can write multiple books. Moreover, Book and Author objects can live independently. The relation between books and authors is a many-to-many association (figure 1.3).

 [image:]

 Figure 1.3 Many-to-many association relation: each object lives independently.

 💡Tip A many-to-many association relation is represented by an empty diamond and a star at both edges.

 DAVE I also see a bunch of dashed arrows in your diagram.

 THEO Dashed arrows are for usage relations: when a class uses a method of another class. Consider, for example, the Librarian::blockMember method. It calls Member::block.

 💡Tip Dashed arrows indicate usage relations (figure 1.4), for instance, when a class uses a method of another class.

 [image:]

 Figure 1.4 Usage relation: a class uses a method of another class.

 DAVE I see. And I guess a plain arrow with an empty triangle, like the one between Member and User, represents inheritance.

 THEO Absolutely!

 💡Tip Plain arrows with empty triangles represent class inheritance (figure 1.5), where the arrow points towards the superclass.

 [image:]

 Figure 1.5 Inheritance relation: a class derives from another class.

1.1.3 Explaining each piece of the class diagram

 DAVE Thanks for the UML refresher! Now I think I can remember what the different arrows mean.

 THEO My pleasure. Want to see how it all fits together?

 DAVE What class should we look at first?

 THEO I think we should start with Library.

 The Library class

 The Library is the root class of the library system. Figure 1.6 shows the system structure.

 [image:]

 Figure 1.6 The Library class

 In terms of code (behavior), a Library object does nothing on its own. It delegates everything to the objects it owns. In terms of data, a Library object owns

 	
 Multiple Member objects

 	
 Multiple Librarian objects

 	
 A single Catalog object

 ►Note In this book, we use the terms code and behavior interchangeably.

 Librarian, Member, and User classes

 Librarian and Member both derive from User. Figure 1.7 shows this relation.

 [image:]

 Figure 1.7 Librarian and Member derive from User.

 The User class represents a user of the library:

 	
 In terms of data members, it sticks to the bare minimum: it has an id, email, and password (with no security and encryption for now).

 	
 In terms of code, it can log in via login.

 The Member class represents a member of the library:

 	
 It inherits from User.

 	
 In terms of data members, it has nothing more than User.

 	
 In terms of code, it can

 	
Check out a book via checkout.

 	
Return a book via returnBook.

 	
Block itself via block.

 	
Unblock itself via unblock.

 	
Answer if it is blocked via isBlocked.

 	
 It owns multiple BookLending objects.

 	
 It uses BookItem in order to implement checkout.

 The Librarian class represents a librarian:

 	
 It derives from User.

 	
 In terms of data members, it has nothing more than User.

 	
 In terms of code, it can

 	
Block and unblock a Member.

 	
List the member’s book lendings via getBookLendings.

 	
Add book items to the library via addBookItem.

 	
 It uses Member to implement blockMember, unblockMember, and getBookLendings.

 	
 It uses BookItem to implement checkout.

 	
 It uses BookLending to implement getBookLendings.

 The Catalog class

 The Catalog class is responsible for the management of the books. Figure 1.8 shows the relation among the Catalog, Librarian, and Book classes. In terms of code, a Catalog object can

 	
 Search books via search.

 	
 Add book items to the library via addBookItem.

 [image:]

 Figure 1.8 The Catalog class

 A Catalog object uses Librarian in order to implement addBookItem. In terms of data, a Catalog owns multiple Book objects.

 The Book class

 Figure 1.9 presents the Book class. In terms of data, a Book object

 	
 Should have as its bare minimum an id and a title.

 	
 Is associated with multiple Author objects (a book might have multiple authors).

 	
 Owns multiple BookItem objects, one for each copy of the book.

 [image:]

 Figure 1.9 The Book class

 The BookItem class

 The BookItem class represents a book copy, and a book could have many copies. In terms of data, a BookItem object

 	
 Should have as its bare minimum data for members: an id and a libId (for its physical library ID).

 	
 Owns multiple BookLending objects, one for each time the book is lent.

 In terms of code, a BookItem object can be checked out via checkout.

1.1.4 The implementation phase

 After this detailed investigation of Theo’s diagrams, Dave lets it sink in as he slowly sips his coffee. He then expresses his admiration to Theo.

 DAVE Wow! That’s amazing!

 THEO Thank you.

 DAVE I didn’t realize people were really spending the time to write down their design in such detail before coding.

 THEO I always do that. It saves me lot of time during the coding phase.

 DAVE When will you start coding?

 THEO When I finish my latte.

 Theo grabs his coffee mug and notices that his hot latte has become an iced latte. He was so excited to show his class diagram to Dave that he forgot to drink it!

1.2 Sources of complexity

 While Theo is getting himself another cup of coffee (a cappuccino this time), I would like to challenge his design. It might look beautiful and clear on the paper, but I claim that this design makes the system hard to understand. It’s not that Theo picked the wrong classes or that he misunderstood the relations among the classes. It goes much deeper:

 	
 It’s about the programming paradigm he chose to implement the system.

 	
 It’s about the object-oriented paradigm.

 	
 It’s about the tendency of OOP to increase the complexity of a system.

 💡Tip OOP has a tendency to create complex systems.

 Throughout this book, the type of complexity I refer to is that which makes systems hard to understand as defined in the paper, “Out of the Tar Pit,” by Ben Moseley and Peter Marks (2006), available at http://mng.bz/enzq. It has nothing to do with the type of complexity that deals with the amount of resources consumed by a program. Similarly, when I refer to simplicity, I mean not complex (in other words, easy to understand).

 Keep in mind that complexity and simplicity (like hard and easy) are not absolute but relative concepts. We can compare the complexity of two systems and determine whether system A is more complex (or simpler) than system B.

 ►Note Complexity in the context of this book means hard to understand.

 As mentioned in the introduction of this chapter, there are many ways in OOP to alleviate complexity. The purpose of this book is not be critical of OOP, but rather to present a programming paradigm called data-oriented programming (DOP) that tends to build systems that are less complex. In fact, the DOP paradigm is compatible with OOP.

 If one chooses to build an OOP system that adheres to DOP principles, the system will be less complex. According to DOP, the main sources of complexity in Theo’s system (and of many traditional OOP systems) are that

 	
 Code and data are mixed.

 	
 Objects are mutable.

 	
 Data is locked in objects as members.

 	
 Code is locked into classes as methods.

 This analysis is similar to what functional programming (FP) thinks about traditional OOP. However, as we will see throughout the book, the data approach that DOP takes in order to reduce system complexity differs from the FP approach. In appendix A, we illustrate how to apply DOP principles both in OOP and in FP styles.

 💡Tip DOP is compatible both with OOP and FP.

 In the remaining sections of this chapter, we will illustrate each of the previous aspects, summarized in table 1.1. We’ll look at this in the context of the Klafim project and explain in what sense these aspects are a source of complexity.

 Table 1.1 Aspects of OOP and their impact on system complexity

 	
 Aspect

 	
 Impact on complexity

 	
 Code and data are mixed.

 	
 Classes tend to be involved in many relations.

 	
 Objects are mutable.

 	
 Extra thinking is needed when reading code.

 	
 Objects are mutable.

 	
 Explicit synchronization is required on multi-threaded environments.

 	
 Data is locked in objects.

 	
 Data serialization is not trivial.

 	
 Code is locked in classes.

 	
 Class hierarchies are complex.

1.2.1 Many relations between classes

 One way to assess the complexity of a class diagram is to look only at the entities and their relations, ignoring members and methods, as in figure 1.10. When we design a system, we have to define the relations between different pieces of code and data. That’s unavoidable.

 [image:]

 Figure 1.10 A class diagram overview for Klafim’s Library Management System

 💡Tip In OOP, code and data are mixed together in classes: data as members and code as methods.

 From a system analysis perspective, the fact that code and data are mixed together makes the system complex in the sense that entities tend to be involved in many relations. In figure 1.11, we take a closer look at the Member class. Member is involved in five relations: two data relations and three code relations.

 	
 Data relations:

 	
Library has many Members.

 	
Member has many BookLendings.

 	
 Code relations:

 	
Member extends User.

 	
Librarian uses Member.

 	
Member uses BookItem.

 [image:]

 Figure 1.11 The class Member is involved in five relations.

 Imagine for a moment that we were able, somehow, to split the Member class into two separate entities:

 	
 MemberCode for the code

 	
 MemberData for the data

 Instead of a Member class with five relations, we would have the diagram shown in figure 1.12 with:

 	
 A MemberCode entity and three relations.

 	
 A MemberData entity and two relations.

 [image:]

 Figure 1.12 A class diagram where Member is split into code and data entities

 The class diagram where Member is split into MemberCode and MemberData is made of two independent parts. Each part is easier to understand than the original diagram.

 Let’s split every class of our original class diagram into code and data entities. Figure 1.13 shows the resulting diagram. Now the system is made of two independent parts:

 	
 A part that involves only data entities.

 	
 A part that involves only code entities.

 [image:]

 Figure 1.13 A class diagram where every class is split into code and data entities

 💡Tip A system where every class is split into two independent parts, code and data, is simpler than a system where code and data are mixed.

 The resulting system, made up of two independent subsystems, is easier to understand than the original system. The fact that the two subsystems are independent means that each subsystem can be understood separately and in any order. The resulting system not simpler by accident ; it is a logical consequence of separating code from data.

 💡Tip A system made of multiple simple independent parts is less complex than a system made of a single complex part.

1.2.2 Unpredictable code behavior

 You might be a bit tired after the system-level analysis that we presented in the previous section. Let’s get refreshed and look at some code.

 Take a look at the code in listing 1.1, where we get the blocked status of a member and display it twice. If I tell you that when I called displayBlockedStatusTwice, the program displayed true on the first console.log call, can you tell me what the program displayed on the second console.log call?

 Listing 1.1 Really simple code

 class Member {
 isBlocked;

 displayBlockedStatusTwice() {
 var isBlocked = this.isBlocked;
 console.log(isBlocked);
 console.log(isBlocked);
 }
}

member.displayBlockedStatusTwice();

 “Of course, it displayed true again,” you say. And you are right!

 Now, take a look at a slightly different pseudocode as shown in listing 1.2. Here we display, twice, the blocked status of a member without assigning a variable. Same question as before: if I tell you that when I called displayBlockedStatusTwice, the program displayed true on the first console.log call, can you tell me what the program displayed on the second console.log call?

 Listing 1.2 Apparently simple code

 class Member {
 isBlocked;

 displayBlockedStatusTwice() {
 console.log(this.isBlocked);
 console.log(this.isBlocked);
 }
}

member.displayBlockedStatusTwice();

 The correct answer is ... in a single-threaded environment, it displays true, while in a multi-threaded environment, it’s unpredictable. Indeed, in a multi-threaded environment between the two console.log calls, there could be a context switch that changes the state of the object (e.g., a librarian unblocked the member). In fact, with a slight modification, the same kind of code unpredictability could occur even in a single-threaded environment like JavaScript, when data is modified via asynchronous code (see the section about Principle #3 in appendix A). The difference between the two code snippets is that

 	
 In the first listing (listing 1.1), we access a Boolean value twice , which is a primitive value.

 	
 In the second listing (listing 1.2), we access a member of an object twice.

 💡Tip When data is mutable, code is unpredictable.

 This unpredictable behavior of the second listing is one of the annoying consequences of OOP. Unlike primitive types, which are usually immutable, object members are mutable. One way to solve this problem in OOP is to protect sensitive code with concurrency safety mechanisms like mutexes, but that introduces issues like a performance hit and a risk of deadlocks.

 We will see later in the book that DOP treats every piece of data in the same way: both primitive types and collection types are immutable values. This value treatment for all citizens brings serenity to DOP developers’ minds, and more brain cells are available to handle the interesting pieces of the applications they build.

 💡Tip Data immutability brings serenity to DOP developers’ minds.

1.2.3 Not trivial data serialization

 Theo is really tired, and he falls asleep at his desk. He’s having dream. In his dream, Nancy asks him to make Klafim’s Library Management System accessible via a REST API using JSON as a transport layer. Theo has to implement a /search endpoint that receives a query in JSON format and returns the results in JSON format. Listing 1.3 shows an input example of the /search endpoint, and listing 1.4 shows an output example of the /search endpoint.

 Listing 1.3 A JSON input of the /search endpoint

 {
 "searchCriteria": "author",
 "query": "albert"
}

 Listing 1.4 A JSON output of the /search endpoint

 [
 {
 "title": "The world as I see it",
 "authors": [
 {
 "fullName": "Albert Einstein"
 }
]
 },
 {
 "title": "The Stranger",
 "authors": [
 {
 "fullName": "Albert Camus"
 }
]
 }
]

 Theo would probably implement the /search endpoint by creating three classes similarly to what is shown in the following list and in figure 1.14. (Not surprisingly, everything in OOP has to be wrapped in a class. Right?)

 	
 SearchController is responsible for handling the query.

 	
 SearchQuery converts the JSON query string into data.

 	
 SearchResult converts the search result data into a JSON string.

 [image:]

 Figure 1.14 The class diagram for SearchController

 The SearchController (see figure 1.14) would have a single handle method with the following flow:

 	
 Creates a SearchQuery object from the JSON query string.

 	
 Retrieves searchCriteria and queryStr from the SearchQuery object.

 	
 Calls the search method of the catalog:Catalog with searchCriteria and queryStr and receives books:List<Book>.

 	
 Creates a SearchResult object with books.

 	
 Converts the SearchResult object to a JSON string.

 What about other endpoints, for instance, those allowing librarians to add book items through /add-book-item? Theo would have to repeat the exact same process and create three classes:

 	
 AddBookItemController to handle the query

 	
 BookItemQuery to convert the JSON query string into data

 	
 BookItemResult to convert the search result data into a JSON string

 The code that deals with JSON deserialization that Theo wrote previously in SearchQuery would have to be rewritten in BookItemQuery. Same thing for the code that deals with JSON serialization he wrote previously in SearchResult; it would have to be rewritten in BookItemResult.

 The bad news is that Theo would have to repeat the same process for every endpoint of the system. Each time he encounters a new kind of JSON input or output, he would have to create a new class and write code. Theo’s dream is turning into a nightmare!

 Suddenly, his phone rings, next to where he was resting his head on the desk. As Theo wakes up, he realizes that Nancy never asked for JSON. It was all a dream ... a really bad dream!

 💡Tip In OOP, data serialization is difficult.

 It’s quite frustrating that handling JSON serialization and deserialization in OOP requires the addition of so many classes and writing so much code—again and again! The frustration grows when you consider that serializing a search query, a book item query, or any query is quite similar. It comes down to

 	
 Going over data fields.

 	
 Concatenating the name of the data fields and the value of the data fields, separated by a comma.

 Why is such a simple thing so hard to achieve in OOP? In OOP, data has to follow a rigid shape defined in classes, which means that data is locked in members. There is no simple way to access data generically.

 💡Tip In OOP, data is locked in classes as members.

 We will refine later what we mean by generic access to the data, and we will see how DOP provides a generic way to handle JSON serialization and deserialization. Until then, you will have to continue suffering. But at least you are starting to become aware of this suffering, and you know that it is avoidable.

 ►Note Most OOP programming languages alleviate a bit of the difficulty involved in the conversion from and to JSON. It either involves reflection, which is definitely a complex thing, or code verbosity.

1.2.4 Complex class hierarchies

 One way to avoid writing the same code twice in OOP involves class inheritance. Indeed, when every requirement of the system is known up front, you design your class hierarchy is such a way that classes with common behavior derive from a base class.

 Figure 1.15 shows an example of this pattern that focuses on the part of our class diagram that deals with members and librarians. Both Librarians and Members need the ability to log in, and they inherit this ability from the User class.

 [image:]

 Figure 1.15 The part of the class diagram that deals with members and librarians

 So far, so good, but when new requirements are introduced after the system is implemented, it’s a completely different story. Fast forward to Monday, March 29th, at 11:00 AM, where two days are left before the deadline (Wednesday at midnight).

 Nancy calls Theo with an urgent request. Theo is not sure if it’s a dream or reality. He pinches himself and he can feel the jolt. It’s definitely reality!

 NANCY How is the project doing?

 THEO Fine, Nancy. We’re on schedule to meet the deadline. We’re running our last round of regression tests now.

 NANCY Fantastic! It means we have time for adding a tiny feature to the system, right?

 THEO Depends what you mean by “tiny.”

 NANCY We need to add VIP members to the system.

 THEO What do you mean by VIP members?

 NANCY VIP members are allowed to add book items to the library by themselves.

 THEO Hmm ...

 NANCY What?

 THEO That’s not a tiny change!

 NANCY Why?

 I’ll ask you the same question Nancy asked Theo: why is adding VIP members to our system not a tiny task? After all, Theo has already written the code that allows librarians to add book items to the library (it’s in Librarian::addBookItem). What prevents him from reusing this code for VIP members? The reason is that, in OOP, the code is locked into classes as methods.

 💡Tip In OOP, code is locked into classes.

 VIP members are members that are allowed to add book items to the library by themselves. Theo decomposes the customer requirements into two pieces:

 	
 VIP members are library members.

 	
 VIP members are allowed to add book items to the library by themselves.

 Theo then decides that he needs a new class, VIPMember. For the first requirement (VIP members are library members), it seems reasonable to make VIPMember derive from Member. However, handling the second requirement (VIP members are allowed to add book items) is more complex. He cannot make a VIPMember derive from Librarian because the relation between VIPMember and Librarian is not linear:

 	
 On one hand, VIP members are like librarians in that they are allowed to add book items.

 	
 On the other hand, VIP members are not like librarians in that they are not allowed to block members or list the books lent to a member.

 The problem is that the code that adds book items is locked in the Librarian class. There is no way for the VIPMember class to use this code.

 Figure 1.16 shows one possible solution that makes the code of Librarian::addBookItem available to both Librarian and VIPMember classes. Here are the changes to the previous class diagram:

 	
 A base class UserWithBookItemRight extends User.

 	
 addBookItem moves from Librarian to UserWithBookItemRight.

 	
 Both VIPMember and Librarian extend UserWithBookItemRight.

 [image:]

 Figure 1.16 A class diagram for a system with VIP members

 It wasn’t easy, but Theo manages to handle the change on time, thanks to an all nighter coding on his laptop. He was even able to add new tests to the system and run the regression tests again. However, he was so excited that he didn’t pay attention to the diamond problem VIPMember introduced in his class diagram due to multiple inheritance: VIPMember extends both Member and UserWithBookItemRight, which both extend User.

 Wednesday, March 31, at 10:00 AM (14 hours before the deadline), Theo calls Nancy to tell her the good news.

 THEO We were able to add VIP members to the system on time, Nancy.

 NANCY Fantastic! I told you it was a tiny feature.

 THEO Yeah, well ...

 NANCY Look, I was going to call you anyway. I just finished a meeting with my business partner, and we realized that we need another tiny feature before the launch. Will you be able to handle it before the deadline?

OEBPS/OEBPS/Images/01-15.png
(© Librarian

© blockMember(member: Member) : Bool
@ unblockMember(member: Member) : Bool

@ addBookitem(bookltem: Bookltem) : Bookltem

/@ getBookLendingsOfiMember(member: Member) : List<BookLending>

v
(©) Member

© isBlocked() : Bool
© returnBook(bookLending : BookLending) : Bool
o checkout(bookltem: Bookltem) : BookLending

String
O password : String|
& login() - Bool

OEBPS/OEBPS/Images/01-02.png
(©) Library

o name : String _j#————=| _ (©) Member

O address : String

(©) Catalog

© List<Book> search(searchCriteria, queryStr)
Bookltem addBookltem(ibrarian: Librarian, bookltem: Bookltem)

OEBPS/OEBPS/Images/01-10.png
(©) Library

—e| (©Catalog
. '»
(©) Book (©Librarian |
(© Member
(© Author J]
© (© User

(©) BookLending

OEBPS/OEBPS/Images/01-07.png
(©) Member

(© Librarian

isBlocked() : Bool

© block() : Bool

© unblock() : Bool

© retumBook(bookLending : BookLending) : Bool
© checkout(bookitem: Bookitem) : BookLending

© blockMember(member: Member) : Bool

© unblockMember(member: Member) : Bool

© addBookltem(bookltem: Bookitem) : Bookltem

© getBookLendingsOfMember(member: Member) :
List<BookLending>

© user

Oid : String

0 email : String
0 password : String

© login() : Bool

OEBPS/cover.jpeg
Yehonathan Sharvit

Forewords by Mi lygard
and Ry

/'I MANNING

OEBPS/OEBPS/Images/01-01.png
(©) Library

0 name : String
0 address : String

(©) Catalog

© search(searchCriteria, queryStr) : List<Book>
© addBookltem(librarian: Librarian, bookltem: Bookitem) : Bookltem

I

v -
(©) Librarian

© blockMember(member: Member) : Bool

() Book

01id: Sting © unblockMember(member: Member) : Bool
Qltitie: Sting) © addBookltem(bookltem: Bookltem) : Bookitem

= © getBookLendingsOfMember(member: Member) : List<BookLending>

v .

(©) Member

(© Author

Oid: String

© isBlocked() : Bool
© block() : Bool

S —

O fullName: String r unblock() : Bool
| © retunBook(bookLending: BookLending) : Bool
i © checkout(bookltem: Bookltem) : BookLending
Ay i 5
(© Bookltem ©user
— i Oid: String
-] | 0 email : String
SCaSTng. i 0 password : String
© checkout(member: Member) : BookLending { -
i © login() : Bool
v
(C) BookLending
Oid : String
0 lendingDate : date
0 dueDate : date
© isLate() : Bool
© returnBook() : Bool

OEBPS/OEBPS/Images/01-11.png
(©) Librarian

(©)Library

2
(©) Member

]

v

(©) User

(C) BookLending

(C) Bookitem

OEBPS/OEBPS/Images/01-14.png
(© searchController

© String handle(searchQuery: String)|

v
4 v
© cataiog (© SearchResult © SearchQuery
— O searchCriteria: String
o List<Book> search(searchCriteria, querySt)| |© SearchResult(books: List<Book>) | | gery: string
© String toJSON()
(] v © SearchQuery(jsonString: String)

(©) Book

Oid : String
O title : String

OEBPS/OEBPS/Images/01-06.png
(©) Library

0 name : String
0 address : String

(©) Catalog

© List<Book> search(searchCriteria, queryStr)
© Bookltem addBookltem(librarian: Librarian,
bookltem: Bookltem)

(©) Member

© Bool isBlocked()

© Bool block()

© Bool unblock()

© Bool retunBook(bookLending: BookLending)
© BookLending checkout(bookltem: Bookltem)

(©) Librarian

© Bool blockMember(member: Member)
Bool unblockMember(member: Member)

@ Bookltem addBookltem(bookitem: Bookltem)
© List<BookLending> getBookLendingsOfMember
(member: Member)

OEBPS/OEBPS/Images/IFC.png
Immutable
data with generic data)

structures.
Generic
Z @

Mutable
Representation b
Specific Principle #3
/"< S L bk
;e / S:he% immutable.
P

rinciple #4: Separate
Data-oriented data schema from data

programming representation.
pnd
Sode Functional
) programming
3 ©
Separate code
from data.

Object-oriented
programming ©

OEBPS/OEBPS/Images/Manning_M_small.png

OEBPS/OEBPS/Images/01-13.png
(©)LibraryData o - |(C) LibrarianData

t

(©) MemberData| (C) CatalogData

! L

(©) CatalogCode

le----.

(C) LibrarianCode

(©) BookLendingData

2 v
(©) BookData (©) MemberCode | [(€) BookLendingCode | |(€) BookitemCode
. 3 v
(©) BookltemData| | (C) AuthorData (C) UserCode | |(C) Bookltem

OEBPS/OEBPS/Images/01-05.png
(©) Member

o isBlocked() : Bool
o block() : Bool

o unblock() : Bool

o returnBook(bookLending : BookLending) : Bool
o checkout(bookltem: Bookltem) : BookLending

v
(©) user

0 id : String
0 email : String
0 password : String|
@ Togin() : Bool

OEBPS/OEBPS/Images/01-09.png
(© Book

*0id: Sting
String

(C) Bookltem © Author

0id: String 0id : String
0 libld: String O fullName: String

6 BookLending checkout(member: Member)

(C) BookLending

0id : String

O lendingDate : date
O dueDate : date

© Bool isLate()

© Bool returnBook()

OEBPS/OEBPS/Images/01-03.png
(©) Book

0id : String
O title : String

]

Author

Oid : String
O fullName: String

OEBPS/OEBPS/Images/01-16.png
(© Librarian

(©) VIPMember

blockMember(member: Member) : Bool
© unblockMember(member: Member) : Bool
© getBookLendingsOfMember(member: Member) : List<BookLending>

f .

(©) Member
= (©) UserWithBookltemRight
© isBlocked() : Bool
© retumnBook(bookLending : BookLending) : Bool| [o addBookitem(bookitem: Bookitem) : Bookltem
o checkout(bookltem: Bookltem) : BookLending

(©) User
0id: String
O email : String
O password : String
@ login() : Bool

OEBPS/OEBPS/Images/Manning_copyright.png

OEBPS/OEBPS/Images/author.png

OEBPS/OEBPS/Images/01-12.png
(©) Library (©) Librarian
E=—

[PA—

© MemberData (© MemberCode

¢

B v
() BookLending (©User| |(©)Bookitem

OEBPS/OEBPS/Images/01-04.png
(©) Librarian

© Bool biockMember(member: Member)
o Bool unblockMember(member: Member)

o Bookltem addBookltem(bookltem: Bookltem)

o List<BookLending> getBookLendingsOfMember(member: Member)

v
(©) Member

0 Bool isBlocked()
0 Bool block()

o Bool unblock()

o Bool retumBook(bookLending: BookLending)
@ BookLending checkout(bookitem: Bookltem)

OEBPS/OEBPS/Images/01-08.png
(© Catalog

© List<Book> search(searchCriteria, queryStr)
© Booklitem addBookltem(librarian: Librarian, bookitem: Bookltem);

a—

(© Librarian

‘o Bool blockMember(member: Member) © Book

© Bool unblockMember(member: Member) O id : String
ookitem addBookltem(bookltem: Bookltem) O title : String|

o List<BookLending> getBookLendingsOfMember (member: Member)

